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Abstract Two new indicators of rainfall seasonality based on information en-
tropy, the relative entropy (RE) and the dimensionless seasonality index (DSI),
together with the mean annual rainfall, are evaluated on a global scale for recently
updated precipitation gridded datasets and for historical simulations from coupled
atmosphere-ocean general circulation models. The RE provides a measure of the
number of wet months and, for precipitation regimes featuring one maximum in
the monthly rain distribution, it is related to the duration of the wet season. The
DSI combines the rainfall intensity with its degree of seasonality and it is an in-
dicator of the extent of the global monsoon region. We show that the RE and the
DSI are fairly independent of the time resolution of the precipitation data, thereby
allowing objective metrics for model intercomparison and ranking. Regions with
different precipitation regimes are classified and characterized in terms of RE and
DSI. Comparison of different land observational datasets reveals substantial differ-
ence in their local representation of seasonality. It is shown that two-dimensional
maps of RE provide an easy way to compare rainfall seasonality from various
datasets and to determine areas of interest. CMIP5 models consistently overesti-
mate the RE over tropical Latin America and underestimate it in Western Africa
and East Asia. It is demonstrated that positive RE biases in a GCM are associated
with simulated monthly precipitation fractions which are too large during the wet
months and too small in the months preceding the wet season; negative biases are
instead due to an excess of rainfall during the dry months.
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1 Introduction

The increase of greenhouse gases in the atmosphere is substantially altering the
Earth’s energy budget and warming the climate system (IPCC, 2013). One of the
most crucial aspect that we need to understand and quantify is how greenhouse
gas forcing is going to impact, globally and locally, the hydrological cycle and
the precipitation patterns over the globe. Precipitation, in particular, plays a key
role in the hydrological cycle and it is one of the climate variables of the highest
concern among climate scientists.

In spite of the difficulty of monitoring a field highly variable in both space
and time such as precipitation, changes of the annual mean precipitation have
been detected in observations and attributed to human influences (Zhang et al,
2007; Noake et al, 2012; Sarojini et al, 2012). Simulations performed by coupled
general circulation models (GCMs) predict that the large-scale hydrological cycle
is affected by climate warming in a complex way. Thermodynamical effects (Held
and Soden, 2006; Allen and Ingram, 2002; Meehl et al, 2007; Chou et al, 2009) –
associated with an increase of specific humidity – and dynamical effects – related
to changes of the large scale tropical circulation and moisture transport due to
baroclinic eddies and tropical circulation (Seager et al, 2010; Camargo, 2013) –
both contribute to the changing global patterns of precipitation (Chadwick et al,
2013). The first approximation emerging pattern of changes in the hydrological
cycle indicates that subtropical arid and semi-arid regions are expected to get
drier (e.g. Kelley et al, 2012; Seager et al, 2013) whereas wet equatorial and high-
latitude regions are expected to get wetter. Understanding future precipitation
changes both in the tropics and extratropics is a challenge for climate science
because it requires knowing how different large-scale weather systems such as the
monsoons (Vecchi and Soden, 2007; Cherchi et al, 2011; Turner and Annamalai,
2012; Sperber et al, 2013; Kitoh et al, 2013; Cook and Seager, 2013; Hasson et al,
2013, 2014), the Hadley Cell (Kang and Lu, 2012), midlatitude baroclinic cyclones
(Bengtsson et al, 2006; Harvey et al, 2012; Zappa et al, 2013) and tropical cyclones
(Rathmann et al, 2013) will change under greenhouse gas forcing. While there is
modeling evidence that storm tracks shifts polewards as the climate warms globaly
(Bengtsson et al, 2006; Swart and Fyfe, 2012), GCMs still faces serious difficulty in
simulating the regional distribution of monsoons rainfall under present conditions
and tend to disagree on future projections (Turner and Annamalai, 2012). These
uncertainties make the use of GCMs projections problematic for applications, such
as the assessment of rivers hydrology (Lucarini et al, 2008; Hasson et al, 2013).

For a more robust GCMs validation and for a more complete description of the
precipitation regimes under global warming, it is important to take into account
not only the mean total annual amount of precipitation but also statical properties
of intense rainfall events (Sillmann et al, 2013; Kharin et al, 2013; Mehran et al,
2014) and the seasonality of the annual rainfall (Feng et al, 2013). The latter will
be the topic of this study. A complete description of rainfall seasonality needs to
quantify the duration of the wet and dry seasons, their intensity and their timing
(Chou et al, 2013; Noake et al, 2012; Sperber et al, 2013; Hasson et al, 2014).
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Particularly in the tropics, ecosystems are extremely sensitive to the arrival of
rain at the beginning of the wet season and to the wet season length (Borchert,
1994; Eamus, 1999; Rohr et al, 2013; Konar et al, 2010). Furthermore, precipita-
tion seasonality, with its related drought and flood risks, makes agricultural efforts
and sustainable management of water resources more problematic, posing a chal-
lenge for local populations. It is therefore of key importance to quantify how the
seasonality of precipitation is changing in a warming climate.

Traditionally, rainfall seasonality is investigated through latitude-months Hovmöller
diagrams (e.g. Seth et al, 2013; Sperber et al, 2013; Huang et al, 2013), showing how
zonally averaged rainfall evolves during the year at each latitude within a certain
study area. Although this is certainly a natural way to study rainfall seasonality,
such an approach cannot provide detailed information (e.g. two-dimensional map
of rainfall seasonality) and cannot be used, for example, to study interannual vari-
ability and long-term timeseries, which instead requires a local (i.e. dependent on
latitude and longitude) scalar measure of seasonality. Several loosely related but
not equivalent metrics – such as the relative lengths and rainfall amounts of the
wet and dry seasons and the arrival dates of the 25th and 75th percentile rain-
fall (e.g. Walsh and Lawler, 1981) – can be found in the literature, often lacking
general applicability (Shukla and Paolino, 1983; Webster and Yang, 1992; Wang
and Fan, 1999; Goswami et al, 1999; Kajikawa et al, 2010). A meaningful compar-
ison of the rainfall seasonality of different locations and of different periods (e.g.
21st century projections) or between different models requires a precise and robust
quantification of this aspect of rainfall regimes.

Novel seasonality indicators of precipitation regimes – the relative entropy
(RE) and the dimensionless seasonality index (DSI) – have been recently intro-
duced by Feng et al (2013) based on the definition of relative entropy (e.g. Cover
and Thomas, 1991) and applied to tropical regions between 20◦ N/S for detecting
changes in rainfall seasonality in the tropics. While relative entropy is well known
in statistical physics and information theory, its use made for precipitation sea-
sonality analysis is new. Such an approach relies on quantifying the differences
between the time series, for a given year, of the monthly fraction of the annual
precipitation pm = rm/R (rm is the precipitation accumulated in the mth month
and R =

∑12
m=1 rm the total annual precipitation) and the uniform precipitation

sequence qm = 1/12. Such an approach is very general and does not rely on specific
assumptions or on arbitrary thresholds, thus provides new, well-founded metrics
(e.g. Knutti, 2010) for evaluating the capability of climate models in simulating
rainfall regimes.

