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Abstract  

Human mesenchymal stem cells (MSCs) are the most intensely studied and clinically used 

adult stem cell type. Conventional long-term cultivation of MSCs as a monolayer is known to 

result in a reduction of their functionality and viability. In addition, large volumes of cell 

culture medium are required to obtain cell quantities needed for their clinical use. In this 

proof of concept study, we cultivated human MSCs within a 3D nanofibrillar cellulose (NFC) 

hydrogel. We show that NFC is biocompatible with human MSCs, and represents a feasible 

approach to upscaling of their culture.  
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Introduction 

The presence of MSCs in multiple tissue types as well as their multi-lineage differentiation 

and regenerative capacity has led to an increase in their clinical application with over 724 

trials registered on ClinicalTrials.gov as of May 2017. The therapeutic benefit of MSC-

administration in different pathologies (reviewed in [1]) can be at least partly explained by 

paracrine effects on endogenous regeneration that are mainly mediated by extracellular 

vesicles (EVs)  released by MSCs  [2-4]. Thus, EVs are considered to represent a cost-

efficient alternative to transplantation of MSCs with a potentially equally beneficial 

therapeutic outcome. 

Notably, both transplantation of MSCs and manufacturing of MSC-derived EVs require large 

cell numbers, long cultivation time, and consequently large volumes of cell culture medium. 

Thus, culture expansion in vitro is a necessary step in order to obtain sufficient quantities of 

cells for the intended therapeutic application.  However, it is well known that during initial and 

extended in vitro culture expansion, MSCs accumulate chromosomal aberrations, which may 

be caused by the extraction of the cells from their three-dimensional endogenous niche and 

2D in vitro culture conditions [5, 6]. Moreover, a large body of evidence suggests that 

prolonged 2D cultivation leads to a loss of multipotency and induces cellular senescence in 

MSCs [7]. Therefore, conventional 2D culture represents a bottleneck in a broader use of 

MSC-based therapeutic and the upscaling of MSC-culture is a current technological and 

economic challenge.  .  

To overcome these limitations, different 3D cultivation methods, more closely resembling the 

endogenous niche, have been applied to MSCs. Among others, MSCs can be cultivated in 

3D within alginate hydrogels [8], collagen-based matrices [9], fibrin-poly(ester-urethane) 

scaffolds [10], bacteria-derived cellulose [11], methylcellulose [12] and the chondrosarcoma-

derived MatrigelTM [13]. However, despite the obvious advantages over the 2D cultivation 
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systems, most MSC 3D cultivation methods also have drawbacks. Specifically, alginate 

hydrogels require cross-linking, while retrieval of the cells from fibrin and collagen based 

matrices can only be achieved by using enzymes also affecting mammalian cells. Matrigel™ 

is known to be affected by batch to batch variability, cross species immunogenicity and 

consequently difficulties with the use in a clinical setting [14]. In contrast, similar to other 

bacteria-derived biologics, bacteria-derived cellulose requires cost intensive purification to 

avoid contaminations with endotoxins.  

In this study, we examined the biocompatibility of multipotent human adipose tissue-derived 

and bone marrow derived mesenchymal stem cells (adMSCs and bmMSCs) with the 

commercially available nanofibrillar cellulose (NFC) hydrogel GrowDex®, which has been 

demonstrated to be biocompatible with other cell types including liver cells, liver progenitor 

cells, and human induced pluripotent stem cells [15-17].  We demonstrate that both adMSCs 

and bmMSCs interact with the NFC, are evenly distributed within all three dimensions of the 

hydrogel, and are viable in 0.2% and 0.5% NFC hydrogel. Moreover, MSCs were 

successfully differentiated in osteogenic cells within the 3D hydrogel. Finally, we show that 

MSCs can be easily retrieved from the 3D hydrogel via an enzymatic digestion of the NFC 

and that the post-NFC MSCs show similar viability to 2D pre-cultivated MSCs.  

