The Analytical Objective Hysteresis Model (AnOHM v1.0): methodology to determine bulk storage heat flux coefficients

It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.5194/gmd-10-2875-2017

Publisher: European Geosciences Union
CentAUR
Central Archive at the University of Reading
Reading's research outputs online
The Analytical Objective Hysteresis Model (AnOHM v1.0): methodology to determine bulk storage heat flux coefficients

Ting Sun1,2,3, Zhi-Hua Wang4, Walter C. Oechel5,6, and Sue Grimmond1

1Department of Meteorology, University of Reading, Reading, RG6 6BB, UK
2Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
3State Key Laboratory of Hydro-Science and Engineering, Tsinghua University, Beijing 100084, China
4School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
5Global Change Research Group, Department of Biology, San Diego State University, San Diego, CA 92182, USA
6Department of Environment, Earth and Ecosystems, The Open University, Milton Keynes, MK7 6AA, UK

Correspondence to: Ting Sun (ting.sun@reading.ac.uk) and Sue Grimmond (c.s.grimmond@reading.ac.uk)

Received: 8 December 2016 – Discussion started: 10 January 2017
Revised: 18 June 2017 – Accepted: 19 June 2017 – Published: 27 July 2017

Abstract. The net storage heat flux (ΔQS) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQS and net all-wave radiation (Q∗) has been captured in the Objective Hysteresis Model (OHM) parameterization of ΔQS. Although successfully used in urban areas, the limited availability of coefficients for OHM hampers its application. To facilitate use, and enhance physical interpretations of the OHM coefficients, an analytical solution of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport in conjunction with the SEB is conducted, allowing development of AnOHM (Analytical Objective Hysteresis Model). A sensitivity test of AnOHM to surface properties and hydrometeorological forcing is presented using a stochastic approach (subset simulation). The sensitivity test suggests that the albedo, Bowen ratio and bulk transfer coefficient, solar radiation and wind speed are most critical. AnOHM, driven by local meteorological conditions at five sites with different land use, is shown to simulate the ΔQS flux well (RMSE values of ∼30 W m−2). The intra-annual dynamics of OHM coefficients are explored. AnOHM offers significant potential to enhance modelling of the surface energy balance over a wider range of conditions and land covers.

1 Introduction

The essential role of an integrated land surface model is to physically predict the land–atmosphere interactions by resolving the transfer of energy, water, and trace gases (Katul et al., 2012; Liang et al., 1994; Sellers et al., 1997). Such land–atmospheric interactions are strongly modulated by the partitioning of solar energy at the land surface (Chen and Dudhia, 2001; McCumber and Pielke, 1981; Yang and Wang, 2014) which can be considered through the surface energy balance (SEB) equation (Oke, 1988):

\[Q^* - \Delta Q_S = Q_H + Q_E, \]

where \(Q^* \), \(\Delta Q_S \), \(Q_H \), and \(Q_E \) are the net all-wave radiation, net storage, turbulent sensible, and latent heat fluxes, respectively. Equation (1) distinguishes the available energy at the land surface (left-hand side) from the heat transfer through turbulent transport (right-hand side).

The turbulent and radiative fluxes (\(Q^* \), \(Q_H \), and \(Q_E \)) are more readily measured using standard techniques (e.g. eddy-covariance instruments, radiometry) than \(\Delta Q_S \) (Offerle et al., 2005; Pauwels and Daly, 2016; Roberts et al., 2006; Wang, 2012). For \(\Delta Q_S \) the net energy stored or released by changes in sensible heat within the canopy air layer, roughness elements (e.g. vegetation, buildings in an urban environment), and the ground all have to be considered. The volume of interest extends from the top of the roughness sub-layer to the depth in the ground where the daily averaged vertical net
heat conduction is zero (see Fig. 2 in Masson et al., 2002); this presents very significant challenges of spatial sampling.

Knowledge of ΔQ_S is crucial to a wide range of processes and applications: from modelling turbulent heat transfer and boundary layer development to predicting soil thermal fields. In rural sites, or simple bare soil sites, the flux may be a small fraction of the net all-wave radiation (Oliphant et al., 2004). However, in areas where there is more mass, such as cities, the term becomes much more significant (Kotthaus and Grimmond, 2014a) and a key element of the SEB and well-known effects such as the urban heat island.

In urban systems a wide range of techniques have been used to estimate ΔQ_S (Grimmond et al., 1991; Roberts et al., 2006). These include the following:

a. Heat conduction approach: the weighted average of heat flows through all urban materials and surfaces by solving heat conduction equations – e.g. buildings, streets, vegetated lands (Offerle et al., 2005; Wang et al., 2012; Yang et al., 2014).

b. Thermal mass scheme: the storage heat is inferred from the changes in thermal mass of all components of the urban system (Kerschgens and Kraus, 1990).

d. Parameterization as a function of Q^*; either as a linear function (Oke et al., 1981), hyperbolic (cotangent, secant) function (Doll et al., 1985), or hysteresis relation (Camuffo and Bernardi, 1982). The last of these is used in the Objective Hysteresis Model (OHM) (Grimmond et al., 1991).

e. Residual: practical difficulties of direct measurement of ΔQ_S in urban areas, result in the SEB residual (i.e. $Q^* + Q_F - (Q_H + Q_E)$) frequently being the “preferred” observations (Ao et al., 2016; Ching et al., 1983; Doll et al., 1985; Li et al., 2015; Oke and Cleugh, 1987) (where Q_F is the anthropogenic heat flux).