In this study we estimate, for the first time, the seasonality indicators intro-
duced by Feng et al (2013) also over oceans and outside the Tropics and compare
observations and GCMs simulations over the historical period 1950-2010. The goal
is to show how these newly introduced metrics can be used for a systematic charac-
terization of seasonality of global precipitation regimes. In particular in this paper
we will:

1) characterize precipitation regimes in terms of the new indexes;
2) assess the capability of CMIP5 coupled ocean-atmosphere models in reproduc-

ing them;
3) show how these indexes can be used to detect models’ deficiencies in simulating

the seasonal cycle of precipitation.
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The use of the RE will allow us to compare very easily seasonality of observational
and simulated precipitation datasets (CMIP5) and to detect models deficiencies
in representing the rainfall seasonal cycle. The paper is structured in the following
way. In Sect. 2 the datasets used for our analysis and the methods for estimating
indexes are explained. In Sect. 3 the climatology of such indicators is presented
and discussed in the context of atmospheric general circulation. The capability
of coupled global models to simulate the RE is assessed in Sect. 4 and the main
findings summarized in Sect. 5. In Appendix a summary of the main properties of
the various indexes based on relative entropy is given.

2 Data and Methods

2.1 Observational data

Two newly updated land precipitation datasets are used in this study: a) the
updated gridded climate dataset developed at the Climatic Research Unit, CRU
TS3.10, simply refereed to as CRU in the following (Harris et al, 2013; Mitchell
and Jones, 2005) and b) the Global Precipitation Climatology Centre dataset, re-
ferred to as GPCC (Schneider et al, 2013; Becker et al, 2013). GPCC and CRU
reanalysis are based on statistically interpolated in situ rain measurements and
cover all land areas – except Antartica – at monthly temporal resolution for the
period 1901 − 2010. GPCC precipitation fields are available on grids of different
angular resolutions (0.5◦×0.5◦, 1◦×1◦ and 2.5◦×2.5◦) whereas the CRU dataset
is available at 0.5◦. In addition, to estimate the indicators climatology over the
whole globe, including the oceans, the Climate Prediction Center Merged Analysis
of Precipitation dataset (CMAP, Xie and Arkin, 1997) and the Global Precipita-
tion Climatology Project monthly precipitation dataset (GPCP, Xie et al, 2003),
available at monthly temporal resolution (1979-2009) and at 2.5◦ × 2.5◦ degrees,
will also be used in this study. CMAP and GPCP datasets are compiled from
merged satellite precipitation data and bias-corrected over land through continen-
tal rain-gauge observations (Bolvin et al, 2009; Huffman et al, 2009). GPCC, CRU,
CMAP and GPCP have been validated and used in numerous studies focusing on
the hydrological cycle including both global (e.g. Kitoh et al, 2013; Chou et al,
2013; Frierson et al, 2013) and regional analysis (e.g. Cook and Seager, 2013; Sper-
ber et al, 2013). It is worth mentioning here that, because of the uneven spatial
and temporal coverage of the gauging stations, terrain heterogeneities and uncer-
tainties added by quality control and interpolation techniques, combined with the
complex spatial and temporal variability of precipitation at all scales (Schertzer
and Lovejoy, 1987; Deidda et al, 1999), caution is needed when interpreting the
results based on such gridded datasets, including upscaled quantities. Because of
these reasons, reconstructed precipitation datasets are much more uncertain than
reconstruction of smoother and more regular fields such as, for example, surface
temperature.
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2.2 Model simulations

We analyze the climate models data produced for the IPCC 5th Assessment Report
(IPCC, 2013) and collected through the Coupled Model Intercomparison Project
platform, Phase 5 (CMIP5, Taylor et al, 2012; Guilyardi et al, 2013) for the
monthly means of precipitations. Table 1 shows the basic information about the
CMIP5 models considered in this study such as horizontal and vertical spatial
resolution of the atmospheric models and the research institutions where models
have been developed. The CMIP5 database contains long-terms runs for simula-
tion of the industrial period (from mid-ninenteeth century to present) and future
climate projections according to different emission scenarios (“representative con-
centration pathways” RCPs, van Vuuren et al (2011)). Simulations of the historical
period 1850-2005 forced with both anthropogenic and natural forcings are used in
this study. Most of the CMIP5 models selected here provide multiple ensemble
members for each considered scenario. Here we selected just the first member of
the ensemble for each model. GCMs with serious inconsistencies in the water cycle
– i.e. models in which long-term annual means of evaporation minus precipitation
is larger, in absolute value, than 105 m3 s−1 and equivalent to a latent energy bias
larger than ≈ 1 W m−2 (Liepert and Lo, 2013) – have been left out from our
analysis.

In order to make a spatial intercomparison between models and observations,
models precipitation, RE and DSI fields are estimated on each models’ own hor-
izontal grid, then multiplied by their own land sea mask and finally linearly in-
terpolated on a 1◦ × 1◦ horizontal grid, to compare with GPCC and CRU, or on
a 2.5◦ × 2.5◦ for comparison with the CMAP or GPCP dataset. Because of the
sparseness of observed data before 1950 (Schneider et al, 2013), our climatological
and trend analysis will be restricted to the 1950−2010 period for both observations
and models. Results on seasonality changes in future climate scenarios warming cli-
mates for the next century under different representative concentration pathways
will be presented elsewhere.

2.3 Relative entropy and dimensionless seasonality index

Given a monthly precipitation frequency at the surface point x = (φ, λ) (φ latitude,
λ longitude) associated with monthly precipitations rm(x), m = 1, . . . 12

pm(x) = rm(x)/R(x), R(x) =

12∑
m=1

rm(x), (1)

the relative entropy

D(p(x)) =

12∑
m=1

pm(x) log2 (12 pm(x)) (2)

is a measure of the inefficiency of assuming that the distribution is the monthly
uniform precipitation sequence qm = 1/12, m = 1, . . . , 12 when the true distribu-
tion is p and it is a way to quantify how different p is from q. The relative entropy
is closely related to the number of “wet” months (see Appendix) and it reaches
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its maximum value log2 12 when the annual rainfall is concentrated in one single
month (the limit pm log2 pm → 0 is taken for pm = 0) and equal to zero for p = q.

Given D(x), the dimensionless seasonality index (DSI) is defined as (Feng et al,
2013)

S(x) = D(x)

(
R(x)

R0

)
(3)

in which R0 is a constant scaling factor introduced in order to make the precipi-
tation dimensionless. We choose R0 as the maximum of R(x) of gridded datasets
over the whole period 1950 − 2010 and equal to 9701 mm. According to defini-
tion (3), S is zero when either R (completely dry location) or D (R distributed
uniformly throughout the year) are zero and maximum (log2 12) when R0 is con-
centrated in a single month. For our analysis we compute Rk(x), Dk(x) and Sk(x)
for each hydrological year k from the rainfall probability pm,k(x) = rm,k/Rk (kth

year, mth month) and then take the climatological mean (·) over a certain time
period, that is R(x) = Rk(x), D(x) = Dk(x), S(x) = Sk(x). A succinct summary
of the main properties of the various indexes based on relative entropy is given in
Appendix.

3 Analysis of observed climatology

3.1 Global patterns of RE and DSI

In Fig. 1 mean annual precipitation, relative entropy and the dimensionless sea-
sonality index for the GPCC land dataset are shown over the period 1950-2010.
Values over oceans are shown on the right side of Fig. 1 by using the updated
1979-2009 CMAP dataset (Xie and Arkin, 1997). Regions with the largest D are
those placed in the subtropical zone between 10◦ and 30◦ N/S such as subtrop-
ical south Africa, eastern Brazil, north Australia, western India, eastern Siberia,
eastern Mediterranean sea, the western mountainous regions of America (south-
western North America, western Mexico, Andes) and the region between Middle-
east and the Hindu Kush-Karakoram mountain ranges. Sub-Saharian Africa, West
India and the area in the Pacific Ocean west of Ecuador have the highest global
values (≥ 1.4). The equatorial regions roughly located between 5◦ S and 5◦ N,
where convective rainfall is almost permanent (Amazon and Congo basins, In-
donesian Isles), have values of D less than 0.2. Midlatitude regions as eastern U.S.
and northwestern Europe also have low values of relative entropy (≤ 0.2) because
baroclinic eddies deliver rain fairly constantly throughout the year. Exceptions are
the eastern and southern Mediterranean coasts and eastern Pacific, which instead
are relatively dry during the boreal summer.