 

Material and Methods 

Nanofibrillar Cellulose and Calcofluor white staining 

NFC hydrogel (Growdex®) and cellulase solution (GrowDaseTM) were kindly provide by UPM 

Biochemicals, Helsinki, Finland). 0.2% NFC solution was prepared by diluting the 1.5% stock 

solution in DMEM (Sigma-Aldrich, Irvine, United Kingdom) and 100µL of the hydrogel was 

transferred into a well of a low-adhesion 96 well plate using low-retention pipette tips 

(Sarstedt, Leicester, United Kingdom) followed by incubation with 25µL of the Calcofluor 

white (0.01% aqueous solution of Calcofluor White M2R, 1 g/L, Evans blue, 0.5 g/L, Sigma-
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Aldrich) for 20 sec at RT. The staining was visualized using an inverted fluorescence 

microscope (VertA1, Carl Zeiss, Cambridge, United Kingdom) equipped with a DAPI filter.  

Scanning Electron Microscopy  

Cells within 0.5% NFC hydrogel or 0.5% NFC hydrogel alone were transferred into a 24mm 

cell culture insert membrane (Corning, St. David's Park, United Kingdom; pore size 0.4µm), 

incubated for 24h at 37°C and fixed with 2% paraformaldehyde and 2.5% glutaraldehyde for 

1 hour, washed 3 times with PBS for 30 mins followed by dehydration in ethanol series then 

moved with a spatula on top of a stub. The samples were plunged into liquid nitrogen slash 

then freeze dried for 1.5 hours followed by gold coating (thickness of 25 nm). Analysis was 

performed using a scanning electron microscope (FEI Quanta FEG 600 SEM, Thermo 

Fisher, Paisley, United Kingdom). Fiber size was calculated from 7 SEM images and a 

histogram was created. The calculation was performed using the ImageJ Fiji software. The 

histogram was created with GraphPad Prism software (GraphPad, La Jolla, CA, USA). 

 

Human MSCs 

Fully characterised human adipose tissue MSCs from non-diabetic adult lipoaspirates were 

obtained from Lonza (Slough, United Kingdom). Palatal adipose tissue MSCs and bone 

marrow MSCs were obtained from adult donors with written informed consent, and the study 

was approved by Ethics Committee of Dental Faculty of Selcuk University (approval number 

2012-08). All MSCs have been characterized immunocytochemically and by tri-lineage 

differentiation assay as recommended by The International Society for Cellular Therapy [18]. 

Cultivation of MSCs as 2D monolayer 

MSCs were cultivated in DMEM high glucose, 1% L-Glutamine, 1% penicillin/streptomycin 

(all from Sigma-Aldrich) and 20% heat inactivated FBS (Sigma Aldrich, lot: 8204188981) 

[standard cultivation medium] at 37°C and 10% CO2. Medium was changed every 2-3 days. 

For expansion, cells were detached by treatment with 0.05% trypsin/EDTA (Sigma-Aldrich) 
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and seeded in 175cm2 tissue culture flasks (Sarstedt). All cells were used at passages 4-13 

(except palatal adMSCs for live/dead  for and osteogenic differentiation assay at passage 

18). 

Cultivation of MSCs in NFC 3D matrix 

After detachment by treatment with 0.05% trypsin/EDTA (Sigma-Aldrich), MSC suspensions 

were mixed with 1.5 % NFC hydrogel to achieve 0.2% or 0.5% (w/v) hydrogels with desired 

cell density. After 30 min of incubation at 37 ˚C, standard culture medium was added to the 

top of the hydrogel. 

MSCs were cultured in 0.2% and 0.5% NFC hydrogel at the seeding density of 105 cells/well 

in standard cultivation medium for up to 7 days at 37°C and 10% CO2 unless otherwise 

stated. Medium was changed daily. Retrieval of cells from the NFC was performed by 

enzymatic digestion of the matrix with cellulase (GrowDase, UPM Biochemicals) for 24h at 

37°C. Bright field microscopy was done using an inverted microscope (VertA1, Carl Zeiss).  

Liberation of MSCs from the NFC hydrogel 

MSCs were seeded at 25x103 cells per 100µl and cultured for 96hrs in 0.2% and 0.5% NFC. 

