Avalanches, breathers, and flow reversal in a continuous Lorenz-96 model

It is advisable to refer to the publisher's version if you intend to cite from the work.
Published version at: https://link.aps.org/doi/10.1103/PhysRevE.88.013201
To link to this article DOI: http://dx.doi.org/10.1103/PhysRevE.88.013201

Publisher: American Physical Society

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR
Central Archive at the University of Reading
Reading's research outputs online
Avalanches, Breathers and Flow Reversal in a Continuous Lorenz-96 Model

R. Blender, J. Wouters, and V. Lucarini
Meteorologisches Institut, KlimaCampus, Universität Hamburg, Hamburg, Germany
(Dated: January 25, 2013)

For the discrete model suggested by Lorenz in 1996 a one-dimensional long wave approximation with nonlinear excitation and diffusion is derived. The model is energy conserving but non-Hamiltonian. In a low order truncation weak external forcing of the zonal mean flow induces avalanche-like breather solutions which cause reversal of the flow by a wave-mean flow interaction. The mechanism is an outburst-recharge process similar to avalanches in a sand pile model.

PACS numbers: 47.20.-k 47.10.Df 47.35.Bb 64.60.Ht

In 1996 Lorenz suggested a nonlinear chaotic model for an unspecified observable with next and second nearest neighborhood couplings on grid points along a latitude circle [1]. Due to its scalability the model is a versatile tool in statistical mechanics [2–5] and meteorology [6–8]. The model is obtained for $Q = X_i$. The equations are non-Hamiltonian since the Jacobi identity

$$\sum_\ell J_{\ell i} \frac{\partial J_{\ell k}}{\partial X_i} - \sum_\ell J_{\ell i} \frac{\partial J_{\ell k}}{\partial X_k} + \sum_\ell J_{\ell i} \frac{\partial J_{\ell j}}{\partial X_k} = 0$$

is not satisfied.

A continuous approximation is derived for a smooth dependency of X_i on the spatial coordinate $x = ih$ in the limit $h \to 0$. The variable X_i is replaced by a continuous function $u(x, t)$ which is interpreted as velocity in the following. We use the infinitesimal shift operators

$$L_\pm = \sum_{k=0}^{\infty} \frac{(-ih\partial_x)^k}{k!}$$

for δu, $\delta A = \int J_\infty \delta B \delta u$

with

$$J_\infty = (L_- u) \circ L_+ - L_- \circ (L_- u)$$

where $(L_- u)$ is a multiplication operator. The bracket is anti-symmetric since the adjoint is $L_+^* = L_-^*$. By taking n-th order truncations of the operators L_\pm, we can find a hierarchy of truncated anti-symmetric operators

$$J_{nm} = (L_{-n} u) \circ L_{+m} - L_{-m} \circ (L_{-n} u)$$

where

$$L_{\pm n} = \sum_{k=0}^{n} \frac{(-ih\partial_x)^k}{k!}$$

The total energy for the velocity $u(x, t)$ is

$$\mathcal{H} = \frac{1}{2} \int u^2 \, dx$$

To each of these truncated operators corresponds a continuous Lorenz-96 model

$$u_t = \{ u, \mathcal{H} \}_{nm}$$
where the indices indicate the operator J_{nm} (as in [11] periodic boundary conditions are assumed).

The expansion of the nonlinear terms in [11] up to order $O(h^2)$ yields for the rescaled coordinate $x' = -x/3$ (the prime is dropped below)

$$u_t = -uu_x - \frac{1}{3} \left(u_x^2 + \frac{1}{2} uu_{xx} \right) + f$$

with an advection and further nonlinear terms which are due to the noncentered definition of the interaction in [11].

The nonlinear terms are associated with antisymmetric evolution operators

$$O(h) : J_1 = -\frac{1}{3}(u\partial_x + \partial_x u)$$

$$O(h^2) : J_2 = -\frac{1}{6}(u_x \partial_x + \partial_x u_x)$$

Thus the evolution equation (13) can be written as

$$u_t = J\frac{\delta H}{\delta u}, \quad J = J_1 + J_2$$

Note that the $O(h^3)$ expansion in [12] is represented by a third operator $J_3 = -(1/18)(u_{xxx} \partial_x + \partial_x u_{xx})$; here we restrict to the $O(h^2)$ expansion (13).

The evolution equation (13) has a conservation law

$$\partial_t \left(\frac{1}{2} u^2 \right) = \partial_x \phi,$$

$$\phi = -\frac{1}{3} u^3 - \frac{1}{6} u^2 u_x$$

with the conserved current ϕ which leads to the conservation of total energy (11). Further conservation laws could not be found. In particular momentum given as the mean flow

$$U = \langle u \rangle = \int u \, dx$$

is not constant.