In Fig. 1(e) the DSI is shown over land for the GPCC dataset while its pat-
terns over oceans can be seen in Fig. 1(f) from CMAP dataset. Since R and D are
generally observed to be negatively correlated, the largest values of S are gener-
ally found in regions with intermediate levels of annual rainfall such as northeast
region of Brazil, western Africa, northern Australia and western Central Amer-
ica. The DSI is high also in parts of South and Southeast Asia where both the
total annual rainfall and RE can be also extremely high (e.g. the Bengal region).
Equatorial regions (Indonesia, Congo basin, Amazon) and midlatitudes tend to
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have low values of S because their relative entropy is very small. Furthermore,
although one order of magnitude smaller than typical values of tropical regions,
there is appreciable seasonality along the west coast of North America and South-
west U.S., midwest plains, Mediterranean regions, Middle-east, east Siberia and
Andes. The precipitation-relative entropy diagram of Fig. 2 provides an example
of typical R, D and S values averaged over specific high-latitude, subtropical and
tropical areas.

It is worth noting, at this point, an interesting coarse graining property of D.
If we partition the year Y in N parts, we can define DN =

∑N
1 pj log2(Npj) with

pj = rj/R and rj the accumulated precipitation over the jth time period Y/N
(e.g. N = 12 for monthly precipitations). In general DN 6= DM for N 6= M so
the use of different time bins (e.g. months and pentads) will give different values
of relative entropy. However, general properties of the RE allow us to say that if
N ≥ M , then DN ≥ DM and SN ≥ SM (see Appendix A.3 for a formal proof).
This gives us confidence on high-D values, which therefore must be lower than
the “true” D. This general coarse-graining property is very useful to set lower
bounds to values of D and S at any chosen time resolution. In Fig. 3(a) we show
D73 − D12 (pentads minus months) and note that the values of relative entropy
obtained from pentad means are slightly larger than those derived from monthly
means. The error is less than 0.1 over most of the global surface, except in the
subtropical high regions where it amounts to about 0.2-0.4. Since these areas are
very dry, the dimensionless seasonality index S will not be significantly affected
(Fig. 3(b)). We note that regions featuring large values of S (e.g. S ≥ 0.05) have
errors S73−S12 generally smaller than 5 ·10−3. Since S is almost unaffected by the
choice of the time resolution in regions where S is large, as in the global monsoon
region (Trenberth et al, 2000; Wang and Ding, 2008), it is a particularly robust
index for studying precipitation regimes of monsoonal climates.

3.2 Comparison between land datasets

Differences between the land-based CRU and GPCC datasets are shown in Fig. 4.
Inconsistencies of the mean annual precipitation (Fig. 4(a, b)) in the two gridded
datasets have already been documented in detail by Schneider et al (2013); instead
here we mostly focus on the differences in the rainfall seasonality in terms of D
(Fig. 4(c, d)). We note relative differences of D up to 20% in the semiarid or arid
regions of Sahara, Middle-East and central Asia and also in areas where the two
datasets agree reasonably well in terms of annual total precipitation.

As discussed in Appendix, D is related to the number of wet months. Therefore
a difference Dcru−Dgpcc implies a relative difference of the number of wet months
n′gpcc/n

′
cru ≈ 2(Dcru−Dgpcc) ≈ 0.3 for Dcru−Dgpcc = 0.4 and n′gpcc/n

′
cru ≈ 0.15 for

Dcru −Dgpcc = 0.2. Considering that in such semiarid regions (e.g. sub-Saharan
Sahel) precipitations are concentrated within one-two months, such uncertainties
in D reveal fairly large inconsistencies between the two observational datasets in
reproducing the time distribution of the precipitation events. On the contrary,
in regions such as the slopes of the Himalaya, where there are large differences
in the annual total rainfall (up to 1000 mm/year), differences in relative entropy
are relatively small (≈ 0.05) and hence the two datasets agree reasonably well
in reproducing the monthly precipitation signal. Differences in the DSI between
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CRU and GPCC are shown in Fig. 4(e, f). The two land datasets show remark-
able differences in the seasonality index over southern and central America, most
of Africa and south-southeastern Asia. Such inconsistencies in the observational
datasets are due to differences in the annual total precipitation in the case of South
America, in the relative entropy for sub-Saharan Africa and central Asia, and to
both terms in the case of east Indochina and Madagascar.

3.3 The dimensionless seasonality index and the global monsoon regions

The DSI combines information about seasonality and intensity of rainfall and
therefore it is a useful indicator of the extent of monsoonal precipitation regions
(Wang and Ding, 2008). Rainfall is indeed the most important monsoon variable
given the high socioeconomic and ecological impact, and indexes based on rainfall
are widely used to study the global monsoon (Wang et al, 2011; Kitoh et al,
2013; Lee and Wang, 2014). In Fig. 5 the DSI is compared to the Annual Range
of Precipitation (ARP) (Wang and Ding, 2008; Wang et al, 2011). The ARP is
defined as the local summer minus winter precipitation rate, i.e. the MJJAS minus
NDJFM precipitation rate in the northern hemisphere and NDJFM minus MJJAS
in the southern hemisphere.

Direct comparison of the the two indicators in Fig. 5 shows that regions featur-
ing high DSI capture fairly well the global monsoon region. The global monsoon
domain, defined by Wang et al (2011) as the area in which the ARP is greater than
2.5 mm day−1, is described also by the isoline S ≈ 0.05. The two domains match
pretty well over land in Africa, Central-South America and Australia although dif-
ferences are found over the Atlantic and Pacific ocean. Let us note that the DSI is
positive definite whereas the ARP has negative values outside the Tropics, where
midlatitude precipitations occur during the local winter. While differences between
the two criteria appear to be minor, they may still be relevant for assessing the
robustness of future changes of the global monsoon domain (Kitoh et al, 2013; Lee
and Wang, 2014). Shifts of the borders of the monsoons domain may be especially
critical for areas located at the border of monsoonal circulation, as for example
the Indus basin (e.g. Hasson et al, 2014) or the arid North America Southwest
(Cook and Seager, 2013). These areas might go through critical changes in their
precipitation regimes if the extent of the rainfall associated with the monsoonal
circulation shifts aways or it is delayed (Seth et al, 2013). Kitoh et al (2013) show
that under RCP8.5 scenarios the global monsoon areas as defined by the ARP
is mostly unaffected, with little changes over central and eastern tropical Pacific,
eastern Asia and southern Indian ocean. Given the small entity of such changes,
we stress here the importance of different and alternative monsoon indexes to as-
sess the robustness of future changes in monsoonal precipitation and give more
confidence to results on changes of the global monsoon.

4 Comparison with CMIP5 coupled climate models

In this section we evaluate the mean total annual precipitation and the relative
entropy for the GCMs listed in Table 1 and compare it with the same indicators
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estimated for observational datasets. The aim is to assess models’ skill in repro-
ducing the rainfall seasonality as defined by D and show the use of RE maps to
determine areas of interest that need more detailed analyses of seasonality using
more traditional methods.

