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In the early 21st century, satellite tropospheric warming trends were gen-24

erally smaller than trends estimated from a large multi-model ensemble.25

Because observations and coupled model simulations do not have the same26

phasing of natural internal variability, such decadal differences in sim-27

ulated and observed warming rates invariably occur. Here we analyse28

global-mean tropospheric temperatures from satellites and climate model29

simulations to determine whether warming rate differences over the satel-30

lite era can be explained by internal climate variability alone. We find31

that in the last two decades of the 20th century, differences between mod-32

eled and observed tropospheric temperature trends are broadly consistent33

with internal variability. Over most of the early 21st century, however,34

model tropospheric warming is substantially larger than observed; warm-35

ing rate differences are generally outside the range of trends arising from36

internal variability. There is a low probability (between zero and ≈ 9%)37

that multi-decadal internal variability fully explains the asymmetry be-38

tween the late 20th and early 21st century results. It is also unlikely that39

this asymmetry is due to the combined effects of internal variability and40

a model error in climate sensitivity. We conclude that model overestima-41

tion of tropospheric warming in the early 21st century is partly due to42

systematic deficiencies in some of the post-2000 external forcings used in43

the model simulations.44
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The Fifth Assessment Report of the Intergovernmental Panel on Climate Change45

(IPCC) contained prominent discussion of differences between warming rates in ob-46

servations and model simulations [1, 2]. The focus of the discussion was on two issues:47

the causes of a putative “slowdown” in observed surface and tropospheric warming48

during the early 21st century, and the reasons for the inability of most climate model49

simulations to capture this behavior. The IPCC defined the “slowdown” as a sub-50

stantially reduced surface warming trend over 1998 to 2012 relative to the long-term51

warming over 1951 to 2012 [2].52

Since publication of the Fifth Assessment Report, at least three different interpre-53

tations of the “slowdown” have emerged. One interpretation is that this phenomenon54

is largely an artifact of residual errors in surface temperature data sets [3, 4, 5]. A55

second school of thought holds that the “slowdown” is primarily a routine decadal56

fluctuation in temperature [6], and is not statistically distinguishable from previous57

manifestations of internal variability [7, 8, 9]. A third interpretation is that the “slow-58

down” is attributable to the combined effects of different modes of internal variability59

[10, 11, 12, 13, 14] and multiple external forcings [15, 16, 17].60

It is of interest to examine some implications of these schools of thought. If the61

reduction in early 21st century warming is mainly an artifact of errors in surface tem-62

perature data [3, 5], independent, satellite-based measurements of tropospheric tem-63

perature should show little evidence of a recent “slowdown” in warming – consistent64
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with corrected surface results. Current satellite datasets, however, provide support65

for a reduced rate of tropospheric warming in the early 21st century [15, 16, 18].66

If the “slowdown” is predominantly a routine manifestation of internal variability67

(and if model-based estimates of the forced temperature signal and internal variability68

are realistic), then the differences between simulated and observed warming rates arise69

solely from different phasing of internal variability in “model world” and in the real70

world. Under this interpretation, model-versus-observed warming rate differences71

should be fully consistent with internal variability.72

In the third school of thought, both internal variability and external forcing con-73

tribute to the “slowdown” [2, 19]. The externally forced contribution is due to the74

combined cooling effects of a succession of moderate early 21st century eruptions75

[15, 20, 21, 22, 23, 24], a long and anomalously low solar minimum during the last so-76

lar cycle [25], increased atmospheric burdens of anthropogenic sulfate aerosols [17, 26],77

and a decrease in stratospheric water vapor [27]. There are known systematic errors78

in these forcings in model simulations performed in support of the IPCC Fifth As-79

sessment Report [2, 17, 19, 20, 27]. These errors arise in part because the simulations80

were performed before more reliable estimates of early 21st century forcing became81

available [20, 27]. The net effect of the forcing errors is that the simulations underes-82

timate some of the cooling influences contributing to the observed “slowdown”.83

We find that for tropospheric temperature, model-versus-observed warming rate84
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differences during most of the early 21st century cannot be fully explained by natural85

internal variability of the climate system. We consider whether this result provides86

support for the third school of thought, or if it could be plausibly explained by the87

combined effects of a model error in climate sensitivity [28] and different phasing of88

modeled and observed internal variability [10, 11, 12, 13, 14].89

Our focus is on satellite- and model-based estimates of tropospheric temperature.90

There are two reasons for this choice. First, satellite tropospheric temperature mea-91

surements have time-invariant, near-global coverage [29, 30, 31]. In contrast, there92

are large, non-random temporal changes in spatial coverage in the observed surface93

temperature datasets used in most “slowdown” studies [3, 19, 32]. Second, satellite94

tropospheric temperature datasets have been a key component of recent claims that95

current climate models are too sensitive (by a factor of three or more) to human-96

caused changes in greenhouse gases [28, 33]. Errors of this magnitude would diminish97

confidence in model projections of future climate change. It is therefore critically98

important to evaluate the validity of such claims.99

Satellite and model temperature data100

Our analysis primarily relies on satellite-based measurements of global-scale changes101

in the temperature of the mid- to upper troposphere (TMT). TMT data with near-102

global coverage are available from three groups: Remote Sensing Systems (RSS) [29],103



B. D. Santer et al. 7

the Center for Satellite Applications and Research (STAR) [31], and the University104

of Alabama at Huntsville (UAH) [34]. Older and more recent dataset versions are105

provided by each of these groups (see Methods). A fourth group (the University of106

Washington; UW) [30] produces TMT data for a tropical domain. We briefly discuss107

both tropical TMT changes and global-scale changes in the temperature of the lower108

troposphere (TLT); the latter are provided by RSS and UAH only.109

Model TMT data are from simulations of historical climate change (HIST) and110

of 21st century climate change under Representative Concentration Pathway 8.5111

(RCP8.5). These simulations yield information on the tropospheric temperature re-112

sponse to combined anthropogenic and natural external forcing. To compare models113

and observations over the full satellite temperature record (January 1979 to Decem-114

ber 2016), HIST and RCP8.5 temperatures were spliced together (“HIST+8.5”). We115

also analyze control runs with no changes in external forcings. Control runs are one116

of a number of different sources of information on natural internal climate variability117

[35, 36, 37, 38]. The HIST, RCP8.5, and control simulations were performed under118

phase 5 of the Coupled Model Intercomparison Project (CMIP5) [39].119

Because TMT receives a contribution from the cooling of the stratosphere, a120

standard regression-based approach was employed to correct for this influence [40].121

Correction yields a more representative measure of bulk changes in tropospheric tem-122

perature [41, 42, 43], and was performed for both satellite and model TMT data.123
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Further information on the correction method and the satellite and model tempera-124

ture data is provided in the Methods section and the Supplementary Information.125