The focus here is on the OHM approach, which is forced by Q^* and accounts for the diversity of the surface materials (sub-facets i) in the measurement source area of interest with weightings (f_i) for their two- or three-dimensional extent (Grimmond et al., 1991):

$$\Delta Q_S = \sum_i f_i \left(a_{1,i} Q^*_i + a_{2,i} \frac{\partial Q^*_i}{\partial t} + a_{3,i} \right). \quad (2)$$

where the a_1, a_2, and a_3 coefficients are for individual facets determined by least-square regression between ΔQ_S and Q^* using results from observations (e.g. asphalt road (Anandakumar, 1999), wetlands (Souch et al., 1998), forests (Oliphant et al., 2004), or numerical modelling – e.g. urban canyons (Arnfield and Grimmond, 1998) and roofs (Meyn and Oke, 2009). These coefficients capture the net behaviour of a facet type in a typical setting, rather than being required to identify the component materials within a facet (e.g. multiple materials making up a roof, wall, with varying thermal connectivity and individual properties). As such, OHM is one of the less demanding parameterizations, yet does capture a more realistic understanding of the relation between ΔQ_S by Q^* compared with other approaches. Despite the shortage of OHM coefficients for the wide range of facet types found in cities, OHM captures the urban ΔQ_S overall generally well (Grimmond and Oke, 1999; Järvi et al., 2011, 2014; Karsisto et al., 2015; Roth and Oke, 1995).

OHM is a cornerstone in the urban land surface models SUEWS (Surface Urban Energy And Water Balance Scheme; Järvi et al., 2011, 2014; Ward et al., 2016) and LUMPS (Local-Scale Urban Meteorological Parameterization Scheme; Grimmond and Oke, 2002), and plays an essential role in determining the initial energy partitioning at each time step of the models’ simulations. Previous modelling studies (Arnfield and Grimmond, 1998; Meyn and Oke, 2009) have led to better understanding of the OHM coefficients. Solution of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport by Gao et al. (2003, 2008) was used to explore the physical relation of OHM coefficients a_1 and a_2 to the phase lag between ΔQ_S and Q^*. However, insight into a_3 remain unclear (Sun et al., 2013).

In this paper, the solutions of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport (Gao et al., 2003, 2008) are employed with the SEB (Eq. 1) to investigate more fully the three OHM coefficients, the outcomes of which lead to development of the Analytical Objective Hysteresis Model (AnOHM) (Sect. 2). The Monte Carlo-based subset simulation (Au and Beck, 2001) approach is then used to undertake a sensitivity analysis of AnOHM to surface properties and hydrometeorological conditions (Sect. 3). An offline evaluation of AnOHM’s performance for five sites with different land covers (Sect. 4) provides evidence that this is an alternative approach to obtain OHM coefficients. Given that this allows applications across a much wider range of environments and meteorological conditions, we conclude that AnOHM has important implications for land surface modelling (urban and non-urban).

2 Model development

2.1 Parameterization of storage heat flux ΔQ_S for a land surface

For a given land surface (e.g. bare soil), the governing heat conduction–advection equation can be written (Gao et al.,
Given the parameterizations of incoming longwave radiation Q, parameterization of net all-wave radiation volumes given appropriate bulk/ensemble properties. can be adapted for surfaces made of composite materials or ground heat flux ω to the principal Earth rotation frequency ($\omega = 2\pi / 24$, in radh^{-1}), with boundary condition

$$T_S = A_T \sin(\omega t - \gamma) + \overline{T}_S$$

(4)

is given by (Gao et al., 2003, 2010)

$$T(z, t) = A_T \exp(\frac{\omega t}{M}) \sin(\omega t + \gamma) + \overline{T}_S,$$

(5)

where $M = \frac{2 \Delta}{\omega}$, $N = \frac{\Delta}{\omega}$, and $\Delta = \sqrt{\frac{\omega^2 + \sqrt{\omega^4 + 16 \omega^2} \omega^2}{2}}$.

From Fourier’s law, the soil heat flux is then given by

$$G(z, t) = -k \frac{dT}{dz} = kA_T \frac{\sqrt{M^2 + N^2}}{MN} \exp\left(\frac{-z}{M}\right) \sin\left(\omega t - \frac{z}{N} - \gamma + \delta\right),$$

(6)

where $\delta = \arctan\left(\frac{M}{N}\right) = \arctan\left(\frac{2\omega}{(\Delta + W)\omega}\right)$ and k is the thermal conductivity. In particular, at the surface $z = 0$, the ground heat flux G_0 is given by

$$G_0(t) = kA_T \frac{\sqrt{M^2 + N^2}}{MN} \sin(\omega t - \gamma + \delta),$$

(7)

and a simple written form of ΔQ_S (if only one surface) can be given as

$$\Delta Q_S = G_0 = c_\eta \sin(\omega t + \eta),$$

(8)

where $\eta = \delta - \gamma$ and $c_\eta = kA_T \frac{\sqrt{M^2 + N^2}}{MN}$.

Although the above derivation only considers the land surface made of a single material type, the derived ΔQ_S (Eq. 8) can be adapted for surfaces made of composite materials or volumes given appropriate bulk/ensemble properties.

2.2 Parameterization of net all-wave radiation Q^* for a land surface

Given the parameterizations of incoming longwave radiation L_\downarrow, outgoing longwave radiation L_\uparrow, sensible heat flux Q_H, latent heat flux Q_E, and storage heat flux ΔQ_S as follows:

$$L_\downarrow = \varepsilon_a \sigma T_a^4,$$

(9)

$$L_\uparrow = \varepsilon_a \sigma T_a^4 + (1 - \varepsilon_a) L_\downarrow,$$

(10)

$$Q_H = C_h U (T_S - T_a),$$

(11)

$$Q_E = \frac{Q_H}{\beta},$$

(12)

$$\Delta Q_S = G_0.$$

(13)

The boundary condition imposed by the SEB relation can be rewritten as

$$(1 - \alpha) K_\downarrow + \varepsilon_a \sigma T_a^4 - \varepsilon_a T_S^4$$

$$= C_h U \left(1 - \beta^{-1}\right)(T_S - T_a) + G_0,$$

(14)

where the turbulent fluxes Q_H and Q_E are parameterized as functions of temperature gradient $T_S - T_a$ with albedo α, bulk transfer coefficient C_h, wind speed U, and Bowen ratio ($\beta = Q_H/Q_E$). Theoretically, the second part of Eq. (10) (i.e., $(1 - \varepsilon_a) L_\downarrow$) should be accounted for in the estimation of L_\uparrow (Oke, 1987); however, given that it is usually less than $\sim 5\%$ of the first part of the equation (see full discussion in Appendix A) for most land covers (Oke, 1987), here it is omitted from consideration and in the development of AnOHM.