4.1 Annual precipitation and relative entropy

Mean annual rainfall differences between the CMIP5 models listed in Table 1 and
CMAP observations are shown in Fig. 6. It is noted that the double ITCZ problem
(Lin, 2007) – the additional band of precipitation south of the equator in the Pacific
ocean – affects most of the CMIP5 models and it is particularly strong in those
with low resolution such as the GISS models or the INMCM4. The double ITCZ
bias is one of the most persisting GCMs bias and there has been little improvement
from CMIP3 to CMIP5 models (Hwang and Frierson, 2013a). In CMIP5 models
it improves as the model resolution increases (MIROC5), although it persists also
in models with high horizontal resolution (MRI-CGCM3). The zonal mean of the
global precipitation field (Fig. 7) shows the excess of rainfall due to the double
ITCZ. In Fig. 7 it can also be seen that models generally show a large spread
in the latitudinal position of the maxima of zonal mean of precipitation. These
problems may be directly related to how models simulate the ocean meridional
heat transport (Frierson et al, 2013). The ITCZ problems seems therefore to be
constrained by the surface heat fluxes and thus related to the capability of models
to correctly simulate clouds and other controls of the surface solar energy flux
(Hwang and Frierson, 2013a).

Overall, CMIP5 models tend to have a too large RE over tropical Latin America
and a too small RE over Western Africa, Western Mexico and East Asia. This is
evident from the multimodel ensemble mean MME and median MMM (Fig. 8).
Most of models reproduce fairly well the RE pattern over Southern Africa, with
negative biases exhibited only by few models (BCC-CSM-1, GISS-E2-R, GISS-
E2-H). The MME and MMM feature small biases also over Australia, due to the
cancellation of large positive (e.g. IPSL-CM5-LR) or negative (e.g. GISS-E2-R)
biases shown by single models. A large negative RE bias over East Asia, extending
from north-eastern China up to the Tibetan region, is present in all models and it
is particularly severe in some GCMs (up to −0.5, e.g. in GISS-E2-R). The inmcm4
and the GISS models have a general tendency to underestimate RE over both land
and oceans, whereas the MRI-CGCM3 and MPI-ESM models tend to overestimate
RE.

Zonal means (Fig. 7) reveal that models generally perform better over land.
However they show a large dry bias in the precipitation at around 20◦ N associ-
ated with the South Asian Monsoon (Turner and Annamalai, 2012; Sperber et al,
2013; Hasson et al, 2013, 2014; Boos and Hurley, 2013) over the Indian region
(e.g. HadGEM2, Fig. 6). Central America and northern South America also fea-
ture strong negative rainfall biases (Hwang and Frierson, 2013b). MPI-ESM-LR
largely overestimates the RE in the Southern Hemisphere, although it behaves
fairly realistically in the Northern one (Fig. 7). In the equatorial zone (10◦ S-10◦

N) we observe that most of the CMIP5 model feature very large values of RE
(for example over the Amazon and eastern Africa region, with GFDL-ESM2G,
GFDL-ESM2M or CSIRO-Mk3.6.0 having D ≥ 0.4, error of order 400%) in ar-
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Table 1 List of the CMIP5 models used for this study. Numbers are used to identify them
in Fig. 14

Number Model name Modelling Centre Country AGCM resolution (lon×lat)
1 ACCESS1.0 CAWCR a Australia 192×145/L38
2 ACCESS1.3 CAWCR Australia 192×145/L38

3 BCC-CSM1.1 BCC b China 128×64/L26
4 CanESM2 CCCMA c Canada 128×64/L35

5 CCSM4 NCAR d USA 288×192/L26
6 CESM1-BGC NCAR USA 288×192/L26
7 CESM1-CAM5 NCAR USA 288×192/L30
8 CNRM-CM5 CNRM/CERFACS e France 256×128/L31

9 CSIRO-Mk3.6.0 CSIRO/QCCCE f Australia 192×96/L18
10 GISS-E2-H GISS g USA 144×90/L40
11 GISS-E2-R GISS USA 144×90/L40

12 GFDL-CM3 GFDL h USA 144×90/L48
13 GFDL-ESM2G GFDL USA 144×90/L24
14 GFDL-ESM2M GFDL USA 144×90/L24

15 HadGEM2-CC MOHC i UK 192×145/L60
16 HadGEM2-ES MOHC UK 192×145/L38

17 INMCM4 INM j Russia 180×120/L21

18 IPSL-CM5A-LR IPSL k France 96×95/L39
19 IPSL-CM5A-MR IPSL France 96×95/L19

20 MIROC5 MIROC l Japan 256×128/L40
21 MPI-ESM-MR MPI-M m Germany 192×96/L95
22 MPI-ESM-LR MPI-M Germany 192×96/L47
23 MRI-CGCM3 MRI n Japan 320× 160/L48
24 NorESM1-M NCC o Norway 144×96/L26

a Centre for Australian Weather and Climate Research; b Beijing Climate Centre, China Meteorological Administration; c Canadian
Centre for Climate Modelling and Analysis; d National Center for Atmospheric Research; e Centre National de Recherchers Meteo-
rologiques/Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique; f Commonwealth Scientific and Industrial Research
Organization/Queensland Climate Change Centre of Excellence; g NASA Goddard Institute for Space Studies; h NOAA Geophysical Fluid
Dynamics Laboratory; i Met Office Hadley Centre; j Institute for Numerical Mathematics; k Institute Pierre-Simon Laplace; l Atmosphere
and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth
Science and Technology; m Max Planck Institute für Meteorologie; n Meteorological Research Institute ; o Norwegian Climate Centre

eas characterized by values of RE typically smaller than 0.2. Exceptions are the
GISS-E2-H, GISS-E2-R, MIROC5 and INMCM4 which instead underestimate the
RE over the tropics. Overall CESM1-CAM5 model is the best at simulating the
observed RE.

Let us note, to conclude this biases analysis, that models errors in RE are not
removed by a simple mean bias adjustment of rm. Bias adjustment algorithms
have been developed to bring GCMs simulations closer to observations before ap-
plying statistical and dynamical downscaling (e.g. Christensen et al, 2008; Li et al,
2010). Given the monthly precipitations rm,j (month m, year j) and the obser-
vations ρm,j , a mean bias adjustment would lead to new monthly precipitations
r′m,j = αjrm,j , with αj =

∑
m ρm,j/

∑
m rm,j and bias adjusted rainfall fractions

p′m,j =r′m,j/
∑
m r′m,j = αjrm,j/

∑
m αjrm,j =pm,j . Thus, a mean bias adjust-

ment does not affect the monthly precipitation fractions, thus leaving the relative
entropy unaltered.

4.2 Interpretation of RE biases

In order to clarify the reasons of the RE biases documented in the previous section,
we focus on five areas – tropical Latin America, central Australia, Sub-Saharan
Africa, Western Africa and East Asia – where either most of the models show
consistent biases or some of them feature very large RE biases – and analyze
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Table 2 Coordinates boundaries (east, south, west, north) of the rectangular areas shown in
Fig. 2 (upper part of the table) and Fig. 10-Fig. 9 (lower part of the table).

