
Contrasting responses of urban and rural 
surface energy budgets to heat waves 
explain synergies between urban heat 
islands and heat waves 
Article 

Published Version 

Creative Commons: Attribution 3.0 (CC-BY) 

Open Access 

Li, D., Sun, T. ORCID: https://orcid.org/0000-0002-2486-6146, 
Liu, M., Yang, L., Wang, L. and Gao, Z. (2015) Contrasting 
responses of urban and rural surface energy budgets to heat 
waves explain synergies between urban heat islands and heat 
waves. Environmental Research Letters, 10 (5). 054009. ISSN 
1748-9326 doi: https://doi.org/10.1088/1748-
9326/10/5/054009 Available at 
https://centaur.reading.ac.uk/71097/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1088/1748-9326/10/5/054009 

Publisher: Institute of Physics 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


Environ. Res. Lett. 10 (2015) 054009 doi:10.1088/1748-9326/10/5/054009

LETTER

Contrasting responses of urban and rural surface energy budgets to
heat waves explain synergies between urban heat islands and heat
waves

DanLi1, Ting Sun2,Maofeng Liu3, LongYang3, LinlinWang4 andZhiqiuGao4
1 ProgramofAtmospheric andOceanic Sciences, PrincetonUniversity, Princeton, NJ08544,USA
2 State Key Laboratory ofHydro-Science and Engineering, Department ofHydraulic Engineering, TsinghuaUniversity, Beijing, People’s

Republic of China
3 Department of Civil and Environmental Engineering, PrincetonUniversity, Princeton,NJ08544, USA
4 State Key Laboratory of Atmospheric Boundary Layer Physics andAtmospheric Chemistry, Institute of Atmospheric Physics, Chinese

Academy of Sciences, Beijing, People’s Republic of China

E-mail: sunting@tsinghua.edu.cn

Keywords: heat wave, urban heat island, surface energy budgets

Supplementarymaterial for this article is available online

Abstract
Heatwaves (HWs) are projected to becomemore frequent and last longer overmost land areas in the
late 21st century, which raises serious public health concerns. Urban residents face higher health risks
due to synergies betweenHWs and urban heat islands (UHIs) (i.e., UHIs are higher underHW
conditions). However, the responses of urban and rural surface energy budgets toHWs are still largely
unknown. This study analyzes observations from twoflux towers in Beijing, China and reveals
significant differences between the responses of urban and rural (cropland) ecosystems toHWs. It is
found thatUHIs increase significantly duringHWs, especially during the nighttime, implying
synergies betweenHWs andUHIs. Results indicate that the urban site receivesmore incoming
shortwave radiation and longwave radiation due toHWs as compared to the rural site, resulting in a
larger radiative energy input into the urban surface energy budget. Changes in turbulent heatfluxes
also diverge strongly for the urban site and the rural site: latent heatfluxes increasemore significantly
at the rural site due to abundant available water, while sensible heatfluxes and possibly heat storage
increasemore at the urban site. These comparisons suggest that the contrasting responses of urban
and rural surface energy budgets toHWs are responsible for the synergies betweenHWs andUHIs. As
a result, urbanmitigation and adaption strategies such as the use of green roofs andwhite roofs are
needed in order tomitigate the impact of these synergies.

1. Introduction

HWs are excessively hot periods that last for several
days or longer. They are one of the most important
regional and global causes ofweather-relatedmortality
(Harlan et al 2006, Kovats and Hajat 2008, Anderson
and Bell 2011, Petkova et al 2014, Wu et al 2014). For
example, the 1995 Chicago heat wave caused more
than 800 deaths (Changnon et al 1996) and the 2003
European heat wave was estimated to have killed
70 000 people (Robine et al 2008). In addition to
human health, HWs also have significant impacts on
ecosystem productivity (Ciais et al 2005), animal

production (West 2003), labor capacity (Dunne
et al 2013), and energy/water consumptions (Sailor
and Pavlova 2003).