The cellulase solution (GrowDase®, UPM, Finland) was prepared according to 

manufacturer’s instructions. Briefly, 300µg of cellulase per 1mg of NFC was incubated for 

4hrs at 37°C and 10% CO2. Following NFC digestion, the suspension was removed and the 

well washed with PBS. Following centrifugation at 300g for 10mins, cell counting was 

performed using a haemocytometer. 

Cell Viability Assay (XTT)  

A cell viability assay in 2D and 3D cultures was performed using the Cell Proliferation Kit II 

(Sigma-Aldrich) according to the manufacturer`s instructions. BM-MSCs and palatal adMSCs 

were used at passage 9, and adMSCs at passage 13.  The fluorescence of the XTT 

metabolite was measured at an excitation wavelength of 450 nm and a reference 
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wavelength of 650nm on a Spectra Max 340PC plate reader (Molecular Devices, 

Wokingham, United Kingdom). Measurements were taken after 7 hours of incubation. 

PKH67 staining and fScan 3D fluorescence imaging 

To visualize living cells within the NFC matrix, PKH67 Green Fluorescent Cell Linker Kit for 

General Cell Membrane Labelling (Sigma-Aldrich) was used. Briefly, 2x105 adMSCs at 

passage 11 were labelled according to the manufacturer`s instructions and embedded within 

0.5% NFC hydrogel. For detection of living, labelled cells, the fScan 488 (Lein Applied 

Diagnostics, Reading, UK) 3D scanning confocal microscope was used. 3D reconstruction 

was done using ImageJ Fiji software [19] and the Volume Viewer plugin.   

Live and Dead Staining and Confocal laser scanning microscopy 

AdMSCs (passage 18) cultured in 0.2% NFC on translucent TC 24 well inserts (Sarstedt), 

stained with Live/Dead viability/cytotoxicity kit according to the manufacturer`s instruction 

(Thermo Fisher), fixed in 4% PFA for 20mins and counter-stained with DAPI (Sigma-Aldrich). 

 The TC membrane was removed from the TC insert and mounted onto a slide in Mowiol 4-

88 mounting solution (Sigma-Aldrich). Confocal images were gathered using the Nikon A1-R 

inverted confocal microscope with the Nikon Plan Apo VC 20x DIC N2 optic lens, running 

NIS Elements AR. NFC was visualized by phase contrast (TD), DAPI at an 

excitation/emission of 405/450nm, Calcein 494/517nm, and Ethidium homodimer-1 at 

528/617nm with the Chroma 405/488/561/647 quad mirror. A z-stack depth of 50µm (z-

plane) was created for an area of 554x550µm and a 3D reconstruction was generated with 

all the channels using the NIS Elements AR software (v4.0). The phase contrast channel 

showing the NFC was cut through the Y plane.   

Osteogenic differentiation of MSCs in 3D NFC Hydrogels 

For induction of osteogenesis, 2 x 105 palatal-tissue (passage 18) and liposuction-derived 

adMSCs (passage 14)  in normal cultivation medium were embedded in 0.2% NFC and 

transferred to 12 well cell culture inserts (Sarstedt). Medium was changed after 3 days to 
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Stem Pro Osteocyte/Chondrocyte basal medium (Life Technologies) supplemented with 

StemPro Osteogenesis supplement (Life Technologies) according to the suppliers 

instructions. In control MSCs, medium was changed to fresh standard medium. Cultures 

were maintained at 37˚ C and were stained with Alizarin Red S after 21 days of 

differentiation. Medium was removed and cells were washed with PBS. Fixation in 4% PFA 

for 30 min was followed by three washing steps in distilled water. Alizarin Red staining 

solution (2 g Alizarin Red S in 100 ml distilled water, pH 4.1 with 0.1% NH4OH, filtered) was 

added and incubated for 45 min at room temperature in the dark. The staining solution was 

removed and non-specific staining was removed by three washing steps with water.   

