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Abstract The Ghil-Sellers model, a diffusive one-dimensional
energy balance model of Earth’s climate, features – for a
considerable range of the parameter descriptive of the in-
tensity of the incoming radiation – two stable climate states
(a warm one, taken to represent the present-day climate at
the appropriate solar strength, and a cold one representative
of snowball conditions), where the bistability results from
the celebrated ice-albedo feedback. The unstable solution is
obtained and characterized in this paper. We find such un-
stable states by applying for the first time in a geophysi-
cal context the so-called edge tracking method that has been
used for studying multiple coexisting states in shear flows.
This method has a great potential for studying the global in-
stabilities in multistable systems, and for providing crucial
information on the possibility of transitions when forcing
is present. We examine robustness, efficiency, and accuracy
properties of the edge tracking algorithm. We find that the
procedure is the most efficient when taking a single bisec-
tion per cycle. Due to the strong diffusivity of the system
trajectories of transient dynamics, initialized between the
stable states with respect to the mean temperature, are con-
fined to the heteroclininc trajectory, one which connects the
fixed unstable and stable states, after relatively short tran-
sient times. This constraint dictates a functional relation-
ship between observables. We characterize such a relation-
ship between the global average temperature and a descrip-
tor of nonequilibrium thermodynamics, the large scale tem-
perature gradient between low and high latitudes. We find
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that a maximum of the temperature gradient is realized at
the same value of the average temperature, about 270 K,
largely independent of the strength of incoming solar radi-
ation. Due to this maximum, a transient increase and non-
monotonic evolution of the temperature gradient is possible
and not untypical. We also examine the structural properties
of the system defined by bifurcation diagrams describing the
equilibria depending on a system parameter of interest, here
the solar strength. We construct new bifurcation diagrams
in terms of quantities relevant for describing the thermody-
namic disequilibrium, such as the temperature gradient and
the material entropy production due to heat transport. We
compare our results for the EBM to results for the interme-
diate complexity GCM PlaSim and find an interesting qual-
itative agreement.

Keywords edge tracking · global instability · tipping point ·
nonequilibrium thermodynamics · energy balance model

1 Introduction

In systems possessing multiple steady states, external pertur-
bations can induce transition from one state to another. Near
tipping points, small perturbations can cause large variations
in the statistical properties of the system. The understanding
of the properties of multistable systems and of the mecha-
nisms behind the transitions between the various co-existing
steady states is an emerging field of interest in many mathe-
matical, natural science, and engineering contexts.

Recently many climate-related potentially multistable sys-
tems have been identified (Lenton et al, 2008). For example,
a general circulation model (GCM) of an Earth-like model
planet has been found, under e.g. present day solar forc-
ing conditions, to feature bistability with a snowball cold
state coexisting with a mostly snow-free warm state (Lu-
carini et al, 2010; Fraedrich, 2012; Bordi et al, 2013; Boschi



2 T. Bódai et al.

et al, 2013). The physical mechanism responsible for such a
snowball/snow-free bistability is the well-known ice-albedo
positive feedback. This mechanism was singled out by Budyko
(1969) and Sellers (1969) when studying energy balance
models (EBM). It has been suggested (Hoffman et al, 1998)
that a snowball state is likely to have been realized by Earth’s
climate in the Neoproterozoic, when for millions of years
data suggests a lack of biological activity in the ocean sur-
face waters.

A multi- or (for this discussion) bistable autonomous
system has also at least one unstable state, which lies in-
between the stable ones. This unstable state is embedded in
the boundary of the basins of attraction to the two stable
states. Initial states that fall on the basin boundary, which is
a zero probability measure set, are attracted to the unstable
state along its stable manifold. The latter is in fact identical
to the basin boundary. Being subject to smoothness proper-
ties of the governing equations, the unstable state is consti-
tuted most typically by a time-invariant saddle set (Tél and
Gruiz, 2006).

Based on this argument, in all climate models where a
bistability has been found there has to be an unstable state
intermediate to the stable ones. Therefore, in the event of
transition a perturbed orbit should closely visit the unstable
state of the unperturbed autonomous system, and so it is ex-
pected that the unstable state leaves a fingerprint on the dy-
namics of the perturbed nonautonomous system. In particu-
lar, while small scale instabilities of the perturbed system are
associated with the chaotic stable states of the autonomous
system, the properties of the unstable state will be reflected
in the large scale or global instabilities of the system.

We can distinguish between three types of transition sce-
narios in association with three types of forcing scenarios.
One type of forcing is achieved by the slow change of a sys-
tem parameter λ in comparison with the characteristic time
scales of the system. Starting from a parameter value that
allows for bistability (e.g. the present day solar forcing con-
sidering Earth’s climate), the slow change (decrease) of it
gradually reduces the measure of the basin of attraction of
the current (warm) stable state to zero. At such a critical
value, λc, the system switches or tips abruptly to the other
only remaining stable state. Hence, such a critical state of
a system is referred to as a tipping point. Climate related
tipping scenarios of so-called ‘tipping elements’ are listed
by Lenton et al (2008). The central question in this con-
text is if there is a way to predict the imminence of tran-
sition, possibly early on, and possibly even without hav-
ing an accurate model of the system. The goal is to iden-
tify an effect in terms of an observable, called a precursor,
which effect is universal to a large class of transition scenar-
ios. Candidates include the increased autocorrelation time
(Dakos et al, 2008), the increased variance (Ditlevsen and
Johnsen, 2010), or the change of sign of the shape parameter

of the extreme value distribution of some physical observ-
able (Faranda et al, 2012). The proximity of tipping may also
be predicted by nonlinear softening (Sieber and Thompson,
2012). The relevance of the unstable solution to tipping is
established by the fact that at that point (λc) the branches of
the bifurcation diagram belonging to the stable and unstable
solutions ‘merge’, as the basin boundary, in which the sad-
dle set is embedded, shrinks onto the attractor. That is, the
unstable state which is closely visited in the course of a tran-
sition is the one belonging to the critical parameter value λc.
Such a transition has been referred to as B-tipping recently
(Ashwin et al, 2012). The nonautonomous dynamics with a
quasistatically changing forcing is essentially governed by
the structural properties of the autonomous system, which
is defined by the bifurcation diagram, i.e., the dependence
of the equilibrium states on a chosen parameter, which also
implies the sensitivity to a small change of that parameter.

A second forcing scenario is different from the first one
in that the rate of change of the parameter can be compara-
ble or faster than the unperturbed evolution. In larger than
one degree-of-freedom systems this can bring about a tran-
sition for smaller changes of the parameter value λ than that
is needed with very slow forcing (approximately λc − λ).
This is called a rate-induced transition, or R-tipping in short
(Ashwin et al, 2012).

Third, processes that may be described by some stochas-
tic or chaotic deterministic systems are seen as external per-
turbations when they are not the main process of interest.
These perturbations have a fluctuating nature, in contrast
with the first two types. The probability density and fre-
quency spectrum are two basic descriptors of fluctuating pro-
cesses. A powerful theory of stochastic dynamical systems
exists for weak Gaussian white noise perturbations (Freidlin
and Wentzell, 1984), by which e.g. the mean escape time
from a basin can be calculated. A central element of the the-
ory is a quasipotential, determined by the autonomous sys-
tem, but it characterizes the steady state probability distri-
bution of the perturbed system. It provides an intuitive pic-
ture insomuch that the unstable invariant set turns out to be
situated on top of a potential barrier between the two attrac-
tors. More recently escapes from such a basin or potential
well are called a noise-induced or N-tipping (Ashwin et al,
2012). However, even in the weak noise limit it is possible
to have frequent transitions between two basins, so that the
unstable set of the autonomous system is frequently visited.
When this set is chaotic, the perturbed dynamics becomes
chaotic, which is the much studied phenomenon of noise-
induced chaos (Iansiti et al, 1985; Tél et al, 2008; Lai and
Tél, 2011). This situation can be generalized in two ways.
First, one can consider stronger perturbations (Bódai et al,
2011), second, the perturbations can have complex variabil-
ity (e.g. deterministic chaos versus red noise). Also in these
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more general situations it is expected that the unstable set
influences the perturbed dynamics.

In summary, exploring the unstable solutions of a sys-
tem may substantially contribute to the understanding of its
general behavior since they are the key for large scale and
global instabilities. In addition, not only the structural prop-
erties but also the transient dynamics related to the unstable
solutions needs to be analyzed.

Numerical experiments with complex climate models have
so far focused on the coexisting stable climates, which are
typically time-dependent – presumably chaotic – system states
even without external forcing, and on transitions between
them upon introducing some forcing (Marotzke and Botzet,
2007; Voigt and Marotzke, 2010; Pierrehumbert et al, 2011;
Pierrehumbert, 2005). For example, recent transition exper-
iments with a GCM the Planet Simulator (PlaSim) (Lucarini
et al, 2010; Boschi et al, 2013) indicated that thermodynami-
cal properties (Lucarini, 2009b) are useful descriptors of the
structural properties of the bistable system. The material en-
tropy production, a quantity that measures how ‘far’ the sys-
tem is from thermodynamic equilibrium, can tell apart the
warm and cold states much more firmly than the global ther-
modynamic properties like the average temperature. How-
ever, the analysis of unstable climates that separate two sta-
ble climates has been limited to time-independent examples
e.g. in a simple energy balance model (Ghil, 1976) and a
more complex model of the 3D ocean circulation coupled to
an EBM representing the atmosphere (Dijkstra and Weijer,
2005). In both of these examples the problem of numeri-
cally approximating the unstable solution in gridpoints re-
duces to finding a fixed point of a high-dimensional dynam-
ical system by solving a system of algebraic equations. The
latter analysis by Dijkstra and Weijer (2005), furthermore,
involves a technique to determine the dependence of the so-
lution on a system parameter, including situations when the
solution changes stability at a certain parameter value (Di-
jkstra, 2005; Dijkstra et al, 2014). The reason for this limi-
tation in the analysis is that so far no-one has attempted to
search for more realistic time-dependent unstable climates
in more complex models.

Ghil (1976) studied a Sellers-type one-dimensional (1d)
diffusive energy balance model, which we refer to as the
Ghil-Sellers model. He solved the appropriate boundary value
problem and found three coexisting climates, and thereupon
carried out a stability analysis of these climate states. Ghil
determined that an equilibrium state is stable/unstable when
the sign of a solution component of a certain initial value
problem derived from the EBM is negative/positive, which
sign always corresponds to that of the first eigenvalue of the
linearized evolution equation. However, the eigenvalue it-

self, which gives the main time scale1 of the unstable tran-
sient process, is not determined by this procedure. The clas-
sical method of doing that, by solving a boundary value
problem, is also detailed by Ghil.

