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Arm Retraction Dynamics of Entangled Star Polymers: A Forward-Flux Sampling1

Method Study2

Jian Zhu, Alexei E. Likhtman and Zuowei Wang∗13

Department of Mathematics and Statistics, University of Reading,4

Reading RG6 6AX, UK5

The study of dynamics and rheology of well-entangled branched polymers remains a6

challenge for computer simulations due to the exponentially growing terminal relax-7

ation times of these polymers with increasing molecular weights. We present an effi-8

cient simulation algorithm for studying the arm retraction dynamics of entangled star9

polymers by combining the coarse-grained slip-spring (SS) model with the forward-10

flux sampling (FFS) method. This algorithm is first applied to simulate symmetric11

star polymers in the absence of constraint release (CR). The reaction coordinate for12

the FFS method is determined by finding good agreement of the simulation results13

on the terminal relaxation times of mildly entangled stars with those obtained from14

direct shooting SS model simulations with the relative difference between them less15

than 5%. The FFS simulations are then carried out for strongly entangled stars with16

arm lengths up to 16 entanglements that are far beyond the accessibility of brute force17

simulations in the non-CR condition. Apart from the terminal relaxation times, the18

same method can also be applied to generate the relaxation spectra of all entangle-19

ments along the arms which are desired for the development of quantitative theories20

of entangled branched polymers. Furthermore, we propose a numerical route to con-21

struct the experimentally measurable relaxation correlation functions by effectively22

linking the data stored at each interface during the FFS runs. The obtained star arm23

end-to-end vector relaxation functions Φ(t) and the stress relaxation function G(t)24

are found to be in reasonably good agreement with standard SS simulation results25

in the terminal regime. Finally, we demonstrate that this simulation method can26

be conveniently extended to study arm-retraction problem in entangled star polymer27

melts with CR by modifying the definition of the reaction coordinate.28
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I. INTRODUCTION29

Development of quantitative theories for predicting the dynamic and rheological proper-30

ties of entangled branched polymers is of both fundamental and practical importance. In31

the past decades, theoretical efforts have been primarily based on the concept of tube model32

originally proposed by de Gennes, Doi and Edwards.1–3 Different from entangled linear poly-33

mers where reptation, contour length fluctuations (CLF) and constraint release (CR) are the34

main relaxation mechanisms, reptation in branched polymers is strongly suppressed due to35

the effectively localized branch points. In the simplest case of symmetric star polymers, the36

stress relaxation is conjectured to proceed via CLF or arm retraction by which the free end37

of an arm retracts inward along the primitive path to escape from the original tube segments38

and pokes out again to explore new tube. Since arm retraction is entropically unfavorable39

and so thermally activated, this process can be formulated as a first-passage (FP) problem40

or Kramers problem.4–641

A star arm retracting in a fixed network experiences a potential barrier theoretically42

described by a quadratic function U(s) = νkBTZs
2 where kB is the Boltzmann constant,43

Z = M/Me is the number of entanglements per arm, M is the arm molecular weight, Me is44

the entanglement molecular weight and ν is treated as a constant.7 The fractional coordi-45

nate s measures the retraction depth of the arm free end. Pearson and Helfand predicted46

an exponential dependence of the arm terminal relaxation time, τd, and correspondingly47

the viscosity, η0, on the arm molecular weight, η0 ∼ τd ∼ exp(νM/Me).
8 This prediction,48

however, shows a large discrepancy from experimental data obtained in star polymer melts49

due to the neglect of CR effects. Ball and McLeish9 took into account the CR effects by50

applying the dynamic tube dilution (DTD) hypothesis10 where the relaxed arm segments are51

considered to work as an effective solvent for the unrelaxed materials. Milner and McLeish52

further improved this theory by including the contributions of fast Rouse fluctuations at53

early times and solving the first-passage problem of a diffusing end monomer to retract a54

fractional distance s to get the arm relaxation spectrum τ(s) at late times.4,5 The Milner-55

McLeish theory predicts the stress relaxation of symmetric star polymer melts reasonably56

well, but not the dielectric or arm end-to-end vector relaxation function. It also encounters57

difficulty in using a single set of model parameters to describe the rheological behaviors of58

asymmetric star polymers with different short arm lengths.11 In recent years computational59
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models based on the framework of Milner-McLeish theory have been developed for describ-60

ing the linear viscoelasticity of branched polymers with arbitrary architectures and their61

general mixtures.12–16 These models have been shown to provide predictions in reasonably62

good agreement with experimental data for a variety of systems, but are facing problems in63

describing the linear rheology of some simple mixtures, such as the star-linear blends, espe-64

cially at low fractions of star polymers.16,17 Therefore more quantitative theories that can65

simultaneously predict different dynamic and rheological properties of entangled branched66

polymers are still highly desired. The development of such theories requires the analytical67

solution of the multi-dimensional FP problem of arm retraction.1868

On the other hand, the coarse-grained slip-link or slip-spring (SS) simulation mod-69

els have demonstrated strong potential in describing dynamics and rheology of entangled70

polymers.19–28 For example, the single-chain slip-spring model developed by Likhtman25 can71

provide simulation results on multiple experimentally measurable observables, such as neu-72

tron spin echo, linear rheology, dielectric relaxation and diffusion. Using a limited number73

of fitting parameters, the predictions of this model match the results obtained from both ex-74

periments and molecular dynamics (MD) simulations on linear and symmetric star polymers75

very well.26,29–31 The SS model serves as an intermediate between tube theory and MD sim-76

ulations. As a discrete model, it not only naturally builds in all the relaxation mechanisms77

of the tube model, but also carries more system details, such as explicit polymer chains and78

entanglements32. At a higher level of coarse-graining, the SS model is significantly more79

efficient than MD simulations using bead-spring polymer model, which is of great advantage80

in the study of branched polymers. Furthermore, the slip-spring model can separate the con-81

tributions from different relaxation mechanisms by enabling some of them while disabling82

others. This is particularly helpful for examining assumptions made in current theoretical83

models and providing valuable information for developing more quantitative models. One84

typical application is to evaluate the magnitude of constraint release effects by comparing85

simulation results obtained from entangled polymer systems with and without CR.86

Since deep arm retractions are rare events due to the high entropic barrier, the time and87

length scales accessible to standard slip-spring simulations are still much shorter than those88

in well-entangled experimental systems where the tube models are supposed to work best.89