Statistical Analysis 

All statistical analyses were performed using GraphPad Prism software (GraphPad, La Jolla, 

CA, USA). Data were compared using either a student’s t-test (two-tailed, confidence interval 

95%), or one-way analysis of variance (ANOVA) with Bonferroni correction (CI 95%), where 

appropriate. At least 3 independent measurements were performed. p<0.05 was considered 

statistically significant.  

Results 

NFC forms dense mesh-like structures with large pores 

In order to visualise the cellulose fibres within the 3D NFC hydrogel, an aqueous solution of 

Calcofluor staining was used. Subsequent fluorescence microscopy analysis clearly showed 

that cellulose fibres are evenly distributed within the hydrogel (Fig. 1A). To gather sub-

structural data on the 3D NFC, the hydrogel was processed for scanning electron 

microscopy revealing a dense meshwork-like structure (Fig.1B). Higher magnification image 

showed a dense network of cellulose fibres of different size (Fig. 1C). Analysis of the fiber 

diameter revealed an average diameter of 2.07 µm and heterogeneous distribution ranging 

from 0.08 to 9.1µm. Notably, the majority of the fibers had a diameter smaller than 3.0 µm 

(Fig. 1D).  
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3D NFC hydrogels are biocompatible with MSCs 

We then explored the feasibility of cultivation of human adMSCs in three dimensional NFC 

hydrogels at 0.2% and 0.5% NFC hydrogels. Most MSCs in the 0.2% NFC displayed a 

typical round morphology (Fig. 2A). Cultivation of MSCs in 0.5% NFC resulted in a 

homogenous cell population with round cells similar to MSCs cultivated in 0.2 % NFC. 

Scanning electron microscopy revealed that MSCs interact and bind to the NFC as 

evidenced by membrane protrusions at the matrix (Fig. 2C). In order to visualize larger 

numbers of living MSCs within the NFC, MSCs were labelled with PKH67 (Fig. 2D) and 

imaged by high content laser scanning microscopy (Fig 2E). Here, we demonstrate that 

living MSCs are isotropically distributed within the matrix over large areas of the well.  

3D NFC supports high viability and proliferation of MSCs 

To assess the influence of 3D cultivation within the NFC hydrogel on cellular viability of 

MSCs, cells were cultured in 3D, stained with Calcein (living cells), Ethidium homodimer-1 

(dead cells), fixed and counter-stained for DAPI. Subsequent laser scanning microscopy and 

post-hoc image analysis revealed that most cells within the hydrogel stained positively for 

Calcein (Fig. 3D-E). Moreover, the cells were distributed evenly in all three dimensions of the 

hydrogel (Fig. 3D). No pyknotic or fragmented nuclei were observed. To quantitatively 

determine the viability of 3D-cultivated MSCs, an XTT assay was performed (Fig. 3E). 

BmMSCs, liposuction adMSCs and palatal adMSCs cultivated in 0.2% NFC showed no 

significant changes in cellular viability compared to the 2D control. In contrast, all MSCs 

showed reduced viability in 0.5% NFC. However, the difference to the 2D control was only 

significant in the bmMSCs group. In order to investigate the ability of MSCs to proliferate 

within the NFC hydrogel 36 x 103 adMSCs were embedded in 0.2% or 0.5% NFC followed 

by cultivation for 36h and XTT. A standard curve with defined cell numbers (10, 1000, 

10000, and 100000 cells) was used to normalize the XTT absorption to cell numbers. 

Analysis of the normalized XTT absorption values revealed that there is no significant 
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difference between proliferation of MSCs as 2D culture and within 0.2% NFC. Note that 

MSCs in 0.5% proliferate although at a lower rate than in 2D or within 0.2% NFC.  

Viable MSCs can be retrieved from the 3D NFC hydrogel 

In order to determine if viable adMSCs can be retrieved from the 3D NFC hydrogel, cellulose 

was enzymatically digested using cellulase followed by harvesting of the suspension cells by 

centrifugation, reseeding under standard 2D conditions and a subsequent XTT assay (Fig. 