We note that beside the heuristic argument above for the
existence of an unstable state in a bistable system based on
the concept of the basin boundary, there is a rigorous proof
concerning autonomous dissipative ‘gradient systems’, i.e.,
those in which time-independent forces have a potential:
the mountain pass theorem (Jabri, 2003). Asymptotic solu-
tions of such systems, including infinite-dimensional ones,
are time-independent. The existence of a potential in case
of the Ghil-Sellers model was demonstrated by Ghil (1976)
through providing a variational formulation of the problem.
In autonomous systems where not all forces are potential,
the steady states may be time-dependent. When such a sys-
tem is bistable, the Freidlin-Wentzell (1984) theory defines
a quasipotential, with which the mountain pass theorem can
still be applied. In case of nonautonomous bistable systems
we can retain our heuristic argument. However, the unsta-
ble saddle set and its stable manifold (the basin boundary) is
not time-invariant, and it can be defined in a pullback sense
(Bódai et al, 2013).

In more complex models like GCMs the unstable states
can be expected to be high-dimensional chaotic sets, imply-
ing time-dependent steady states. In a finite window of time
the evolution of the unstable state can be posed, in principle,
as the solution of a boundary value problem, for which the
initial and final states are prescribed (besides spatial bound-
ary conditions). In order for a boundary value problem solver
algorithm to converge to a solution, it is necessary that the
prescribed initial and final states belong to the time-dependent
unstable set. Providing such states is not a trivial task; and
we believe that in general it is not even possible. To track
down the possibly complicated unstable climates in vari-
ous models, we intend to use a very different approach. We
bracket the boundary of the two basins by two numerical tra-
jectories, one in each basin, which are reinitialized to closely
bracket the boundary again once diverged from it (and each
other) to an unsatisfactory degree. This approach, called ‘edge
tracking,’ has been proposed and successfully applied by
Eckhardt and coworkers (Skufca et al, 2006; Schneider et al,
2008; Schneider and Eckhardt, 2009) to track unstable solu-
tions, or ‘edge states’, of shear flow problems, such as pipe
flow, plane-Couette flow, and plane-Poisulle flow, where the
stable laminar flow can coexist with chaotic – and depending
on the problem – stable or transiently turbulent flows. The
edge tracking technique, conveniently, in contrast with the
above mentioned alternative approach by solving a bound-
ary value problem, does not require guess values on the un-

1 In our case the eigenvalue equals the escape rate, which latter is
the reciprocal of the average life time in some neighborhood of the
unstable state (Lai and Tél, 2011).
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stable set, the edge state, but it can be initialized by the rel-
atively easily obtainable stable steady states.

Before applying edge tracking to a complex climate model,
the present study illustrates the methodology and its poten-
tial value utilizing the 1d Ghil-Sellers EBM. This model has
been extensively studied before (Ghil, 1976; North et al,
1981) and meets the necessary requirement by exhibiting
bistability. We note that, in principle, the edge tracking al-
gorithm may be applied to a zero-dimensional (0d) EBM
as a ‘proof of concept’ in the context of geophysical phe-
nomena. However, the unstable equilibrium in that case is
an overly simple object, a fixed point in a one-dimensional
phase space, at the peak of a potential barrier, and so the
application of the new method would yield rather limited
insight. Furthermore, insightful thermodynamic nonequilib-
rium properties are not resolved by the 0d EBM either. In the
direction of a higher-dimensional phase space where more
complicated dynamical behavior is possible and thermody-
namic disequilibrium is also represented, we favor a 1d EBM.

In this paper we also present a characterization of the
structural properties of the Ghil-Sellers 1d EBM in the full
range of bistability varying the solar strength, complete with
the unstable branch of the bifurcation diagrams, in terms
of thermodynamic quantities. Besides the average temper-
ature, which is the subject of classical studies, we also con-
sider quantities in association with thermodynamic disequi-
librium, such as e.g. meridional heat transport, temperature
gradients, or the material entropy production. We also char-
acterize the transition from the unstable state to the stable
ones resulting from infinitesimal perturbations of the unsta-
ble state, again in the full range of bistability, and again in
terms of both the average and the nonequilibrium thermo-
dynamics. This transition is governed by a heteroclinic orbit
of the system, and it is associated with a constitutive rela-
tionship between the average and nonequilibrium thermo-
dynamical properties. This relationship is found to depend
only slightly on the solar strength, and e.g. the temperature
contrast achieves a maximum at 270 K, when approximately
half of the globe is snow-covered.

The paper is organized as follows: Section 2 summarizes
the main characteristics of the 1d Ghil-Sellers EBM utilized
for our study. Section 3 introduces the edge tracking algo-
rithm to explore the unstable solutions. In Sec. 4 results con-
cerning the structural properties and the transient dynamics
related to the unstable solutions are presented. In Sec. 5 we
close the paper with discussion and an outlook.

2 The Ghil-Sellers one-dimensional energy balance
climate model

We adopt the Sellers-type one-dimensional energy balance
model studied by Ghil (1976). The only resolved spatial

variable is the latitude φ ∈ [−π/2, π/2]. The major pro-
cesses considered by the zonally symmetric model are: ra-
diation and meridional transport of heat. The latter process,
facilitated by cyclonic eddies, is modeled in a crude way as a
diffusive process, where a diffusion coefficient parametrizes
the unresolved fluid dynamics. The model equation is essen-
tially a forced heat equation for the zonal-average ‘air’ tem-
perature T extrapolated to the sea level, written in a spheri-
cal coordinate system, for which a new variable x = 2φ/π ∈
[−1, 1] is introduced:

c(x)Tt =

(
2

π

)2
1

cos(πx/2)
[cos(πx/2)k(x, T )Tx]x

+ µQ(x)[1− α(x, T )]
− σT 4[1−m tanh(c3T

6)],

(1)

with boundary and initial conditions:

Tx(−1, t) = Tx(1, t) = 0, T (x, 0) = T0(x). (2)

The subscript e.g. in Tx designates differentiation with re-
spect to the variable x. The left hand side of Eq. (1) rep-
resents the tendency, i.e., the rate of change, of the zonally
averaged energy with c(x) being the effective heat capacity
of the atmosphere, land, and ocean per unit surface area at
x. The model is symmetric to the Equator.

The first term on the right hand side (RHS) represents
the meridional heat transport which is modeled by a Fourier-
like law, so that it is proportional to the gradient Tx. Parame-
ter k is a combined diffusion coefficient depending on x and
T :

k(x, T ) = k1(x) + k2(x)g(T ),with (3)

g(T ) = c4/T
2 exp(−c5/T ). (4)

Here, k1 and k2 are eddy diffusivities for sensible and la-
tent heat, respectively; and the form of g(T ) is empirically
constructed on the basis of the thermodynamics of moist
air (Berry et al, 1945).

The model is forced by heat absorption due to short-
wave solar irradiation (second term on the RHS) and by the
heat loss to space by long-wave emission (third term). The
solar forcing is controlled by the solar irradiance Q and the
albedo α. The long-wave radiation is represented by Boltz-
mann’s law, modulated by the green house effect being rep-
resented by a plausible decreasing function of the tempera-
ture (in square brackets).

We can modulate the incoming solar radiation by chang-
ing the parameter µ. The present day conditions are realized
when µ = 1.
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The following formulation of the latitude- and temperature-
dependence of the albedo, including upper and lower cut-
offs, defines the intensity of the ice-albedo feedback and is
compatible with bistability:

α(x, T ) = {b(x)−c1[Tm+min(T−c2z(x)−Tm, 0)]}c, (5)

where the subscript {·}c means a cutoff, described by a generic
quantity h as follows:

hc =


hmin, h ≤ hmin
h, hmin < h < hmax
hmax, hmax ≤ h

(6)

In Eq. (5) c2z(x) gives the difference between sea-level and
zonally-averaged ground-level temperatures, and b(x) is a
temperature-independent component of the zonally-averaged
albedo, describing the variation of the albedo with respect to
the latitude only when the ground temperature exceeds Tm,
in which case the ground is completely snow free.

Further details on the origin and interpretation of terms
of the model can be found in (Ghil, 1976) and references
therein. In particular, Dwyer and Pettersen (1973) give an
outline of a systematic derivation of the model. Empirical
data for one hemisphere is adapted from (Ghil, 1976), such
as values of the empirical functions, c(x), Q(x), b(x), z(x),
k1(x), k2(x), at discrete latitudes, and empirical constants,
c1,..., c3, σ, m, Tm. A numerical code written in MATLAB
is publicly available on Mathworks’ File Exchange web-
site2. (This code should be straightforwardly ‘portable’, as a
manual effort, to freewares such as Octave or Scilab.) Note
that we use a new value b(φ = 85◦) = 2.912 as a cor-
rection for a likely typographical error in (Ghil, 1976). We
found agreement with Ghil’s solutions selecting this value,
whereas the value reported in the paper leads to somewhat
different temperature profiles. We also omit a redundant 103

factor of c4 given in the same paper.
With the original αmax = 0.85 we have been able to

reproduce, very satisfactorily to a visual inspection, e.g. the
temperature profiles shown by Fig. 3(a) of (Ghil, 1976) and
the bifurcation diagram shown by Fig. 10.6 of (Ghil and
Childress, 1987). We note that to be able to reproduce the
bifurcation diagram featuring the complete range of bista-
bility, it was necessary to eliminate negative values of k2,
because with them k itself becomes negative for about µ >
1.03, which violates the second law of Thermodynamics.
We used the following new values before inter- and extrap-
olation to the computational gridpoints: k2(φ = 15) = 2 ·
10−3 and k2(φ = 5) = 10−3. We have checked that for µ <
1.03 (when the original negative k2 values do not make the

2 http://www.mathworks.co.uk/matlabcentral/fileexchange/46391-
gsebm

numerics unstable) the original and modified models yield
very closely matching results. In the present study, however,
we apply αmax = 0.6, with which the range of bistabil-
ity is greatly reduced and the temperatures in the snowball
conditions are substantially higher, yielding closer corre-
spondence to the more realistic results produced by PlaSim
shown by Fig. 1 of (Lucarini et al, 2010). Also in this case
we applied the new values for k2 specified above.

Similarly to the original model studied by Ghil, for µ =

1 the modified model too has three equilibrium solutions in
the range of physical interest, say 200 < lim

t→∞
T (x, t) <

310, two of which are stable, TW (x) and TC(x), and an in-
termediate solution being unstable, TU (x). These are shown
in Fig. 1, accompanied by corresponding albedo and heat
‘flux’ or (specific) heat transport rate profiles. The latter is
defined3 as: j = − cos(φ)kTφ.