Similar problems have also been seen in brute force simulations of many other rare events,90

such as crystal nucleation33,34, biological switches35 and protein folding36. The required91
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computational time may take up to several decades.37 Advanced numerical techniques, such92

as the umbrella sampling38 and transition path sampling39 methods, have to be employed93

to accelerate the simulations. Recently the forwards flux sampling (FFS) method has been94

proposed35,40,41 and proven to be successful in molecular dynamics and Monte Carlo (MC)95

studies of rare events.37,4296

In this work, we will combine the FFS method with the slip-spring model for studying97

the dynamics of entangled symmetric star polymers. This is a proof-of-concept work. To98

our knowledge the only reported work on applying the transition path sampling methods to99

study entanglement dynamics is the FFS simulation of Rouse chains in the regime relevant to100

arm retraction dynamics.18 We will mainly focus on the systems without constraint release101

for the following reasons: 1) It is relatively convenient to implement the FFS method and102

find an appropriate reaction coordinate in the non-CR systems; 2) The terminal relaxation103

times in the systems without CR are much longer than those with CR, allowing us to104

test the computational efficiency and limit of the combined method; 3) Reliable simulation105

data on the FP times of arm retractions without CR are highly desired for examining106

analytical solutions of the multiple-dimensional Kramers problem18; 4) The extension of the107

method developed in the non-CR case to the CR case is fairly straightforward, as will be108

shown in Section V. With an optimized selection of the reaction coordinate, which is the109

index of the monomer that the innermost slip-link sits on, we first validate the proposed110

simulation method by producing simulation results on the terminal relaxation times τd of111

mildly entangled star arms up to 8 entanglements in good agreement with those obtained112

from SS model simulations. The FFS simulations are then extended to longer arms with113

lengths up to 16 entanglements and so reach τd values about 6 decades beyond that accessible114

by brute force simulations (from 6 × 106 to 3 × 1012 SS unit time). The FP times of other115

original slip-links along the arm can be calculated using similar FFS simulations as for116

the innermost one, which consequently provides the entire arm relaxation spectrum τ(s).117

Moreover, we propose a numerical route to construct the arm end-to-end vector correlation118

functions, Φ(t), and stress relaxation functions, G(t), from the discrete data stored at each119

interface during the FFS runs. Such time correlation functions are still not widely addressed120

in the FFS studies, but some relevant discussions could be found in the literatures for121

the FFS43,44 and weighted ensemble methods.45–47 Our simulation results will contribute to122

the development of theoretical models for describing the dynamics of entangled branched123
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polymers and also the general first-passage problems in multi-dimensional systems. The124

simulation methodology developed in this work should also be applicable to the study of125

rare events in other scientific areas.126

The rest of this paper is organized as follows. In Section II, we introduce the single-chain127

slip-spring model for entangled star polymers in the absence of CR. The detailed description128

of the combined FFS and SS model is given in Section III. The simulation results obtained129

in the non-CR systems are presented and discussed in Section IV, including the terminal130

relaxation times τd, the arm retraction spectra τ(s) and the numerical route for constructing131

Φ(t) and G(t). In Section V, the simulation method is extended to study the arm retraction132

dynamics of star polymers in the presence of CR. We draw conclusions in Section VI.133

II. SLIP-SPRING MODEL FOR ENTANGLED SYMMETRIC STAR134

POLYMERS135

A. Model Description136

In the single-chain slip-spring model for entangled symmetric stars, each star arm is137

represented by a Rouse chain with N + 1 monomers linked by N harmonic springs,25,48 as138

shown in Fig. 1. One end monomer with index 0 of the chain is treated as the branch point139

which is fixed in space, while the other end with index N moves freely. The topological140

constraints on the arm are modelled by a set of virtual springs each of NSS
s beads. Each141

virtual spring has one end connected to the Rouse chain by a slip-link that can slide along142

the chain, and the other end, called anchor point, is fixed in space. The slip-spring model143

effectively assumes a binary picture of entanglements, which is qualitatively supported by144

recent MD simulation studies.49–51 There is on average one slip-spring every NSS
e monomers.145

The values of NSS
e and NSS

s are adjustable for describing the intensity of entanglements. It146

should be noted that NSS
e is not necessarily equal to the entanglement length Ne used in147

tube theory. Their relation will be discussed in Sec. IVB. To be consistent with previous148

publications,25,30 we choose NSS
e = 4 and NSS

s = 0.5. Other parameters, such as the bead149

friction coefficient ζ0, the average bond length b of the Rouse chain, the temperature kBT150

and consequently the time scale τ0 = ξ0b
2/kBT , are all set to unity.151

The Hamiltonian of the SS model is determined by the potential energies of both the152
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FIG. 1. Sketch of the single-chain slip-spring model for one arm of a symmetric star. The end

monomer 0 represents the branch point which is fixed in space.

harmonic bonds of the Rouse chains and the virtual springs. The trajectories of the Rouse153

monomers are obtained by solving their Langevin equations of motion numerically using an154

integration time step size of ∆t = 0.05τ0. In the original slip-spring model,25,29,30 the slip-155

links are assumed to travel continuously along the straight lines between adjacent monomers156

and so can sit anywhere on the chain. In a later version of this model,31 the slip-links157

move discretely by hopping from one monomer to one of its nearest neighbors with the158

acceptance rate controlled by a Metropolis Monte Carlo (MC) algorithm. The long-time159

behavior of the system is not sensitive to the details of the slip-link motion. For simplicity160

and computational efficiency, we employ the discrete motion approach in the current work.161

One Monte Carlo hopping motion is attempted on average per slip-link at each time step.162

It has been found recently by Shivokhin et al. that the slip-springs themselves could make163

non-negligible contributions to the effective friction experienced by the Rouse chain when164

moving along the tube, because the virtual springs with finite spring constant effectively165

restrict the excursion volumes of the slip-links and so reduce their successful rate to hop166

onto adjacent monomers.52 As a consequence, an effective monomeric friction coefficient,167

ξeff (> ξ0), should be used instead of ξ0 when mapping the simulation results of the slip-168
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spring model to experimental data. But a constant change in the ξ value will not affect the169

discussions in this work, as all the data analysis and comparison are carried out within the170

slip-spring model framework. The effect of slip-link friction could be reduced by increasing171

the number of MC hopping attempts per time step at the price of higher computational cost.172

The slip-links are not allowed to sit on or pass through the branch points of the star arms.173

In the systems without constraint release, such as star polymers in a fixed polymer network,174

the destruction and creation of slip-links can only take place at the free ends of the star175

arms. Different from the systems with CR,25 the slip-links are not coupled with each other.176

In addition, the slip-links on the same arm are not allowed to pass over each other or occupy177

the same monomer. This assumption introduces an effective excluded volume interaction178

between the slip-links, which is consistent with the low swapping rate between neighboring179

entanglements as revealed in a recent MD simulation of symmetric star polymer melts.51180

The previous slip-spring simulations were typically carried out in an ensemble of chains181

and the total number of slip-links in the system is kept constant.25 In the non-CR case,182

when one slip-link is deleted from a chain end, another slip-link will be added to the end of183

a randomly selected chain in the ensemble. For convenient installation of the FFS method,184

we modify the SS model for the non-CR case by simulating each entangled arm individually.185