Area East South West North
Mato Grosso 60◦ E 14◦ S 55◦ W 10◦ S
NW Australia 125◦ E 23◦ S 135◦ E 18◦ S
N India 75◦ E 20◦ N 88◦ E 25◦ N
NE Brazil 45◦ E 10◦ S 35◦ E 0◦ N
Somalia 40 E 0 N 50 E 10 N
NW Mexico 112 W 20 N 104 W 32 N
S Italy 12 E 36 N 19 E 42 N
Congo 15 E 5 S 25 E 5 N
N Germany 7 W 51 N 12 E 55 N
Chad 15 W 15 N 23 W 20 N
Borneo 108 E 4 S 119 E 8 N
Amazon 70 W 5 S 65 W 5 N
Indochina 100 E 10 N 110 E 20 N
Madagascar 42 E 25 S 50 E 12 S
Brazil/Guyana 65 W 3 S 55 W 3 N
California 125 W 33 N 115 W 42 N
Guinea 20 E 0 N 8 E 14 N
Korea 115 E 35 S 130 E 41 N
Bangladesh 88 E 22 S 92 E 26 N
Zimbabwe 20 E 25 S 35 E 10 S
Honduras 86 W 13.5 N 84 W 15.5 N
Middle East 36 E 30 N 40 E 34 N

Australia 120 E 30 S 150 E 20 S
Sub-Sahara 10 W 15 N 30 E 23 N
West Africa 0 E 5 N 30 E 15 N
Tropical South America 60 W 20 S 40 W 5 S
East Asia 90 E 30 N 120 E 50 S

the origin of such biases in terms of precipitation fractions. Coordinates of their
rectangular domains are listed in Tab. 2.

Most of models show a consistent positive RE biases over tropical South Amer-
ica (Fig. 8). In Fig. 9 a comparison with observations is shown for some of the most
(IPSL-CM5-LR and CSIRO-Mk3-6-0) and least (HadGEM2-CC and GISS-E2-R)
biased CMIP5 models. The reason of the RE positive bias is particularly evident
from the IPSL simulation, which exaggerates the December-March pm while un-
derestimating them in the pre-monsoonal season. A similar behavior, though less
accentuated, is observed also in the CSIRO model. A less severe bias characterizes
the GISS model while the HadGEM2-CC captures extremely well the monthly
rainfall fractions and presents almost no RE biases over the region.

In Fig. 10 monthly precipitation frequencies pm are shown for observations and
four CMIP5 models (MRI-CGCM3, CSIRO-Mk3-6-0, MIROC5 and GISS-E2-R)
over the Australian region. The first two models show positive biases in RE whereas
the last two models have negative biases. Note that the mean annual rainfall does
not show large biases in these regions, so the anomalies in RE must be related
only to the monthly distribution of the annual rainfall. Comparison of models and
observations reveals a qualitative behavior consistent with our interpretation of D,
with MRI-CGCM3 and CSIRO-Mk3-6-0 simulating a too dry summer season and
a too steep increase in December, resulting in a too short rainy season duration.
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Table 3 Correlation pattern (PC), root mean square error (RMSE) and standard deviation
(σ) of the observational datasets (GPCC, CRU, GPCP, CMAP) and of the CMIP5 models
(Fig. 14). Comparison is made with the GPCC dataset and restricted over land for the 1950-
2010 climatology. Values of RMSE and σ are normalized with respect to the standard deviation
of GPCC σgpcc,R = 807 mm, σgpcc,D = 0.47 and σgpcc,S = 0.034. For observations, bold

character highlights values of PC and σ defining the observation uncertainty range. Models
which are placed within the observation uncertainty range are also highlighted in bold whereas
those farthest from the reference (the largest RMSE) are highlighted in bold italics.

number/ model annual precipitation relative entropy DSI
color PC RMSE σ PC RMSE σ PC RMSE σ

reference GPCC 1 0 807 mm 1 0 0.47 1 0 0.034
black CRU 0.83 0.57 0.97 0.79 0.60 0.74 0.92 0.39 1.07
green GPCP 0.94 0.32 0.89 0.72 0.69 0.63 0.95 0.31 1.03
magenta CMAP 0.95 0.32 0.84 0.78 0.63 0.67 0.93 0.35 0.91
1 ACCESS1.0 0.84 0.54 0.87 0.62 0.78 0.57 0.77 0.66 0.97
2 ACCESS1.3 0.82 0.62 1.08 0.59 0.80 0.58 0.74 0.84 1.24
3 BCC-CSM1.1 0.78 0.62 0.75 0.63 0.80 0.44 0.71 0.74 0.92
4 CanESM2 0.76 0.65 0.68 0.73 0.68 0.71 0.76 0.71 1.06
5 CCSM4 0.83 0.55 0.84 0.71 0.71 0.58 0.77 0.76 1.18
6 CESM1-BGC 0.83 0.55 0.84 0.72 0.70 0.58 0.77 0.76 1.18
7 CESM1-CAM5 0.83 0.55 0.79 0.73 0.69 0.63 0.77 0.72 1.13
8 CNRM-CM5 0.83 0.57 0.73 0.76 0.67 0.57 0.81 0.59 0.89
9 CSIRO-Mk3.6.0 0.75 0.66 0.81 0.62 0.80 0.75 0.72 0.98 1.40
10 GISS-E2-H 0.75 0.70 0.99 0.57 0.82 0.49 0.65 0.87 1.10
11 GISS-E2-R 0.78 0.63 0.92 0.54 0.84 0.46 0.67 0.79 0.96
12 GFDL-CM3 0.81 0.62 0.61 0.70 0.71 0.63 0.77 0.68 1.03
13 GFDL-ESM2G 0.75 0.65 0.75 0.64 0.77 0.74 0.77 0.95 1.48
14 GFDL-ESM2M 0.76 0.64 0.71 0.65 0.76 0.73 0.76 0.90 1.39
15 HadGEM2-CC 0.84 0.53 0.82 0.63 0.77 0.66 0.76 0.67 0.93
16 HadGEM2-ES 0.85 0.52 0.83 0.62 0.78 0.67 0.76 0.67 0.97
17 INMCM4 0.80 0.59 0.91 0.57 0.82 0.83 0.71 0.70 0.83
18 IPSL-CM5A-LR 0.75 0.65 0.71 0.64 0.79 0.91 0.64 0.95 1.22
19 IPSL-CM5A-MR 0.75 0.65 0.79 0.68 0.76 0.54 0.66 0.97 1.29
20 MIROC5 0.80 0.61 0.94 0.61 0.79 0.70 0.80 0.87 1.43
21 MPI-ESM-MR 0.82 0.58 0.70 0.70 0.70 0.68 0.81 0.65 1.10
22 MPI-ESM-LR 0.83 0.57 0.72 0.67 0.73 0.64 0.82 0.65 1.10
23 MRI-CGCM3 0.81 0.60 0.92 0.58 0.81 0.60 0.70 0.82 1.10
24 NorESM1-M 0.77 0.64 0.89 0.68 0.73 0.48 0.71 0.82 0.92
blue MME 0.88 0.47 0.89 0.73 0.72 0.48 0.85 0.52 0.92

On the other hand, MIROC5 and GISS-E2-R underestimate the rainfall fractions
during January-April and overestimate them during the dry period July-October,
resulting in a too flat pm annual distribution and negative biases in RE.

Over the semi-arid Sub-Saharan region (Fig. 11), observations show a strong
rainfall peak in August (paug ≈ 0.4) related to the marginal influence of the West
African monsoon (Vellinga et al, 2013) in the southern part of the region. As
shown in Fig. 1, these areas feature the highest RE values (D ≈ 1.6) in the world.
CMIP5 models generally underestimate RE in this region, except a few ones such
as the two IPSL-CM5A and MPI-ESM models, which instead have positive biases
in northern Africa. A direct inspection of their rainfall fractions reveal that MPI-
ESM-LR and IPSL-CM5A-LR simulate a too pronounced precipitation peak in
August (paug ≈ 0.5 and 0.55 respectively). Positive biases are instead associated
with an overestimation of pm in late spring and an underestimation in summer.
This tendency, which is common to most of CMIP5 GCMs, is evident from the
inmcm4 and GISS-E2-R (Fig. 11), which are some of the models with the most
severe negative biases (≈ −0.5). In the Western African monsoon region, south of
the semi-arid Sub-Saharan Africa, negative biases in RE are less severe (Fig. 8). A
few models have modest positive RE biases (IPSL-CM5A-LR, IPSL-CM5A-MR,
MRI-CGCM3). A focus on this area (Fig. 12) again elucidates the link between
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RE biases in terms of pm. The GISS-E2-R and the inmcm4 models, for example,
overestimates pm in the dry season (November-April) and underestimates it during
the wet season, resulting in a probability distribution pm more uniform, over the
year, than what is observed. As an example we also show the rainfall fractions
for a GCM (ACCESS1-3) which instead has almost no RE bias in this region. As
expected, the annual pm shape agrees relatively well with observations, apart from
a slight shift of rainfall towards the early summer. The IPSL-CM5A-LR model,
which tends to overestimate the RE, simulate a too pronounced precipitation peak
in August.