Observational data indicate that the frequency of
HWs has increased over the past few decades (Hansen
et al 2010, Coumou and Rahmstorf 2012, Coumou
et al 2013, Peterson et al 2013). In addition, numerous
studies using advanced global climate models have
demonstrated that HWs are very likely to become
more frequent, last longer, and affect larger land areas
in the late 21st century (Meehl and Tebaldi 2004, Lau
and Nath 2012, Coumou and Robinson 2013, Lau and
Nath 2014), as concluded by the Fifth Assessment
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Report of the Intergovernmental Panel on Climate
Change (IPCC 2013). As a result, managing the risks
associated with HWs is becoming increasingly impor-
tant under awarming climate.

HWs typically result from stagnant, high-pressure
systems that produce a positive temperature anomaly
over a large area (Meehl and Tebaldi 2004, Loikith and
Broccoli 2012). Urban areas are particularly vulner-
able to HWs due to the pre-existing or background
UHI effect; that is, urban areas are typically hotter than
the rural areas even under non-HW conditions
(Oke 1982, Grimmond 2007). Since its first doc-
umentation by the Britishmeteorologist LukeHoward
in 1833 (Mills 2008), the UHI phenomenon has been
studied extensively all over the world using theoretical,
experimental, and numerical approaches (see e.g.,
Arnfield 2003 for a review). Keymeteorological factors
that control the UHI effect have been identified,
including wind speed and cloud cover (Arnfield 2003),
both of which are strongly affected by HWs. A recent
modeling study over the Baltimore–Washington
Metropolitan area in the United States shows that the
UHI effect is intensified under HW conditions, imply-
ing that HWs not only enhance urban and rural tem-
peratures, they also exaggerate the contrast between
urban and rural temperatures (Li and Bou-Zeid 2013).
This synergistic interaction between HWs and UHIs
was attributed principally to the lack of surface moist-
ure in urban areas using a simple analytical model (Li
and Bou-Zeid 2013).

An important yet unanswered question is how the
synergistic interaction betweenHWs andUHIs is rela-
ted to the different responses of urban and rural sur-
face energy budgets to HWs. To address this question,
this study investigates the responses of various compo-
nents in the urban and rural surface energy budgets to
HWs using observational data collected over the Beij-
ingMetropolitan area in China. By examining changes
in the urban and rural surface energy budgets under
HW conditions as compared to under non-HW con-
ditions, the mechanism behind synergistic interac-
tions between HWs and UHIs is to be elucidated. The

paper is organized as follows: section 2 documents the
methodology and the observational data; section 3
presents and discusses the main results; and section 4
summarizes thework.

2.Methodology and data

The surface energy budget of a canopy without
significant horizontal advection can be expressed as:

+ = + +R AH H LE G (1)n

where Rn is the net radiation calculated from
Rn= SWin+ LWin− SWout− LWout and SWin, LWin,
SWout, and LWout are the incoming shortwave radia-
tion, incoming longwave radiation, outgoing short-
wave radiation, and outgoing longwave radiation,
respectively. The anthropogenic heat (AH) flux is
generally more significant in urban areas than in rural
areas (Sailor 2011). Estimating AH in urban environ-
ments remains a challenge, but many recent studies
have attempted to quantify the spatiotemporal char-
acteristics of AH using multi-method and multi-scale
approaches (see e.g., Chow et al 2014, Nie et al 2014).
H is the sensible heat flux, which is the major source
for heating the atmosphere (whenH> 0), and LE is the
latent heat flux into the atmosphere resulting from soil
evaporation and/or plant transpiration (when LE> 0).
These two components are commonly referred to as
turbulent fluxes and their sum is called the available
energy. G includes the heat flux into the ground (or
into the buildings for urban areas) and the heat stored
in the canopy (whenG> 0).