The destruction of slip-links on a given arm is still incurred by the retraction of the arm186

free end (monomer index N), but the addition of new slip-links to the same arm end is now187

determined by a probability Padd which satisfies the detailed balance condition188

(1− ρsl) (Padd + ρslPN−1,N) = ρsl (Ploss + (1− ρsl)PN,N−1) , (1)

where ρsl = 1/NSS
e is the average number of slip-links sitting on each monomer. Pi,j is the189

transition probability for a slip-link to move from monomer i to monomer j and Ploss is the190

probability for a slip-spring sitting on the arm free end to be destructed after one integration191

time step, respectively. Eq. 1 thus represents the balance between the flux of slip-links to192

and from the end monomer. Assuming PN−1,N = PN,N−1 without loss of generality, Eq. 1193

gives Padd ≈ 0.167 for the system parameters NSS
e = 4 and Ploss = 0.5. The modified SS194

model is validated by studying the static properties of the simulation system.195
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FIG. 2. Slip-spring model simulation results (circles) and predictions of Eq. 2 (line) on the

probability distribution of number of slip-links per arm, P (Nsl, N), for symmetric star polymers

with arm length N = 24.
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FIG. 3. Slip-spring model simulation results (symbols) and predictions of Eq. 4 (lines) on the

probabilities of finding i-th slip-link on monomer x, P (x, i,N), for the symmetric star polymers

with arm length N = 24. The horizontal dashed line shows the simulation results on the average

number of slip-links found on each individual monomer.
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B. Static Properties196

The static property of the slip-spring model system of entangled symmetric star polymers197

can be well characterized by the distribution of slip-links along the star arms. Considering198

the effective excluded volume interactions between the slip-links, the problem is similar to199

one-dimensional real gas in equilibrium. The probability distribution of finding Nsl slip-links200

on a star arm of N monomers is simply given by201

P (Nsl, N) = CNsl
N ρNsl

sl (1− ρsl)
N−Nsl , (2)

where CNsl
N =

N !

Nsl!(N −Nsl)!
. Fig. 2 shows the good agreement between the prediction of202

Eq. 2 and the SS model simulation results on P (Nsl, N) for the system with N = 24. It203

can be seen that the peak value of Nsl is located at Nsl = 6 in consistence with the expected204

average number of slip-links per arm, ⟨Nsl⟩ = ρslN = 6.205

When there are Nsl slip-links on a given arm, the probability to find the i-th slip-link on206

the monomer x is207

P (x, i, Nsl, N) =
C i−1

x−1C
Nsl−i
N−x

CNsl
N

, (i ≤ x ≤ N −Nsl + i) (3)

where the numerator is a product of the possibilities to find i − 1 slip-links on the arm208

segment from monomer 1 to x − 1 and to find Nsl − i slip-links on another segment from209

monomer x + 1 to N . It should be noted that in the star polymer systems without CR210

the slip-links do not change their ordering along the star arms. In Eq. 3 the index i is211

considered to increase from 1 for the innermost slip-link to higher values toward the arm212

free end. Combining Eqs. 2 and 3, we obtain the ensemble-averaged probability to find the213

i-th slip-link on the monomer x:214

P (x, i, N) =
N∑

Nsl=1

P (x, i,Nsl, N)P (Nsl, N). (4)

Derivations of probability distributions similar to Eqs. 2 - 4 can also be found in a previous215

work of Schieber.53.216

Fig. 3 presents the SS simulation results on P (x, i, N) for the slip-links with indices217

i = 1 to 6 on star arms of length N = 24, together with the predictions of Eq. 4. The218

good agreement between the two sets of data indicates that the simulation systems are219

in equilibrium state and the randomly assigned locations of the anchor points can well220
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preserve the equilibrium distribution of the slip-links. This is also reflected by the fact that221

the average number of slip-links found on each individual monomer is equal to ρsl = 0.25,222

see the horizontal line in Fig. 3.223

III. COMBINED FFS AND SS METHOD FOR ENTANGLED STAR224

POLYMERS WITHOUT CR225

In the systems without CR, the topological constraints or entanglements imposed on a226

target arm are released hierarchically by the retraction of the arm free end. The terminal227

relaxation time τd of the system is defined as the average first-passage time that takes the228

free end of an arm to reach the branch point starting from a random initial conformation.229

For well-entangled star arms, τd grows exponentially with the number of entanglements per230

arm, Z.8 However, full arm retraction rarely happens at large Z and so is generally not231

accessible by standard brute force simulations. There is also no exact analytical solution of232

this multi-dimensional FP problem. Therefore the forward flux sampling method introduced233

in Ref.35 is employed in order to study these rare events. A successful application of the234

FFS method on studying the FP time of 1D Rouse chain with one fixed end can be found235

in Ref.18.236

A. Forward Flux Sampling Method237

In FFS the phase space is divided by a sequence of non-crossing interfaces denoted by λi238

(i = 0, . . . ,m), as sketched in Fig. 4(a). The starting states of the dynamic process are on239

the first interface λ0, and the reactive or terminal states are on the last interface λm. These240

interfaces are defined by a reaction coordinate, which can be any parameter evolving during241

the process, but different choices could result in significantly different performance. More242

detailed discussion about the reaction coordinate is given in Sec. III B.243

The FFS method is operated in two stages. In the first stage, a very long continuous244

simulation is performed in order to calculate the frequency µ0 at which the trajectory crosses245

the interfaces λ0 and λ1 in sequence. In the second stage, a set of consecutive shooting246

simulations are carried out from interface λi to interface λi+1 for i = 1, . . . ,m − 1, which247

provide the transition probabilities P (λi+1|λi) that a system starting from λi will first reach248
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FIG. 4. (a) Schematic diagram of the FFS method. The continuous red trajectory is the continuous

simulation in the first stage, and the blue trajectories are the successful shooting simulations in the

second stage; (b) Algorithm for building continuous arm relaxation pathways from the piecewise

shooting trajectories shown in (a).