A persistent, large negative RE bias (≈ −0.5), common to all models, is also
visible over East Asia in most of the models shown in Fig. 8. Direct inspection of pm
shows that models do not capture the right magnitude of the July peak in pm and
tend to have a too high rainfall fraction during the dry winter months. This behav-
ior, which remains also in the least biased models (CanESM2 and MRI-CGM3), is
particularly evident in models with very large biases such as, for example, GISS-
E2-R and BCC-CSM1-1 (Fig. 13). The GISS model, in particular, considerably
overestimate the winter rainfall fractions, resulting in a large bias in RE.

The RE can therefore be a very useful metric to test the right shape of the
simulated monthly rain frequencies pm and to provide an estimation of the number
of wet months. It must be noted however that, from its definition in Eq. 2, the
RE is invariant to time translation (pm → pm+s, with s = 1, . . . 11) and therefore
not able to provide information about the onset and the decay of the monsoon
(Sperber et al, 2013; Hasson et al, 2014), which are other two fundamental aspects
of monsoonal regimes. Furthermore, the RE cannot discriminate between regions
with two short rainy season and those with a single long one, since, from its own
definition, any reshuffle of the pm would not lead to any change in RE.

4.3 Pattern correlation and Taylor diagrams

We conclude our comparison between CMIP5 models and observation by esti-
mating the pattern correlation (PC) and the centered root mean square error
(RMSE) between the simulated R, D, S and the observed ones. The PC and the
RMSE are statistics generally used to quantity pattern similarity between two cli-
matic fields (f , r) defined at N points. They are defined as (Taylor, 2001) PC =
[
∑

(fn−f)(rn−r)]/(Nσfσr) and RMSE = {
∑

[(fn−f)−(rn−r)]2/N}1/2, where
(f , r) and σf,r are the mean values and standard deviations of f and r respectively
and are related through the following relationship: RMSE2 = σ2

f+σ2
r−2σfσrPC.

It has to be noted that since the means are subtracted, the PC and the RMSE
cannot inform about overall biases (which have been analyzes in the previous sec-
tions instead) but just on the centered pattern error. Since the GPCP and CMAP
datasets are not bias-adjusted over oceans, we restrict this comparison over land.
The GPCC land dataset is taken as a reference and compared to CMIP5 models.

The values of the RMSE and PC for each of the CMIP5 models of Table 1
and the other precipitation gridded datasets are reported in Table 3 and shown
through Taylor diagrams (Taylor, 2001) in Fig. 14. Other observational datasets
(CRU, GPCP, CMAP) are also compared to GPCC and shown on the same dia-
grams in order to have an indication about observational uncertainty. In fact, given
the problems in accurately measuring a highly spatially and temporally variable



14 Salvatore Pascale et al.

field such as precipitation, observational estimates are generally affected by uncer-
tainty and more observational datasets are needed to provide information about
the range of such uncertainty. To check if the differences in model performances
shown in Figure 14 are significant, we considered, for a few models, all the five
ensemble members available on the CMIP platform and obtained by initiating the
simulations from different initial conditions. It is found that the ensemble spread
is very small and comparable with the size of the dots.

In particular GPCP and CMAP are the closest to GPCC; this is not surprising
since these two satellite-based datasets use the GPCC dataset as their rain gauge
component over land. We define the range of observational uncertainty in terms
of PC such as [PClow, 1] and in term of σ such as [σlow, σhigh] where PClow is the
lowest PC among the other observational datasets, σlow = inf{σgpcc, σobs} and
σhigh = sup{σgpcc, σobs}. We have that PClow = 0.83, [σlowσhigh] = [0.84, 1]σgpcc
for mean annual precipitation; PClow = 0.72, [σlow, σhigh] = [0.63, 1]σgpcc for
the RE; PClow = 0.92, [σlow, σhigh] = [0.91, 1.07]σgpcc for the DSI (Fig. 14(a)
and Table 3). A model therefore performs consistently with observations if its
PC > PClow and its σ lies within the range [σlow, σhigh]. Models that perform
worst are those with PC � PClow, a standard deviation σ outside the range
[σlow, σhigh].

In terms of precipitation, we note that most of the models are placed outside the
observational uncertainty range except ACCESS1-0, CCSM4 and CESM1-BGC
(Table 1). While the MME does not necessarily have to outperform every single
model (e.g. Sperber et al, 2013), here this is the case (PC = 0.88, σ = 0.89σgpcc)
and it is consistent with the observations. HadGEM2-ES, HadGEM2-CC and
CESM1-CAM5 also perform well with a PC larger or equal than 0.83 but with a
value of the standard deviation just below σlow = 0.84σgpcc. Overall, other GCMs
are placed not far from the lower bound of the PC (≈ 0.8), but some of them
underestimate σ by a factor 0.3 or more (e.g. GFDL-CM3, GFDL-ESM2M, IPSL-
CM5A-LR), well below σlow = 0.83σgpcc, resulting in large RMSE (CanESM2,
GFDL-ESM2G, IPSL-CM5-LR). As far as RE is concerned, observational uncer-
tainty is generally larger (PClow = 0.72, σlow = 0.63σgpcc). This is consistent
with the large differences between the CRU and GPCC datasets shown in Fig. 4.
CanESM2 (PC = 0.73, σ = 0.71) and CESM1-CAM5 (PC = 0.73, σ = 0.63)
are within the observational range range whereas CNRMS-CM5 is just slightly
outside (PC = 0.57). Contrary to the case of precipitation, the MME for the RE
lies outside such range and does not outperform every single model. Some of the
CMIP5 models perform particularly badly and feature a considerably lower PC
and σ, resulting in RMSE almost comparable with σ (GISS-E2-H, GISS-E2-R,
MRI-CGM3). Again, most of the model are not far from the lower bounds of ob-
servational uncertainty. It is interesting to note that the best performing models in
terms of the field of mean annual precipitation are not the best in terms of RE. Fi-
nally we note that no model is consistent with observations in terms of the DSI, as
evident from Fig. 14. This may be due to the fact that the DSI is a diagnostic met-
rics more complex than precipitation and RE alone – it combines them together,
providing integrated information about the intensity of the annual rainfall and the
shape of the monthly rain frequency – and therefore it is more unlikely for models
to capture equally well spatial variability of both precipitation and RE. Rainfall
is a complex field and it is challenging for models to properly simulate it. Lack of
model agreement between mean precipitation and other, more complex aspects are
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found also, for example, when comparing total precipitation and upper quantiles
of the precipitation distribution. For example, analyzing CMIP5 models, Mehran
et al (2014) show that models best simulating the total precipitation amounts not
necessarily are also the best performing in precipitation upper quantiles.