3 Methodology

3.1 Model reduction

The 1d EBM resolves the temperature and so meridional
heat transport as functions of latitude, which makes it an
infinite degree-of-freedom (DOF) dynamical system. Since
we are interested in nonequilibrium thermodynamics in as-
sociation with heat transport, we would like to define a sim-
ple global measure of it for the purpose of analysis. We
achieve this essentially by coarsegraining, in order to ar-
rive at a finite DOF model. This is a top-down approach to
diagnosing complex models, as proposed by Lucarini et al
(2011), or to creating a climate model hierarchy, described
in detail by Ghil (2001) and Saltzman (2002).

An extreme form of coarsegraining of this system would
eliminate the spatial dependence by global averaging. This
would lead to the much studied 0d EBMs. A less extreme
form of coarsegraining could be achieved by averaging sepa-
rately over high and low latitudes. This is a common practice
in order to establish a minimal model that is capable of re-
solving global transport properties. A paradigmatic example
of this, as a product of a bottom-up approach, is Stommel’s
box model of the thermohaline circulation of the oceans
(Stommel, 1961; Dijkstra, 2005). This conceptual model in-
volves variables representing the average temperature and

3 Equation (1) can be rewritten concisely in the form cTt =
−jφ/ cos(φ)+F , with F comprising the radiative forcing terms; and
j = J/(A/2), where J = H2π cosφRq is the integrated meridional
heat transport in [Watts] at some latitude, andA,R are respectively the
surface and the radius of the globe. J is a surface integral of the (actual)
meridional heat flux across a vertical surface of height H , stretching
the complete latitude circle, which integral was expressed above as the
product of the surface and the vertically averaged flux q = −k∗Tφ/R.
The vertically averaged thermal diffusivity k∗ is measured in [W K−1

m−1]. Its relationship with the diffusion coefficient k can be given as:
k = Hk∗/R2.
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Fig. 1 Temperature versus latitude profiles (a), being the stationary so-
lutions of Eq. (1), and corresponding (color-matching) albedo- (b) and
(specific) heat transport rate profiles (c). The unstable profile between
the two stable ones, represented by hollow circle markers, was deter-
mined by the edge tracking procedure to be described in detail in Sec.
3.2. The green solid line shows a reference numerical solution obtained
by a boundary value problem solver, Matlab’s bvp4c.

salinity of the ocean at low and high latitudes, modeled as
reservoirs or ‘boxes’, between which heat and material (salt)
is exchanged in proportion with their difference in temper-
ature and salinity. The intensity of transports are also con-
trolled by the ocean dynamics in reality, which is crudely
represented by parametrizations involving conductivity co-
efficients. This picture is straightforwardly transferable to
the atmospheric dynamics of our interest. Here we consider
a 2-box or 2 DOF model (due to the symmetry to the Equa-
tor) given by the following two equations:

ĉL
˙̂
TL = fL(T̂L, T̂H) = −k̂(T̂L − T̂H)

+ µQL[1− α̂L(T̂L)]

− σ̂LT̂ 4
L[1−m tanh(c3T̂

6
L)],

(7a)

ĉH
˙̂
TH = fH(T̂L, T̂H) = k̂(T̂L − T̂H)

+ µQH [1− α̂H(T̂H)]

− σ̂H T̂ 4
H [1−m tanh(c3T̂

6
H)],

(7b)

where T̂L and T̂H represent the average temperatures at low
and high latitudes, respectively. On the right-hand-sides, we
choose the same functional forms for the radiative terms as
in the 1d EBM, so as to express the same physics. (This is in-
deed the practice also when deriving a 0d EBM.) The terms
representing heat transport, identical in the two equations
(7a) and (7b) except for a change of sign, are not obtained
at this level of the coarsegraining by a numerical discretiza-
tion scheme for differentiation, but rather it is modeled as
the heat transport between two heat baths between which
the temperature varies linearly along the length of the con-
ducting 1-dimensional medium. The transport terms realize
a coupling between the two equations. The parameters of the
model do not depend on the latitude; we will specify them
after a more general discussion of the model.

In the 2-box model the bistability is preserved, and there-
fore there exist two branches of a heteroclinic trajectory in
the phase plane, linking the unstable saddle fixed point with
the two stable node fixed points. A relatively strong cou-
pling causes trajectories which are initialized well between
[TW ] and [TC ] to be quickly attracted to the heteroclinic
trajectory, ‘landing’ on it at a point not far from the initial
[T0], for which reason the heteroclinic trajectory constitutes
a 1-DOF backbone of the transient dynamics. The evolution
along this unique trajectory can be described by a 1-DOF
model, in terms of either T̂L or T̂H , or derived variables,
such as e.g. the average T̂ = (T̂L + T̂H)/2 or the differ-
ence ∆T̂ = T̂L− T̂H . The latter two together are defined by
a nondegenerate transformation of variables. The respective
model equations read as follows:

˙̂
TL = f∗L(T̂L) = fL(T̂L, T̂H(T̂L)), (8a)

˙̂
TH = f∗H(T̂H) = fH(T̂L(T̂H), T̂H), (8b)

or

˙̂
T = f∗

T̂
(T̂ ) = fT̂ (T̂ ,∆T̂ (T̂ )), (9a)

˙
∆T̂ = f∗

∆T̂
(∆T̂ ) = f∆T̂ (T̂ (∆T̂ ), ∆T̂ ). (9b)
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Equation (9a) is nothing but a ‘standard’ 0d EBM when
f∗
T̂
(T̂ ) involves the same functional forms of the radiative

terms as e.g. Eq. (7a):

f∗
T̂
(T̂ ) = µQ̂[1− α̂(T̂ )]

− σ̂T̂ 4[1−m tanh(c3T̂
6)].

(10)

Equation (9b) can also be considered a 0d EBM, but it de-
scribes a different aspect of the climate: the thermodynamic
disequilibrium. However, this model is well-defined only if
the function∆T̂ (T̂ ) is invertible. In fact it turns out to be not
the case concerning the energy budget of the climate, and so
f∗
∆T̂

(∆T̂ ) does not exist, or, it is not a single-valued func-
tion. Therefore, it is only the 2-DOF model that can involve
∆T̂ as a prognostic variable.

The constraint that the heteroclinic trajectory imposes is
used in both Eqs. of (8) and (9), which can be seen as a con-
stitutive relationship between e.g. T̂ and ∆T̂ , formally writ-
ten as ĥ(T̂ , ∆̂T ) = 0, to which the 2-DOF dynamics quickly
adjusts to a good approximation. Accordingly, ĥ(T̂ , ∆̂T ) ≈
f∆T̂ (T̂ ,∆T̂ ). The same applies to the 1d EBM: The strong
diffusivity quickly brings the trajectory in the infinite-dimensional
phase space to the ‘1-DOF’ heteroclinic trajectory, but so
that shorter length scale ripples in the temperature profile
T (x, t) are smoothed out quicker than ripples of longer scales4.
Ultimately the global temperature contrast adjusts the slow-
est. It can be defined as follows:

∆T = TL − TH , TL = [T ]
1/3
0 , TH = [T ]11/3, (11)

where we used the formalism for the area-weighted integral:

[T (x, t)]xHxL =
π

2

∫ xH

xL

dx cos(πx/2)T (x, t). (12)

For the definition of ∆T in (11) we defined the L and H
boxes (with a ‘border’ at 30◦N, i.e., x = 1/3) so as to repre-
sent equal areas. With this partition the resulting boxes expe-
rience a heat flux between them which is reasonably close to

4 Ghil (1976) showed that the EBM linearized around a steady state
solution can be written in the form of a Sturm-Liouville equation, and
that, despite the singularity at the pole, results of the Sturm-Liouville
theorem for self-adjoint operators applies, namely that there is a mono-
tonic sequence of real eigenvalues increasing to (negative) infinity,
and in association with these ordered eigenvalues the eigenfunctions
have monotonically increasing number of roots. The diffusive operator
alone, the original one less the radiative terms, namely, the Laplace-
Beltrami operator on the sphere, has in fact only negative eigenval-
ues. These properties dictate the monotonically increasing decay rate
of shorter scale ripples. Together with the radiative terms there is there-
fore at most one positive eigenvalue, and so the largest eigenvalue
solely determines the stability, as Ghil points out. We note that these
properties are signs of the simplicity of the diffusive model of merid-
ional transport; a more complex realistic ‘dynamical’ transport pro-
cess would perhaps imply more than one positive Lyapunov exponents,
among other new features.

the maximal value. The actual partition with which the max-
imal heat flux is achieved is that with a boundary where the
net radiative heating rate is zero. As for the equilibria in the
full range of bistability with αmax = 0.6 we find this point
to be between x = 0.3 and 0.4, which is in good agreement
with an observation of the zonal mean maximum meridional
temperature gradient for annual mean conditions occurring
at about 37◦N (Stone, 1978). We note that [T (x, t)]10 is thus
the global average, which we will denote more briefly in the
following as [T ]. The average [T ] and the contrast or dif-
ference ∆T can be the first two variables of an infinite se-
quence that spans the phase space of the 1d EBM. Therefore,
the 1-DOF heteroclinic orbit implies a relationship between
them:

h([T ], ∆T ;µ) = 0. (13)

Now we pick up with the discussion of the parametriza-
tion of the finite-DOF models. The right-hand-side f∗

T̂
(T̂ )

of Eq. (10) implicitly assumes a parametrization which real-
izes the very same solution for the 1-DOF model as the het-
eroclinic orbit of the 2-DOF model. Furthermore, we also
require that the irradiation and heat loss terms, respectively,
in Eqs. (7) sum up separately to those of the corresponding
terms of Eq. (10). It is only possible if σ̂ = σ̂(T̂ ). This idea
can be transferred as for the parametrization of the 2-DOF
model in order to have h(·, ·; ·) = ĥ(·, ·; ·), and also that
the individual terms (tendency of internal energy, insolation,
heat loss to space) of the L andH components of the 2-DOF
model equal exactly the [·]1/30 and [·]11/3 integrals, respec-
tively, of the corresponding terms of the 1d EBM. This will
require the parameters to depend on the system state – and
also on system parameters of interest, e.g.: ĉH = ĉH(T̂ ;µ),
k̂ = k̂(T̂ ;µ), α̂H = α̂H(T̂ ;µ), σ̂H = σ̂H(T̂ ;µ) (andQH =

[Q(x)]11/3). In order to determine the functions ĉH(T̂ ;µ),
etc., the 1d EBM has to be solved. As an implication, the
two eigenvalues of the 2-box model, concerning any of the
equilibria, are identical to the first two eigenvalues of the 1d
EBM. In particular, the positive eigenvalue of the unstable
equilibrium of the 1d EBM equals the corresponding eigen-
value of the 0d EBM (9a). However, in a strongly diffusive
model the diffusive term has a relatively small contribution
to this eigenvalue. Appendix B sheds more light onto the re-
lationship of the finite- and infinite-DOF models, and also
on the concepts of dynamical systems theory that we used
here, such as those of the phase space, basin boundary, het-
eroclininc orbit, eigenvector, etc.