λi+1 rather than return to λ0. The first-passage time τn for the system starting from the249

first interface λ0 and ending on the interface λn (1 ≪ n ≤ m), is then given by250

τn =
1

µ0

∏n−1
i=1 P (λi+1|λi)

, 1 ≪ n ≤ m (5)

B. Reaction Coordinate251

A key issue in applying the FFS method is the choice of the reaction coordinate. Starting252

from a random initial configuration, the relaxation of a star arm in the system without CR253

proceeds by the retraction of the arm free end along the primitive path, passing through254

all the original slip-links on the arm sequentially until none left between it and the branch255

point. The terminal relaxation time is determined by the moment at which the innermost256

slip-link is released. During this process, the number of surviving original slip-links, Nsl, on257

the arm drops with time from its initial value to 0, making it an intuitively simple choice for258

the reaction coordinate. Considering that the value of Nsl is statistically proportional to the259

length of the surviving tube or primitive path, this choice would be consistent with a recent260

FFS study on the FP time for the free end of a 1D Rouse chain to reach a certain distance261

z from the fixed end where z was selected as the reactive coordinate.18 The 1D Rouse chain262
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study is closely related to the current work, because arm extension is essentially the reverse263

process of arm retraction. However, when using Nsl as the reaction coordinate, our FFS264

simulation results on the terminal arm retraction times are found to be significantly smaller265

than those obtained from standard SS model simulations. The problem arises from the266

difficulty in choosing equivalent starting states for the FFS runs. In the slip-spring model267

system, both the instantaneous number of slip-links and their distribution along the arm268

are subject to strong fluctuations, especially on the outer arm segments which undergo fast269

Rouse motion. In the FFS runs using Nsl as the reaction coordinate, the starting states are270

collected in the first-stage continuous simulation as the configurations where the number271

of slip-links on the arm is equal to the ensemble-averaged value of ⟨Nsl⟩ = Nρsl. Shooting272

from these starting configurations, only the samples in which the values of Nsl decrease273

monotonically are considered to reach interface λ1 successfully. This biased strategy is thus274

in favor of the samples where the initial slip-link densities on the outer arm segments are275

higher than ρsl, because in such cases the probability to lose slip-links at short times is276

higher than to gain ones. Therefore a relatively large proportion of slip-links on a sample277

arm are released by shallow arm retractions at early times, leaving fewer than the average278

number of slip-links on the surviving segments of the primitive path. As a consequence, the279

terminal relaxation times obtained from the FFS simulations are shorter than those obtained280

from standard SS simulations where the ensemble-averaged initial distribution of slip-links281

is uniform. These results imply that the reaction coordinate should be selected close to the282

branch point in order to minimize the influence of the fast fluctuating arm end.283

Delete

��������������������������1������������������i-1��������i��������i+1 �������m-1����m

l1 l2 l2 l2

Bead �

Innermost 
Slip-Spring

FIG. 5. Application of FFS method for studying the retraction dynamics of an entangled star arm

described by the slip-spring model. The cross (Monomer 0) on the left represents the branch point

that is fixed in space. The interfaces λi (vertical lines) used in the FFS simulations are placed on

the monomers of the arm.

Since the terminal arm relaxation time is determined by the release of the innermost284
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slip-link from the arm free end, one can track the motion of this particular slip-link along285

the arm by defining the index of the monomer that it sits on as the reaction coordinate.286

As shown in Fig. 5 where the 3D Rouse chain is sketched as a straight line for convenience287

of discussion, the first interface λ0 used in FFS is set on monomer α (2 in this case) where288

the innermost slip-link originally sits on. Any initial configuration of the confined arm in289

which the innermost slip-link locates on monomer α can be taken as the starting state of290

the FFS simulation. The second last interface λm−1 is placed on the outermost monomer N291

of the arm, and the last interface λm is right outside of the arm free end, marking the final292

or reactive state that the arm free end has passed through the innermost slip-link and the293

arm is fully relaxed. The other m− 2 interfaces are placed on the monomers in between α294

and N .295

According to the standard FFS method, a database containing a large number of configu-296

rations is accumulated on each interface. In the first stage of the continuous simulation, the297

database on λ1 is a collection of configurations whose innermost slip-link lastly crossed λ0298

before crossing λ1. In the second stage, consecutive shooting simulations are performed from299

interface λi to λi+1, i = 1, . . . ,m − 1 using starting configurations randomly selected from300

the database on λi. Among the Mi shooting samples, the ones whose innermost slip-links301

reach λi+1 before going back to λ0 are considered as successful samples and will be stored302

in the database of λi+1.303

C. Simulation Details304

Apart from the reaction coordinate, the performance of the FFS algorithm can also be305

affected by some other factors. One factor is that the configurations saved in the database306

of interface λ1 during the first-stage continuous simulation could be strongly correlated with307

each other due to the limited running time at this stage in comparison with τd. This may308

introduce systematic errors in the simulation results if the size of the database is fixed.309

This problem can be resolved by increasing the interval l1 between the interfaces λ0 and310

λ1, as shown in Fig. 5, and recording configurations on λ1 at a lower frequency ω. For311

example, rather than recording every event that the innermost slip-link crosses λ1 when312

coming from λ0, one can record once for every 1/ω crossings. Another factor is the choices313

of the interface interval l2 between λi and λi+1 (i = 1, . . . ,m−2) and the number of shooting314
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samples Mi from each λi which determine the performance of the FFS in the second stage.315

Since l2 controls the transition probabilities P (λi+1|λi), a smaller l2 is normally preferred316

for accelerating the shooting simulations. The number Mi can then be chosen according to317

P (λi+1|λi) and the desired accuracy.318

In the current work, we take l1 = 2 and l2 = 1 which separate the first two interfaces319

λ0 and λ1 by one bead and then set one interface on every bead along the arm. The320

recording frequency ω has to be reduced for longer arms in order to reduce the conformational321

correlations on λ1 and is empirically taken to be ω = 1/(N − 15) for arm length N ≥ 16.322

Since the reaction coordinate is defined by the location of the innermost original slip-link,323

the transition probability P (λi+1|λi) increases with i towards the arm free end. In order to324

achieve good statistics for the first few interfaces close to the branch point, Mi should be325

large enough. A number of samples Mi = 40, 000 is thus used for λi, i = 1, 2, . . . ,m−1 in all326

of the FFS simulation runs. As shown in Fig. 3, there is a non-negligible fraction of initial327

configurations where the innermost slip-links are many monomers away from the branch328

point and could be released by shallow arm retractions. The terminal relaxation times of329

such arms are thus much shorter than those of the arms with uniform slip-link distributions.330

Actually, their terminal times have been reached in the first-stage continuous simulations331

without going into the second stage of FFS. These τd data are still counted for calculating332

the distribution and the mean value of the terminal relaxation times.333
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FIG. 6. Simulation results on the terminal arm retraction time τd obtained from FFS and direct

shooting simulations as a function of arm length N .
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IV. RESULTS AND DISCUSSIONS FOR SYSTEMS WITHOUT334