Tropospheric temperature time series126

The multi-model average (MMA) of TMT changes in the HIST+8.5 simulations is127

smoother than any individual observational TMT time series (see Fig. 1A). This128

difference in the amplitude of variability is expected [12, 15, 44]. In “free running”129

simulations with coupled models of the climate system, the phasing of internally gen-130

erated climate variability is random. By averaging over 49 realizations of HIST+8.5131

(performed with 37 different climate models), the amplitude of random variability is132

reduced, more clearly revealing the underlying temperature response to external forc-133

ings. The real world, however, has only one sequence of internal climate variability.134

Tropospheric warming is larger in the MMA than in the satellite data [45] (Figs.135

1A, B). Another prominent feature of the observed results is the large interannual136

temperature variability arising from the internally generated El Niño/Southern Os-137

cillation (ENSO). The positive (El Niño) phase of ENSO causes short-term warming.138

The large 1982/83 El Niño partly obscured cooling caused by the 1982 eruption of139

El Chichón. Because of the above-described noise reduction arising from averaging140

over realizations and models, the cooling signatures of El Chichón and Pinatubo are141

clearer in the MMA [15, 46]. Removal of temperature variability induced by ENSO142



B. D. Santer et al. 9

improves the agreement between volcanic cooling signals in the MMA and in satel-143

lite tropospheric temperature data, but does not fully explain mismatches between144

simulated and observed tropospheric warming during the early 21st century [15].145

Significance of individual difference series trends146

Next, we assess whether there are statistically significant differences between tropo-147

spheric temperature changes in models and individual satellite temperature datasets.148

We operate on the difference series ∆Tf−o(k, t) = T f (t)−To(k, t) , where k is an index149

over the number of satellite datasets, t is an index over time (in months), T f (t) is the150

MMA, and To(k, t) is an individual observational temperature time series. The sub-151

scripts f and o denote results from forced simulations and observations (see Methods152

and statistical terminology section in the Supplementary Information).153

Our significance testing procedure rests on two assumptions. First, we assume154

that the MMA provides a credible, “noise free” estimate of the true (but unknown)155

externally forced tropospheric temperature signal in the real world. If this assump-156

tion is valid, the difference series ∆Tf−o(k, t) should reflect the departures of the157

observed realization of internal variability from the externally forced signal. A sec-158

ond necessary assumption is that the CMIP5 control runs provide unbiased estimates159

of the amplitude, period, and frequency of major modes of natural internal variability,160

particularly on interannual to multi-decadal timescales. Whether this assumption is161
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justifiable is discussed in the final section of the paper.162

Under these two assumptions, we formulate the null hypothesis that departures163

between the expected and observed tropospheric temperature trends are consistent164

with internal climate noise. Rejection of the null hypothesis can have multiple ex-165

planations: systematic deficiencies in the external forcings applied in the HIST+8.5166

simulations (such as neglect of moderate volcanic eruptions in the early 21st century167

[20, 21, 22, 23]), errors in the climate sensitivity to external forcings, errors in the sim-168

ulated spectrum of internal variability, and residual inhomogeneities in the satellite169

temperature measurements. These explanations are not mutually exclusive.170

Most previous studies of differences between simulated and observed warming171

rates in the early 21st century focused on changes over specific periods [3, 16, 47, 48].172

The appropriateness of different analysis period choices has been the subject of debate173

[3, 16, 19]. To avoid such debate, we focus instead on L-year analysis timescales. We174

consider five timescales here: L = 10, 12, 14, 16, and 18 years. For each timescale,175

an L-year “window” is advanced by one month at a time through ∆Tf−o(k, t). A176

least-squares linear trend is calculated for each individual window.177

These maximally overlapping trends are plotted in the left column of Fig. 2. As178

expected, shorter L-year trends are noisier. For example, 10-year windows ending179

close to the peak tropospheric warming caused by the 1997/98 El Niño have large180

negative trends in the difference series. The use of longer trend-fitting periods damps181
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such end-point effects. Another noteworthy feature of Fig. 2 is that most L-year182

windows which sample a substantial portion of the early 21st century have large183

positive trends in ∆Tf−o(k, t). During this period, the average simulated warming is184

larger than the tropospheric warming in each satellite dataset. We use CMIP5 control185

runs to estimate the probability that trends in ∆Tf−o(k, t) are either unusually large or186

unusually small relative to unforced temperature trends (see Methods). The resulting187

empirical p-values are plotted in the right-hand column of Fig. 2.188

For most L-year trends ending after 2005, model-versus-observed differences in189

tropospheric warming are significantly larger (at the 10% level or better) than can be190

explained by natural internal variability alone. This result holds for all six satellite191

TMT datasets examined here. In contrast, L-year difference series trends ending192

before 2005 are generally not significantly larger than unforced TMT trends in the193

CMIP5 control runs. Qualitatively similar results are obtained for TMT averaged194

over the tropics, as well as for near-global changes in TLT (see Supplementary Figs.195

S1 and S2, respectively).196

In each panel in the right-hand column of Fig. 2, there are upper and lower rejec-197

tion regions for our stipulated null hypothesis. The upper (lower) rejection regions198

are for significant negative (positive) trends in ∆Tf−o(k, t). Under the null hypoth-199

esis, significant negative and positive trends in ∆Tf−o(k, t) should be equally likely.200

We find, however, that significant positive trends dominate. There is only one small201



B. D. Santer et al. 12

group of significant negative trends in ∆Tf−o(k, t) – the group with end points close202

to the anomalous warmth of the 1997/98 El Niño.203

Other features of Fig. 2 are also of interest. Consider, for example, the group of204

positive 10-year trends ending between approximately 1990 and 1993 (Fig. 2B). As205

noted above, El Chichón’s cooling signal is larger and clearer in the MMA than in206

satellite TMT data, where it was partly masked by the 1982/83 El Niño. This explains207

why simulated TMT trends commencing close to the Chichón eruption tend to show208

a larger post-eruption recovery (and larger warming) than in the observations (Figs.209

1A and B). The influence of the 1982/83 El Niño on trends in ∆Tf−o(k, t) diminishes210

as the trend fitting period is increased.211

The large tropospheric warming caused by the 2015/16 El Niño event also has a212

pronounced effect. As shorter (10- to 12-year) sliding windows sample this observed213

warming spike, the size of trends in the ∆Tf−o(k, t) difference series decreases, and p-214

values increase (Figs. 2B, D). However, as the longer 16- and 18-year sliding windows215

approach the end of the TMT records, even the anomalous observed warmth of late216