For our purpose, to determine the constitutive relation-
ship (13), we do not need to actually determine such a parametriza-
tion of the 2-box model, but we can proceed directly by in-
tegrating Eq. (1). The 2-box model is intended here as a de-
vice to interpret our results, and to draw a connection with
the literature.
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Another common measure of thermodynamic imbalance
is the material entropy production in the process of down-
gradient heat transport. In case of the 2-box model, assum-
ing that the rate of irreversible heat transfer between two
heat baths J = k̂∆̂T , the following formula known (de Groot
and Mazur, 1969) for thermal resistors applies:

˙̂
Smat = J

(
1

TH
− 1

TL

)
≈ k̂(T̂ )(∆̂T/T̂ )2. (14)

This approximation of the entropy production is a diagnostic
quantity for the 2-box model, and it provides an alternative
to ∆T̂ for the definition of a climatic constitutive relation-
ship similar to (13). Concerning the dynamics restricted to
the heteroclinic orbit, ˙̂

Smat ≈ Ṡmat to a very good approx-
imation, the material entropy production in the 1d EBM be-
ing defined (Paltridge, 1978; Grassl, 1981) as:

Ṡmat = A

∫ π/2

0

dφ cos(φ)k(φ, T )(T ′φ/T )
2, (15)

where A is the surface of the globe.

3.2 Finding unstable solutions: Edge tracking

In order to determine the constitutive relationship (13), we
need to find the unstable states. As mentioned before, one
possible approach would be through solving the relevant
boundary value problem. It is yet to be seen whether it is
a feasible task. Another approach is to consider the unsta-
ble climate as the solution of an initial value problem. When
the objective is to find an attracting steady state, an attrac-
tor, choosing initial conditions is usually straightforward, as
any initial condition, even that of uniform pressure, tempera-
ture, etc. fields, from within its basin of attraction is attracted
by the steady state. In contrast, an unstable state does not
have a basin of attraction, only a measure zero set of ini-
tial conditions would converge to it, which initial conditions
in fact consist of the stable manifold of the unstable state;
even close-by initial conditions to the stable manifold will
be repelled upon unconstrained forward-integration of the
governing differential equations. Nevertheless, when e.g. the
unstable state is due to bistability, a straight line in a possi-
bly high-dimensional phase space – that connects two initial
points that lead to different attractors – intersects the sta-
ble manifold (a surface) with probability one. An efficient
numerical technique, called edge tracking, which involves
the bracketing of the said intersection point with the sta-
ble manifold will be our choice for finding unstable states.
It was first proposed and applied for finding unstable solu-
tions of shear flow problems – referred to as edge states –
by Skufca et al (2006), and is described in more detail by

Madré (2011). The main objective of this paper is to de-
scribe this technique in detail and demonstrate its applica-
bility to a geophysical system, namely, the Ghil-Sellers 1d
EBM described in Sec. 2. We wish also to summarize prac-
tical considerations regarding the algorithm, such as its ro-
bustness, efficiency, and accuracy, with a view to applying
the technique to more complex climate models.

Before a detailed description of the edge tracking tech-
nique, we give a brief illustration of it based on the schematic
in Fig. 2, where the evolution of the unstable state is rep-
resented by the dashed line. To track an unstable state by
forward-integration, the integration has to be repeatedly stopped
and reinitialized, because the numerical trajectory is repelled
from the unstable state. This situation is shown in Fig. 2,
where pairs of bracketing trajectories, drawn out by solid
lines, diverge from the dashed line. In case of a 0d EBM
we have a simple picture of this behavior: the unstable equi-
librium is situated on top of a potential barrier, at the local
maximum of the double-well potential function (which may
be forced to vary over time), and the solid lines would evolve
towards the bottom of one of the potential wells.

Still with a reference to the schematic in Fig. 2, when
two trajectories are initialized on the two sides of the un-
stable equilibrium with a very small separation (ε1), they
stay close – within a finite window containing the unstable
equilibrium – for a long time, with a lifetime that ‘blows
up’ with vanishing separation. In fact the length of the life-
time can be the basis for bracketing closely the unstable
equilibrium again once the two trajectories have diverged
to a distance larger than a threshold (ε2), which is the core
idea of the PIM-triple algorithm (Nusse and Yorke, 1989).
However, when the unstable solution is due to bistability, its
bracketing can be done more efficiently by the edge track-
ing algorithm performing an iterative bisecting procedure
by checking which stable state an intermediate trajectory
evolves towards, as described in detail next. The algorithm is
applicable to higher-DOF systems too, in which case what
is bracketed is the basin boundary. Embedded in it is the
unstable state, which may be a simple object like a stable
node as in case of the diffusive 1d EBM, or a set of a more
complex geometry. In forthcoming studies we wish to apply
this algorithm to discover the unstable climate in the GCM
PlaSim.

For our analysis we implemented the algorithm in Mat-
lab by using pdepe. Each cycle (j) of the algorithm has the
two main phases of advancing and reinitializing the system:

I. Iterative bisecting. In the initial cycle (j = 0) we start
out with two temperature profiles, Tw,i,j(x) and Tc,i,j(x),
i, j = 0, which lead to the two different coexisting station-
ary climates, and consequently this property will be given
later for any of j = 1, · · · , J following from the nature of
the algorithm. With the iterative bisecting (i = 0, 1, 2, . . .

for any fixed j) an intermediate profile is searched for, from
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time

Warm climate

Cold climate

Fig. 2 Schematic illustration of the edge tracking algorithm. The
dashed line represents the evolution of the unstable state TU (t) in
terms of a scalar bulk quantity (the symbol T refers to the intuitive spa-
tially averaged temperature), and pairs of bracketing trajectories drawn
by solid lines are shown to diverge from it. Vertical straight lines mark
the times of reinitialization, explained in the main text. Note that the
divergence of the trajectories is blown up for visualization to exceed
the variance of the unstable state, ε2 > var[TU (t)], whereas the oppo-
site, ε2 < var[TU (t)], is necessary for a good signal-to-noise ratio for
resolving TU (t).

which it takes a relatively long time to end up with one of
the stationary climates. In this phase in fact three actions are
iterated. First (j = 0) (a) we linearly interpolate between the
warm and cold climates, conveniently – and later on (j > 0)
between the warm- and cold-side profiles:

Tm,i,j(x) = [Tw,i,j(x) + Tc,i,j(x)]/2.

Then (b) we check by forward simulation if Tm,i,j(x) leads
to the warm or cold climate. If it is the former case, then (c)
the procedure is reinitialized such that Tw,i+1,j = Tm,i,j ,
and otherwise Tc,i+1,j = Tm,i,j .

In order to check which scenario is realized, we moni-
tor a suitable scalar indicator quantity in the course of the
forward simulation in phase I.b, and check if an upper or
a lower threshold is exceeded. These thresholds are deter-
mined as a preliminary exercise, verifying that their excedance
predicts the outcome with certainty. Here, with the 0d EBM
and the schematic illustration in Fig. 2 in mind, the area-
weighted mean temperature [T (x)]10 is perhaps the most in-
tuitive indicator. The thresholds can be chosen to be in the
close vicinity of the asymptotic value, because the approach
of any of the stable solutions is relatively fast, and so the
outcome cannot be predicted with significantly less simu-
lation effort. This implies that – from a merely technical
point of view – any quantity will be suitable for the indi-
cator purpose, if it takes appreciably distinct values near the
two attractors. From a theoretical point of view, the indica-
tor quantity is desired also to give an insight to the physi-
cal mechanism at work. For finding edge states in pipe flow
the turbulent energy was taken as an indicator quantity by
Skufca et al (2006). The turbulent energy in the edge state is
intermediate between the transient turbulent and the stable
laminar states.

Further possible indicator quantities in the context of
the 1d EBM are the following. The latitude of some high
albedo, e.g. x|α=0.5 indicates the extent of the snow cover,
and therefore it is closely related to the average temper-
ature. As we wish to study both the structural properties
and transient dynamics from the point of view of thermody-
namic disequilibrium, various measures of it, e.g. ∆T and
ṡmat = Ṡmat/A, are also sensible choices for indicators.

Actions I.(a-c) are repeated (i = 0, 1, 2, . . . , I) while,
say, [Tw,i+1,j − Tc,i+1,j ]

1
0 > ε1, that is, while the reinitial-

ized warm and cold-side profiles differ – in terms of e.g.
the mean [·]10 – from each other by more than a prescribed
small value ε1. In effect by Tm,I,j (Tc,I,j and Tw,I,j) we
have closely approximated (bracketed) the stable manifold
of the unstable solution in this phase.

II. Advancing. The next step is to let Tm,I,j evolve un-
der the dynamics towards the unstable solution along its sta-
ble manifold: Et[Tm,I,j ], where Et[·] denotes the nonlinear
(autonomous) evolution operator advancing the initial con-
dition up to time t. However, by a straightforward simula-
tion the evolution has also an unstable component besides
the stable one. In fact Tw,I,j and Tc,I,j are also advanced,
which results in the separation of their trajectories. For this
reason the advancing of the profiles is stopped at time tj+1

when [Etj+1 [Tw,I,j ]−Etj+1 [Tc,I,j ]]
1
0 = ε2 > ε1, using some

small ε2.
Robustness. In order to ensure its robustness, a third (III)

phase of the procedure adjusting the pair of bracketing tra-
jectories might be necessary (Madré, 2011) when one simu-
lates the system using – otherwise efficient – adaptive time
step and/or implicit numerical integrator schemes. This phase
is described in Appendix A.

Convergence. In the case of the autonomous 1d EBM
(1) when the unstable climate is time-independent, the pro-
cedures in phases I.-III. can be repeated a few times (j =

0, 1, 2, . . . , J) in order to refine the approximation of the un-
stable solution, which is actually achieved in phase II. The
rate of convergence to the unstable state is governed by its
largest negative eigenvalue. (That is, strictly speaking, the
property of convergence is not a property of the algorithm
but that of the treated system.) Since the 1d EBM is strongly
diffusive, its largest negative (second) eigenvalue in modu-
lus |λ(2)U | is large, and so the convergence is fast.