By assuming that the incoming solar radiation K_\downarrow and air temperature T_a follow sinusoidal forms through a day as function of the mean value for the day (e.g. K_\downarrow) (Sun et al., 2013),

$$K_\downarrow = A_K \sin(\omega t) + \overline{K}_\downarrow,$$

(15)

$$T_a = A_T \sin(\omega t - \tau) + \overline{T}_a,$$

(16)

and introducing the solar radiation scale,

$$A_K = (1 - \alpha) A_K,$$

(17)

and longwave radiation scale (assuming $\varepsilon_a \approx \varepsilon_b \approx \varepsilon$ as a first-order estimate (as AnOHM is insensitive to this parameter; see Sect. 3.2); see clear sky of ~ 0.85 (Staley and Jurica, 1972) and urban surfaces of ~ 0.95 (Kotthaus et al., 2014):

$$A_T = \left(4\varepsilon_a \sigma \overline{T}_a^3 + \left(1 + \beta^{-1}\right) C_h U\right) A_T$$

$$= \left(f_L + f_T\right)A_T = f A_T,$$

(18)

where τ denotes phase differences between T_a and K_\downarrow, the $f = f_L + f_T$ consists of the longwave energy redistribution factor: $f_L = 4\varepsilon_a \sigma \overline{T}_a^3$ and a turbulent energy redistribution factor: $f_T = \left(1 + \beta^{-1}\right) C_h U$. Linearizing the fourth-order longwave expressions of temperature at mean daily air temperature \overline{T}_a (Sun et al., 2013), the values of \overline{T}_S and A_T are ob-
tained:
\[\bar{T}_S = \frac{1 - \alpha}{f} K_\downarrow + T_a \] (19)
\[A_T = \frac{f \int MN \sin(\tau)}{N(fM + k) \int \sin(\gamma) - kM \cos(\gamma)} A_T \]
\[= \frac{\sqrt{M_2^2 + N_2^2 \sin(\gamma - \xi)}}{A_T} \]
where \(\xi = \arctan \left(\frac{N_a}{M_a} \right) \).
\(f = \frac{1}{\sqrt{M_2^2 + N_2^2 \sin(\gamma - \xi)}} \).

The net all-wave radiation \(Q^* \) is parameterized as
\[Q^* = (1 - \alpha) K_\downarrow + c_p \frac{\varepsilon \sigma T_a^4}{fL} + \frac{\varepsilon \sigma T_S^4}{fL} \]
\[= (1 - \alpha) \left(\frac{A_K \sin(\omega t + K_\downarrow)}{fL} + fL (T_a - T_S) \right) \]
\[= c_p \sin(\omega t + \varphi) + \frac{fL}{f} (1 - \alpha) \overline{K_\downarrow}, \] (21)
where \(\varphi = \arctan \left(\frac{fL \sin(\gamma) - \sin(\tau)}{(fL A^K_\downarrow)/(fL A^K_\downarrow - (\zeta c_p \cos(\gamma) - \cos(\tau)))} \right) \) and
\[c_p = \sqrt{\left[\frac{(fL A^K_\downarrow)^2}{(fL A^K_\downarrow - (\zeta c_p \cos(\gamma) - \cos(\tau)))} \right]^2 + \left[\beta_p \sin(\gamma) - \sin(\tau) \right]^2}. \]

2.3 Derivation of AnOHM coefficients

Based on the above parameterizations of \(Q^* \) (Eq. 21) and \(\Delta Q_S \) (Eq. 8), together with OHM for a specific surface:
\[\Delta Q_S = a_1 Q^* + a_2 \frac{\partial Q^*}{\partial t} + a_3, \] (22)
the coefficients can be readily derived from the parameterization in Sect. 2.2, as
\[a_1 = \frac{c_p}{\varepsilon \sigma} \cos(\eta - \varphi), \] (23)
\[a_2 = \frac{c_p}{\omega \alpha \varphi} \sin(\eta - \varphi), \] (24)
\[a_3 = -\frac{c_p}{\varepsilon \sigma} \cos(\eta - \varphi) \cdot \frac{fL}{f} (1 - \alpha) \overline{K_\downarrow} \]
\[= -a_1 \cdot \frac{fL}{f} (1 - \alpha) \overline{K_\downarrow}. \] (25)

In the densest parts of cities, the anthropogenic heat \((Q_F) \) often has a large influence on the SEB and it needs to be accounted for (Allen et al., 2011; Chow et al., 2014; Nie et al., 2014; Sailor, 2011). This requires the governing SEB relation (Eq. 14) to be rewritten:
\[(1 - \alpha) K_\downarrow + \varepsilon \sigma T_a^4 - \varepsilon \sigma T_S^4 + Q_F = C_b U \left[\left(1 + \beta^{-1} \right) (T_S - T_a) + G_0 \right]. \] (26)

Assuming \(Q_F \) is diurnally invariant (as a first-order estimate – e.g. Best and Grimmond, 2016), the derivation (Sect. 2.2) can be extended to include a first-order estimate of \(Q_F \) to obtain
\[a_3F = -\frac{c_p}{\varepsilon \sigma} \cos(\eta - \varphi) \cdot \frac{fL}{f} (1 - \alpha) \overline{K_\downarrow} - Q_F \]
\[= -a_1 \cdot \frac{fL}{f} (1 - \alpha) \overline{K_\downarrow} - Q_F, \] (27)
where \(a_3F \) (subscript “F”) indicates the inclusion of \(Q_F \). The other two coefficients remain unchanged.