2015 and early 2016 does not negate the larger simulated warming during most of217

the “slowdown” period – i.e., trends in ∆Tf−o(k, t) remain significantly larger than218

unforced trends (Figs. 2H, J).219

Figure 2 reveals large structural uncertainties in satellite TMT datasets. These220

uncertainties reflect different choices in dataset construction, primarily related to the221
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treatment of orbital drift, the impact of orbital drift on sampling the diurnal cycle of222

atmospheric temperature [29, 30, 31, 34, 49], and the influence of instrument body223

temperature [50, 51]. For example, versions 5.6 and 6.0 of the UAH TMT dataset224

have pronounced differences in tropospheric warming in the first third of the satellite225

record. These differences (which are probably due to an update in how the UAH226

group deals with instrument bias correction) are large enough to lead to different227

decisions regarding the statistical significance of initial trends in ∆Tf−o(k, t).228

Our use of older and newer versions of satellite TMT records highlights the evo-229

lutionary nature of these datasets. This evolutionary understanding is not always230

well understood outside of the scientific community [33], which is why we choose to231

illustrate it in Fig. 2. In the following analysis, however, we focus on newer dataset232

versions, which incorporate adjustments for recently identified inhomogeneities, and233

are likely to be improved relative to earlier dataset versions [29, 30].234

Significance of asymmetry statistics235

The analysis in Fig. 2 focuses on the significance of individual trends in ∆Tf−o(k, t). It236

does not consider whether overall asymmetries in p-values (such as the preponderance237

of significant positive trends in the difference series) could be due to internal variability238

alone. To address this question, we define three asymmetry statistics. The first is239

γ1, which measures asymmetry in the numbers of significant positive and significant240
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negative trends in ∆Tf−o(k, t). The second and third are the γ2 and γ3 statistics,241

which provide information on asymmetries in the temporal distribution of individual242

p-values. To calculate γ2 and γ3, we split the number of maximally overlapping243

difference series trends into a first and second set of approximately equal size (SET244

1 and SET 2; see Fig. 2). This is done for each value of the trend length L. The245

difference in the total number of significant positive trends in SET 1 and SET 2 is246

γ2. The difference in “set-average” p-values is γ3 (see Methods).247

Figure 3 shows asymmetry statistics for the specific case of maximally overlapping248

10-year trends in ∆Tf−o(k, t). The actual values of γ1, γ2 and γ3 reveal a prepon-249

derance of significant positive trends in ∆Tf−o(k, t), a larger number of significant250

positive trends in SET 2 than in SET 1, and a sharp decrease in average p-values251

between SET 1 and SET 2 (see Figs. 3A, C, and E, respectively). We seek to esti-252

mate the likelihood that these actual values could be due to multi-decadal internal253

variability alone. We refer to these probabilities subsequently as pγ1 , pγ2 and pγ3 .254

We begin by randomly selecting 5,000 surrogate “observed” TMT time series255

from the CMIP5 control runs (see Methods and Supplementary Figs. S3 and S4).256

For each surrogate time series, maximally overlapping L-year trends are compared257

with control run distributions of unforced L-year trends; p-values are calculated for258

each individual trend, and asymmetry statistics are computed from the p-values. This259

procedure yields 5,000-member null distributions of γ1, γ2 and γ3. We know a priori260
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that the statistical properties of these distributions are solely influenced by natural261

internal variability. Actual values of the asymmetry statistics are compared with the262

null distributions to estimate pγ1 , pγ2 and pγ3 (see Figs. 3B, D, and F).263

Figure 4 summarizes these probability estimates. By averaging over satellite264

datasets and analysis timescales, we obtain the overall probabilities pγ1 , pγ2 and pγ3265

(the magenta lines in Fig. 4). For the statistic gauging the asymmetry in the numbers266

of positive and negative difference series trends, pγ1 ≈ 0.005. On average, therefore,267

there is only a 1 in 200 chance that the actual preponderance of significant positive268

trends in ∆Tf−o(k, t) could be due to internal variability alone (Fig. 4A).269

Consider next the temporal asymmetries between the properties of difference series270

trends in SET 1 and SET 2 (Figs. 4B and C). The likelihood is very small ( pγ2 ≈271

0.004) that random internal fluctuations in climate could fully explain why the number272

of significant positive trends in ∆Tf−o(k, t) is larger in SET 2 than in SET 1. For273

the third asymmetry statistic, there is less than a 1 in 10 chance (pγ3 ≈ 0.09) that274

the actual decline in average p-values between SET 1 and SET 2 is due to internal275

variability alone.276

The probabilities in Fig. 4 are calculated separately for each asymmetry statistic.277

We also considered the joint behavior of γ1, γ2 and γ3. We estimated pγ123 , the278

likelihood that internal variability alone can simultaneously produce values of γ1, γ2279

and γ3 that are more extreme than their “satellite average” actual values (the brown280
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vertical lines in Figs. 3B, D and F). The calculation of pγ123 was performed with281

the same Monte Carlo-generated sampling distributions employed for computing the282

individual probabilities pγ1 , pγ2 and pγ3 .283

For each of the five analysis timescales, pγ123 is zero. This indicates that in the284

5,000 realizations of surrogate observations, there is not a single realization in which285

multi-decadal internal variability can simultaneously explain the actual asymmetries286

in the sign and temporal distribution of significant trends in ∆Tf−o(k, t). We cau-287

tion, however, that our estimate of pγ123 relies on non-independent information, and288

is therefore likely to be biased: γ1, γ2, and γ3 are all calculated from the same set289

of p-values for maximally overlapping trends in ∆Tf−o(k, t). Nevertheless, our find-290

ings suggest that there is real value in considering the joint behavior of γ1, γ2 and291

γ3, and that each statistic provides some unique information about the asymmetric292

distribution of difference series trends.293

“Perfect model” analysis294

It has been posited that the differences between modeled and observed tropospheric295

warming rates are solely attributable to a fundamental error in model sensitivity to296

anthropogenic greenhouse gas increases [28]. Several aspects of our results cast doubt297

on the “sensitivity error” explanation. First, it is difficult to understand why signifi-298

cant differences between modeled and observed warming rates should be preferentially299
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concentrated in the early 21st century (see Fig. 2). A fundamental model sensitivity300

error should be manifest more uniformly in time. Second, a large sensitivity error301

should appear not only in trend behavior, but also in the response to major volcanic302

eruptions [46]. After removal of ENSO variability, however, there are no large sys-303

tematic model errors in tropospheric cooling following the eruptions of El Chichón in304