Numerical efficiency. When the unstable state is time-
dependent, including the realistic scenario of a chaotic un-
stable state, the procedures can be continued indefinitely
(j = 0, 1, 2, . . . ) in order to produce an arbitrarily long
numerical trajectory. In general, at any stage of the proce-
dure, i.e., for any j, ε1 can be chosen arbitrarily small for
the iterative bisecting (phase I) in order to approximate the
stable manifold, and so the unstable state, arbitrarily close,
which would entail the desirable property of an arbitrar-
ily long trajectory lifetime tj+1 − tj . To do this in prac-
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tice is not efficient, however. To see why, we have to as-
sess the bracket size ε1-dependence of the computational
effort that is needed to produce a given length of numeri-
cal trajectory. The length of the (cold or warm-side) trajec-
tory (LT = tj+1 − tj) in a single j-cycle (j > 0) that
approximates the stable manifold in the beginning (tj) with
a distance of at most ε1 can be found as follows:

LT (ε1, ε2) = I ln 2/λ
(1)
U , (16)

where λ(1)U = dfT̂ /dT̂ |T̂U is the positive largest eigenvalue
of the 1d EBM, and the parameter-dependence is introduced
through the necessary number of bisections I = d(ln ε2 −
ln ε1)/ ln 2e. In the latter the ceiling function dxe gives the
smallest integer not smaller than x. For j = 0 the larger
bracket size is not ε2, but something else depending on the
initialization of the procedure, e.g. [TW−TC ]. Equation (16)
is valid in the linear limit using small enough ε2. Next, the
computational effort (CE) needed in the same j-cycle in
units of model time – so as to be comparable to LT – can be
shown easily to be:

CE(ε1, ε2) = LT (I + 1)/2 + tI.bI. (17)

The first term accounts for the I cycles of the iterative bi-
secting, expressing the length of bracketing trajectories di-
verged to an ε2 degree, and the second term for the same
additional time tI.b in each iteration needed to cross the pre-
scribed threshold in order to determine (in phase I.b) which
attractor a trajectory would go to. Note that, first, phase II is
also accounted for; second, we assumed stringent enough er-
ror tolerance so that phase III is not needed, as mentioned in
Appendix A; and third, we can neglect other computational
efforts (use of auxiliary variables, checking conditions, etc.)
done per cycle. Therefore, we have that

CE/LT = (I + 1)/2 + tI.b ln 2/λ
(1)
U . (18)

The relative computational effortCE/LT can be minimized
by minimizing I . This dictates a single I = 1 bisection
per j-cycle, i.e., noniterative bisection! Translating this into
terms of the parameters: given some requirements on the ac-
curacy that fixes ε2, we need ε2/2 < ε1 < ε2. (Note that a
too small ε2 would not be sensible given that some errors of
approximating the continuous-x temperature profile T (x) in
the computational gridpoints are already incurred due to the
spatial coarsegraining.) This way we piece together a long
numerical trajectory from segments (as the schematic in Fig.
2 suggests) of minimum length ln 2/λ

(1)
U . Note that in case

of a large-DOF system λ
(1)
U can be thought of as the largest

positive finite-LT -time Lyapunov exponent (FTLE) of the
chaotic saddle, λ(1,LT )

U (Bódai et al, 2011). As this quantity

controls LT , and generally varies over time, LT will also be
different in the subsequent j-cycles.

4 Results

4.1 Edge tracking

For µ = 1 the bracketing trajectories resulting from the
edge tracking procedure are shown by Fig. 3 (a). We used
[T ] to determine which stable state is approached. Although
we can use any initial conditions from the different basins
of attraction, we initialized the warm and cold-side trajec-
tories involved in the edge tracking procedure by the warm
and cold stable states: Tw,0,0 = TW and Tc,0,0 = TC . We
are yet to choose the tolerance parameters ε1 and ε2. This
hinges on the fact, partly, that we adopt in our numerics the
optimal choice of I = 1 for j = 1, 2, . . . , which restricts
the choice of ε1 as stated above. In the initial j = 0 cycle,
however, typical initial conditions (not near the stable man-
ifold of the edge state) require more than one bisections:
I0 = d(ln[Tw,0,0 − Tc,0,0] − ln ε1)/ ln 2e, which realizes a
small bracket size ε0 = [Tw,0,0−Tc,0,0]/2I0 and also an ini-
tial trajectory length LT0 = (ln ε2 − ln ε0)/λ

(1)
U . The latter

can be different from the constant length of ln 2/λ(1)U in the
latter cycles. In particular, LT0 can be arbitrarily small as ε0
approaches ε2. We can generate such a situation by choos-
ing ε1 so that ε1/{ε1 − ε0)� 1, and furthermore choosing
ε2 so that ε2/{ε2 − ε1) � 1, in addition to- and consis-
tent with the above stated restriction. Merely for the purpose
of demonstrating the possibility of a short initial trajectory
length, accordingly, we chose ε1 = 1.5 · 10−2 [K], and we
set ε2 = 1.05ε1 [K], which implies an acceptable accuracy
for us. This will not affect our analysis of the results follow-
ing below, in comparison with a more arbitrary choice of ε1
according to the restriction ε2/2 < ε1 < ε2. Clearly, the
smaller bracket size for j > 0 is ε2/2, which is just a little
larger than ε1/2, and so a second bisection is never needed.
This is well visible in Fig. 3 (a), along with the fact that no
phase III of the procedure was necessary provided that we
required a sufficiently small relative error of integration.

J = 7 cycles of the procedure have been completed,
but we see that the convergence to the edge state is not im-
proved already from the third cycle on. As the rate of con-
vergence to/divergence from the edge state is governed by
its largest negative/positive eigenvalue, we can estimate it as
a slope of e.g. the warm-side trajectory, once the constant
value of [TU ] is subtracted (guessed to be about 265.003
K), and the trajectory is presented in a lin-log diagram, as
seen in Fig. 3 (b). The negative eigenvalue can be approx-
imated by the initial slope, indicated in the diagram by a
solid straight black line, provided that Tw/c,I,0 are relatively
close to the edge state and that ε1 is small enough, which are
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Fig. 3 Bracketing trajectories. (a) Pairs of J = 7 warm and cold-side
bracketing trajectories resulting from the edge tracking procedure. (b)
Only the warm-side trajectory is shown, having subtracted the constant
value of [TU ] estimated to be about 265.003 K, in a lin-log diagram.
The rates of exponential convergence and divergence to and from the
edge state are given by the slopes of the black straight lines tangential
to the trajectory.

reasonably satisfied in our case (supported shortly below).
The warm-side trajectory is leaning close to the straight line
in the short j = 0-cycle and in part of the j = 1-cycle.
The first discontinuity point of the piece-wise discontinu-
ous numerical trajectory between the first two cycles is not
really visible in the lin-log diagram, but the second and so
the rest of the discontinuity points are already apparent in
our case. We can read off a negative initial slope of about
−3.0 · 10−8. The positive slope, say, for j = 5, also indi-
cated by a straight line, is about 6.1 · 10−9. This implies
LT ≈ 1.15 · 108, in agreement with what can be seen in the
diagram. Importantly, the negative slope is about 5× that of
the positive slope, which confirms our previous statement
on relatively strong diffusivity and fast convergence, some-
thing that underpins our concept of the constitutive relation-
ship (13). Moreover, since the minimum LT is controlled
by the positive slope, it is clear now that the edge state in
our case is closely approximated already in the first, or at
most the second, cycle (j = 0, 1); and so the slope after that
does represent the positive eigenvalue. We have obtained the
first two eigenvalues of the (nonlinear) 1d EBM (1) by solv-
ing the related characteristic equation, by using bvp4c once
more. The method is detailed by Ghil (1976). The resulting
values, λ(1)U = 6.84 · 10−9 and λ(2)U = −2.34 · 10−8, are in
reasonable agreement with the estimates given by the slopes.

We note that the ‘mismatch’ of these eigenvalues is re-
lated to the steepness of the eigenvector belonging to λ(2)U
projected onto the [T ]-∆T plane. Trajectories approach closely
the edge state or the heteroclininc trajectory running approx-
imately in parallel with this eigenvector; and since the latter
makes a small angle with the vertical, we do see a fast initial
evolution of [T ] governed by λ(2)U .

Subsequent j-cycles of the edge tracking procedure ap-
plied to the 1d EBM refine the shape of the unstable equilib-
rium temperature profile TU (x) more and more. Otherwise,
the approximation of the mean by e.g. the warm-side tra-
jectory [Tw,I,j ] can be shown to be a discrete-time chaotic
process. Due to this fact the bisection affects the cold and
warm-side trajectories, regarding whether they are contin-
ued or reinitialized, with the same relative frequency. Con-
tinued application of the edge tracking procedure, upto a
much larger J than in Fig. 3 (a), would show this. Properties
of the bisection, however, as discussed above, guarantee that
[Tw,I,j − TU ] < ε1 for all j and any choice of ε2.

In the general case of a time-dependent edge state, how-
ever, the continuous-time evolution of e.g. |[Et[Tw,I,j ]−TU (t)]|
for any fixed j is not expected to be monotonically increas-
ing, and |[Tw,I,j − TU (tj)]| might be of order ε2. Although,
this would not jeopardize the control of accuracy by ε2.

Considering more complex GCMs featuring bistability,
we expect that the outlined edge tracking procedure is still
applicable. A bisection would simply constitute a linear in-
terpolation between two points that belong to different basins
of attraction in a large d-dimensional phase space. The straight
line (of dimension one) that connects the two points will
then have one or more intersection points (of dimension zero
or less than one) with the possibly folded stable manifold of
the unstable state, whose dimension is at least d − 1. From
such an intersection point, in the general case of a time-
dependent edge state, the convergence of the numerical tra-
jectory is governed by the largest negative ‘local’ or time-
dependent FTLE, and the lifetime of trajectories in the j-
cycles are controlled by the largest positive time-dependent
FTLE. The coexisting cold and warm states of PlaSim, for
example, are chaotic states. Whether the corresponding un-
stable state is a fixed point, a periodic orbit, a chaotic saddle,
or some other object, is yet to be seen.

4.2 Transient dynamics and functional relationships
between observables

The backbone of the transient dynamics is the heteroclinic
trajectory in the 1d diffusive EBM. This means that an ar-
bitrarily initialized trajectory (but again: initialized well be-
tween [TW ] and [TC ]) would be first quickly attracted to the
heteroclinic trajectory, and then it would slowly ‘slide’ to the
stable state confined closely to that trajectory. The direction
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Table 1 Values that four indicator quantities (described in the main
text) take for the warm (W), cold (C), and the unstable (U) climates.