2.4 Physical interpretations of AnOHM coefficients

Based on the parameterizations of AnOHM coefficients (Eqs. 23, 24, 25/27), physical interpretations can be more fully described compared with OHM:

a. \(a_1 \) characterizes the ratio of \(\Delta Q_S \) and \(Q^* \) and depends on the energy scales (i.e. \(c_\eta \) and \(c_\varphi \)) and their phase difference (i.e. \(\eta - \varphi \)). The energy scales, representing daily amplitudes of \(\Delta Q_S \) and \(Q^* \), determine the overall magnitude, while the phase difference moderates the ratio value.

b. \(a_2 \) accounts for the temporal changes in \(\Delta Q_S \) and \(Q^* \) by including the principal Earth rotation frequency \(\omega \), in addition to the same determinants of \(a_1 \) (i.e. \(c_\eta \), \(c_\varphi \), and \(\eta - \varphi \)). The complementary sinusoidal functions, with phase difference (i.e. \(\sin(\eta - \varphi) \) and \(\cos(\eta - \varphi) \)), in the formulations of \(a_1 \) and \(a_2 \) are inversely related with a stronger lag effect from \(a_2 \), and less contribution to \(\Delta Q_S \) by \(Q^* \) (i.e. smaller \(a_1 \)).

c. \(a_3 \) (or \(a_3F \)) indicates the baseline \(\Delta Q_S \) determined by energy redistribution factors (i.e. \(fL \) and \(f \)) and energy inputs (i.e. \(\overline{K_\downarrow} \), and \(Q_F \) if anthropogenic heat is considered) as well as \(a_1 \). It can be inferred from Eq. (2) that the nocturnal \(\Delta Q_S \) is largely determined by \(a_3 \) when the absolute values and variability of \(Q^* \) are small at night. A larger daytime energy input (i.e. \(K_\downarrow \), and \(Q_F \) if anthropogenic heat is considered) suggests more heat released at night.

3 Sensitivity analysis

Given the complex dependence of AnOHM coefficients on surface properties and meteorological forcing (Sect. 2.3), the impacts of these coefficients are assessed further by a sensitivity analysis.

3.1 Subset simulation

To improve the computational efficiency of undertaking Monte Carlo sensitivity analyses, subset simulation is used (Au and Beck, 2001). This is an adaptive stochastic simulation procedure with particular efficiency in analysing the
short-tail of a distribution probability (while also adaptable to long-tail scenarios) (Wang et al., 2011).

If the probability that a critical response \(Y \) exceeds a threshold \(y \), \(P(Y > y) \), a range of exceedance regions can be specified and sampled using Markov chains. Initially a direct Monte Carlo method is used to choose possible values for the parameter of interest in the anticipated range with a specified distribution (or probability distribution function, PDF) of the uncertainty. From this (level 0), the first exceedance level probability is determined, \(F_1 \) at which \(P(Y > y_1) \). Then a Markov chain Monte Carlo (MCMC) procedure is used to generate samples of a given conditional probability \(p_0 \), leading to the exceedance of \(y_1 \) in the earlier simulations. This procedure is repeated, for exceedance events \(F_i \) at which \(P(Y > y_i) = p_0^i \), \(i = 1, 2, 3, \ldots \), until simulations reach a target exceedance probability, e.g. associated with rare events or risk analysis. Further details of this subset simulation process are provided in Wang et al. (2011).

Subset simulation efficiently generates conditional samples with Metropolis algorithms (Hastings, 1970; Metropolis et al., 1953). This is the basis of MCMC. To generate samples that successively approach a certain conditional probability, a specific Markov chain is designed with the target PDF as its limiting stationary distribution trend as its length increases. The selection of a distribution is key as this controls the next sample generated from the current one. Ideally, the distribution selection would be automatic but this has an efficiency cost relative to the robustness benefit. For the surface parameters (Table 1a) and hydrometeorological forcing (Table 1b) analyses a normal distribution PDF is used (Au and Beck, 2003; Au et al., 2007), with three conditional levels \(N_{\text{level}} = 3 \) and a conditional probability of \(p_0 = 0.1 \) – i.e. at each level the highest 10% of the outputs are considered to exceed the intermediate threshold. As such, the three-level simulation can effectively capture a rare event with the target exceedance probability of \(10^{-4} \) (i.e. the probability of occurrence is less than 1 in 10,000) and generate appropriate samples of different conditional probabilities.

The metric \(S \) (in %), used to indicate the sensitivity of the model output \(Y \) to a specific uncertainty parameter \(X \) (Wang et al., 2011), is

\[
S = \left[\frac{1}{N_{\text{level}}} \sum_{i=1}^{N_{\text{level}}} \frac{E[X|Y > y_i] - E[X]}{E[X]} \right] \times 100, \tag{28}
\]

where \(i = 1, 2, \ldots, N_{\text{level}} \) is the index of conditional sampling level, \(E[X] \) is the expectation that the unconditional distribution of a specific uncertainty parameter \(X \), while \(E[X|Y > y_i] \) is the expectation of \(X \) at conditional level \(i \).

A positive (negative) \(S \) indicates an increase will lead to increase (decrease) in simulated value. Hence the sign of \(S \) indicates the impact of a change in parameter uncertainty. The absolute magnitude of \(S \) indicates the sensitivity.

This assessment does not consider if the simulated values have low probability. Later analyses (Sect. 4) consider the simulation results relative to observed fluxes.