In the following we consider a constant and positive forcing f (note that the system is not dissipative). In the presence of perturbations v to the mean flow, $u = U + v$, the mean flow energy $H = U^2/2$ changes according to

$$\frac{\partial}{\partial t} H = -\frac{U}{6} \langle v_x^2 \rangle + Uf$$

The perturbation energy

$$E' = \frac{1}{2} \langle v^2 \rangle$$

grows for positive U

$$\frac{\partial}{\partial t} E' = \frac{U}{6} \langle v_x^2 \rangle$$

Thus, mean flows with $U > 0$ ($U < 0$) are unstable (stable) as in the discrete system [11] as analysed in [10].

The equations (20, 22) represent a coupling between perturbations and the mean flow. A forcing drives the mean flow towards positive values which allow the growth of perturbations. When the perturbations are sufficiently intense they reduce the flow to negative values causing a decay of their intensities.

The nonlinear energy cycle represented by the exchange between zonal flow and wave energy in (20) and (22) is analysed in a spectral model for the unstable long waves by Fourier expansion in a periodic domain $[-\pi, \pi]$.

$$u = \sum_{n=0}^{N} a_n \sin(nx) + b_n \cos(nx)$$

Here we restrict to the low order system $N = 2$.

$$\dot{b}_0 = -\frac{1}{12} (a_1^2 + b_1^2) - \frac{1}{3} (a_2^2 + b_2^2) + f$$

$$\dot{a}_1 = b_1 b_0 + \frac{1}{6} b_0 b_1 + \frac{1}{2} (a_1 a_2 + b_1 b_2)$$

$$+ \frac{1}{4} (a_1 b_2 - b_1 a_2)$$

$$\dot{b}_1 = -b_0 a_1 + \frac{1}{6} b_0 b_1 - \frac{1}{4} (a_1 a_2 + b_1 b_2)$$

$$+ \frac{1}{2} (a_1 b_2 - b_1 a_2)$$

$$\dot{a}_2 = 2 b_0 b_2 + \frac{2}{3} b_0 a_2 + \frac{1}{4} (b_1^2 + a_1 b_1 - a_1^2)$$

$$\dot{b}_2 = -2 b_0 a_2 - a_1 b_1 + \frac{1}{4} (b_1^2 - a_1^2) + \frac{2}{3} b_0 b_2$$

The mean flow is $U = b_0$ which is subject to a constant forcing f in the numerical experiments (24). The truncated system conserves energy

$$H_{tot} = H_0 + H_1 + H_2$$

$$H_0 = \frac{1}{2} b_0^2, \quad H_1 = \frac{1}{4} (a_1^2 + b_1^2), \quad H_2 = \frac{1}{4} (a_2^2 + b_2^2)$$

The Liouville Theorem is not satisfied

$$\sum_{n=0}^{2} \left(\frac{\partial \dot{a}_n}{\partial a_n} + \frac{\partial \dot{b}_n}{\partial b_n} \right) = \frac{5}{3} b_0$$

The expansion and contraction of the state space volume is controlled by the sign of the mean flow.

Numerical experiments reveal a flow reversal mechanism and vanishing long term means of mean flow and wave number amplitudes, hence the Liouville Theorem (31) is satisfied in the mean.

(i) Weak forcing with $f = 0.1$ in the $N = 1$ truncation reveals periodic flow reversals (Fig. [11]). The system starts with randomly chosen amplitudes. A mean flow increases gradually to positive values where it becomes unstable due to the excited waves, denoted as breathers.
The total energy increases (decreases) when the mean flow is for $N = 1$, intervals $≈ 110$, (b) amplitudes during a flow reversal with Eq. (33) for b_0 (dashed), (c) energies H_0, H_1 and Eq. (34) for H_1 (dashed), (d) amplitudes b_0, a_2, b_2 for $N = 2$, (a_1, b_1 vanish), and (e) energies (H_1 vanishes).

in the following. These breathers drive a rapid flow reversal towards a negative flow which initiates their collapse. The process is energy conserving on short time scales. The total energy increases (decreases) when the mean flow is positive (negative).