CONSTRAINT RELEASE335

A. Terminal Time of Arm Retraction336

The terminal time τd of the arm retraction process is the main and most straightforward337

output of the FFS simulations. Fig. 6 presents the FFS results on τd as a function of338

the arm length N . For comparison, we have also included the τd data obtained from the339

so-called direct shooting simulations which start from the first interface λ0 and stop at the340

last interface λm without intermediate steps. These runs are equivalent to the slip-spring341

simulations using initial configurations randomly picked from the database on interface λ0342

and running continuously until the innermost original slip-spring being deleted by the arm343

free end. For each arm length, the direct shooting simulation results are averaged over 10, 000344

independent samples, while in the FFS simulations τd is averaged over 2, 000 independent345

runs. Since in each FFS run, there are 40, 000 samples recorded on λ1, the average is actually346

taken over a much bigger ensemble than that of the direct shooting runs. Considering the347

high computational cost, the direct shooting simulations are only performed for arm lengths348

from N = 20 to 36, corresponding to about 4 to 8 entanglements per arm estimated with349

Ne ≈ 4.47 as discussed in Sec. IVB. In this range of N , the FFS and direct shoot simulation350

results in Fig. 6 show very good agreement with the relative differences less than 5%. The351

combined FFS and SS method and the choice of the reaction coordinate are thus well352

justified.353

Fig. 7 compares the average computational times required to complete a single direct354

shooting and a single FFS run on a single CPU (Intel Xeon E5-2620). The direct shooting355

simulation is faster at short arm lengths, but its computational time grows exponentially356

with N and overtakes that of the FFS when N ≥ 32. The FFS method allows us to study357

much longer arms. For entangled star polymers with arm length N = 72 in the absence of358

CR, the terminal relaxation time is found to be τd ≈ 2.85 × 1012 which is about 8 orders359

of magnitude longer than that of stars with N = 20 and is hardly accessible to any type of360

direct simulations unless running on a supercomputer for several years.361
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FIG. 7. Average computational times required for completing a single FFS and a single direct

shooting run on a single Intel Xeon processor.

B. Comparison with Theoretical Model Predictions362

The τd data in Fig. 6 show a clear exponential dependence on the arm length N , which is363

expected from the Pearson-Helfand theory for star arms retracting in a fixed network.8 These364

results can be further compared with the predictions of more detailed theoretical models.4,5,18365

The Milner-McLeish theory based on the solution of 1D Kramers problem predicts the366

terminal arm retraction time in the absence of CR as4,5367

τd(N) =
π5/2

4
√
6
τR(N)

1

z
exp

(
3z2

2

)
, (6)

where z =
√

N/Ne and the arm Rouse time τR(N) = 4ζ0N
2b2/3π2kBT . The entanglement368

molecular weight Ne can be estimated by substituting the corresponding FFS result on τd(N)369

into Eq. 6. As shown in Fig. 8, the obtained Ne values are roughly independent of N , giving370

Ne ≈ 4.94.371

Recently Cao et al. pointed out that the first-passage problem of Rouse chain should372

be treated as a multi-dimensional Kramers problem.18 FFS simulations of 1D Rouse chains373

showed that the z−1 scaling in the prefactor of τd as predicted in Eq. 6 is only valid for very374

large chain extensions. In the intermediate chain extension regime corresponding to realistic375

arm retraction process, a new theory based on the Freidlin-Wentzell theory was proposed,54376
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which predicts a z−3 scaling in the prefactor of the terminal time [Eq. 60 in Ref.18]377

τd(N) =
C(N)τR(N)

z3
exp

(
3z2

2

)
, (7)

where C(N) is a fitting parameter. For arm lengths N ≥ 20 we can take the plateau value of378

C(N) = 1.2 as found in the FFS simulations of 1D Rouse chains.18 The Ne values calculated379

by substituting the FFS data on τd(N) into Eq. 7 are shown in Fig. 8, which increase with380

the increasing arm-length and approach an asymptotic value of Ne ≈ 4.47 that is smaller381

than the Ne value estimated by using Eq. 6. The two theoretical models thus predict382

qualitatively different dependence of Ne on N , at least in the systems without CR. Since383

the entanglement molecular weight is one of the most important model input parameters384

for predicting the dynamics and rheology of entangled polymers, this N -dependent behavior385

apparently needs further investigation for developing quantitative theories. The FFS results386

on τd over a broad range of arm lengths should work as a benchmark for examining theoretical387

models that are typically developed for well-entangled polymers.388

In Eqs. 6 and 7, the parameter ν used in the quadratic arm retraction potential is taken to389

be 3/2 as originally proposed by Doi and Edwards for describing contour length fluctuations390

or arm retractions in a fixed network.2 But computer simulation and theoretical works have391

suggested that the value of ν actually has an arm-length dependence and even the quadratic392

form of the arm retraction potential may be subject to change once taking into account the393

enthalpic contributions.55,56 When we fit the τd data in Fig. 6 to an exponential function394

of τd(N/Ne) = A exp[ν(N/Ne)] with Ne = 4.94 over the whole range of arm length N we395

studied, a value of ν ≈ 1.69 is found, which is somewhat larger than 3/2. On the other396

hand, the theoretical predictions of Eq. 6 using ν = 3/2 and Ne = 4.94 also agree with397

the simulation data reasonably well. To examine the ν parameter using Eq. 7 with a fixed398

Ne value could be more complicated, because this theoretical model was derived using the399

constant value of ν = 3/2. Considering that the simulation results in Fig. 6 are obtained400

in the systems without CR and the slip-spring model does not involve explicit enthalpic401

contributions, we keep ν as a constant in the comparison with theoretical models in the402

current work.403

We note that the Ne values given in Fig. 8 are different from that obtained by mapping404

the original slip-spring model simulation results on the linear viscoelastic properties of linear405

polymer melts to the Likhtman-McLeish model predictions (Ne ≈ 5.7).25,30 The difference406
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could be related to the use of different theoretical models for the data fitting, the presence of407

constraint release effects in the polymer melts and the different ways of treating the slip-link408

motion along the polymer chains, namely continuously or discretely, as discussed in Sec.409

IIA. The value of Ne ≈ 4.94 we found is very close to the value of Ne = 4.89 estimated by410

Shivokhin et al. for the slip-spring model using the same set of model parameters NSS
e = 4411

and NSS
s = 0.5.52412
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FIG. 8. Entanglement molecular weight Ne calculated by substituting the FFS simulation results

on τd (Fig. 6) into the theoretical predictions of Eqs. 6 (squares) and 7 (circles) for various arm

lengths.