3.2 Impacts of surface properties

Following the sensitivity analysis of AnOHM coefficients to the surface properties, the distributions of conditional samples for thermal conductivity \(k \), bulk heat capacity \(C_p \), and emissivity \(\varepsilon \) are similar to the original proposal distributions (Fig. 1), implying weak dependence of \(a_1, a_2, \) and \(a_3 \) on these properties. However, for albedo \(\alpha \) both \(a_2 \) and \(a_3 \) are sensitive, but \(a_1 \) is not; changes in inverse Bowen ratio \(\beta^{-1} \) impact all three coefficients; and the bulk transfer coefficient \(C_h \) impacts \(a_1 \) and \(a_2 \), but has little effect on \(a_3 \).

Using \(S \) (Eq. 28) to quantify this, it is found that the surface properties \((k, C_p, \) and \(\varepsilon \)) have less sensitivity, with less skewed conditional samples between levels, so \(S \) values close to 0 (Fig. 2). The \(S \) for \(\alpha \) sensitivity analysis (Fig. 2), it is apparent that an increase in \(\alpha \) will increase \(a_1 \) while decreasing \(a_2 \) and \(a_3 \), whereas the reverse occurs for \(\beta^{-1} \) and \(C_h \) (i.e. their decreases leads to larger \(a_2 \) and \(a_3 \) values but smaller \(a_1 \)).

From this, the links between the key surface parameters and the storage heat flux can be considered. With an increase in \(\alpha \), there is reduced solar energy in the SEB. This reduces the temporal change in \(\Delta Q_S \) (smaller \(a_2 \)) and decreases the baseline value of \(\Delta Q_S \) (smaller \(a_3 \)). \(\beta^{-1} \) indicates that more available energy is dissipated by \(Q_E \) than by \(Q_H \), leading to decreased \(T_a \) and \(\Delta Q_S \) (smaller \(a_1 \)); a smaller portion of \(Q^* \) will be dissipated by \(\Delta Q_S \) (smaller \(a_1 \)) and the increased \(C_h \) can facilitate the turbulent convection and thus increase the total turbulent fluxes.

3.3 Impacts of hydrometeorological conditions

Similarly, the sensitivity of AnOHM to hydrometeorological variables is explored (Fig. 3). The air temperature (range, mean) and water flux density related variables (i.e. \(A_r, \overline{\tau}, \) and \(W \)) have minimal influence on the skewness of the conditional samples. In contrast, the incoming shortwave (solar) radiation (range, mean) and wind-related variables (i.e. \(A_K, K_h, \) and \(U \)) and the phase lag \(\tau \) between \(K_i \) and \(T_a \) have large impacts. In terms of the greatest impact on the coefficients \((a_1, a_2, \) and \(a_3) \): \(A_K \) and \(U \) influences \(a_1, \tau \) impacts \(a_2 \), and \(a_3 \) responds more to \(A_K \) and \(K_h \) than the other variables.

Variables that strongly modulate the interactions between \(\Delta Q_S \) and \(Q^* \) can be informed by the \(S \) results (Fig. 4). For instance, a greater range in \(K_i \) (i.e. larger \(A_K \)) will occur with larger energy input from solar radiation, leading to stronger heating of the near-surface atmosphere and a smaller portion to \(\Delta Q_S \) (smaller \(a_1 \)) but higher baseline \(\Delta Q_S \) (larger \(a_3 \)). This is consistent with a reduction in \(K_i \) having a decrease in \(a_1 \). The temporal change in \(\Delta Q_S \) is highly correlated with the change in \(\tau \), an increase in which implies a
Table 1. Range of values used as basis for the sensitivity analysis: (a) surface parameters and (b) hydrometeorological variables. All are assumed to have normal PDF. Values of surface parameters are based on values reported in Stull (1988).

<table>
<thead>
<tr>
<th>Parameter/variable</th>
<th>Unit</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity k</td>
<td>W m$^{-1}$ K$^{-1}$</td>
<td>0</td>
<td>3</td>
<td>1.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Bulk material heat capacity C_p</td>
<td>MJ m$^{-3}$ K$^{-1}$</td>
<td>0</td>
<td>4</td>
<td>2.0</td>
<td>0.04</td>
</tr>
<tr>
<td>Albedo α</td>
<td>–</td>
<td>0</td>
<td>1</td>
<td>0.27</td>
<td>0.07</td>
</tr>
<tr>
<td>Emissivity ε</td>
<td>–</td>
<td>0.8</td>
<td>1.0</td>
<td>0.93</td>
<td>0.025</td>
</tr>
<tr>
<td>Midday* mean Bowen ratio (inverse) β^{-1}</td>
<td>–</td>
<td>0</td>
<td>20</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Bulk transfer coefficient C_h</td>
<td>J m$^{-3}$ K$^{-1}$</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>(b) Hydrometeorological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude or range of the daily incoming shortwave radiation A_K</td>
<td>W m$^{-2}$</td>
<td>0</td>
<td>1200</td>
<td>800</td>
<td>200</td>
</tr>
<tr>
<td>Mean daytime incoming shortwave radiation K_{1Q}</td>
<td>W m$^{-2}$</td>
<td>0</td>
<td>500</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>Amplitude or range of the daily air temperature A_T</td>
<td>°C</td>
<td>0</td>
<td>15</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Mean daily air temperature T_a</td>
<td>°C</td>
<td>0</td>
<td>40</td>
<td>30</td>
<td>7.5</td>
</tr>
<tr>
<td>Phase lag between radiation and air temperature τ</td>
<td>rad</td>
<td>0</td>
<td>$\pi/2$</td>
<td>$\pi/4$</td>
<td>$\pi/10$</td>
</tr>
<tr>
<td>Mean daytime wind speed U</td>
<td>m s$^{-1}$</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>Mean daily water flux density W</td>
<td>10^{-7} m3 s$^{-1}$ m$^{-2}$</td>
<td>0</td>
<td>100</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

* midday period: 1000–1400 local standard time.