[T ] [K] x|α=0.5 ∆T [K] ṡmat
[ mW

Km−2

]
W 289.0 0.70 18.2 8.5
U 265.0 0.39 20.8 10.1
C 231.3 (α = 0.6) 7.9 2

of the quick initial approach of the heteroclinic trajectory is
given by the eigenvector belonging to λ(2)U , which is the di-
rection of the slowest approach (Tél and Gruiz, 2006), but it
is still quick in a strongly diffusive system (λ(1)U � |λ

(2)
U |).

The heteroclinic trajectory can be obtained as a ‘byprod-
uct’ of the edge tracking procedure in a way that the advanc-
ing in phase II is continued even after the ε2 degree of sepa-
ration of the bracketing trajectories. That is, the trajectories
seen in Fig. 3 (a) can be extended all the way to the stable
states. Figure 4 shows the extended J = 7 pairs of trajecto-
ries in terms of the time evolution of the four possible indica-
tor quantities named in Sec. 3. Note that for this picture time
is reinitialized to 0 in every new cycles of the edge tracking
procedure. We emphasize that it does not matter which of
these quantities is actually used for the indicator purpose in
the procedure, they all yield the same unstable state. It is
shown by hollow circle markers in Fig. 1 (a) alongside the
solution found by Matlab’s boundary value problem solver
bvp4c, indicating a very accurate result. Equilibrium val-
ues of the four indicator quantities are compiled in Table 1.

When any two indicator quantities are plotted against
one another, the J = 7 curves collapse onto one – as they
should, all being closely confined to the same unique het-
erclinic trajectory. This establishes a functional relationship
between the pair. We paired up [T ] vs x|α=0.5 and ∆T vs
ṡmat in Fig. 5 (a) and (b). As for the first pair, since x|α=0.5

is a reasonable proxy for the (long-time average) ice cap
extent, its close relation to [T ] is expected indeed. Previ-
ous studies also considered the ice cap extent to determine
the tipping point quantitatively. Our figure of x|α=0.5 =

0.39 for the unstable state is in reasonable agreement with
the finding of Donnadieu et al (2004) in a coupled ocean-
atmosphere model of intermediate complexity, such that when
the rather sharp crossover of the mean annual see ice cover
fraction from 1 to 0 reaches the latitude of about 30◦ North,
the model climate switches abruptly to a snowball state. There-
fore, if [T ] is governed approximately by a well-defined 0d
EBM, then so is x|α=0.5 (at least in a limited range, which
does not include the stable cold completely snow covered
snowball state). Consequently, if the unstable state is slightly
perturbed toward the cold state, then the climate experiences
a monotonic or gradual increase of the snow cover; and sim-
ilarly, a perturbation towards the warm state would initiate a
gradual receding of the snow cover.

Considering the other pair of observables, the functional
relationship between ∆T and ṡmat is also rather obvious,
warranted by the approximation (14). However, in Fig. 5
(b) we observe a sharp turn of the curve on the warm-side
branch, which is a not so obvious effect. It is related to the
fact that e.g. ∆T cannot be simulated by a surrogate 0d
EBM, i.e., a single-box model, as mentioned in Sec. 3.1.
This is reflected in the transient increase and nonmonotonic
evolution of ∆T and ṡmat towards the stable warm state
shown in Fig. 4 (c) and (d), respectively. That is, the climate
experiences the state of most active heat transport at an in-
termediate out of dynamical equilibrium state, between the
unstable and warm stable equilibria.

It is useful to construct the functional relationship also
between ∆T and [T ], which we called a constitutive rela-
tionship in Sec. 3.1. Figure 6 shows this relationship be-
tween ∆T and [T ] mapped out for the full range of bista-
bility in terms of µ, which can be represented as a surface:
h([T ], ∆T, µ) = 0 [refer to Eq. (13)]. A characteristic fea-
ture of this surface is that for any fixed µ the single maxi-
mum of ∆T takes place at about [T ] ≈ 270 K in the full
range of bistability. Also more generally, the dependence on
µ is not strong. The border of the surface on one side is
drawn out by the stable warm states depending on µ (thick
solid red line), and on the opposite side by the stable cold
states (thick solid blue line). The 3d parametric curve of any
of the equilibria given by e.g. {∆T (µ), [T (µ)], µ} we will
refer to as the path of the equilibrium state in question. The
path of the unstable state is shown by the thick solid green
line. This path does not align with the ridge of the surface,
max[∆T ]|µ=const. We conclude, therefore, that a transient
increase of ∆T towards the warm state is possible.

In surface h branches of the heteroclinic trajectories be-
longing to fixed values of µ can be seen as thin blue lines.
Let us compare the transient dynamics for different fixed
values of µ. Starting from the unstable state, triggered by
a small perturbation towards the warm state, for larger val-
ues of µ, which imply smaller ∆T initially, the system has
to ‘climb’ more in order to reach the same maximal ∆T
(which depends much more weakly on µ in comparison e.g.
with the paths of equilibria), and then it would descend to a
lower value of ∆T of the warm state. That is, the larger µ
is, the ‘lengthier’ excursion the system has to take in terms
of ∆T . If the system is initialized arbitrarily, it first quickly
goes to the (blue) heteroclinic trajectory, and from then it
might or might not have to take an excursion in terms of
∆T in order to arrive at the stable state.

In the general case of time-dependent chaotic unstable
states, there is a pair of dense sets of trajectories that lead
from the unstable to the two different stable states. A skele-
ton of the chaotic set is constituted by a dense set of pe-
riodic points of the saddle type, each of which has one or
more unstable directions. Several types of trajectories may
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Fig. 4 The evolution of various possible indicator quantities in phase II of the edge tracking, extended all the way to the stable states: (a) average
temperature [T (x, t)]10 (b) latitude of an intermediate value of the albedo x|α=0.5 (c) bulk temperature difference between high and low latitudes
∆T (d) (specific) material entropy production in the process of meridional heat transport ṡmat. J = 7 (color matching) pairs of warm- and
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Fig. 5 Relationships between observables used as indicator quantities for the edge tracing procedure. Pairs of time series of (a) [T ] vs x|α=0.5 or
(b)∆T vs ṡmat from Fig. 4 are plotted together. The position of equilibria are indicated by circular markers. (Note that the cold state could not be
defined in terms of x|α=0.5, because α = 0.6 everywhere on the snowball Earth.) Arrow heads indicate the direction of change along branches
of the heteroclininc orbit, pointing away from the unstable state.
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Fig. 6 Constitutive relationship between∆T and [T ] (depending only slightly on the solar strength µ) corresponding to the heteroclinic trajectory
to which the system very quickly aligns. The surface h([T ],∆T, µ) = 0 is mapped out by thin solid (blue) lines; and in the surface thick solid
lines mark the steady states. Projections of these latter curves onto planes spanned by the different combinations of two of the three variables are
also shown.

be associated with these unstable directions, and here we are
concerned with two types that belong to the unstable man-
ifold of the unstable set. Among these a heteroclininc tra-
jectory ‘connects’ an individual (unstable) periodic point of
the unstable set with an/the (unstable) periodic point of one
of the attractors. If the attractor is chaotic, another type of
trajectory originating from an unstable periodic point (or its
immediate vicinity) of the unstable set would approach one
of the chaotic attractors and keep winding around it. In sum-
mary, a dense set of unstable periodic points of the unstable
set are associated with a dense set of unstable directions and
associated trajectories. Therefore, a constitutive relationship
similar to (13) can be defined only in a statistical sense, as an
average over the above described ensemble of dense set of
trajectories. In practice we would generate such an ensem-
ble of J numerical trajectories by the continued application
of the edge tracking procedure, recording the extended tra-
jectories similar to those in Fig. 4.

4.3 Structural properties

In Fig. 6 projections of the paths of equilibria onto planes
spanned by the different combinations of two of the three
variables are also shown. Two of them is reproduced in Fig.
7 (a) and (b). The first one is in fact a classical result: the
bifurcation diagram for the average temperature with the
relative solar strength being the bifurcation parameter; see
e.g. Fig. 10.6 of Ghil and Childress (1987) or Fig. 1 of Ghil
(2001). A reading of this diagram, aided for this purpose
with annotation by Ghil (2001), can be given as follows.

Starting from the present-day climate, if the solar strength
µ adiabatically decreases, the climate cools (advancing to
the left along the red curve), and at a critical point, µw→c,
it tips from a relatively warm state to a cold snowball state.
(Note that the tipping trajectory is shown in Fig. 6 approx-
imately as the borderline of the surface: the thin blue line
belonging to the smallest value of µ represented there.) If
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now µ slowly increases again, the system would not follow
the same route back, but the cold climate gradually warms
(advancing to the right along the blue curve), upto a point,
µc→w, where the basin of attraction of the cold state van-
ishes, and then the climate tips from a relatively cold snow-
ball state to a warm state. With µ decreasing again, the present-
day climate can be ‘restored’ at the present-day value of µ.
That is, changing µ very slowly in a back-and-forth manner
in a range including µw→c and µc→w, a hysteresis loop is
realized. The slowly forced nonautonomous system is gov-
erned by the structural properties of the autonomous system.

At the tipping point µw→c (µc→w) the warm (cold) and
the unstable states become identical, and hence the corre-
sponding branches of the bifurcation diagram are connected.
In accord with this, the paths of equilibria in the surface h,
shown in Fig. 6, are also connected.

Branches of this bifurcation diagram belonging to the
three equilibria,E, are given by three functions: [T ] = fE(µ),
E = C,U,W for the cold, unstable, and warm states, re-
spectively. The inverse functions of these can be combined
into a single function: µ = f−1([T ]). In Fig. 6 the projec-
tion onto the µ-∆T plane results in a similar bifurcation-like
diagram, which is reproduced in Fig. 7 (b). It can be given
formally as: h(fE(µ), ∆T, µ) = 0, E = C,U,W , from
which we can construct explicit functions∆T = δE(µ). The
third possible projection onto the [T ]-∆T plane is given as:
g([T ], ∆T ) = h([T ], ∆T, f−1([T ])) = 0, and it is repro-
duced in Fig. 8.

The use of αmax = 0.6, as opposed to the original value
0.85 used by Ghil (1976), results in substantially increased
[T ] in the cold state and a reduced range of bistability. The
quadratic tangency locally e.g. at µw→c is fairly well-visible
in Fig. 7 (a). From Eq. (10) it can be derived as follows:

µ = f−1([T ]) ≈ σ̂(Tw→c)T
4
w→c

Q̂[1− α̂(Tw→c)]

+
1

2

d2µ

d[T ]2

∣∣∣∣
Tw→c

([T ]− Tw→c)2,
(19)

where Tw→c = fW (µw→c). This feature of a saddle-node
type bifurcation is a robust one in the climate model hier-
archy, as exemplified for an intermediate complexity GCM
PlaSim by Fig. 1 of (Lucarini et al, 2010). Such an observa-
tion was made early on by Wetherald and Manabe (1975).
We mention that Zaliapin and Ghil (2010) explored the de-
pendence of the position µw→c of the tipping point and its
‘sharpness’ d2µ/d[T ]2|Tw→c on another parameter, which
can be related most closely to our (maximal) slope max[dα̂/d[T ]].
(Strictly speaking the latter is not a parameter, nevertheless,
a functional relationship between this and other diagnostic
quantities could indeed be constructed.)