1982 and Pinatubo in 1991 [15].305

We performed a “perfect model” analysis to further investigate this issue. We306

consider whether asymmetries in the sign and temporal distribution of significant307

trends in ∆Tf−o(k, t) could be solely due to the combined effects of a large model308

sensitivity error and different realizations of modeled and observed internal variabil-309

ity. The “perfect model” study emulates our analysis of the “MMA minus satellite”310

difference series. Now, however, the difference series ∆Tf−f (j, t) is formed between311

the MMA and each individual HIST+8.5 realization. We calculate “perfect model”312

values of the γ1, γ2 and γ3 statistics not only over 1979 to 2016, but also over three313

earlier and two later 38-year analysis periods (see Methods).314

For each asymmetry statistic, our “perfect model” analysis yields 288 individual315

samples. This allows us to explore how γ1, γ2 and γ3 behave over a large range316

of inter-model differences in climate sensitivity and phasing of low-frequency modes317

of variability (Supplementary Fig. S5). Because consistently derived estimates of318

Equilibrium Climate Sensitivity (ECS) are not available for all CMIP5 models, we319
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use a simple ECS proxy to study relationships between climate sensitivity and the320

“perfect model” values of γ1, γ2 and γ3. This proxy, ∆T8.5, is the global-mean change321

in corrected TMT over 2006 to 2095; ∆T8.5 can be calculated from all 37 models for322

which we have RCP8.5 simulations (see Supplementary Fig. S6).323

Relationships between the “perfect model” results and ∆T8.5 are shown in Sup-324

plementary Fig. S7. Results are partitioned into two groups. The first group is for325

the three earlier analysis periods (1862 to 1899, 1900 to 1937, and 1940 to 1977). The326

second group contains results for three later analysis periods (1979 to 2016, 2020 to327

2057 and 2058 to 2095). For both groups of results, there are only weak relationships328

between ∆T8.5 and the statistics capturing temporal asymmetries in trend behavior329

(γ2 and γ3). In contrast, the statistic reflecting asymmetries in trend sign (γ1) is330

highly correlated with ∆T8.5, but only during the three later analysis periods.331

The latter result has several explanations. First, inter-model differences in ECS332

become more pronounced as greenhouse gas forcing increases. These sensitivity dif-333

ferences are manifest as a time-increasing spread in tropospheric warming rates (Sup-334

plementary Fig. S5). As this spread grows in the 21st century, high-ECS (low ECS)335

models yield a larger number of significant negative (positive) trends in the ∆Tf−f (j, t)336

difference series, and γ1 becomes more highly correlated with ∆T8.5. Second, as trends337

in ∆Tf−f (j, t) become larger, the correlation between ∆T8.5 and γ1 is less affected by338

natural decadal variability (Supplementary Fig. S8).339
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Despite the fact that our “perfect model” analysis encompasses a large range340

of inter-model climate sensitivity differences, the average actual values of the three341

asymmetry statistics (the brown vertical lines in Figs. 3B, D, and F) remain unusual.342

For γ1, there are only 12 out of 288 cases where the “perfect model” result exceeds343

the actual value (Supplementary Fig. S9A). This yields a probability of pγ1 = 0.042344

that the actual γ1 value could be due to the combined effects of a model error in345

climate sensitivity and different phasing of modeled and observed internal variability.346

For the statistics gauging temporal asymmetry, this likelihood is even smaller: pγ2 =347

0.010, and pγ3 = 0.038 (Supplementary Figs. S9B, C). Finally, if the behavior of the348

asymmetry statistics is examined jointly rather individually, there is only one out of349

288 cases in which the “perfect model” values of γ1, γ2 and γ3 are simultaneously350

more extreme than the average actual values, and pγ123 = 0.003.351

In contrast, statistically unusual values of all three asymmetry statistics could have352

been plausibly generated by the temporal coincidence of multiple externally forced353

and internally generated cooling influences in the early 21st century. Internally driven354

contributions to the “warming slowdown” arise from the transition to a negative355

phase of the Interdecadal Pacific Oscillation (IPO) in roughly 1999 [11, 13, 16, 52],356

and from changes in the phasing of other internal variability modes [14, 53]. Our357

statistical results are best explained by the combined effects of these known phase358

changes and by previously identified systematic model forcing errors in the early 21st359

century [2, 17, 20, 25, 27].360
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Reliability of model variability estimates361

The credibility of our findings depends on the reliability of model-based estimates of362

natural variability. If CMIP5 models systematically underestimated the amplitude of363

tropospheric temperature variability on 10- to 18-year timescales, it would spuriously364

inflate the significance of individual difference series trends. In previous work, we365

found no evidence of such a systematic low bias. On average, CMIP5 models slightly366

overestimated the amplitude of decadal variability in TMT [54].367

It is more difficult to assess the credibility of our estimated probabilities for the368

overall asymmetry statistics shown in Figs. 3 and 4. Such an evaluation requires369

information on model performance in capturing the “real-world” variability of tro-370

pospheric temperature on longer 30- to 40-year timescales. This information is not371

directly available from relatively short satellite TMT records, and must instead be372

inferred from other sources (see Supplementary Information). Such indirect sources373

do not support a systematic model underestimate of tropospheric temperature vari-374

ability on 30- to 40-year timescales [55]. Note also that a low bias in model estimates375

of longer-timescale variability is physically inconsistent [56] with the above-mentioned376

claim of a high bias in model climate sensitivity [28].377

A related issue is the fidelity with which models capture the periods of multi-378

decadal oscillations. Underestimates of these periods could bias the sampling dis-379

tributions of the γ2 and γ3 statistics, in both the “perfect model” analysis and the380
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analysis with surrogate observations. There is some evidence that such an error may381

exist for the IPO [57], although it is difficult to make a reliable assessment of this382

type of error given relatively short observational record lengths and the obfuscating383

effects of low-frequency changes in external forcings [26].384

In conclusion, the temporary “slowdown” in warming in the early 21st century385

has provided the scientific community with a valuable opportunity to advance under-386

standing of internal variability and external forcing, and to develop improved climate387

observations, forcing estimates, and model simulations. Further work is necessary to388

reliably quantify the relative magnitudes of the internally generated and externally389

forced components of temperature change. It is also of interest to explore whether390

surface temperature yields results consistent with those obtained here for tropospheric391

temperature.392

Our analysis is unlikely to reconcile divergent schools of thought regarding the393

causes of differences between modeled and observed warming rates in the early 21st394

century. However, we have shown that each hypothesized cause may have a unique395

statistical signature. These signatures should be exploited in improving understand-396

ing. While scientific discussion about the causes of short-term differences between397

modeled and observed warming rates is likely to continue [19], this discussion does398

not cast doubt on the reality of long-term anthropogenic warming.399
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Methods400

Satellite temperature data401

We use satellite estimates of tropospheric temperature change produced by RSS [29,402

58], STAR [31, 59, 60], UAH [34], and the University of Washington (UW) [30]. The403

UW group supplies TMT data for the tropics only. All other groups have near-global404

coverage of TMT measurements.405

RSS, UAH, and STAR produce satellite measurements of the temperature of the406

lower stratosphere (TLS), which is used to correct TMT for the influence it receives407

from stratospheric cooling. Only RSS and UAH supply measurements of the temper-408

ature of the lower troposphere (TLT), which we briefly discuss in the main text.409