For $N = 1$ with the amplitudes b_0, a_1, b_1 the energy cycle is for $f = 0$ (compare ④[122])

$$\partial_t H_0 = -\frac{1}{3} b_0 H_1, \quad \partial_t H_1 = \frac{1}{3} b_0 H_1 \quad (32)$$

which is controlled by the mean flow. The solution for the mean flow is for $b_0(0) = 0$

$$b_0 = -6a \tanh(at) \quad (33)$$

and the perturbation energy is

$$H_1 = \frac{18a^2}{\cosh^2(at)} \quad (34)$$

where a is related to the total energy $H = 18a^2$. H_1 attains its maximum during flow reversals when $U = 0$. These approximations are compared to the forced simulation in Fig. ④[111]c centered at a single flow reversal. In the presence of forcing f and for a small wave energy H_1 the mean flow b_0 grows linearly in time, $b_0(t) ≈ ft$, up to a value $b_{0,\text{max}}$. This defines an interarrival time scale of flow reversals, $\tau = 2b_{0,\text{max}}/f$. In this range the wave energy evolves rapidly according to $H_1(t) \sim \exp(ft^2/6)$. FIG. 2. Intermediate forcing $f = 1$: Energy distributions for (a) $N = 1$, intervals $≈ 13$, (b) $N = 2$.

The described flow reversal mechanism is retained for viscous dissipation represented by a linear damping of the wave amplitudes a_1 and b_1.

For the $N = 2$ truncation with all modes b_0, a_1, b_1, a_2 and b_2 flow reversals occur on a time scale roughly twice as for $N = 1$ (Fig. ④[111]). Due to the weak forcing the energy cascades to mode 2 with negligible amplitudes a_1, b_1 and energy H_1 (Fig. ④[111]e). Neglecting the modes 1, the energy cycle for interactions among b_0, a_2 and b_2 is

$$\partial_t H_0 = -\frac{4}{3} b_0 H_2, \quad \partial_t H_2 = \frac{4}{3} b_0 H_2 \quad (35)$$

This corresponds to a rescaling of the $H_0 - H_1$ cycle by $\tilde{t} = 2t$ for time and $\tilde{b}_0 = 2b_0$ etc. for the amplitudes, hence the energies quadruple.

(ii) For intermediate forcing with $f = 1$ the time scale between flow reversals decreases by an order of magnitude in the $N = 1$ truncation (see Fig. ④[111]a). Thus the intervals τ approach the duration of individual breathers. For the complete set of modes in $N = 2$ (Fig. ④[111]b) the system is weakly nonlinear with a mixing of frequencies, $\omega/2, \omega, 3\omega/2$ and 2ω, where $\omega = 2\pi/\tau$ is defined by the interarrival times of the flow reversals ④[12]. The lowest frequency determines the amplitude modulation.

(iii) For strong forcing, $f = 10$, the flow reversals in the $N = 1$ truncation are regular (Fig. ④[111]a) with intervals
decreased by an order of magnitude relative to $f = 1$. The dominant part of energy is accumulated in waves. In the $N = 2$ truncation the dynamics becomes intermittent as in the regime behaviour detected by Lorenz [5] in the discrete equations [1]. The events lose their identities and the system becomes strongly nonlinear.

In Summary, a continuous dynamical equation derived from the Lorenz-96 model is able to mimic several types of complex processes observed in geophysics, geophysical fluid dynamics, and solid state physics:

(i) Avalanche processes excited by continuous driving as in the sand pile model of Bak et al. [13]; see also the recent observation of quasi-periodic events in crystal plasticity subject to external stress [14]. A common characteristic property is the weakness of the external forcing which is necessary to cause avalanches. In the present model the flow is driven by a constant force towards a state where mean flow and wave energy interact. The intervals between the flow reversals are approximately proportional to the inverse of the forcing intensity, $\sim 1/f$.

(ii) The Quasi-Biennial Oscillation (QBO, [15]), a flow reversal in the tropical stratosphere driven by two different types of upward propagating gravity waves. A common aspect is that the driving of the mean flow by waves occurs only for a particular sign of the mean flow. Although the QBO is considered to be explained dynamically the simulation in present-day weather and climate models necessitates careful sub-scale parameterizations or high resolution models [16]. The present model is clearly an oversimplification but can be considered as a toy model for this phenomenon.

(iii) Rogue waves (also termed freak or monster waves) at the ocean surface are simulated mainly by the nonlinear Schrödinger equation (e.g. [17, 18]); a Lagrangian analysis has been published recently [19]. The breather solutions found in the present model show characteristics like the rapid evolution and the high intensity in an almost quiescent medium.

Due to the flow reversals the total energy of the non-dissipative system remains finite for a constant forcing. The long term mean of the mean flow vanishes and the Liouville Theorem [31] is satisfied in the mean. The flow reversals are insensitive to viscous dissipation.

ACKNOWLEDGMENTS

JW and VL acknowledge support from the European Research Council under the European Communities Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement No. 257106. We like to thank the cluster of excellence clisap at the University of Hamburg.