The data used in this study are collected from two
flux towers, one located in North Beijing (39.97°N,
116.37°E) and the other located at Xianghe (39.78°N,
116.95°E), which is a rural area adjacent to Beijing.
The analysis focuses on the summer season (June–
August) in 2009 and 2010. The locations of the two
flux towers, the topography, and the land-use map are
shown in figure 1. The Beijing flux tower is 325 m high
and includes turbulence measurements at three levels
(47, 140, and 280 m) using combinations of three-

Figure 1.The locations of the twoflux towers (urban: Beijing, rural: Xianghe). (a) the topography and (b) the land-usemap.

2

Environ. Res. Lett. 10 (2015) 054009 DLi et al



dimensional sonic anemometers (Campbell Scientific
CSAT3, USA) and open-path gas analyzers (LICOR-
7500,USA) fromwhich 30 min turbulent fluxes can be
calculated following Li and Bou-Zeid (2011) and
Wang et al (2014b). These flux data have been ana-
lyzed extensively in previous studies (Al-Jiboori
et al 2002, Al-Jiboori and Hu 2005, Al-Jiboori 2008, Li
et al 2010, Miao et al 2012, Wang et al 2014a, Wang
et al 2014b). Incoming and outgoing radiation are also
measured at the three levels using CNR1 radiometers
at hourly intervals. In this study, the averaged radiative
and turbulent fluxes from the three levels are used but
we note that our conclusions are not changed when
data from one of the three levels are used given the
similar magnitude of fluxes at the three levels
(Wang et al 2014a). Results using data measured at a
single level are presented in the Supplementary Mate-
rials (stacks.iop.org/ERL/10/054009/mmedia). Other
instruments include hourly air temperature and relative
humidity measurements at various levels, as shown in
Yu et al (2013). In this study, only air temperatures
measured at 8mand 32mabove the ground are used.

The Xianghe flux tower includes turbulence mea-
surements at two levels (32 m and 64 m) using three-
dimensional sonic anemometers (Gill, UK) and open-
path gas analyzers (LICOR-7500, USA). Similarly, tur-
bulent fluxes are calculated using an averaging interval
of 30 min (Wang et al 2014a) and the averaged turbu-
lent fluxes from these two levels are used in this study.
Incoming shortwave and longwave radiation are mea-
sured at the surface also at hourly intervals. Summing
the direct and diffuse components, which are mea-
sured by an Eppley Normal Incidence Pyrheliometer
and a black-and-white radiometer, respectively, yields
the incoming shortwave radiation. The incoming
longwave radiation ismeasured using an Eppley Preci-
sion Infrared Radiometer. Additional information
about the instruments and data quality control can be
found in Xia et al (2007). Hourly air temperature and
relative humidity are also available at various levels
(Yu et al 2013) and only those at 8 m and 32 m above
the ground are used in this study.

It is clear from figure 1 that the Beijing tower is
mainly surrounded by urban surfaces, while the
Xianghe tower is surrounded by croplands that are
irrigated regularly. Wang et al (2014a) analyzed the
land-use compositions within the footprints of the
Beijing and Xianghe flux towers using the Finer Reso-
lution Observation and Monitoring of Global Land
Cover (FROM-GLC) dataset (Gong et al 2012). In
their analyses, impervious surface and cropland are
the two most important land-cover types around the
two flux towers, which is consistent with figure 1.
At the Beijing flux tower, the fractions of impervious
surfaces are 82, 74, and 65% in the three footprints
corresponding to the three levels of turbulence mea-
surements, respectively; cropland is the second most
important surface type with fractions of 12, 18, and
29% for the three footprints, respectively. At the

Xianghe flux tower, the fractions of cropland are 74%
and 75% for the two footprints corresponding to the
two levels of the Xianghe flux tower, while the frac-
tions of impervious surface are 22% and 21%,
respectively.