C. Arm Relaxation Spectrum413

Apart from terminal relaxation time, the FFS method can also be applied to obtain the414

entire relaxation spectrum of the arm. This is done in a similar way as calculating τd. The415

only difference is to set the index of the monomer that the i-th original slip-link sits on,416

instead of that of the innermost slip-link, as the reaction coordinate. Accordingly, the first417

interface λ0 in the FFS method is defined on the monomer where the i-th slip-link originally418

occupied. The FP time of the i-th slip-link is recorded as τ(X) with the fractional index419

X = i/ ⟨Nsl⟩. The simulation results on τ(X) are plotted in Fig. 9 for the arm lengths420

20 ≤ N ≤ 44. For the systems with N ≤ 36, the direct shooting simulation results are421
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also presented for comparison. The agreement between the FFS and direct shooting data422

gets improved as the arm free end retracts deeper along the primitive path, i.e., with the423

decrease of the slip-link index i and so X. This is understandable because the release of424

the outer slip-links or entanglements is dominated by the fast Rouse-like fluctuations. The425

corresponding entropic barrier is relatively low such that the FFS method does not work well426

at large X. For this reason, the most reliable relaxation spectrum, especially for the long427

arms, should be constructed by combining the FP times of the inner slip-links as calculated428

by the FFS method with the FP times of the outer ones obtained from direct shooting429

simulations. One such example is shown in Fig. 9 for the systems with N = 44. The430

complete relaxation spectrum τ(X) can be directly applied to test theoretical models of arm431

retraction dynamics.432
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FIG. 9. Relaxation spectrum calculated using the first-passage times of all slip-links for star arms

with various lengths obtained by both FFS (solid symbols) and direct shooting (open symbols)

simulations. The dashed curves are for guiding the eye. The parameter X = i/ ⟨Nsl⟩ is the

fractional index of the i-th slip-link along the arm, which increases from X = 1/ ⟨Nsl⟩ for the

innermost slip-link to 1− 1/ ⟨Nsl⟩ for the outermost one.
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D. Constructing Relaxation Correlation Functions433

In experiments, the dynamics and rheology of entangled polymers are generally charac-434

terized by the dielectric relaxation or chain end-to-end vector correlation function, Φ(t), and435

the stress relaxation function, G(t). The calculation of these observables usually requires the436

continuous trajectories of the polymers, which are however not naturally available in FFS437

simulations, because only instantaneous configurations at the hitting points on the interfaces438

are recorded. Here we introduce a numerical route to effectively link these discrete pieces439

of information to construct the dielectric and stress relaxation functions. The systems of440

entangled star polymers without CR are used as examples to demonstrate the application441

of this algorithm.442

Fig. 4(b) sketches the method used to build continuous arm relaxation pathways from the443

piecewise FFS shooting trajectories shown in Fig. 4(a). Considering two hitting points on444

the terminal interface λm, marked as Am and Bm, there must be two continuous trajectories445

or pathways that one can track back from them to the first interface λ0. As shown in Fig.446

4(b), the pathway to state Am is constructed by linking the successful shooting trajectory447

from the hitting point Am−1 to Am with that from Am−2 to Am−1, and so on until reaching448

the point A1 on the interface λ1. The linking from A1 to a start point A0 is obtained449

from the trajectory generated in the continuous simulation in the first stage of the FFS450

simulations. Similarly, the pathway to the hitting point Bm can be traced back to B1 on451

λ1 and then to a starting point B0. We note that these rebuilt trajectories are different452

from the true continuous trajectories generated in standard slip-spring model simulations,453

but the ensemble-averaged pathways obtained in these two cases should be very close, as454

reflected in the consistent Φ(t) and G(t) results in Fig. 11. From computational point455

view, the rebuilding method requires the storage of all the successful shooting trajectories456

between neighboring interfaces and also a large memory for data processing. This may limit457

its application to large systems such as the fine-grained bead-spring models widely used in458

molecular dynamics simulations.459

When calculating the arm relaxation correlation functions from the rebuilt trajectories,460

two assumptions have been made. First, when one slip-link is destroyed by the retracting461

arm free end, the primitive path segment in between its nearest neighboring slip-link and462

itself will be forgotten immediately. This assumption is valid for most of the slip-links due to463
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the discrete feature of entanglements in the SS model. The only exception is with the tube464

segment between the branch point and the innermost slip-link where this assumption may465

affect the calculation of the relaxation functions, as discussed below. The second assump-466

tion is that the FP times on each interface follow a single exponential distribution. This467

assumption has also used in solving the 1D Kramers problem and in the Doi-Edwards tube468

model without CR.2 Since the slip-spring model is essentially a multidimensional problem,469

we perform an extra set of simulations to examine the validity of this assumption. A total470

number of 10, 000 direct shooting simulations, all starting from exactly the same initial con-471

figuration, are carried out to mimic a FFS run. The FP times for the innermost slip-link472

to reach different monomers, or different interfaces in the FFS definition, are recorded. Fig.473

10 presents the probability distributions, Pi(t), of the FP times on three different interfaces474

for the arms of length N = 20. It can be seen that Pi(t) on interfaces with higher indexes475

can be well described by the exponential function476

Pi(t) =
1

τi
exp

(
− t

τi

)
(8)

where τi is the mean FP time on the interface λi. The second assumption becomes valid as477

the arm free end retracts deeply along the primitive path.478

Following Eq. 8 the probability that the innermost slip-link has never crossed the interface479

λi after time t is480

P λi
λ0
(t) = exp

(
− t

τi

)
, i = 1, 2, . . . ,m (9)

and the probability that it has crossed λi at least once is481

P∞
λi
(t) = 1− exp

(
− t

τi

)
, i = 1, 2, . . . ,m. (10)

Therefore the probability that the trajectory starting from λ0 has crossed interface λi but482

never crossed interface λi+1 is483

P
λi+1

λi
(t) = P∞

λi
(t)− P∞

λi+1
(t) = − exp

(
− t

τi

)
+ exp

(
− t

τi+1

)
, i = 1, 2, . . . ,m− 1. (11)

Using Eqs. 9, 10 and 11, the time correlation function of a dynamic observable, V , whose484

instantaneous values are calculated on different interfaces can be evaluated by485

⟨V (t)V (0)⟩ =

⟨
P λ1
λ0
(t)W0 +

m−1∑
i=1

P
λi+1

λi
(t)Wi + P∞

λm
(t)Wm

⟩
(12)
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FIG. 10. Probability distributions of the first-passage times for the innermost slip-link to reach

different monomers or different interfaces in the FFS definition λi along the arm as calculated by

direct shooting slip-spring simulations of star arms of length N = 20. All of the 10, 000 simulations

start from the same initial configuration where the innermost slip-link sits on monomer 1 next to

the branch point. The solid lines represent a single exponential fit to the simulation data in each

case.

where Wi is defined as486

Wi =
1

hi

hi∑
k=1

V k
i V

k
0 , i = 0, 1, . . . ,m. (13)