UAH provides two different versions (5.6 and 6.0) of their TLS, TMT, and TLT410

datasets. RSS currently has only one version (3.3) of their TLS and TLT datasets,411

but two versions (3.3 and 4.0) of their TMT product. Two versions were available412

for the STAR TLS and TMT datasets (3.0 and 4.0). At present, there is only one413

version (1.0) of the UW tropical TMT dataset.414

Satellite datasets are in the form of monthly means on 2.5◦×2.5◦ latitude/longitude415

grids. Near-global averages of TMT and TLT were calculated over areas of common416

coverage in the RSS, UAH, and STAR datasets (82.5◦N to 82.5◦S for TMT, and417
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82.5◦N to 70◦S for TLT). All tropical averages are over 20◦N to 20◦S. At the time this418

analysis was performed, satellite temperature data were available for the 456-month419

period from January 1979 to December 2016.420

Method used for correcting TMT data421

Trends in TMT estimated from microwave sounders receive a substantial contribution422

from the cooling of the lower stratosphere [40, 41, 61, 62]. In ref. [40], a regression-423

based method was developed for removing the bulk of this stratospheric cooling com-424

ponent of TMT. This method has been validated with both observed and model425

atmospheric temperature data [41, 63, 64]. Here, we refer to the corrected version of426

TMT as TMTcr. The main text discusses corrected TMT only, and does not use the427

subscript cr to identify corrected TMT.428

For calculating tropical averages of TMTcr, ref. [61] used:429

TMTcr = a24TMT + (1 − a24)TLS (1)

where a24 = 1.1. For the near-global domain considered here, lower stratospheric430

cooling makes a larger contribution to TMT trends, so a24 is larger [40, 62]. In refs.431

[40] and [62], a24 ≈ 1.15 was applied directly to near-global averages of TMT and432

TLS. Since we are performing corrections on local (grid-point) data, we used a24 =433

1.1 between 30◦N and 30◦S, and a24 = 1.2 poleward of 30◦. This is approximately434

equivalent to use of the a24 = 1.15 for globally-averaged data.435
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Details of model output436

We used model output from phase 5 of the Coupled Model Intercomparison Project437

(CMIP5) [39]. The simulations analyzed here were contributed by 19 different re-438

search groups (see Supplementary Table S1). Our focus was on three different types439

of numerical experiment: 1) simulations with estimated historical changes in human440

and natural external forcings; 2) simulations with 21st century changes in green-441

house gases and anthropogenic aerosols prescribed according to the Representative442

Concentration Pathway 8.5 (RCP8.5), with radiative forcing of approximately 8.5443

W/m2 in 2100, eventually stabilizing at roughly 12 W/m2; and 3) pre-industrial con-444

trol runs with no changes in external influences on climate.445

Most CMIP5 historical simulations end in December 2005. RCP8.5 simulations446

were typically initiated from conditions of the climate system at the end of the histori-447

cal run. To avoid truncating comparisons between modeled and observed atmospheric448

temperature trends in December 2005, we spliced together synthetic satellite temper-449

atures from the historical simulations and the RCP8.5 runs. Splicing allows us to450

compare actual and synthetic temperature changes over the full 38-year length of the451

satellite record. We use the acronym “HIST+8.5” to identify these spliced simula-452

tions. Some issues related to splicing are discussed in the Supplementary Information.453

Supplementary Table S2 provides information on the external forcings in the454

CMIP5 historical simulations. Details of the start dates, end dates, and lengths of the455
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historical integrations and RCP8.5 runs are given in Supplementary Table S3. Corre-456

sponding information for the pre-industrial control runs is supplied in Supplementary457

Table S4. In total, we analyzed 49 individual HIST+8.5 realizations performed with458

37 different CMIP5 models. Our climate noise estimates rely on pre-industrial control459

runs from 36 CMIP5 models.460

Calculation of synthetic satellite temperatures461

We use a local weighting function method developed at RSS to calculate synthetic462

satellite temperatures from model output [54]. At each model grid-point, simulated463

temperature profiles were convolved with local weighting functions. The weights464

depend on the grid-point surface pressure, the surface type (land or ocean), and the465

selected layer-average temperature (TLS, TMT, or TLT).466

Statistical analysis467

We analyze the statistical significance of trends in the temperature difference time468

series ∆Tf−o(k, t):469

∆Tf−o(k, t) = T f (t) − To(k, t) (2)

k = 1, . . . , Nobs ; t = 1, . . . , Nt
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where T f (t) is the multi-model average atmospheric temperature time series calcu-470

lated from the forced HIST+8.5 simulations, and To(k, t) is the temperature time471

series of the kth observational dataset. Positive (negative) trends in ∆Tf−o(k, t) in-472

dicate model-average tropospheric warming that is larger (smaller) than observed.473

We seek to determine whether internal variability alone can explain large differences474

between expected and observed warming rates (both positive and negative).475

All trends are calculated with monthly-mean TMT or TLT data. Rather than476

focusing on one specific period or timescale, we perform a comprehensive analysis of477

difference series trends on timescales ranging from 10 to 18 years, in increments of two478

years. These are typical record lengths used for study of the “warming slowdown” in479

the early 21st century [16, 19].480

Our analysis relies on maximally overlapping trends. “Maximally overlapping”481

indicates that an L-year sliding window is used for trend calculations. This window482

advances in increments of one month until the end of the current window reaches the483

final month of the ∆Tf−o(k, t) difference series.484

In calculating the HIST+8.5 multi-model average (MMA), we specify that j is485

a combined index over models and HIST+8.5 realizations. The first averaging step486

is over HIST+8.5 realizations, and the second is over models. For processing the487

pre-industrial control runs, each model has only one control run, so j is an index over488

the number of models only.489
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Anomalies in the satellite observations and HIST+8.5 runs were defined relative to490

climatological monthly means calculated over the 38-year period from January 1979491

to December 2016. Control run anomalies were defined relative to climatological492

monthly means over the full length of each model’s control integration.493

Calculating p-values for individual difference series trends494

We assess trend significance using weighted p-values, which account for inter-model495

differences in control run length [45].496

The weighted p-value, pc(i, k, l)
′, is defined as:497

pc(i, k, l)
′ =

Nmodel∑
j=1

pc(i, j, k, l) /Nmodel (3)

498

i = 1, . . . , Nf−o(l) ; j = 1, . . . , Nmodel ; k = 1, . . . , Nobs ; l = 1, . . . , NL

where i is over Nf−o(l), the total number of maximally overlapping L-year trends in499