Identifying HW periods requires a long-term time
series of air temperature measurements, which is
taken from the 35 year air temperature observational
data at the Beijing International Airport. There are
many definitions of HWs (Robinson 2001, Smith
et al 2013) and the one used by Meehl and Tebaldi
(2004) is adopted in our study. By introducing two
thresholds for daily maximum air temperature (Tmax):
T1 the 97.5th percentile and T2 the 81st percentile, a
HW is defined as the longest period satisfying the fol-
lowing three conditions: (1) Tmax exceeds T1 for at
least 3 days, (2) the average ofTmax over the entire per-
iod is higher than T1, and (3) Tmax exceeds T2 for each
day of the period. This definition yields a total of 5
HWevents or 44HWdays over the BeijingMetropoli-
tan area during 2009–2010 (see table S1 of the Supple-
mentary Materials for detailed periods, available at
stacks.iop.org/ERL/10/054009/mmedia). The defini-
tion used in our study has also been used in many
other studies withminor alterations in the selection of
T1 andT2 (Lau andNath 2012, 2014). Note other defi-
nitions of HWs have been used in the literature
(Smith et al 2013) and exploring the differences
between these definitions is beyond the scope of this
study. We also note that there are debates about the
attribution of increasing temperature extremes (e.g.,
HWs) to the shift of mean and/or the change of var-
iance of the temperature distribution (Schar et al
2004, Simolo et al 2011, Hansen et al 2010, Rhines and
Huybers 2013), which are outside of the scope of this
study.

The turbulent fluxes, radiative fluxes, and air tem-
peratures measured under HW days (44 days) and
under non-HW days (140 days) are then separated,
which are termed as ‘heatwave’ and ‘background’
hereafter. The averaged ‘heatwave’ results are com-
pared to the averaged ‘background’ results in order to
understand the impacts of HWs on the UHI effects
and the urban/rural surface energy budgets.

3. Results

Figures 2(a) and (b) show the averaged diurnal cycles
of air temperatures measured at 8 m (T8) and 32 m
(T32), respectively, under HW and non-HW (or back-
ground) conditions. It is clear that urban tempera-
tures are always higher than rural temperatures for
both T8 and T32, implying positive UHIs over the
Beijing Metropolitan area. Under HW conditions,
both urban and rural temperatures are significantly
increased as compared to their counterparts under
background conditions. When the UHIs are consid-
ered, as shown in figures 2(c) and (d), it is also
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evident that the UHIs are enhanced under
HW conditions as compared to under background
conditions; namely, urban temperatures are increased
more significantly than rural temperatures, suggesting

there are positive or synergistic interactions between
HWs andUHIs.

It is pointed out here that under background sum-
mer conditions, the diurnal cycle of UHIs at 8 m

Figure 2.The averaged diurnal cycles of air temperatures (unit: K)measured at (a) 8 m (T8) and (b) 32 m (T32) above the ground and
their differences (c), (d) between the urban site and the rural site. In (a), (b), the urban site and the rural site are indicated by the red
color and the blue color, respectively. In (c), (d), heatwave and background conditions are indicated by the red color and the blue
color, respectively. Shaded areas in (c), (d) denote one standard deviation. Local standard time is used here and throughout the study.

Figure 3.The averaged diurnal cycles of (a) incoming shortwave radiation (SWin) and (b) incoming longwave radiation (LWin) and
their differences (c), (d) between heatwave and background conditions. In (a)–(d), the urban site and the rural site are indicated by the
red color and the blue color, respectively. In (a), (b), heatwave and background conditions are indicated by the lines and dashed lines,
respectively. Shaded areas in (c), (d) denote one standard deviation. The urbanfluxes are averaged over three levels (i.e., 47, 140, and
280 m) and the rural fluxes are averaged over two levels (i.e., 32 m and 64 m). Results using fluxesmeasured at a single level at both
sites are shown in the supplementarymaterial, available at stacks.iop.org/ERL/10/054009/mmedia (figure S1).
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shows two peaks, one in the early afternoon and the
other at night. Interestingly, the UHIs under HW con-
ditions are much higher during the nighttime and
reach the maxima in the early morning. As a result,
synergistic interactions betweenHWs and UHIs occur
mostly during the nighttime and are almost absent in
the late afternoon (around 18:00) when the back-
ground UHIs are also the lowest. The existence of
nighttime maximum in UHIs under both background
and HW conditions is consistent with many previous
studies (e.g., Oke 1982, Arnfield 2003).