The MME outperforms every single model but still lies outside the observa-
tional range. When all three metrics are considered, CESM1-CAM5 is overall one
of best model in terms of spatial variability and magnitude (as evident from Fig. 8–
Fig. 7) whereas the worst performing models are GISS-E2-H and GISS-E2-R.

5 Conclusions

Future improvements and developments of the GCM representation of precipita-
tions strongly rely on rigorous metrics for their validation (e.g. Mehran et al, 2014).
Accurate, reliable diagnostics of rainfall seasonality is a necessary tool for gauging
GCMs performance, evaluating their realism and quantifying changes in the hy-
droclimatic regimes. In this study we used novel measures of rainfall seasonality
(Feng et al, 2013) based on information entropy, namely the relative entropy (RE)
and the dimensionless seasonality index (DSI), for characterizing the seasonality of
precipitation regimes during the 1950-2010 period over lands and oceans using the
four recently updated precipitation gridded datasets GPCC, CRU, CMAP, GPCP
(Fig. 1 and Fig. 2) and for assessing CMIP5 models’ ability capture the observed
patterns of RE and DSI.

The RE provides an integral measure of the seasonality of the annual rainfall
curve whereas the DSI quantifies the intensity of the rainfall during the wet season.
The RE is related to the number of the wet time accumulation bins n′ through the
simple relation n′ ≈ N · 2−D, where N is the number of temporal accumulation
bins in a year. Areas with high RE are therefore characterized by prolonged dry
periods and rainfall concentrated in a short time period. Given its own definition,
the RE cannot discriminate between unimodal and bimodal rainfall regimes and
therefore it does not automatically provide a measure of the duration of the wet
season. However, for precipitation regimes known to be unimodal (e.g. in the South
Asian monsoon region), n′ coincides with the duration of the wet season and it can
be used as a further measure along with more tradition ones such as the monsoon
retreat and onset time.

It is found that Equatorial (Indonesia, Congo basin, Amazon) and midlatitude
regions have low values of the DSI because, in spite of the large mean annual pre-
cipitation, their relative entropy is very small (≤ 0.05). Arid and semiarid regions
around 20◦ N with intermittent precipitation regimes – like the sub-Saharan Sahel
– are characterized by large RE and feature very low DSI because of the very little
annual precipitation. Highest DSI (≥ 0.05) are therefore found in those regions
with intermediate-to-high levels of mean annual rainfall and RE such as northeast
region of Brazil, Western Africa, Northern Australia, Western Mexico and South-
Southeast and Eastern Asia, which constitute the so-called global monsoon region
(Wang and Ding, 2008). According to the DSI, the west coast of North Amer-
ica, Mediterranean, Middle-East regions and the Andes also feature appreciable
seasonality, since rainfall in these regions is confined to the (local) winter months.

The RE and DSI have two practical advantageous features: a) the robustness
against changes of the accumulation temporal bin of the precipitation time series
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and b) the coarse-graining properties of the RE (Fig. 3). The first property guar-
antees a quantification of seasonality which is as much as possible independent of
the time bin (day, pentad, week, month) used to accumulate precipitation. The
second property allows us to establish lower bounds for the RE and DSI with
respect to values which would be obtained from higher-resolution data, which are
not always available.

Comparison of simulations performed with 24 CMIP5 coupled atmosphere-
ocean general circulation models with the precipitation datasets over the period
1950-2010 reveals consistent positive (South America) and negative (East Asia,
northern Africa) RE biases across models (Fig. 10). Such biases are related to
GCMs’ inability to simulate the right monthly fractions of rainfall along the year.
The GCMs’ negative RE bias over western Africa is due to a positive precipitation
bias in the West African monsoon region in late spring and a negative precipitation
bias during July-September (Fig. 11 and 12). A similarly consistent picture has
been shown to explain also the large negative bias in east Asia, related to rainfall
fractions which are too low during the wet May-September period and too large
during the dry October-April period, thus resulting in a pm sequence not peaked
enough (Fig. 13). On the other hand, the positive RE bias over tropical southern
American (Fig. 9) is due to the opposite tendency to overestimate the monthly
rainfall fractions during the local summer and underestimate them in the late
spring/early summer period, resulting in an excessively peaked pm. The presence
of these RE biases consistently across the evaluated CMIP5 GCMs indicate the
presence of general deficiencies in the models in simulating tropical precipitation
and, in particular, monsoons (Turner and Annamalai, 2012). These systematic RE
errors appear to be not very sensitive to differences in model horizontal resolution
since they are found in models with higher and lower space resolution and are
likely to be due general shortcomings in representing the dynamics or physics of
climatic phenomena.

In terms of spatial variability, pattern correlation analysis over continents
clearly shows that CMIP5 models have a better skill in reproducing the variability
pattern of precipitation compared to RE (Fig. 14) with few models consistent with
observations. In particular, no model reproduces the DSI spatial variability con-
sistently with observations. Overall, CESM1-CAM5 is one of the best performing
models for all three metrics, whereas the worst performing are GISS-E2-H and
GISS-E2-R.

It has to be noted that RE and DSI do not provide a complete description
of rainfall seasonality since they do not take into account the timing of the wet
season. Their main scope is to provide an easy way to compare maps of RE/DSI
between various datasets to determine areas of interest, and then to undertake
a more detailed analysis of seasonality in these regions using more traditional
measures of seasonality as we have shown for the West African, the Australian,
the southern American and the eastern Asian regions.

The methodology underlying the definition of the RE and DSI is very general
and applicable to much more general cases than what shown in this study. In prin-
ciple it may be adapted to other periodic or quasi-periodic climatic sequences of
positive-definite variables. Such tools seems therefore very promising for assessing
models’ capability to simulate spatial and temporal patterns of the rainfall diurnal
cycle, which is the primary mode of variability in the equatorial regions, where
heavy rains are concentrated in the afternoon hours. Furthermore, the diagnostic
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tools presented in this study can be used for studying changes in rainfall seasonal-
ity for future climate projections under anthropogenic forcing in addition to more
traditional approaches (Huang et al, 2013; Wang et al, 2011; Lee and Wang, 2014).
Future efforts in this direction will focus therefore on the application to the rain-
fall diurnal cycle and on the analysis of 21st century greenhouse-forced climate
projections.
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A Properties of the relative entropy

A.1 Relative entropy and information entropy

Given a discrete probability distribution p = {pm}Nm=1 describing a random variable, the
information entropy associated with pm is a measure of the uncertainty of a random variable
described by p and it is defined as

H (p) ≡ −
N∑
m

pm log2 pm (4)

and 0 ≤ H ≤ max(H), where max(H) = log2N for the uniform distribution pm = 1/N
(maximum uncertainty) and 0 if one out of the N values of p is equal to one and all the
remaining are zero (x log x → 0 as x → 0)(no uncertainty). In the case considered in this
study, N = 12 and max(H) = log2 12. The relative entropy of p with respect to q, D(p|q),
is introduced instead to measure how different two probability distribution {pm}Nm=1 and

{qm}Nm=1 are:

D(p|q) ≡
N∑
m=1

pm log2

(
pm

qm

)
(5)

and it measures the inefficiency of assuming q when instead the true distribution is p. It can
be demonstrated (Cover and Thomas, 1991) that D(p|q) ≥ 0 for any p, q and D(p|q) = 0 if and
only if the two probability distributions are the same. The relative entropy is not symmetric,
D(p|q) 6= D(q|p) and therefore is not a distance in a mathematical sense. However it is still
useful to think of it as a distance between probability distributions. For defining the seasonality
index we define D (p) such as

D(p) ≡
N∑
m=1

pm log2 (N pm) (6)

that is such as the relative entropy of the probability distribution pm with respect to the
uniform distribution qm = 1/N , which is taken as a reference. In the following and in the rest
of this manuscript we will still refer to D(p) as relative entropy. From this definition it follows
that

D (p) = −H (p) + log2N. (7)

As a consequence, for two probability distributions p and w, D (p)−D(w) = H(w)−H (p).