Table 2. Characteristics of the flux towers at the study sites.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>51.50° N, 0.12° W Urban/built-up</td>
<td>37.52° N, 96.86° W Grassland</td>
<td>55.86° N, 98.49° W Evergreen needleleaf forest</td>
<td>31.82° N, 110.87° W Woody savannas</td>
<td>33.38° N, 116.64° W Closed shrublands</td>
</tr>
<tr>
<td>Land cover classification</td>
<td>URB</td>
<td>GRA</td>
<td>ENF</td>
<td>WSA</td>
<td>CSH</td>
</tr>
<tr>
<td>Study year</td>
<td>2011</td>
<td>2003</td>
<td>2004</td>
<td>2004</td>
<td>2005</td>
</tr>
</tbody>
</table>

slower response of the surface to solar radiation and an overall decrease in ΔQ_S (smaller a_1, a_2, and a_3). The greater sensitivity to τ of a_2 is a key part of the original hysteresis nature of the heating/cooling of a surface. The sensitivity responses of a_1, a_2, and a_3 to U are very consistent with those to C_h, suggesting the similar pathway that turbulent fluxes (i.e. Q_H and Q_E) modulate ΔQ_S. As W mostly influences the heat conduction-diffusion in the underlying surface as thermal properties (i.e. C_p and k), less dependence is observed on it. This is similar with C_p and k.

4 Model evaluation

In this section, the actual ability of AnOHM to determine the storage heat flux relative to observations is evaluated using 30 min observations from five sites of different land use/cover (Table 2). The measurements include turbulent sensible and latent fluxes, along with incoming and outgoing shortwave and longwave radiation and basic meteorological variables (see Kotthaus and Grimmond, 2014a, b; Klazura et al., 2006; Coulter et al., 2006; Goulden et al., 2006; Scott et al., 2009; Luo et al., 2007, for details). Anthropogenic heat flux Q_F at the urban site (i.e. UK-Ldn) is estimated using the GreaterQF model (Iamarino et al., 2011); the heat storage flux ΔQ_S is thus estimated as the modified residual of urban energy balance as $\Delta Q_S = Q^* + 0.75 Q_F - 1.2 (Q_H + Q_E)$ (Kotthaus and Grimmond, 2014a, b), which is then used in this evaluation. A similar approach for estimating ΔQ_S (i.e. residual of surface energy balance, $\Delta Q_S = Q^* + Q_F - (Q_H + Q_E)$) is applied at the other (non-urban) sites but with $Q_F = 0$.

AnOHM is first calibrated with observations under sunny conditions, when the assumptions of AnOHM are best satisfied (i.e. diurnal cycles of K_1, T_a, and U follow sinusoidal forms), to obtain surface properties required by AnOHM (Table 3). As the Bowen ratio β varies daily and monthly (Kotthaus and Grimmond, 2014a, b), β is either determined as the daily value if available, or based on the observation-based monthly climatology (Table 3). The seasonality in albedo α is accounted for also by using its monthly climatology (Table 3). AnOHM is driven by atmospheric forcing (i.e. K_1, T_a, and U) and/or their derived scales (A_K, K_1, A_T, T_a, and τ) to generate the OHM coefficients (i.e. a_1, a_2, and a_3, see
Figure 1. Histograms of conditional samples at different conditional levels for surface property parameters (rows from top: thermal conductivity k in W m$^{-1}$ K$^{-1}$, heat capacity C_p in MJ m$^{-3}$ K$^{-1}$, albedo α, emissivity ε, inverse Bowen ratio β^{-1}, and bulk transfer coefficient C_h in J m$^{-3}$ K$^{-1}$) with AnOHM coefficients as the model output (columns from left: a_1, a_2 and a_3). Each subplot x axis is the parameter value and y axis is the PDF value. The original proposal distribution (dashed line) and simulation levels (different colours) are shown.

Figure 2. Relative variation in sensitivity (S, %, Eq. 28) to surface parameters. See Fig. 1 for further details.

Fig. 5), from which the net heat storage flux ΔQ_S can be predicted (Fig. 6) using the observed Q^* with Eq. (2).

To examine the seasonality of the OHM coefficients, rather than the daily variations in hydrometeorological forcing, LOESS (LOcally wEighted Scatter-plot Smoother; Cleveland and Devlin, 1988) curves are obtained to filter out day-to-day variations in the OHM coefficients (see Appendix B for a direct comparison of these coefficients by different modelling and observational regression approaches). Intra-annual variations are found in all the three OHM coefficients (Fig. 5), indicating the strong impact of seasonality of meteorological conditions. These controls, as indicated by Eqs. (23)–(25/27), are complex and will vary with local conditions. For instance, comparison of OHM coefficients between the AnOHM predictions (LOESS fitted solid lines in Fig. 5) and observations at an asphalt road site in Alland, Austria, reported in Anandakumar (1999) (empty squares in Fig. 5) demonstrates differences in a_1 (Fig. 5a) and a_2 (Fig. 5b) but general similarity in a_3 (Fig. 5c). Compared to a_1 and a_2, it is noteworthy that, in addition to the S results (see Fig. 4) given the more explicit mechanism by which the atmospheric conditions moderate a_3 (see Eqs. 25 and 27), such seasonality in a_3 is predicted by AnOHM, and evident
in the observations (Fig. 5c, also Ward et al., 2013). Larger $K ↓$ in warm seasons (May–September) will lead to smaller a_3 (Eqs. 25, 27) and vice versa.