To understand the impacts of HWs on the urban
and rural surface energy budgets, figures 3 and 4 exam-
ine changes in the incoming radiation (shortwave and
longwave) and the turbulent fluxes (sensible and
latent), respectively. As can be seen from equation (1),
incoming radiation is the radiative input into the sur-
face energy budget. Figures 3(a) and (b) show that the
incoming shortwave and longwave radiation are
increased under HW conditions, as compared to under
background conditions, for both urban and rural sites.
The increases in the incoming shortwave radiation
occur throughout the daytimewithmaxima at noon for
both urban and rural sites, which is consistent with the
fact that HW days are typically clear days with little
cloud cover (Black et al 2004). Interestingly, under HW
conditions, increases in the incoming shortwave radia-
tion from background to HW conditions at the urban
site are larger than those at the rural site (figure 3(c)). As
a result, differences in the incoming shortwave

radiation between the urban site and the rural site are
strongly diminished and the two sites have very similar
diurnal cycles of incoming shortwave radiation under
HWconditions (figure 3(a)).

Different from the incoming shortwave radiation,
increases in the incoming longwave radiation under
HW conditions primarily occur in the late afternoon
(figure 3(b)), which is due to increases in air tempera-
tures in the late afternoon (Brutsaert 1982). In
addition, the increase in the incoming longwave radia-
tion is slightly more significant at the urban site
(figure 3(d)), especially during the afternoon, owing
to the higher sensitivity of incoming longwave
radiation to perturbations in the air temperature
( εσ=∂

∂ T4 ,LW

T a
3in

a
where ε is the emissivity of the atmo-

sphere, σ is the Stefan–Boltzmann constant, and Ta is
the air temperature) at higher air temperatureTa.

Changes in the partition of available energy over
urban and rural sites diverge strongly. Under back-
ground summer conditions, the urban site has higher
sensible heat fluxes and lower latent heat fluxes than
the rural site (figures 4(a) and (b)) owing to the lack of
green space and the use of impervious materials in
urban areas (Oke 1982). The urban site shows slight
increases while the rural site shows slight decreases in
sensible heat fluxes from background to HW condi-
tions (figure 4(c)). The slight increases in sensible heat
fluxes at the urban site are found to be a result of
increases in the wind speed (figure S3(a)). However,
this decreases in the vertical temperature gradient

Figure 4.The averaged diurnal cycles of (a) sensible heatflux (H) and (b) latent heatflux (LE) and their differences (c), (d) between
heatwave and background conditions. In (a)–(d), the urban site and the rural site are indicated by the red color and the blue color,
respectively. In (a), (b), heatwave and background conditions are indicated by the lines and dashed lines, respectively. Shaded areas in
(c), (d) denote one standard deviation. The urbanfluxes are averaged over three levels (i.e., 47, 140, and 280 m) and the rural fluxes are
averaged over two levels (i.e., 32 m and 64 m). Results using fluxesmeasured at a single level at both sites are shown in the
supplementarymaterial, available at stacks.iop.org/ERL/10/054009/mmedia (figure S2).
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(figure S3(b)) under HW conditions as compared to
under background conditions. The slight decreases in
sensible heat fluxes at the rural site are due to insignif-
icant changes in the wind speed (figure S3(a)) and
potential decreases in the vertical temperature gra-
dient (figures S3(b) and S3(c)).