The quadratic tangency of the saddle-node bifurcation of
[T ] is inherited by ∆T and ṡmat, although it is not so obvi-
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Fig. 7 Bifurcation diagrams. The dependence of (a) the average tem-
perature [T ] (b) the temperature difference between low and high lati-
tudes∆T and (c) the material entropy production ṡmat on the relative
solar strength µ are shown for the three equilibrium solutions of the 1d
EBM (1).

ous in Fig. 7 (b) and (c): the respective warm and unstable
branches meet in rather sharp points. To see why, first we
note that we have a relationship between the slopes through
the chain rule of differentiation:

d∆T

dµ
=
d∆T

d[T ]

d[T ]

dµ
. (20)

The connection is provided by the function g([T ], ∆T ) = 0.
The sign of the slope at the tipping point d∆T/d[T ]|[T ]=Tw→c =

(dg/d[T ])/(dg/d∆T )|([T ],∆T )=(Tw→c,∆Tw→c), where g(Tw→c, ∆Tw→c) =
0, determines whether the ‘vertical’ order of the stable and
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Fig. 8 ∆T plotted against [T ] taken from Fig. 7 (b) and (a), respec-
tively. Three parameter settings are represented: αmax = 0.5, 0.6,
and 0.85, which values in this order result in increasing [T ] in the cold
state.

unstable branches of the diagram of ∆T with respect to that
of [T ] flips in the vicinity of the tipping point. When it does
flip, δW (µ) (δU (µ)) becomes a convex (concave) function,
while fW (µ) (fU (µ)) remains concave (convex). The bifur-
cation diagram prompts that d∆T/d[T ]|[T ]=Tw→c is nega-
tive, however, it should be relatively small because of the
sharp tipping point. Indeed Fig. 8 shows that for αmax = 0.6

the maximum of ∆T occurs very near the tipping point. In
the same figure the cases of αmax = 0.5 and the original
0.85 are also represented, showing that the slopes d∆T/d[T ]|[T ]=Tw→c

have opposite signs, and are not negligible. Accordingly, we
observe the opposite vertical order of theW andU branches,
and the quadratic tangency in both cases is well visible (not
shown, although for the original αmax = 0.85 qualitatively
similar results are shown by Fig. 7 of Ghil (1976) for a sim-
ilar quantity lim

t→∞
[T (x = 0, t)− T (x = 1, t)]).

We can extend this analysis to the entropy production.
Considering the approximation (14), the slope is obtained
as:

dṡmat
dµ

≈ ∆T

[T ]2

[
2k̂([T ])

(
d∆T

d[T ]
− ∆T

[T ]

)

+∆T
dk̂

d[T ]

]
d[T ]

dµ
.

(21)

This reveals that the flipping of the stable and unstable branches,
when varying e.g. αmax, is controlled not only by the sign of
the slope d∆T/d[T ]|[T ]=Tw→c , but also by the ratio∆T/[T ]
and by the slope dk̂/d[T ]|[T ]=Tw→c . However, the latter is
negligible here, and also ∆T/[T ] is a relatively small value
typically, and so the vertical order of the W and U branches
of the diagrams of∆T and ṡmat are always the same, except

for a very short range of αmax. The diagrams for αmax =

0.6 in Fig. 7 (b) and (c) admit the same vertical order. Fur-
thermore, these diagrams are very similar overall, in the whole
range of bistability.

With αmax = 0.6 in a large portion of the range of bista-
bility, for about µ < 1.07, the unstable climate is more out
of thermodynamic equilibrium than the corresponding sta-
ble climates, e.g. δU (µ) > δW (µ), which is an interesting
contrast to the behavior in terms of the mean temperature,
namely, fU (µ) < fW (µ) for any µ ∈ [µw→c, µc→w]. With
αmax = 0.5 the stable warm climate is more out of ther-
modynamic equilibrium than the unstable climate for any µ
(not shown), δU (µ) < δW (µ), which is already similar to
the unchanged relation fU (µ) < fW (µ). It is unchanged
since [T ] is still governed by a well-defined 0d EBM. How-
ever, from the point of view of the transient dynamics, ∆T
does not behave similarly to [T ] even with αmax = 0.5,
since during the transient much larger thermodynamic dise-
quilibrium is possible than in the stable warm state, similarly
as with αmax = 0.6 shown by Fig. 6. That is, in neither of
these two cases can a 0d EBM for ∆T be well-defined. This
feature is a robust one in a large range of αmax, which in-
cludes the original value 0.85. However, the position of the
(green) path of the unstable solutions in the surface h varies
considerably with αmax. Accordingly, a transient increase
of ∆T occurs sometimes towards not the warm but the cold
state. For some values of αmax there exists a critical value
of µ where the unstable path crosses the ridge of h, and so
no transient increase will occur in either direction. For the
original αmax = 0.85 this value happens to be very close
to the present day value of µ = 1. Consequently, the warm-
to-cold B-tipping at µw→c < 1 would start with a transient
increase of ∆T in this model.

5 Summary and discussion

In this paper we applied the so-called edge tracking tech-
nique to find the unstable solution of a geophysical prob-
lem, namely, that of a diffusive 1d energy balance climate
model (EBM), the Ghil-Sellers model. The original PIM-
triple algorithm is applicable generally in order to construct
long trajectories on a nonattracting dynamical object, e.g.,
a chaotic saddle. The edge tracking algorithm is a more ef-
ficient version of it involving an iterative bisection proce-
dure, which can be used when the unstable solution is due to
bistability in the system, or, when a scalar quantity can indi-
cate the type of flow regime that the trajectory is exploring
temporarily. The unstable solution in the latter more general
situation – separating different regimes – is referred to as
an ‘edge state’. The edge tracking algorithm was proposed
and successfully applied to various shear flow problems by
Eckhardt and co-workers. It has been applied now for the
first time to a geophysical problem featuring bistability. The
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unstable solution of the 1d EBM can be found also by a
boundary value problem solver algorithm. This possibility
provides us a reference solution, against which the solution
obtained by edge tracking can be compared. In the examined
cases we found excellent agreement.

We examined the influence of tolerance parameters of
the algorithm on its robustness, efficiency, and the error of
approximation. We find, for example, that a too stringent tol-
erance of bracketing the stable manifold of the unstable state
would make the procedure inefficient, and in fact taking a
single bisection, i.e., avoiding iteration completely, would
be most efficient in our case – and in most practical cases,
presumably. Furthermore, we find that in the strongly diffu-
sive 1d EBM the convergence to the edge state is very fast,
and so the approximation does not improve already from the
second cycle of the iterative/cyclic edge tracking procedure
(assuming reasonable tolerances imposed).

A related effect to the fast convergence is the rapid ap-
proach of the heteroclinic trajectory, which connects the un-
stable state (saddle fixed point) with a stable state (node
fixed point), by arbitrarily initialized trajectories, whereby
they would approach the stable state subsequently evolving
slower and closely confined to the heteroclinic trajectory.
The unique heteroclininc trajectory, which is of dimension
one, thus, dictates a functional relationship between any pair
of observables (prognostic or diagnostic) after a short tran-
sient time. We called such a relationship between the av-
erage temperature [T ] and the temperature difference ∆T
between high and low latitudes a climate constitutive rela-
tionship. The difference ∆T is a simple measure of ther-
modynamic disequilibrium, the characterization of which is
another main goal of the present analysis. We found that∆T
has a single maximum as a function of [T ] at about 270 K,
which is approximately unchanged within the whole range
of bistability with respect to the solar strength µ. The in-
vestigation of this interesting behavior is a subject of on-
going research. It has to do with the fact that at about this
temperature water freezes, with which the albedo changes
abruptly, and since it is the average temperature concerned,
the maximal transport occurs when about half of the planet is
snow-covered (averaging over a year). As [TU ] of the unsta-
ble state, in contrast, depends considerably on µ, a transient
increase and nonmonotonic evolution of ∆T towards a sta-
ble state – unlike the evolution of [T ] – is a typical behavior.

We constructed bifurcation diagrams, representing struc-
tural properties of the system, in terms of [T ] and, as new
result, ∆T and a related quantity ṡmat, the material entropy
production in the course of meridional heat transport – an-
other measure of thermodynamic disequilibrium. In these
diagrams, beside the branches of the two stable solutions,
the third branch of the unstable solutions, which connects
the two other branches at the tipping points, is also present.
At the warm-to-cold tipping point we observe a quadratic
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Fig. 9 Thermodynamic disequilibrium properties in PlaSim. (a) Long-
time average temperature difference ∆T between similar boxes to
those defined for the 1d EBM, based on extrapolated temperature val-
ues on the 1000 hPa (or sea surface) level. (b) Long-time average en-
tropy production in the course of horizontal (H) processes. The model
configuration was adapted from Boschi et al (2013), and a fixed CO2

concentration of 360 ppm was considered.

tangency of the warm (W ) and unstable (U ) branches of
[TW/U (µ)], and this is inherited by those of ∆TW/U (µ) and
ṡmat,W/U (µ) for realistic values of the maximal albedoαmax
of snow. However, the vertical order of∆TW (µ) and∆TU (µ)
is reversed relative to that of [T ]W (µ) and [T ]U (µ) at the
warm-to-cold tipping point for large enough realistic values
of αmax. This applies also to ṡmat. Accordingly,∆TW (µ) is
a convex and decreasing function near the tipping point. This
feature, characterized also by a negative slope d∆T/d[T ]
seen in Fig. 8, reflects the effect of polar amplification, first
studied by Budyko (1969) and Sellers (1969) in EBMs, and
by Wetherald and Manabe (1975) in an intermediate com-
plexity GCM. We note that as a result of some parameter
change, e.g. αmax decreased to 0.5, the path that crosses
the ridge of the surface h shown in Fig. 6 – in the spirit
of the discussion at the end of Sec. 4.3 – can be that of
the stable warm states (instead of the unstable ones). Con-
sequently, ∆TW (µ) becomes nonmonotonic, implying that
between the tipping point and the value of µ where the max-
imum of ∆TW (µ) occurs, there is no polar amplification,
but it is in fact reversed.
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It is interesting to observe that the simple 1d EBM con-
sidered in this study captures, at least qualitatively, some of
the features of the much more complex PlaSim model. As
noted earlier, the dependence of [T ] on µ in the cold and
warm states is similar to what was reported for PlaSim [com-
pare Figs. 1 of (Lucarini et al, 2010) and 7 (a)]. Figure 9
(a) shows the long-term average of the µ-dependence of the
difference ∆T between the sea surface temperatures of the
high and low latitudes of PlaSim, which has a good degree
of correspondence with what is shown in Fig. 7 (b). Con-
sidering the entropy production ṡmat in Fig. 7 (c), on the
other hand, one may be confused by the fact that it decreases
with µ in the warm state, whereas the opposite was reported
for PlaSim [Fig. 4 (a) of (Lucarini et al, 2010)]. The EBM
used here is not able to capture vertical processes, which, as
discussed by Pascale et al (2012), give the strongest con-
tribution to the entropy production. If now one computes
in PlaSim, following Lucarini et al (2011), the contribution
to the entropy production due to large scale horizontal pro-
cesses, one obtains a bifurcation diagram [Fig. 9 (b)] which
has again qualitative similarities with the one in Fig. 7 (c).