A.2 Relative entropy and the spread of pm

Let us assume now that {pm}N1 are the monthly precipitation fractions (N = 12). From
what said so far, it is expected that the larger it is D, the less uniformly the precipitation is
distributed throughout the year. So D is related to the “spread” of precipitation signal. This
concept can be framed in a rigorous way in information theory by defining the effective number
of values of p

n′ (p) = 2H(p) = 12 · 2−D. (8)

Mathematically n′ defines the number of months over which pm is considerably different from
zero, i.e. the support of pm (Cover and Thomas, 1991). Therefore n′ can be interpreted as
the effective number of wet months in a year. Areas characterized by D = 0 have n′ =
12, that is no significant dry period (non-seasonal rainfall regime), whereas regions featuring
D = Dmax = log2 12, pk = 1 have their annual precipitation all concentrated in one month
(extreme seasonal rainfall regime). For regions having a unimodal seasonal rainfall distribution,
n′ provides a measure of the duration of the wet season (e.g. Indian region). It has to be noted
however that different measures of the wet season duration which are not based on integral
properties of the rainfall distribution but on local properties – e.g. retreat minus onset dates
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(Sperber et al, 2013; Kitoh et al, 2013; Hasson et al, 2014), where onset and retreat are defined
by the 5 mm day−1 threshold – may give different results.

Within this framework, let us also introduce another useful statistical indicator of rainfall
seasonality, the centroid. By using circular statistics (Fisher et al, 1993), the first moment of
pm (centroid) is defined as

C = arg(z), z =

12∑
m=1

pme
i 2πm

12 (9)

and it is shown in Fig. 15. The centroid provides a measure of the the timing of the wet
season. While it can be mathematically defined for any precipitation sequence rm and so in any
location, it is really meaningful only for those rainfall regimes that are somewhat “localized”
during the year – i.e. having a clear dry and wet period. A more extensive analysis of C in
present condition and future emission scenarios will be reported elsewhere.

A.3 Coarse graining properties of D

A remarkable property of D is the possibility to control its magnitude as the time resolution
of the time series is coarse grained. The choice of a certain time series resolution is somewhat
arbitrary and dependent on the data available. It is therefore desirable to have indicators that
are stable against changes in the accumulation time bin or, at least, that vary in a controllable
way. Relative entropy allows us to set lower bounds for the error associated with the loss of
information due to time coarse-graining. If DN is the relative entropy estimated from rainfall
data at high time resolution p̃j (e.g. daily, N = 365 or pentads, N = 73), we can aggregate
sequentially ν of the p̃j (e.g. ν = 5 for pentads) and obtain

pi =

νi∑
j=νi−ν+1

p̃j (10)

with i = 1, . . .M and M = N/ν. By using the log sum inequality (Cover and Thomas, 1991)

n∑
i=1

ai log
ai

bi
≥

(
n∑
i=1

ai

)
log

∑n

i=1
ai∑n

i=1
bi
, ai, bi ≥ 0 (11)

where the equality holds only if the ai and the bi do not depend on i, and from the definition
(6) it follows that

N∑
j=1

p̃j log2

p̃j

q̃j
≥
N/ν∑
i=1

(
νi∑

j=νi−ν+1

p̃j

)(
log2

∑νi

j=νi−ν+1
p̃j∑νi

j=νi−ν+1
q̃j

)
=

M∑
i=1

pi log2(pi/qi) (12)

and therefore
DN ≥ DM for N ≥M. (13)

From the definition of the dimensionless seasonality index S in Sect. 2 (Equation 3), it is
obvious that also SN ≥ SM and so information about rainfall seasonality is lost in the upscaling
procedure unless the values in each temporal bin are equal. In Fig. 3 the differences D73−D12

and S73 − S12 are shown as an example.
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Fig. 1 (a, b) Mean annual rainfall R (mm yr−1), (c, d) relative entropy D and (e, f) dimen-

sionless seasonality index S for the GPCC land dataset (left column) and CMAP dataset (right
column).
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Fig. 2 Precipitation-relative entropy diagram for different climatological areas for both GPCC
dataset. Overplotted are isolines of dimensionless seasonality index. Error bars denotes the
range of inter-annual variability. Monsoonal precipitation regimes typically have S ≥ 0.05.
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Fig. 3 Difference between the RE (a) and the DSI (b) estimated from pentad and monthly
means.
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Fig. 4 Differences (a, c, e) and relative differences (b, d, f) between the CRU and the GPCC
datasets for the same quantities in Fig. 1 over the period 1950-2010.
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Fig. 5 Annual range of precipitation (mm/day) and DSI (×10) for the CMAP climatology.
The global monsoon domain (black thick line) is defined by the annual range equal to 2.5
mm/day and DSI equal to 0.05.
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Fig. 6 Biases of the CMIP5 models mean precipitation (mm) over the period 1979-2009
relative to the CMAP climatology. The multimodel ensemble median and mean are also shown.
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Fig. 7 Left column: zonal means of precipitation, relative entropy and dimensionless season-
ality index over the whole globe (GPCP and CMAP observation dataset are denoted with
black continuous and dashed line respectively) for the period 1979-2008. Right column: as
before but over land only (GPCC and CRU are denoted with black continuous and dashed
line respectively).
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Fig. 8 As in Fig. 6, but for relative entropy.
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Fig. 9 Precipitation frequencies pm = rm/R for observation datasets CRU, GPCC, GPCP,
CMAP and four models (CSIRO-Mk3-6-0, IPSL-CM5-LR, HadGEM-CC and GISS-E2-R) over
tropical Latin America.

Fig. 10 Precipitation fractions pm = rm/R for observation datasets CRU, GPCC, GPCP,
CMAP and four models (CSIRO-Mk3-6-0, MRI-CGCM3, MIROC5 and GISS-E2-R) over Aus-
tralia.
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Fig. 11 Precipitation fractions for observation datasets CRU, GPCC, GPCP, CMAP and four
models (IPSL-CM5A-LR, inmcm4, MPI-ESM-LR and GISS-E2-R) over Sub-Saharan Africa
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Fig. 12 Precipitation fractions for observation datasets CRU, GPCC, GPCP, CMAP and four
models (IPSL-CM5A-LR, inmcm4, ACCESS1-3 and GISS-E2-R) over western Africa

Fig. 13 Precipitation frequencies pm = rm/R for observation datasets CRU, GPCC, GPCP,
CMAP and four models (BCC-CSM1-1, CanESM2, MRI-CGCM3 and GISS-E2-R) over East
Asia.
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Fig. 14 Taylor diagrams for mean annual precipitation (a), relative entropy (b) and season-
ality index (c). CMIP5 models are numbered as in Table 1. The MME, CRU, GPCP and
CMAP are represented by the blues, black, green and magenta dots respectively. GPCC is
taken as reference and standard deviations are normalized with respect to GPCC. The grey
shaded areas are indicative of the range of observational uncertainty. The correlation analysis
is restricted to land.
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Fig. 15 Centroid (a) and effective number of wet months (b) of the monthly precipitation
sequence pm for the GPCC dataset. In (a) numbers denotes the months of the year around
which pm is centered and in (b) the length in months. The centroid is not shown for regions
with D ≥ 0.2 – corresponding approximately to n′ greater than 11.
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