On the other hand, both urban and rural sites
show significant increases in latent heat fluxes, which
is consistent with the theoretical analysis of Bateni and
Entekhabi (2012), showing that evaporation increases
more efficiently compared to sensible heat flux as the
air temperature increases (i.e., as HWs come) in the
presence of sufficient water availability. However,
unlike that increases in sensible heat fluxes are slightly
larger over the urban site, increases in latent heat fluxes
over the rural site are slightly larger (figure 4(d)), again
owing to the limitedwater availability inurban areas. As
such, it is demonstrated here that HWs affect the urban
and rural surface energy budgets differently: sensible
heat fluxes increase more over the urban site, while
latent heat fluxes increase more over the rural site,
resulting in an intensification of theUHIs. These results
are broadly consistent with the theoretical and model-
ing analyses of Li andBou-Zeid (2013).

It is clear from equation (1) that the outgoing
radiation, the AH, and heat storage (G) are important
components of the surface energy budget. In parti-
cular, a larger heat storage during HWs results in a
longer period of hot conditions since the stored heat is
slowly released and re-heats the atmosphere after
HWs (Li and Bou-Zeid 2013). Figure 5 shows that the
heat storage term minus the anthropogenic heat flux
(G−AH) increases significantly at the urban site from
background to HW conditions. Was theAH not chan-
ged due to HWs, this would imply that more heat is
stored in the urban canopy during the daytime while
more heat is released into the atmosphere during the
nighttime under HW conditions as compared to

under background conditions. Given that the AH is
expected to increase under HW conditions due to the
surge in cooling loads such as air conditioning and
water chilling (Stone 2012), it further indicates that
even more heat is stored in the urban canopy during
the daytime and even more heat is released into the
atmosphere during the nighttime, as compared to the
situationwhere no change inAHwas assumed.

Although changes in heat storage at the rural site are
unknown due to unavailable outgoing radiation mea-
surements, it is conjectured that changes in heat storage
are less substantial in rural areas given the more sig-
nificant synergistic interactions between HWs and
UHIs in the nighttime, as shown in figure 2. Hence, as a
result of larger heat storage, urban areas experience
longer hot conditions than rural areas. Future studies
involving direct comparisons of heat storage between
urban and rural areas under HW and background con-
ditions are needed given the importance of heat storage
inmodulatingUHIs inpost-HWperiods.

To further examine the urban–rural contrast in
terms of different components in the surface energy
budget, figure 6 shows the differences in incoming
shortwave radiation (ΔSWin), incoming longwave
radiation (ΔLWin), total incoming radiation (Δ
(SWin+ LWin)), sensible heat flux (ΔH), latent heat
flux (ΔLE), and available energy (Δ(H+ LE)) between
the urban site and the rural site under HW and back-
ground conditions. It is clear that under background
summer conditions, the urban site receives less
incoming shortwave radiation than the rural site and
hence ΔSWin is negative. As shown in Wang et al
(2014a), this is neither completely explained by the
differences in the aerosol optical depth nor by the dif-
ferences in the cloud fraction. However, a comparison
between HW and background conditions might offer
some new insights. It is clear that the urban–rural con-
trast in the incoming shortwave radiation (ΔSWin) is

Figure 5.The averaged diurnal cycles ofRn–H–LE=G–AH in the urban area under heatwave and background conditions. Shaded
areas denote one standard deviation.
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strongly reduced under HW conditions, suggesting
that aerosols are not the primary contributor to the
urban–rural contrast in the incoming shortwave
radiation, since aerosols would have enhanced or
maintained the urban–rural contrast in the incoming
shortwave radiation under HW conditions (i.e., when
the atmosphere is stagnant). As a result, the urban–
rural contrast of incoming shortwave radiation is
probablymore caused by the elevated cloud fraction in
urban areas, which is hence diminished under HW
conditions when both urban and rural areas have clear
sky. Cloud fractions under HW and background con-
ditions estimated from satellite observations are pre-
sented in the supplementary materials, available at
stacks.iop.org/ERL/10/054009/mmedia (figure S4). It
can be seen from figure S4 that the urban–rural con-
trast of cloud fraction is consistent with the urban–
rural contrast of incoming shortwave radiation: the
cloud fraction at the urban site is slightly higher under
background conditions but is comparable to the cloud
fraction at the rural site under HW conditions, which
is in agreement with that SWin at the urban site is
lower under background conditions, but is compar-
able to SWin at the rural site under HW conditions
(see alsofigure 3(a)).