Here h0 is the number of starting points on the first interface λ0 and V k
0 is the observable487

value at the k-th starting point. Similarly hi (i = 1, . . . ,m) is the number of hitting points488

on the interface λi out of the Mi−1 shootings from λi−1 and V k
i is the observable value at489

the k-th hitting point on λi, respectively. For the system sketched in Fig. 4(b), there are490

only 2 hitting points on the final interface λm such that hm = 2 in Eq. 13.491

Substituting Eqs. 10 and 11 into Eq. 12, we get492

⟨V (t)V (0)⟩ =

⟨
m−1∑
i=0

∆Wi,i+1 exp

(
− t

τi+1

)
+Wm

⟩
, (14)

where ∆Wi,i+1 = Wi −Wi+1. The correlation function in Eq. 14 is expressed as a weighted493

summation of a set of exponential functions, which is consistent with the tube model pre-494

dictions for the end-to-end vector and stress relaxation functions of entangled polymers in495

the absence of constraint release.2 The only difference lies in the last term Wm on the right496
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hand side of Eq. 14 which, if being nonzero, may result in an unphysical plateau after the497

terminal relaxation time τd.498

The problem associated with Wm does not exist in the tube model where the tube is499

assumed to be continuous.2 The arm free end can thus retract continuously along the prim-500

itive path all the way to the branch point and so release all the memories in the original501

tube. As a result, Wm equals to zero for all dynamic observables. However, in the slip-spring502

model the entanglements are represented discretely by the slip-links. The terminal time τd503

is taken to be the time when the arm free end passes the innermost slip-link. In standard504

slip-spring model simulations, the memories, such as stress and arm end-to-end vector ori-505

entation, stored in the original tube segment between the innermost slip-link and the branch506

point can still be released by the continuous relaxation of the arm beyond τd. But in the507

FFS simulations, the runs are terminated right after τd when the trajectories reach the last508

interface λm. Although this termination does not affect the determination of the terminal509

time as shown above, it artificially traps the unreleased memories in the last tube segment510

in the configurations saved on λm, leading to a nonzero ensemble average value of Wm. As511

an attempt to recover the full relaxation function, we propose a simple approximation to512

incorporate the arm relaxation dynamics beyond the terminal time τd (= τm), which is to513

multiply the Wm term in Eq. 14 with an exponential time decay function, giving514

⟨V (t)V (0)⟩ =

⟨
m−1∑
i=0

∆Wi,i+1 exp

(
− t

τi+1

)
+Wm exp

(
− t

τm

)⟩
. (15)

The dielectric and stress relaxation functions calculated using Eq. 15 from the rebuilt515

trajectories are plotted in Fig. 11 for arm lengths up to N = 72. For comparison, the Φ(t)516

and G(t) data obtained from standard slip-spring model simulations are also included for517

the systems with N ≤ 36. In these calculations, the dielectric or arm end-to-end vector518

relaxation function is defined as Φ(t) = ⟨Re(t) ·Re(0)⟩ /
⟨
R2

e(0)
⟩
where Re is the arm end-519

to-end vector and the mean square end-to-end distance
⟨
R2

e(0)
⟩
= Nb2. The G(t) results520

are the single-arm stress autocorrelation functions without considering the cross-correlation521

contributions from the virtual springs.57,58 This choice does not affect any discussions or522

conclusions in the current work, especially when there is no constraint release effect. The523

Φ(t) and G(t) results obtained by using the rebuilding method and from the standard SS524

model simulations show reasonably good agreement in the terminal regime, indicating the525

capability of Eq. 15 in constructing the arm relaxation functions using discrete FFS shooting526
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trajectories. The noticeable discrepancy between the two sets of data in each case at short527

time scales could be attributed to the fact that the exponential distribution assumption528

of the FP times does not apply to the first few interfaces, as shown in Fig. 10. On the529

other hand, we have also applied Eq. 14 directly to construct the relaxation functions530

of the systems with N = 36. The obtained Φ(t) and G(t) curves (dashed lines) initially531

coincide with those calculated using Eq. 15, but start to decay slower when some of the532

sample trajectories have reached their terminal times and the constant Wm contributions533

are counted in. The unphysical plateaus are reached after the mean terminal time τd for the534

reasons discussed above. Therefore at least for the combined FFS and SS method we used,535

the algorithm for constructing the time correlation functions needs to take into account the536

arm relaxation behavior beyond τd.537

V. EXTENSION OF THE COMBINED FFS AND SS METHOD TO538

SYSTEMS WITH CONSTRAINT RELEASE539

The combined FFS and SS method can be extended to entangled polymer systems with540

CR by adjusting the definition of the reaction coordinate. In the standard slip-spring541

model,25,51 constraint release is included by coupling the slip-links sitting on different poly-542

mer chains or arms into pairs to represent the binary entanglements. When one slip-link543

is deleted from the free end of an arm, its coupled partner is also deleted regardless of its544

location, which results in a CR event. This means that for FFS simulations the originally545

innermost slip-link alone could not be used to define a reaction coordinate for exploring546

the entire arm relaxation spectrum, because this slip-link may be destructed by a CR event547

before reaching the arm free end. To resolve this problem, we refer to a recent slip-spring548

simulation work on entangled symmetric star polymers with CR.51 There it was shown that549

the relaxation of the original tube segments, and correspondingly the relaxation of the arm550

end-to-end vector, is dominated by the first-passage times of the so-called tube-representative551

(TR) slip-links, which are the original slip-links finally released from the arm free end. The552

other original slip-links which are destructed from the middle of the arm by CR events only553

contribute to stress relaxation. For determining the terminal relaxation time of the arm554

end-to-end vector, we only need to find the moment when the last tube segment held in555

between the branch point and the innermost TR slip-link is released by the arm free end.556
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FIG. 11. (a) Arm end-to-end vector correlation function Φ(t) and (b) stress relaxation function

G(t) obtained from standard slip-spring simulations (symbols) and calculated using Eq. 15 in

the revised manuscript from the rebuilt trajectories (solid lines), respectively. The dashed lines

represent the results on the systems with arm length N = 36 calculated by using Eq. 14 directly

with the Wm term included. The vertical dotted lines mark the terminal relaxation time τd of arms

with N = 36 as determined in the FFS simulations.
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Since it is not known in advance whether an original slip-link will be deleted by the arm557

end or by CR, we can define the reaction coordinate as the index of the monomer that the558

innermost surviving original slip-link sits on. In other words, if at time t the innermost orig-559

inal slip-link was deleted by CR, the reaction coordinate will be immediately shifted from560

the monomer it sat on to the monomer occupied by the nearest original slip-link, because561

the latter becomes the innermost surviving original slip-link.562

Different from the systems without CR where each star arm is treated independently, the563

FFS simulations of the systems with CR require the use of an ensemble of star polymers564

where the slip-links sitting on different arms are coupled with each other. In the current565

work, the simulated system consists of 20 three-arm star polymers with a total number of566

Narm = 60 arms. The branch points of the stars are allowed to move in space. Only one567

randomly chosen arm out of the whole ensemble is used for the FFS study. The setup568

of the interfaces on this target arm is similar to that used in the non-CR case (Fig. 5).569