∆Tf−o(k, t); j is over Nmodel, the number of model control runs; k is over Nobs, the500

total number of satellite datasets; and l is over NL, the number of values of the trend501

length L. Here, Nf−o(l) = 337 for 10-year (120-month) trends; Nmodel = 36; Nobs = 6;502

and NL = 5 (10, 12, 14, 16, and 18 years).503

The individual pc(i, j, k, l) values for each model pre-industrial control run are calcu-504
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lated as follows:505

pc(i, j, k, l) = Kc(i, j, k, l) /Nc(j, l) (4)
506

i = 1, . . . , Nf−o(l) ; j = 1, . . . , Nmodel ; k = 1, . . . , Nobs ; l = 1, . . . , NL

where Kc(i, j, k, l) is the number of L-year trends in the jth pre-industrial control507

run (for the lth value of the trend length L) that are larger than the current L-year508

trend in ∆Tf−o(k, t). The sample size Nc(j, l) is the number of maximally overlapping509

L-year trends in the jth control run.510

Use of maximally overlapping trends has the advantage of reducing the impact511

of seasonal and interannual noise on atmospheric temperature trends, both in the512

∆Tf−o(k, t) difference series and in the control runs. It has the disadvantage of de-513

creasing the statistical independence of trend samples. Non-independence of samples514

is an important issue in formal statistical significance testing, but is not a serious515

concern here. This is because pc(i, k, l)
′ is not used as a basis for formal statistical516

tests. Instead, it simply provides useful information on whether trends in ∆Tf−o(k, t)517

are unusually large or small relative to model estimates of unforced trends.518

Calculating actual values of asymmetry statistics519

The p-values in the right-hand column of Fig. 2 reveal pronounced asymmetries.520

Three asymmetries are of interest here.521
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The first type of asymmetric behavior relates to the numbers of significant positive522

and significant negative trends. For each analysis timescale in Fig. 2, the overlapping523

trends computed from the ∆Tf−o(k, t) difference series display a preponderance of524

significant positive results. We use the γ1 statistic to quantify this asymmetry:525

γ1(k, l) = K+ve(k, l) − K−ve(k, l) (5)

where

K+ve(k, l) =
Nf−o(l)∑
i=1

M(i, k, l) (6)

M(i, k, l) = 1 if pc(i, k, l)
′ ≤ 0.1

M(i, k, l) = 0 if pc(i, k, l)
′ > 0.1

and

K−ve(k, l) =
Nf−o(l)∑
i=1

M(i, k, l) (7)

M(i, k, l) = 1 if pc(i, k, l)
′ ≥ 0.9

M(i, k, l) = 0 if pc(i, k, l)
′ < 0.9

The summation variables K+ve(k, l) and K−ve(k, l) in equation (6) are the total num-526

bers of significant positive and significant negative trends in ∆Tf−o(k, t) (respec-527

tively). M(i, k, l) in equations (7) and (8) is an integer counter, and pc(i, k, l)
′ is the528

weighted p-value for the current maximally overlapping trend, satellite dataset, and529

trend length. The significance of individual trends is assessed at the 10% level.530

The second type of asymmetric behavior in Fig. 2 relates to the temporal distri-531
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bution of significant positive trends in ∆Tf−o(k, t). If we split the total number of532

maximally overlapping difference series trends into two equally sized sets, there are533

noticeably fewer significant positive trends in the first set (SET 1) than in the sec-534

ond set (SET 2). With the γ2 statistic, we seek to determine whether this temporal535

asymmetry is unusual:536

γ2(k, l) = KSET1(k, l) − KSET2(k, l) (8)

where

KSET1(k, l) =
N(l)∑
i=1

M(i, k, l) (9)

M(i, k, l) = 1 if pc(i, k, l)
′ ≤ 0.1

M(i, k, l) = 0 if pc(i, k, l)
′ > 0.1

N(l) = [Nf−o(l) − 1] / 2

and

KSET2(k, l) =
Nf−o(l)∑
i=N(l)+1

M(i, k, l) (10)

M(i, k, l) = 1 if pc(i, k, l)
′ ≤ 0.1

M(i, k, l) = 0 if pc(i, k, l)
′ > 0.1

The γ3 statistic is analogous to γ2, but relies on differences between the average537

values of pc(i, k, l)
′ in SET 1 and SET 2:538

γ3(k, l) = pc1(k, l)
′ − pc2(k, l)

′ (11)

where the average SET 1 and SET 2 p-values, pc1(k, l)
′ and pc2(k, l)

′, are given by:
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pc1(k, l)
′ =

N(l)∑
i=1

pc(i, k, l)
′ / N(l) (12)

pc2(k, l)
′ =

Nf−o(l)∑
i=N(l)+1

pc(i, k, l)
′ / N(l) (13)

N(l) ≈ Nf−o(l) / 2

Unlike γ1 and γ2, the γ3 statistic is not sensitive to the selected level for assessing539

the significance of individual trends in ∆Tf−o(k, t).540

Overall significance of asymmetry statistics541

To determine the significance of the actual values of these asymmetry statistics, we542

require null distributions of γ1, γ2 and γ3, where we know a priori that changes in543

the statistics are solely due to random realizations of natural internal variability. We544

obtain null distributions of γ1, γ2 and γ3 using surrogate observational temperature545

time series from the CMIP5 control runs. The processing steps are as follows:546

1. Randomly select one of the 36 CMIP5 pre-industrial control runs.547

2. From the selected control run, randomly choose the initial month of a 456-month548

segment of temperature anomaly data. Ensure that the selected initial month549

is valid (i.e., that there are still at least 455 months between the selected initial550

month and the end of the current control run). If this condition is not satisfied,551
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continue random selection of an initial month until the first valid month is552

obtained. The time series of surrogate observations is comprised of the first553

valid month and the next 455 months.554

3. With the current surrogate observational time series, Tsurr(m, t), calculate the555

weighted p-values, pc(i, k, l)
′, as in equation (3). Since we are interested in how556

γ1, γ2 and γ3 behave in the presence of natural variability alone, the surrogate557

observations are not used to form a difference series – i.e., they are not sub-558

tracted from T f (t) (the multi-model average), as was the case with the actual559

satellite temperature data. Instead, individual maximally overlapping L-year560

trends in the surrogate observations are compared directly with distributions561

of control run L-year trends. In computing pc(i, k, l)
′, the current surrogate562

observational time series is excluded from the control runs used to calculate563

unforced L-year temperature trends, and the summation in equation (3) is over564

Nmodel − 1 rather than over Nmodel.565

4. From the values of pc(i, k, l)
′ obtained from step 3, calculate the asymmetry566

statistics γ1, γ2 and γ3, as in equations (5), (8), and (11).567

5. Store these asymmetry statistics in γ1(l,m)∗, γ2(l,m)∗ and γ3(l,m)∗, where the568

index m is over the total number of time series of randomly selected surrogate569

observations, and ∗ denotes a statistic calculated with surrogate observational570

temperature data.571
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6. Return to step 1; repeat steps 1 through 5 until 5,000 surrogate observational572

time series have been selected, and 5,000-member distributions of γ1(l,m)∗,573

γ2(l,m)∗ and γ3(l,m)∗ have been generated.574

7. For each observational dataset, and for each of the five trend lengths considered575

(10, 12, . . . 18 years), compare the actual values of γ1(k, l), γ2(k, l) and γ3(k, l)576

with their corresponding null distributions – i.e., with γ1(l,m)∗, γ2(l,m)∗ and577