The AnOHM simulated and observed ΔQ_S agree well at the five different land cover sites, with RMSE values of ~ 30 W m$^{-2}$. For comparison purposes, it is noted that the urban land surface model comparison (Best and Grimmond, 2015; Grimmond et al., 2011) found ΔQ_S to be the most poorly represented among all the SEB components with the best RMSE values of 53 W m$^{-2}$ (Lipson et al., 2017). Although the much smaller ΔQ_S RMSE obtained by AnOHM uses a prescribed Bowen ratio in the offline evaluation, such improvement indicates the ability of AnOHM to simulate
Table 3. Surface properties used in AnOHM simulation for the study sites based on calibration. The values of α and β are monthly climatology from January to December and are used when observations are not available (see Table 1 for notation definition).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>W m$^{-1}$ K$^{-1}$</td>
<td>2.8 0.43 0.51 0.41 0.56</td>
</tr>
<tr>
<td>C_p</td>
<td>MJ m$^{-3}$ K$^{-1}$</td>
<td>2.4 0.31 0.36 0.56 0.27</td>
</tr>
<tr>
<td>α</td>
<td>–</td>
<td>0.24, 0.24, 0.29, 0.30, 0.29, 0.13, 0.17, 0.11, 0.22, 0.11, 0.22, 0.20, 0.17, 0.18, 0.22, 0.15, 0.16, 0.14, 0.11, 0.10, 0.14, 0.13, 0.12, 0.13, 0.12, 0.11, 0.10, 0.12, 0.14, 0.11, 0.10, 0.10, 0.10, 0.18, 0.24, 0.19, 0.13, 0.22, 0.24, 0.14, 0.19, 0.11, 0.10, 0.24, 0.18, 0.24, 0.35, 0.28, 0.30, 0.13, 0.18, 0.17, 0.24</td>
</tr>
<tr>
<td>β</td>
<td>–</td>
<td>0.92 0.93 0.95 0.95 0.92</td>
</tr>
<tr>
<td>C_h</td>
<td>J m$^{-3}$ K$^{-1}$</td>
<td>4.3 1.9 5.1 3.6 3.9</td>
</tr>
</tbody>
</table>

Figure 5. Intra-annual variations of OHM coefficients: (a) a_1, (b) a_2, and (c) a_3. LOESS fits (solid lines) through the daily values predicted by AnOHM and daily values (squares) measured at an asphalt road site (Anandakumar, 1999) are shown. The LOESS (Cleveland and Devlin, 2012) fitting is a locally weighted polynomial regression approach.

5 Discussion and concluding remarks

In this study, the Analytical Objective Hysteresis Model (AnOHM) is developed to obtain OHM coefficients across a wide range of surface and meteorological conditions and to improve physical understanding of the interactions between ΔQ_S and Q^*. The sensitivity of AnOHM to surface properties and hydrometeorological conditions is analysed through Monte Carlo-based subset simulations (Au and
Figure 6. Monthly median (line) diurnal cycles and interquartile range (shaded) values of ΔQ_S for AnOHM predictions (blue), OHM predictions (orange) and observations (green) at (a) UK-Ldn (URB), (b) US-Wlr (GRA), (c) CA-NS5 (ENF), (d) US-SRM (WSA), and (e) US-SO4 (CSH) (see Table 2 for site information). Statistics include average bias and RMSE (W m$^{-2}$). The OHM coefficients a_1, a_2, and a_3 used for different land covers are: 0.553, 0.303, and -37.6 at the urban site (UK-Ldn) (Ward et al., 2016), 0.32, 0.54, and -27.4 at the grass-covered sites (US-Wlr and US-SRM) (Grimmond and Oke, 1999), and 0.11, 0.11, and -12.3 at the forest-covered sites (CA-NS5 and US-SO4) (Grimmond and Oke, 1999).

Beck, 2001). The results highlight the importance of the albedo, the Bowen ratio, and the bulk transfer coefficient, and the importance of solar radiation and wind speed in regulating the heat storage. The importance of albedo in modulating the heat storage was also found by Wang et al. (2011), who also used the same subset simulation approach with the single-layer urban canopy model (SLUCM; for details see Kusaka et al., 2001). This demonstrates the consistency in heat storage modelling between AnOHM and SLUCM. From the sensitivity results, variations in OHM coefficients of a similar size may arise from either surface property parameters or hydrometeorological forcing that are associated with the same physical processes (see bulk transfer coefficient C_b in Fig. 2 and wind speed U in Fig. 4). This supports the ability of AnOHM in representing physical processes. An offline evaluation of AnOHM using flux observations from five sites with different land covers demonstrates its ability to predict the intra-annual dynamics of OHM coefficients.
and shows good agreement between simulated and observed storage heat fluxes. In particular, the seasonality in the OHM coefficient a_3 observed in a previous study (Anandakumar, 1999) is well predicted by AnOHM.

The limitations of AnOHM are important to consider. First, given the assumption that the incoming solar radiation K_\downarrow and air temperature T_a diurnal cycles are sinusoidal, optimal performance of AnOHM occurs under clear-sky conditions. The current parameterizations of K_\downarrow and T_a within AnOHM only consider the harmonics of principal frequencies for formulation simplicity. More frequencies may potentially resolve more realistic diurnal variations in K_\downarrow and T_a. As the reflected part of L_\downarrow (i.e. $(1 - \varepsilon_s) L_\downarrow$) is assumed negligible, and similar emissivity values are assumed for sky and land surface (i.e. $\varepsilon_s \approx \varepsilon_a \approx \varepsilon$), the outgoing longwave radiation is underestimated. These simplifications greatly facilitate the AnOHM formulation without qualitatively changing the final results as the sensitivity analyses (see the minimal S values for ε in Fig. 2) demonstrate. The inclusion of water flux density W equips AnOHM with an ability to investigate the hydrological impacts of the underlying surface on land–atmosphere interactions. However, estimation of W remains challenging (Wang, 2014) and the resulting uncertainty in the final results warrants caution in conducting simulations over land covers with strong soil moisture dynamics (e.g. grassland with high soil moisture under clear-sky condition).