The urban–rural contrast in the incoming long-
wave radiation is slightly increased, which is partially
due to the enhancedUHI effect under HWconditions.
Given εσ=∂

∂ T4 ,LW

T a
3in

a
an increase in ΔTa will result in

an increase in ΔLWin. The comparisons in terms of the
incoming shortwave radiation and longwave radiation
suggest that the total radiative energy received increa-
sesmore significantly at the urban site under HW con-
ditions (see figure 6(a)).

The increases in the radiative energy are partially
transferred into the increases in sensible heat fluxes, as
can be seen from figure 6(b). This is particularly the case
considering that latent heat fluxes at the urban site
decrease relative to those at the rural site. A combination

of these two effects (i.e., increases in sensible heat fluxes
and decreases in latent heat fluxes at the urban site rela-
tive to the rural site) leads to the intensification of UHIs
under HW conditions, thereby partly explaining the
synergistic interactions between HWs and UHIs shown
in figure 2. It is also interesting to observe that the
urban–rural contrast of available energy, or the sum of
sensible and latent heat fluxes (H+ LE), does not change
much due to HWs, which is consistent with the results
of the analytical model in Li and Bou-Zeid (2013). The
analytical model predicts that the synergies between
HWs and UHIs are much more sensitive to the urban–
rural contrast of available water for evapotranspiration
than the urban–rural contrast of available energy. As can
be seen from figure 6(b), changes in the urban–rural
contrast of available energy due toHWs aremuch smal-
ler than changes in the urban–rural contrast of latent
heatfluxes, implying that changes in the available energy
are less important than changes in the partition of avail-
able energy into sensible and latent heatfluxes.

The fact that the urban–rural contrast of total
incoming radiation is increased while the urban–rural
contrast of available energy is maintained at the same
level under HW conditions again suggests that the
urban–rural contrast of heat storage increases under
HW, particularly considering the AH flux is also likely
increased more in urban areas under HW conditions.
This is also consistent with the maximal intensifica-
tions of UHIs during nighttime shown in figure 2.
However, a direct comparison of urban and rural heat
storage, which is not possible here due to the lack of
measurements of outgoing radiation at the rural site
and the AH flux, is needed in future studies to verify
this conjecture.

4. Summary and implications

This study investigates the different responses of urban
and rural surface energy budgets to HWs in order to

Figure 6.The averaged differences in (a) incoming shortwave radiation (ΔSWin), incoming longwave radiation (ΔLWin), total
incoming radiation (Δ(SWin+ LWin)), (b) sensible heat flux (ΔH), latent heatflux (ΔLE), and available energy (Δ(H+ LE)) between
the urban site and the rural site. The heatwave conditions and the background conditions are indicated by the red color and the blue
color, respectively. The error bars denote one standard deviation.
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elucidate the mechanism for synergistic interactions
betweenHWs andUHIs observed over the Baltimore–
Washington Metropolitan area (Li and Bou-
Zeid 2013) and the Beijing Metropolitan area. It is
shown here that as compared to those under back-
ground summer conditions, the incoming shortwave
radiation and longwave radiation increase at both
urban and rural sites under HW conditions, leading to
larger radiative inputs into the surface energy balances.
However, there are significant differences between the
urban and rural surface energy budgets. First of all, the
urban site receives more incoming shortwave radia-
tion and longwave radiation under HW conditions as
compared to the rural site. Second, changes in
turbulent heat fluxes also diverge strongly for the
urban site and the rural site: latent heat fluxes increase
more at the rural site because of abundant available
water, while sensible heat fluxes increase more at the
urban site. In spite of no direct comparison of heat
storage, it is conjectured that increases in heat storage
are more substantial in urban areas under HW
conditions, given the more significant synergistic
interactions betweenHWs andUHIs during the night-
time and also the fact that the urban–rural contrast of
total incoming radiation increases while the urban–
rural contrast of available energy is maintained at the
same level. These comparisons explain the observed
synergies between HWs and UHIs; that is, the urban
temperature increases more significantly than the
rural temperature underHWconditions.