As the convexity properties of the bifurcations diagrams
for PlaSim in Fig. 9 (a) and (b) are hard to be determined,
the vertical order of their W and U branches is not really
possible to guess even in the vicinity of the tipping point.
Our objective for future research is to construct these dia-
grams complete with the unstable U branches, applying the
edge tracking technique. The relative dissimilarity of these
diagrams (showing at least the stable branches), in compari-
son with the similarity of the corresponding diagrams of the
EBM in Fig. 7 (b) and (c), is another sign of the relative
complexity of PlaSim over the 1d EBM.

A further limitation of the EBM is that the thermody-
namic efficiency (Lucarini, 2009b), another measure of nonequi-
librium thermodynamics, cannot be defined in its terms, since
the fluid dynamics is eliminated from the model, or in other
words, it is not explicitly represented. In PlaSim, however,
the thermodynamic efficiency can be evaluated, and it was
found to increase before both the warm-to-cold and the cold-
to-warm tipping (see Fig. 3 (a) of (Lucarini et al, 2010)).
Since the unstable branch connects the stable branches at
the tipping points, it is reasonable to think, then, that the
atmosphere under the unstable climate is a more efficient
thermal engine than under either the warm or the cold sta-
ble climates, everywhere in the range of bistability. Whether
this is the case is yet to be seen, once the unstable climate
states are successfully constructed by the edge tracking tech-
nique. Then, it would be also an interesting question whether
a maximal efficiency is achieved in a nonequilibrium dy-
namical state, like ∆T of the 1d EBM, or, whether a consti-
tutive relationship between the efficiency and some global
average temperature has more complex characteristics than
just a single maximum. The following observation can also

be made regarding the bifurcation diagram shown in Fig. 3
(a) of (Lucarini et al, 2010). At either of the tipping points
locally no quadratic tangency of the stable branches can be
seen – unlike the situation with the total entropy production
shown in Fig. 4 (a) of (Lucarini et al, 2010). This makes any
guess about the unstable branch harder, and thereby further
motivates the search for the unstable states in PlaSim.

Another line of our interests for future work is concerned
with the response (Lucarini, 2009a; Lucarini and Sarno, 2011)
of the climate system near a tipping point. We will investi-
gate nonlinear terms of the response, expected to be influ-
enced substantially by the nearby unstable state.

Before attempting to construct the edge states by apply-
ing the edge tracking technique for a full climate model, in
an ongoing work we try to do just that for a bistable Earth-
like but dry model atmosphere realized by the software suite
the ‘Portable University Model of the Atmosphere’ (PUMA),
which constitutes the dynamical core of PlaSim. We rep-
resent the negative feedback mechanism that creates bista-
bility by a phenomenological model of the ice-albedo feed-
back, specifying the surface albedo by a suitable function
of the surface temperature. Following that we will do the
same with PlaSim. Possible challenges with that include the
interpolation between supersaturated and unsaturated moist
states when bisecting.

Earth-like planets of different orbital parameters, in par-
ticular: the ratio of the lengths of the day and the year, ex-
hibit substantially different multistability properties (Lucarini
et al, 2013; Boschi et al, 2013). It seems to be of great inter-
est, in perspective, to investigate such structural changes by
using the edge tracking method.

Here, by finding and characterizing unstable solutions,
we wish also to initiate work on the understanding how global
instability determines the variability of nonautonomous com-
plex systems like climate.
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A Phase III of the edge tracking procedure

After advancing the profiles in phase II of the edge tracking procedure
(described in Sec. 3.2) it might be the case that if we restart the simula-
tion and further advance the profiles (were we to proceed with phase I),
both of them end up with the same climate. This can happen if an adap-
tive time step (and/or implicit) integrator is used, such as e.g. Matlab’s
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pdepe, which initiates the integration with an algorithm other than
that is used for the rest of the integration procedure. In the vicinity of
the edge or its stable manifold, trajectories are very sensitive to per-
turbations regarding the outcome. Changing the integrator scheme at
arbitrary times (extrinsic to the treated dynamical system) is a kind of
numerical perturbation, which is enough to change the outcome when
the simulation is interrupted and restarted. This can be expressed in
a way that the numerical evolution operator is a nonautonomous two-
time operator: E∗t1,t2 [·], t1 < t2. Given certain resolutions in space
and time for the numerical solution, a too small choice for ε2 will re-
sult in the described problem.

If for example E∗tj+1,t
[E∗tj,tj+1

[Tc,I,j ]] ends up with the warm
climate, then it is reinitialized with the subtraction of a small con-
stant number, Tc,0,j+1 = E∗tj,tj+1

[Tc,I,j ] − ε3, and we check if
it fixes the problem, i.e., if E∗tj+1,t

[E∗tj,tj+1
[Tc,I,j ]−ε3] −→ TC for

t −→ ∞. If not, then the incremental negative correction is applied
again, Tc,0,j+1 = E∗tj,tj+1

[Tc,I,j ] − 2ε3, and it is repeated until
the problem is fixed. A robust choice can be ε3 = ε2, but it may be
different from the computationally most efficient choice.

We note that as an alternative strategy, the error tolerance of the
numerical integrator can be set stringently enough, depending on ε2,
that the original problem would not present itself at all. It is yet to be
seen which strategy is more efficient, provided that the same accuracy
is achieved.

B Phase portrait

The phase portrait of a dynamical systems is usually represented by
a collection of trajectories that sample the various different regimes
(types of trajectories) featured by the system. Here we wish to sup-
plement the discussion in the core text by a visual display of some
of the concepts mentioned there. Figure 10 (a) shows the ‘skeleton’
of the phase portrait of the 1d EBM projected onto the 2D [T ]-∆T
plane. For this we use the longest-lived 200 trajectories out of an en-
semble of N = 106 trajectories, which were initialized by a random
perturbation of the stationary unstable temperature profile: Tn(x) =
TU (x) + δξn(x), n = 1, . . . , N , where, for each n, ξn(x) may
be a uniformly distributed white noise process of zero mean and unit
variance, and δ is the perturbation strength, set to be δ = 15 for
this exercise. We note that in our numerics for the different (l) grid-
points uncorrelated random numbers ξn,l were generated, with which
Tn,l = TU,l + δξn,l. As part of the initialization of the numerical
integration, derivatives of the profile in the gridpoints are obtained by
Matlab’s pdeval, which, just like pdepe, assumes a second order
approximation of the solution in the gridpoints. That is, the perturbed
initial conditions are in fact assumed to be continuous and smooth, un-
like white noise.

Since these are the exponentially few longest-lived trajectories used,
we know that initially they stayed very near the basin boundary, and
so the initial ensemble gives a numerical representation of the basin
boundary not far from the unstable saddle-type fixed point. Panel (a)
shows that it is a steep, nearly vertical line – at least in the explored re-
gion not far from the saddle point – which means that it is dominantly
[T ] that determines which stable node-type fixed point the system ends
up with upon perturbing the unstable solution. (This property is epito-
mized by 0d EBMs.) The steep line of the basin boundary, being one
and the same object as the stable manifold of the saddle point, aligns
with the second eigenvector of the 2-DOF model, which latter is the
same – with appropriate parametrization of the 2-DOF model – as the
second eigenvector of the 1d EBM projected onto the plane. However,
as the initial ensemble is generated by noise perturbations, its members
populate the infinite-dimensional phase space (which is limited in the
numerics by the coarsegraining). Therefore, the basin boundary is also
infinite-dimensional, and so its projection onto the 2D [T ]-∆T plane
is actually area-filling. This is seen in the magnified views in panels

(b)-(c). Further magnification in panels (d)-(e) reveals that during their
relatively long lifetime the trajectories ‘become low-dimensional’ (d),
whereby trajectories eventually going to e.g. the cold climate line up
on the cold side of the second eigenvector. (In the course of becom-
ing low-dimensional trajectories also become less ‘curly’.) Clearly,
the closer the trajectory to the eigenvector, the longer it lives; and the
longest-lived cold- and warm-side trajectories bracket the saddle point
the tightest, where they turn very sharply (e).

One can follow the ensemble of long-lived trajectories in time.
They approach the saddle point moving along its stable manifold, along
a relatively straight line in our case. The ensemble assumes its small-
est size at about the time when each trajectory approaches the (sole)
saddle point most closely in the course of its evolution. (When the sad-
dle set is a fractal set, the time of closest approach is indicated by an
emerging clear double-fractal characteristic of the ensemble – not by
its small size.) By this time the trajectories are necessarily close also to
the unstable manifold of the saddle point, which is identical with the
(sole) heteroclininc orbit in our case, and hereafter they move on, to-
wards the stable fixed points, along this unstable manifold. Therefore,
snapshots of the ensemble at-, before-, and after the closest approach
can represent the saddle point, and its stable and unstable manifolds,
respectively. This is referred to as Sprinkler’s method (Tél and Gruiz,
2006). These snapshots are shown in panel (f). In addition to the di-
rections of the eigenvectors giving the inclinations of the manifolds at
the saddle point, we can extract information also about the eigenvalues.
The spread of the first snapshot is about 5 times that of the third snap-
shot, taken at times equally separated from the second snapshot (not
visible because of the relatively small size of the ensemble), which ra-
tio agrees with that of the eigenvalues provided in Sec. 4.1.

References

Ashwin P, Wieczorek S, Vitolo R, Cox P (2012) Tipping points in open
systems: bifurcation, noise-induced and rate-dependent examples in
the climate system. Phil Trans R Soc A 371(1962):1166–1184

Berry FAJ, Bollay E, Beers NRe (1945) Handbook of Meteorology.
McGraw-Hill
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