3D). Here, we were able to show that adMSCs pre-cultivated in 3D show no significant 

differences in cellular viability to control cells (continuously cultivated as 2D monolayer). 

3D NFC hydrogels are suitable for osteogenic differentiation of MSCs in 3D 

To assess the feasibility of osteogenic differentiation in 3D NFC, liposuction-derived 

adMSCs and palatal tissue-derived MSCs were subjected to differentiation in 0.2% NFC for 

21 days and stained for calcium deposition using Alizarin Red S. Here, we demonstrate that 

human MSCs of both cellular origins deposit high amounts of calcium after 21 days of 

differentiation compared to undifferentiated cells in 0.2% NFC (Fig 4A-B). Note that 

differentiated samples show a typical deep red/magenta staining whereas undifferentiated 

samples and control scaffolds appear light/dim red due to unbound dye remaining in the 

NFC hydrogel (Fig. 4C).  

Discussion 

This proof-of-concept study describes for the first time 3D cultivation and differentiation of 

human MSCs within plant-derived 3D nanofibrillar cellulose (NFC) hydrogels. We showed 

that the 3D NFC features fibers and pores of different sizes and is biocompatible with human 

MSCs of different cellular origin. In particular, we demonstrated that living MSCs are 

homogenously distributed in the hydrogel and that cultivation in 0.2% NFC does not 

negatively influence their cellular viability. Finally we demonstrated that NFC is compatible 

with 3D differentiation of MSCs into the osteogenic fate.  
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Although MSCs represent one of the most promising adult stem cell types in regenerative 

medicine, their conventional expansion to obtain clinically significant cell numbers represents 

a significant roadblock toward routine use in the clinics. In particular, prolonged 2D 

cultivation of various adult stem cells harbors the intrinsic risk of chromosomal aberrations 

and tumorigenic transformation [5, 6, 20]. This could be at least partly explained by the 

removal of the stem cells from their endogenous niche which is indeed three-dimensional. In 

general accordance with this assumption, human breast epithelial cells were shown to 

develop into tumor like cells when cultured in 2D, whilst reverting to normal behavior when 

cultured in a more native 3D microenvironment [21]. Thus, 3D cultivation of MSCs could 

reduce the risk of tumorigenic transformation during expansion in vitro.  In addition to the 

increased risk of cellular transformation, cultivation of MSCs as a 2D monolayer is 

associated with significant reduction of multipotency and acquisition of early cellular 

senescence. In this context, 3D cultivation of adMSCs has been shown to induce autophagy 

and reduce general signs of senescence [22]. Thus, 3D cultivation could provide a stable 

micro-environment for isolated MSCs ex vivo, maintaining their multipotency, preventing 

cellular senescence, and enabling high proliferation capacity and yield, whilst minimizing the 

culture time in vitro. In addition, cultivation of MSCs as 3D allows significantly higher cell 

numbers per volume of cell culture medium compared to conventional cell culture and stacks 

of flask-units commonly applied for large-scale production of MSCs. This would allow 

significant cost reduction in production of both clinically relevant numbers of MSCs and 

MSC-derived EVs for clinical use.  

Currently, there are many commercially available 3D matrices developed to provide 

mechanical support and biochemical cues to enhance proliferation and differentiation of 

MSCs. Some matrices are fibrin or collagen based, whilst others are a varied mix of ECM 

molecules. For example, the mouse chondrosarcoma cell line, EHS, was used to develop 

the well-known and broadly utilized ECM matrix - Matrigel™ [23]. Nonetheless, Matrigel™ 

has some major drawbacks, such as batch to batch variability, cross species immunogenicity 
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and consequently potential problems with translation into the clinic Thus, fibrin- and 

collagen-based 3D matrices are a well-defined alternative to Matrigel™-based 3D culture of 

MSCs. However, these natural substrates and their functionalized versions do not allow for 

retrieval of cells free of enzymes affecting mammalian cells. Alginates represent another 3D 

matrix suitable for MSC cultivation [8]. However, alginates require cross-linking prior to use. 