The first interface λ0 is set on the monomer that the initially innermost slip-link along this570

arm sits on, and the subsequent interfaces are placed on outer monomers with the intervals571

of l1 = 2 and l2 = 1. The reaction coordinate is defined as the index of the monomer572

where the innermost surviving original slip-link sits on. Both the first-stage continuous and573

the second-stage shooting simulations are run as the standard slip-spring model simulations574

which involve all star polymers in the ensemble to allow for constraint release. It means that575

the configurations of all these polymers need to be stored in the database on each interface.576

If there is no reaction coordinate jumping due to CR, the shooting simulations are carried577

out in the same way as in the non-CR case from interface λi to λi+1 for i = 1, . . . ,m−1. But578

if during a shooting simulation started from interface λi, a CR event causes the jump of the579

reaction coordinate from the destructed innermost original slip-link to the nearest surviving580

original slip-link, the trajectory may immediately cross one or more interfaces. In this case581

we allow the simulation to continue until reaching the next interface, say λi+j with j ≥ 2, and582

then save the configuration of the system in the database of interface λi+1 (instead of λi+j).583

When a shooting simulation from λi+1 selects this configuration as its starting point, the584

trajectory will instantaneously reach the next interface λi+2, because the reaction coordinate585

has actually reached or crossed this interface. As a result of the successful shooting, the586

same configuration will be saved in the database of λi+2. Following similar shooting and587

saving processes, this configuration will be stored in the databases of all relevant interfaces588
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from λi+1 to λi+j for further sampling. This approach ensures that the events that this589

jumping trajectory has also successfully crossed the interfaces λi+1, . . . , λi+j−1 are correctly590

counted for calculating the transition probabilities between different interfaces. The FFS591

run is terminated until the last surviving original slip-link is destructed by the arm free592

end and so the terminal relaxation time τd is reached. In each FFS run there are 20, 000593

samples recorded on each interface λi (i = 1, . . . ,m − 1), and the final results on τd are594

averaged over 1000 independent FFS runs. In the current method for the CR case, although595

the simulations and data storage involve an ensemble of Narm arms, only the relaxation596

spectrum of the target arm can be collected in each FFS sample run. The computational597

cost and memory storage requirement are thus still high for simulating systems with very598

long arms. Further improvement in the efficiency of the algorithm is apparently needed.599

Another possible direction is to use the single-chain slip-spring or slip-link models with600

self-consistent treatment of constraint release.59601

The ensemble-averaged terminal relaxation times, τd, obtained in the FFS simulations602

with the modified definition of the reaction coordinate are presented in Fig. 12, together603

with the terminal relaxation times of the arm end-to-end vector relaxation functions as ob-604

tained from standard slip-spring model simulations and the mean FP times of the innermost605

surviving original slip-links as obtained from the direct shooting simulations. The three sets606

of data show very good agreement within error bars, which effectively validates the proposed607

FFS method. The combined FFS and SS method can thus provide quantitative predictions608

on the terminal relaxation times of entangled star polymers either with or without CR over609

a broad range of arm lengths that are surely needed for the development of quantitative610

theories for entangled branched polymers. The construction of the relaxation correlation611

functions, Φ(t) and G(t), in the CR cases is rather complicated and will be left for later612

studies.613

VI. CONCLUSIONS614

We present an application of the forward flux sampling method in combination with the615

slip-spring model on studying the arm retraction dynamics of entangled star polymers. The616

single-chain slip-spring model originally developed for describing entangled linear polymers617

has been extended to model symmetric star polymers. As a proof of concept, we start618
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FIG. 12. Simulation results on the terminal arm relaxation times τd obtained from the FFS (open

squares) and direct shooting (open circles) simulations, together with the terminal times of the

arm end-to-end vector correction functions calculated from standard slip-spring simulations (open

triangles), in the systems with constraint release. For reference, the FFS results on τd for the

systems without CR (solid squares, same as in Fig. 6) are also plotted.

with the systems without constraint release where the entanglements or slip-links can only619

be created on or deleted from the arm free ends, making the FFS method conveniently620

applicable. Two possible reaction coordinates for the FFS simulations have been tested. The621

choice of the index of the monomer that the originally innermost slip-link sits on is found622

to provide FFS simulation results on terminal relaxation times τd in good agreement with623

those obtained in direct shooting simulations for mildly entangled stars with arm lengths624

up to 8 entanglements. The FFS simulations are then performed to study the terminal625

relaxation of much longer arms (up to 16 entanglements) that are hardly accessible by any626

direct simulations, especially considering the exponential growth of τd with the arm length627

in the absence of CR. The FFS results on τd over such a broad range of arm lengths allow628

direct comparison with the predictions of theoretical models which are typically developed629

for well-entangled polymers. The entanglement molecular weight Ne extracted from such630

comparison is found to have an arm-length dependence.631

In addition to the terminal arm relaxation time, the first-passage times of all other orig-632

inal slip-links on a given arm can also be conveniently calculated by defining the reaction633

coordinate as the index of the monomer that the interested slip-link sits on, which in turn634
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provides the entire relaxation spectrum of the arm. For mildly entangled arms the FFS635

results on the FP times show good agreement with direct shooting simulation data for the636

deep entanglements or inner slip-links, but some discrepancy exists for the shallow ones, be-637

cause the FFS method does not work well at low entropic barriers. The reliable relaxation638

spectrum of long star arms thus should be constructed by combining the FP times of the in-639

ner slip-links as calculated by the FFS method with the FP times of the outer ones obtained640

from direct simulations. Furthermore, we have proposed a numerical route to construct the641

arm relaxation correlation functions from the FFS simulation data saved on discrete inter-642

faces. This method is essentially a summation of weighted exponential relaxation functions643

with characteristic times determined by the mean FP times of different slip-links along the644

arm. The so-constructed arm end-to-end vector correlation functions, Φ(t), and stress re-645

laxation functions, G(t), show reasonably good agreement with those obtained in standard646

slip-spring simulations in the terminal regime, while the noticeable discrepancy at short time647

scales can be attributed to the use of a too strong assumption that the first-passage times648

at the first few FFS interfaces follow the exponential distribution.649

We have also attempted to extend the FFS method to systems with constraint release,650

namely to entangled star polymer melts. The key change from the non-CR case is to define651

the reaction coordinate using the innermost surviving original slip-link. Again good agree-652

ment is found between the FFS simulation results on the terminal arm relaxation time with653

those obtained in standard slip-spring model simulations. Therefore the combined FFS and654

slip-spring simulation method provides an efficient tool for studying the dynamics of highly655

entangled branched polymers which are generally inaccessible to direct simulation meth-656

ods but highly desired for the development of quantitative theories on entangled branched657

polymers.658
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