γ3(l,m)∗, respectively. Examples of such comparisons are shown in Figs. 3B, D,578

and F of the main text for the case of 10-year trends. Determine the probability579

that the actual values of γ1(k, l), γ2(k, l) and γ3(k, l) could be due to internal580

variability alone. These overall probabilities are pγ1(k, l), pγ2(k, l) and pγ3(k, l).581

“Perfect model” results582

Our “perfect model” analysis considers whether an error in model Equilibrium Cli-583

mate Sensitivity (ECS), coupled with different phasing of internal climate variability584

in the real world and in model HIST+8.5 simulations, could plausibly explain the585

actual values of the three asymmetry statistics. To address this question, we form586

difference series between tropospheric temperature changes in the HIST+8.5 MMA587

and in individual model realizations of HIST+8.5:588

∆Tf−f (j, t) = T f (t) − Tf (j, t) (14)
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j = 1, . . . , Nmodel ; t = 1, . . . , Nt

where j is an combined index over HIST+8.5 realizations and models used to perform589

the HIST+8.5 simulation. We calculate ∆Tf−f (j, t) for six different non-overlapping590

456-month periods: the same January 1979 to December 2016 period used for comput-591

ing the “MMA minus observed” difference series in equation (2), three earlier periods592

(1862 to 1899, 1900 to 1937, and 1940 to 1977), and two later periods (2020 to 2057593

and 2058 to 2095). Because two of the three HadGEM2-CC HIST+8.5 realizations com-594

mence in December 1959, the sample size is not identical for the six analysis periods:595

Nmodel = 47 (49) for the first three (last three) periods, yielding a total number of596

288 ∆Tf−f (j, t) time series from which asymmetry statistics can be calculated.597

We process these 288 “MMA minus individual model” difference time series in598

the same way we treat the “MMA minus observed” difference series – i.e., we fit599

maximally overlapping L-year trends to each ∆Tf−f (j, t) series, estimate weighted600

p-values for each overlapping trend (by comparing with control run distributions of601

unforced L-year trends), and then use these p-values to calculate asymmetry statistics.602

The resulting “perfect model” asymmetry statistics are γ1(j, l), γ2(j, l) and γ3(j, l);603

the statistics are indexed over HIST+8.5 realizations and models (the j index) and604

over the number of values of the trend timescale (the l index). Distributions of these605

statistics are shown in Supplementary Fig. S9 for the 10-year analysis timescale.606
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Proxy for ECS607

ECS information is typically obtained from a 4×CO2 simulation [65]. Not all mod-608

eling groups participating in CMIP5 performed this simulation. Here, we have ECS609

information for only 23 of the 37 CMIP5 models employed in our “perfect model”610

analysis. To study underlying relationships between Equilibrium Climate Sensitivity611

(ECS) and the “perfect model” results, we require a proxy for ECS. Our selected612

proxy is ∆T8.5, the total linear change in near-global averages of corrected TMT in613

the RCP8.5 simulation. For each realization and model, ∆T8.5 is calculated over the614

1,080-month period from January 2006 to December 2095 – the longest common pe-615

riod in the RCP8.5 simulations analyzed here (see Supplementary Table S3). For the616

23 models with 4×CO2 simulations, ECS is highly correlated with ∆T8.5 (Supplemen-617

tary Fig. S6). This provides justification for our use of ∆T8.5 as an ECS proxy in618

Supplementary Fig. S7. For the models analyzed here, ∆T8.5 ranges from 3.28◦C in619

GISS-E2-R (p1) to 6.28◦C in GFDL-CM3.620

Sample sizes in tests of asymmetry statistics621

In assessing the statistical significance of our asymmetry statistics, we have greater622

confidence in our ability to rule out internal variability than in our ability to rule623

out the combined effects of internal variability and a model sensitivity error. This624

is because the sample size used to test the “internal variability only” explanation625



B. D. Santer et al. 36

(5,000 time series of surrogate observations) is much larger than the sample size in626

the “perfect model” analysis (288 time series of differences between the MMA and627

individual model HIST+8.5 realizations). The analysis using surrogate observations628

explores a much larger phase space in the timing and amplitude of the IPO and other629

modes of internal variability.630
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Figure 1: Time series (panel A) and difference series (panel B) of simulated and861

observed tropospheric temperature. Results are monthly-mean TMT anomalies for862

the 456-month period from January 1979 to December 2016, spatially averaged over863

82.5◦N-82.5◦S and corrected for lower stratospheric cooling [40]. Multi-model average864

(MMA) temperature data are from HIST+8.5 simulations performed with 37 different865

CMIP5 models; satellite TMT data are for RSS version 4.0 [29]. Model TMT data866

were computed using vertical weighting functions that approximate the satellite-based867

vertical sampling of the atmosphere [54]. The time series of differences between the868

MMA and the RSS data is shown in both raw form and smoothed with a 12-month869

running mean (panel B). All anomalies are relative to climatological monthly means870

calculated over January 1979 to December 2016. The vertical purple line is plotted at871

the time of the maximum global-mean tropospheric warming during the 1997/98 El872

Niño. The vertical green lines denote the eruption dates of El Chichón and Pinatubo.873

Trends in the MMA and RSS over the full 456 months (the grey and pink lines in panel874

A) are 0.291 and 0.199◦C/decade, respectively. The corresponding trends over the875

early 21st century (January 2000 to December 2016) are 0.286 and 0.191◦C/decade.876

Figure 2: Trends (left column) and trend significance (right column) for TMT dif-877

ference series. The six difference series are for near-global averages of corrected TMT,878

and were computed by subtracting each of the six individual satellite TMT records879

from the HIST+8.5 multi-model average TMT time series (see Fig. 1). Maximally880

overlapping trends were fit to each 456-month difference series. Results are for trend881
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lengths of L = 10, 12, 14, 16, and 18 years; the overlap between successive L-year882

trends is by all but one month. The p-values associated with each L-year difference883

series trend were obtained by testing against multi-model distributions of unforced884

L-year TMT trends from 36 different CMIP5 control runs. Results are plotted on885

the last month of the trend-fitting period. Grey shading denotes the rejection region886