In addition to natural materials, 3D matrices can be engineered from synthetic materials 

such as poly-(-l-lactic acid) nanofibres [24]. Although they offer the clear advantage of well-

defined and guided construction, they need to be electrospun prior to their use which can be 

highly complicated and time consuming.  

The plant derived native nanofibrillar cellulose (NFC) hydrogel, GrowDex®, provides a well-

characterized and defined matrix [17, 25] . This hydrogel is easy to handle and is 

biocompatible with human cells, whilst also allowing the simple retrieval of cells from the 

scaffold for further use [25, 26]. Although the immunogenicity of plant-derived NFC is still 

under investigation, the low immune response to other plant derived hydrogels has been 

reported [27][12, 28]. 

In contrast to the materials introduced above, the plant-derived NFC matrix harbors several 

crucial advantages. Firstly, as a plant derived matrix, NFC hydrogels are free of animal-

derived components which could facilitate their transition into clinical use. Moreover, it allows 

an easy retrieval of viable cells based on enzymatic digestion of the cellulose fibers using 

cellulases which do not affect human cells. Moreover, in contrast to other hydrogels no 

crosslinking is needed for the assembly of the matrix.  

Our proof-of-concept study clearly shows that the commercially available and standardized 

3D NFC hydrogel GrowDex® is biocompatible and supports growth of MSCs. Notably, in 

addition to MSCs, 3D NFC has been demonstrated to be biocompatible with human 

pluripotent stem cells [15] and liver cells [25]. Noteworthy, the slight decline of cellular 

viability of bmMSCs observed in 0.5% NFC in our study, suggests that the optimal 
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concentration of the NFC needs to be experimentally determined for each individual cell type 

(as suggested by the manufacturer). Likewise, we noted that the high concentration of 3D 

NFC prevented spheroid formation as similarly seen with human pluripotent stem cells [15]. 

In summary, this study clearly suggests that 3D NFC could be used for the development of 

safe and simple protocols, towards the expansion and differentiation of MSCs for routine cell 

culture and towards potential clinical application. In additional, 3D NFC could be used for 

obtaining high cell numbers required for isolation of MSC-derived extracellular vesicles.  
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Figure Legends 

Figure 1. 3D NFC hydrogel consists of a dense meshwork with heterogeneous pore 

sizes. A. Calcofluor white staining and fluorescence microscopy was used to visualize the 

3D NFC hydrogel under native conditions. A dense and evenly distributed cellulose fibre 

network was observed.   Bar: 300µm. B-C. The ultrastructural appearance of the 3D NFC 

hydrogel was investigated by scanning electron microscopy (SEM) revealing a dense 

meshwork-like surface structure. Higher magnification image (C) revealed presence of fibers 

of heterogeneous size. Bars: 300µm and 10µm, respectively. D. NFC hydrogels contain 

nano- and microfibers with a heterogeneous diameter ranging from 0.08 to 9.1 µm.  
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Figure 2. 3D NFC hydrogels support in vitro growth of MSCs. A. AdMSCs were 

cultivated in 0.2% NFC hydrogel in standard MSC cultivation medium revealing a typical 

fibroblast-like morphology and neurosphere like clusters (arrow). Bar: 100µm. B. Cultivation 

of adMSCs in 0.5% NFC leads to a homogenous cell population with bipolar morphology 

(arrowheads). Bar: 50µm. C. AdMSCs in 0.5% NCF hydrogel were fixed using 

paraformaldehyde and glutaraldehyde and processed for SEM. Data analysis revealed that 

MSCs interact with the NFC as evidenced by formation of membrane protrusions in direct 

contact with the cellulose fibres (arrows) Bar: 10µm. D-E. Living MSCs are homogenously 

distributed within the NFC matrix. D. AdMSCs were labelled with PKH67 followed by 

embedding in 0.5% NFC hydrogel in inserts and fluorescence microscopy revealing high 

labelling efficiency and individual labelled cells within the hydrogel (arrows). Maximum 

intensity projection was generated in ImageJ Fiji (LUT: cyan hot). E. High content 3D laser 

scanning microscopy using the fScan 488 device was applied to visualize the distribution of 

MSCs in all three dimensions of the NFC hydrogel. Subsequent image analysis in ImageJ 

Fiji (Volume Viewer Plugin, LUT: cyan hot) revealed isotropic and homogenous cell 

distribution. Scan area: 10mm x 10mm x 1.6mm (x/y/z), bar: 1mm.  