Despite these limitations, AnOHM does permit improved modelling of the surface energy balance through its physically based parameterization scheme for storage heat flux ΔQ_S. Compared to OHM, AnOHM has the benefit of allowing ΔQ_S to be simulated for land covers for which coefficients are not available and to allow for seasonal variability to be accounted for. As AnOHM shares similar hydrometeorological forcing inputs (i.e. K_\downarrow, T_a and U) to other land surface models (LSMs), it can potentially be used within in LSMs to estimate ΔQ_S, or if turbulent fluxes are included to be a complete LSM. The overall improvements from adopting AnOHM in modelling land surface processes will be presented in forthcoming work in the SUEWS–AnOHM framework.

Code availability. The Fortran source code for AnOHM can be obtained from the corresponding authors upon request.
Appendix A: Rationale for a simplified formulation of outgoing longwave radiation

In the formulation of outgoing longwave radiation L_{\uparrow}, a simplified form (i.e. $\varepsilon_s \sigma T_s^4$) is used for AnOHM by ignoring part 2 of Eq. (10) (i.e. $(1 - \varepsilon_s) L_{\downarrow}$). The rationale for such simplification is that given ε_s is usually larger than 0.9, $(1 - \varepsilon_s) L_{\downarrow}$ contributes a relatively small portion to the total longwave component (Oke, 1987) and omission of this part is well accepted in the parameterization of outgoing longwave radiation for land surface modelling across various land covers (Bateni and Entekhabi, 2012; Lee et al., 2011; Stensrud, 2007).

Using the parameterization of incoming longwave radiation in the AnOHM framework (i.e. $L_{\downarrow} = \varepsilon_a \sigma T_a^4 \approx \varepsilon_s \sigma T_s^4$), we conduct a sensitivity analysis of the ratio between the ignored part (i.e. $(1 - \varepsilon_s) L_{\downarrow}$) and total outgoing longwave radiation (i.e. $\varepsilon_s \sigma T_s^4 + (1 - \varepsilon_s) L_{\downarrow}$) at a constant air temperature of 20 °C and find this ratio is generally less than 5% given ε_s ranges between 0.90 and 0.99 (Fig. A1).

Moreover, if $(1 - \varepsilon_s) L_{\downarrow}$ is included in the net longwave radiation, the induced effect can be incorporated into a modified sky emissivity $\varepsilon'_a = \varepsilon_a \varepsilon_s$ as follows:

$$
L_{\text{net}} = L_{\downarrow} - L_{\uparrow}
= L_{\downarrow} - (\varepsilon_a \sigma T_a^4 + (1 - \varepsilon_s) L_{\downarrow})
= \varepsilon_a L_{\downarrow} - \varepsilon_s \sigma T_s^4
= \varepsilon'_a \sigma T_a^4 - \varepsilon_s \sigma T_s^4
$$

Then by assuming $\varepsilon \approx \varepsilon'_a \approx \varepsilon_s$, the derivation following Eq. (18) still holds. The sensitivity analysis suggests that the derived coefficients are insensitive to ε (see S for ε in Fig. 2).

As such, we deem the omission of $(1 - \varepsilon_s) L_{\downarrow}$ will not qualitatively change the results of this work.
Appendix B: Comparison in OHM coefficients between different modelling approaches and observation regression

The comparison in OHM coefficients by different modelling and observational regression approaches (Fig. B1) indicate AnOHM generally follows the results by observation regression, whereas the typical coefficient values adopted by OHM do not.

Figure B1. Comparison of OHM coefficients (left, central and right columns for a_1, a_2 and a_3, respectively) between different modelling approaches and observation regression at five sites: UK-Ldn (a, b, c), US-Wlr (d, e, f), CA-NS5 (g, h, i), US-SRM (j, k, l) and US-SO4 (m, n, o). The blue dots denote the paired values between AnOHM and observation regression. The orange lines represent the reference value used in OHM simulations for land covers of grass and tree (Grimmond and Oke, 1999), whereas the green lines show median values derived from results by observation regression at corresponding sites.
Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. Funding is acknowledged from Met Office/Newton Fund CSSP- China (SG), National Science Foundation of China (51679119, TS), and U.S. National Science Foundation (CBET-1435881, ZHW). The authors thank Ivan Au (University of Liverpool) for providing the Subset Simulation package. The authors acknowledge the large number of people who have contributed to the data collection, the agencies that have provided sites and the agencies that funded the research at the individual sites. The US Department of Energy’s Office of Science funded AmeriFlux data (ameriflux-data.lbl.gov) are from US-Wlr (PIs: David Cook and Richard L. Coulter), CA-NS5 (PI: Mike Goulden), US-SRM (PI: Russell Scott) and US-SO4 (PI: Walt Oechel, funded by San Diego State University and SDSU Field Stations Program). The London data are supported by NERC ClearLo (NE/H003231/1), NERC/Belmont TRUC (NE/L008971/1), EU7 BRIDGE (211345), H2020 UrbanFluxes (637519), King’s College London and University of Reading. In particular, the authors thank Simone Kotthaus (University of Reading) for her detailed preparation of the UK-Ldn site data. For access to the UK-Ldn site data, please contact c.s.grimmmond@reading.ac.uk.

Edited by: Chiel van Heerwaarden
Reviewed by: three anonymous referees

References

Kerschgens, M. J. and Craus, H.: On the energetics of
Kerschgens, M. J. and Hacker, J. M.: On the energy budget of the
Kerschgens, M. J. and Drauschke, R. L.: On the energy budget of
Katul, G. G., Oren, R., Manzoni, S., Higgins, C. W., and
Karsisto, P., Fortelius, C., Demuzere, M., Grimmond, C. S. B.,