Previous studies have examined the different
responses of forests and grasslands to HWs experi-
mentally (Teuling et al 2010) and numerically (Stap
et al 2014). It was found that grasslands were heated
less in the initial phase due to the increased evapora-
tion; ultimately, however, grasslands were heated
more in the later phase due to the depletion of soil
moisture while the conservative water use strategy
allows forests to keep evaporating over a much longer
period, thereby mitigating the impact of long-lasting
HWs. In this study, we are restricted to the initial
phase for grasslands/croplands due to irrigation at the
rural site. That being said, drought conditions are also
not considered in this study. We point out that
droughts are sometimes associated with HWs and
under drought conditions, rural areas do not have
much water for evapotranspiration and hence, the
synergies between UHIs and HWs might be dimin-
ished or completely absent. In addition, we also note
that the number of HW events and the number of HW
days are still limited here due to data availability.
Future investigations focusing on comparisons
between urban and forest rural sites, the effects of
long-lastingHWs and droughts, and using even longer
observational datasets might reveal different and
interesting features.

The results presented here have important impli-
cations. First of all, urban residents, especially the
elderly and those who do not have access to air

conditioning, are facing higher health risks because of
the synergies betweenHWs andUHIs. The health risks
faced by urban residents under HW conditions are
higher than a simple addition of those from the back-
ground UHI effects and those from HW effects. Sec-
ond, the results indicate that the lack of water for
evapotranspiration in cities is largely responsible for
the synergistic interactions between HWs andUHIs as
the increased radiative input in urban areas is then
transformed into sensible heat fluxes and possibly heat
storage. Consequently, mitigation and adaption stra-
tegies that aim to increase the water availability in
cities, such as the use of green roofs and planting trees
(e.g., Gaffin et al 2010, Georgescu et al 2014, Stone
et al 2014), are strongly needed in order to reduce
these synergistic interactions. These strategies also
have other environmental and socio-economic bene-
fits such as improving air quality (e.g., Yang
et al 2008), managing storm-water (e.g., Berndts-
son 2010, Yang et al 2014), and reducing energy use
(e.g., Jim and Peng 2012). White roofs that increase
the reflection of incoming shortwave radiation
(Akbari et al 2001, Synnefa et al 2008, Akbari
et al 2009, Krayenhoff and Voogt 2010, Oleson
et al 2010, Akbari et al 2012, Jacobson and Ten
Hoeve 2012) can also be helpful given that the incom-
ing shortwave radiation is found to be increased under
HW conditions. Examining the impacts of these miti-
gation and adaptation strategies (particularly the use
of green and white roofs) using regional and global cli-
mate models has been the subject of research recently
(Oleson et al 2010, Jacobson and Ten Hoeve 2012,
Georgescu et al 2014, Li et al 2014, Stone et al 2014),
which is partly attributed to advances in urbanmodel-
ing (Taha 2008a, 2008b, 2008c, Grimmond et al 2010,
Chen et al 2011, Grimmond et al 2011, Best and Grim-
mond 2014) and development of more sophisticated
green roofs (Sailor 2008, Sun et al 2013, Yang and
Wang 2014) and irrigation modules (Vahmani and
Hogue 2014). However, studies focusing on the
impact of these strategies under HW conditions (see
e.g., Li et al 2014) are still limited and are thus recom-
mended. In particular, the soil moisture needs to be
maintained (for example by irrigation) at a high level
in order for green roofs to be effective under HW con-
ditions (Sun et al 2014). Hence, the potential cost of
irrigation needs to be taken into account when con-
sidering the effectiveness of green roofs under HW
conditions.
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