Figure 3. Different concentrations of 3D NFC hydrogels are biocompatible and 

support growth of viable human MSCs of different origin. A-B. Confocal and phase 

contrast imaging of adMSCs within a 0.2% NFC, stained with Calcein (living cells), Ethidium 

homodimer-1 (dead cells) and counter-stained with DAPI shows evenly distributed viable 

cells embedded within the NFC. 3D reconstruction (A) with part of the matrix cut through the 

y plane reveals supported cells, whilst the maximum projection image (B) shows neither 

Ethidium homodimer-1 signal nor pyknotic nuclei.  C. To assess the influence of 3D 

cultivation within the NFC hydrogel on cellular viability of human MSCs of different cellular 

origin, bone marrow MSCs, palatal adipose tissue-derived MSCs and liposuction-derived 

adipose tissue MSCs were embedded in 0.2% or 0.5% 3D NFC hydrogel and assessed for 

viability (XTT assay). No significant difference in cellular viability was observed in all groups 
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cultivated in 0.2% NFC compared to 2D controls. A slight but significant reduction of viability 

was observed in bmMSCs cultivated in the 0.5% NFC hydrogel. D. MSCs proliferate within 

the NFC hydrogel. 36 x 103 adMSCs were embedded in 0.2% or 0.5% NFC followed by 

cultivation for 36h and XTT. A standard curve with defined cell numbers (10, 1000, 10000, 

and 100000 cells) was used to normalize the XTT absorption to cell numbers.  E. 25 000 

MSCs were seeded in 0.2% or 0.5% NFC followed by retrieval using cellulase.  

Approximately 100% were retrieved from 0.2% NFC, whereas 50% from 0.5% NFC. F. 

Viable MSCs can be retrieved from the 3D NFC hydrogel. AdMSCs were cultivated in 0.2% 

NFC hydrogel followed by enzymatic retrieval using cellulase.  After replating under standard 

2D conditions, an XTT assay was performed to assess the viability of the cells which had 

previously been cultivated in 3D NFC hydrogel (post 3D) compared to control cells (2D). ** 

P<0.01. 

Figure 4. 3D NFC is suitable for osteogenic differentiation of MSCs in 3D. A. 

Liposuction-derived adMSC and adMSCs isolated from palatal adipose tissue were 

subjected to osteogenic differentiation in 0.2% NFC for 21 days and subsequently stained for 

calcium deposition with Alizarin Red S.  Images of differentiated MSCs clearly show calcium 

deposition (magenta), whereas no differentiation was observed in control cells, which 

appeared red. B. Higher power images showing Alizarin Red S-labelled calcium deposits at 

cellular level in palatal tissue-derived MSCs.  C.  NFC control without cells showed only low 

level of Alizarin staining.  
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Figure 1. 3D NFC hydrogel consists of a dense meshwork with heterogeneous pore sizes. A. Calcofluor white 
staining and fluorescence microscopy was used to visualize the 3D NFC hydrogel under native conditions. A 
dense and evenly distributed cellulose fibre network was observed.   Bar: 300µm. B-C. The ultrastructural 

appearance of the 3D NFC hydrogel was investigated by scanning electron microscopy (SEM) revealing a 
dense meshwork-like surface structure. Higher magnification image (C) revealed presence of fibers of 

heterogeneous size. Bars: 300µm and 10µm, respectively. D. NFC hydrogels contain nano- and microfibers 
with a heterogeneous diameter ranging from 0.08 to 9.1 µm.  
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Figure 2. 3D NFC hydrogels support in vitro growth of MSCs. A. AdMSCs were cultivated in 0.2% NFC 
hydrogel in standard MSC cultivation medium revealing a typical fibroblast-like morphology and neurosphere 
like clusters (arrow). Bar: 100µm. B. Cultivation of adMSCs in 0.5% NFC leads to a homogenous cell 