(at a stipulated 10% significance level) for the null hypothesis that the difference be-887

tween modeled and observed TMT trends is due to internal variability alone. Each888

panel in the right-hand column has a lower (upper) rejection region for large posi-889

tive (large negative) trends in the model-minus-observed difference series. The lower890

(upper) rejection region spans the p-value range 0 to 0.1 (0.9 to 1.0). The y-axis891

range was extended to −0.06 to facilitate visual display of p-values at or close to892

zero. To calculate the actual values of the γ2 and γ3 statistics in Figs. 3D and F,893

the maximally overlapping L-year trends were divided into two sets of approximately894

equal size (“SET 1” and “SET 2”; see Methods). The dashed vertical lines in the895

right-hand column panels denote the final month of the last L-year trend in SET 1.896

Figure 3: Asymmetries in the statistical significance of differences between modeled897

and observed tropospheric temperature trends. Results are for maximally overlapping898

10-year trends in near-global averages of corrected TMT. We calculate three asymme-899

try statistics. The first compares the numbers of significant positive and significant900

negative trends in the ∆Tf−o(k, t) difference time series (panel A). Subtracting the901

number of significant negative trends from the number of significant positive trends902
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yields the γ1 statistic (panel B). The second statistic gauges asymmetry in the tem-903

poral distribution of positive trends in the difference series (panel C). To quantify904

this asymmetry, we split the number of maximally overlapping 10-year trends into905

two sets of approximately equal size. Trends sampling earlier (later) portions of the906

difference series are in SET1 (SET 2). The difference in the number of positive trends907

(SET1 minus SET2) is the γ2 statistic (panel D). The third asymmetry statistic re-908

lies on the average p-values of the individual trends in SET1 and SET2 (panel E).909

The difference between these set-average p-values is γ3 (panel F). The vertical lines910

in panels B, D, and F are the actual values of γ1, γ2 and γ3. The grey histograms911

in panels B, D, and F are null distributions of the asymmetry statistics, which were912

generated using 5,000 realizations of surrogate observations (see Methods).913

Figure 4: Overall statistical significance of the γ1, γ2 and γ3 asymmetry statistics as914

a function of the analysis timescale and the satellite data used to compute the “MMA915

minus observed” difference time series. Results are estimates of pγ1 , pγ2 and pγ3 , the916

probabilities that the actual value of the asymmetry statistic could have been obtained917

by natural internal variability alone (panels A, B, and C, respectively). The magenta918

lines in panels A, B, and C are the averages (over the three recent observational919

datasets and the five analysis timescales) of pγ1 , pγ2 and pγ3 . Zero values of the920

probabilities are indicated by colored arrows. The y-axis range in panels A and B is921

substantially smaller than in panel C. For further details refer to the caption of Fig.922

3 and the Methods section.923



B. D. Santer et al. 52

1980 1985 1990 1995 2000 2005 2010 2015
Time (years)

-0.8

-0.4

0

0.4

0.8

1.2

T
M

T
 a

n
o

m
a
ly

 (
o
C

)

1980 1990 2000 2010

Multi-model average (MMA)

RSS version 4.0

Model and Observed TMT Data and Difference Time Series

1980 1985 1990 1995 2000 2005 2010 2015
Time (years)

-0.8

-0.4

0

0.4

0.8

T
M

T
 a

n
o

m
a

ly
 (

o
C

)

-0.8

-0.4

0

0.4

0.8
Difference series (MMA-RSS)

12-month running mean

A     Raw TMT time series

B     Difference series

Peak warming of 1997/97 El Nino

PINCHI

PIN

CHI

CHI

Figure 1: Santer et al.



B. D. Santer et al. 53

1990 2000 2010
-0.4

-0.2

0

0.2

0.4

o
C

/d
e
c
a
d
e A     10 years

SET 2SET 1

RSS version 3.3

RSS version 4.0

1990 2000 2010
0

0.2

0.4

0.6

0.8

p
-v

a
lu

eB     10 years

NOAA/STAR version 3.0

NOAA/STAR version 4.0

1990 2000 2010
-0.4

-0.2

0

0.2

0.4

o
C

/d
e
c
a
d
e C     12 years

SET 1 SET 2

UAH version 5.6

UAH version 6.0

1990 2000 2010
0

0.2

0.4

0.6

0.8

p
-v

a
lu

eD     12 years

1990 2000 2010
-0.4

-0.2

0

0.2

0.4

o
C

/d
e
c
a
d
e E     14 years

SET 1 SET 2

1990 2000 2010
0

0.2

0.4

0.6

0.8

p
-v

a
lu

eF     14 years

1990 2000 2010
-0.4

-0.2

0

0.2

0.4

o
C

/d
e
c
a
d
e G     16 years

SET 1 SET 2

1990 2000 2010
0

0.2

0.4

0.6

0.8

p
-v

a
lu

eH     16 years

1990 2000 2010

Last year of trend

-0.4

-0.2

0

0.2

0.4

o
C

/d
e
c
a
d
e I     18 years

SET 1 SET 2

1990 2000 2010

Last year of trend

0

0.2

0.4

0.6

0.8

p
-v

a
lu

eJ     18 years

Trends in difference series (MMA-OBS)

TMT: Tests of Near-Global Difference Series Trends Against Internal Climate Variability

Prob. control trend > MMA-OBS trend

Figure 2: Santer et al.



B. D. Santer et al. 54

0

50

100

150

200

N
o
. 
o
f 
s
ig

n
if
ic

a
n
t 
tr

e
n
d
s

0

50

100

150

200

Test statistics (actual values)

-150 -75 0 75 150
No. of significant trends (+ve minus -ve)

0

5

10

15

20

25

30

F
re

q
u
e
n
c
y
 (

p
e
rc

e
n
t)

Test statistics (actual, SurrOBS values)

0

30

60

90

120

150

N
o
. 
o
f 
s
ig

n
if
ic

a
n
t 
p
o
s
it
iv

e
 t
re

n
d
s

0

-150 -75 0 75 150
No. of significant +ve trends (SET 1-SET 2)

0

10

20

30

40

F
re

q
u
e
n
c
y
 (

p
e
rc

e
n
t)

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 p

-v
a
lu

e

0

RSS v4.0

NOAA/STAR v4.0

UAH v6.0

OBS average

-0.5 0 0.5

Average p-values (SET 1-SET 2)

0

3

6

9

12

15

F
re

q
u
e
n
c
y
 (

p
e
rc

e
n
t)

A     No. of significant 
B     γ

1

C     No. of significant D     γ
2

Asymmetries in Significance of Model-Minus-OBS TMT Differences (10-yr trends)

E     Average p-value F     γ3

Positive trends Negative trends

SET 1 SET 2

SET 1 SET 2

    +ve and -ve trends

positive trends

Figure 3: Santer et al.
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