population with bipolar morphology (arrowheads). Bar: 50µm. C. AdMSCs in 0.5% NCF hydrogel were fixed 
using paraformaldehyde and glutaraldehyde and processed for SEM. Data analysis revealed that MSCs 

interact with the NFC as evidenced by formation of membrane protrusions in direct contact with the cellulose 
fibres (arrows) Bar: 10µm. D-E. Living MSCs are homogenously distributed within the NFC matrix. D. 

AdMSCs were labelled with PKH67 followed by embedding in 0.5% NFC hydrogel in inserts and fluorescence 

microscopy revealing high labelling efficiency and individual labelled cells within the hydrogel (arrows). 
Maximum intensity projection was generated in ImageJ Fiji (LUT: cyan hot). E. High content 3D laser 

scanning microscopy using the fScan 488 device was applied to visualize the distribution of MSCs in all three 
dimensions of the NFC hydrogel. Subsequent image analysis in ImageJ Fiji (Volume Viewer Plugin, LUT: cyan 
hot) revealed isotropic and homogenous cell distribution. Scan area: 10mm x 10mm x 1.6mm (x/y/z), bar: 

1mm.  
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Figure 3. Different concentrations of 3D NFC hydrogels are biocompatible and support growth of viable 
human MSCs of different origin. A-B. Confocal and phase contrast imaging of adMSCs within a 0.2% NFC, 

stained with Calcein (living cells), Ethidium homodimer-1 (dead cells) and counter-stained with DAPI shows 

evenly distributed viable cells embedded within the NFC. 3D reconstruction (A) with part of the matrix cut 
through the y plane reveals supported cells, whilst the maximum projection image (B) shows neither 

Ethidium homodimer-1 signal nor pyknotic nuclei.  C. To assess the influence of 3D cultivation within the 
NFC hydrogel on cellular viability of human MSCs of different cellular origin, bone marrow MSCs, palatal 

adipose tissue-derived MSCs and liposuction-derived adipose tissue MSCs were embedded in 0.2% or 0.5% 
3D NFC hydrogel and assessed for viability (XTT assay). No significant difference in cellular viability was 

observed in all groups cultivated in 0.2% NFC compared to 2D controls. A slight but significant reduction of 
viability was observed in bmMSCs cultivated in the 0.5% NFC hydrogel. D. MSCs proliferate within the NFC 
hydrogel. 36 000 adMSCs were embedded in 0.2% or 0.5% NFC followed by cultivation for 36h and XTT. A 

standard curve with defined cell numbers (11, 1000, 10000, and 10000 cells) was used to normalize the XTT 
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absorption to cell numbers.  E. 25 000 MSCs were seeded in 0.2% or 0.5% NFC followed by retrieval using 
cellulase.  Approximately 100% were retrieved from 0.2% NFC, whereas 50% from 0.5% NFC. F. Viable 

MSCs can be retrieved from the 3D NFC hydrogel. AdMSCs were cultivated in 0.2% NFC hydrogel followed 
by enzymatic retrieval using cellulase.  After replating under standard 2D conditions, an XTT assay was 

performed to assess the viability of the cells which had previously been cultivated in 3D NFC hydrogel (post 
3D) compared to control cells (2D). ** P<0.01.  
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Figure 4. 3D NFC is suitable for osteogenic differentiation of MSCs in 3D. A. Liposuction-derived adMSC and 
adMSCs isolated from palatal adipose tissue were subjected to osteogenic differentiation in 0.2% NFC for 21 
days and subsequently stained for calcium deposition with Alizarin Red S.  Images of differentiated MSCs 
clearly show calcium deposition (magenta), whereas no differentiation was observed in control cells, which 
appeared red. B. Higher power images showing Alizarin Red S-labelled calcium deposits at cellular level in 
palatal tissue-derived MSCs.  C.  NFC control without cells showed only low level of Alizarin staining.  
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