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AAK-TYPE THEOREMS FOR HANKEL OPERATORS ON WEIGHTED
SPACES

FREDRIK ANDERSSON, MARCUS CARLSSON, AND KARL-MIKAEL PERFEKT

Abstract. We consider weighted sequence spaces on N with increasing weights. Given a fixed
integer k and a Hankel operator Γ on such a space, we show that the k:th singular vector generates
an analytic function with precisely k zeroes in the unit disc, in analogy with the classical AAK-
theory of Hardy spaces. We also provide information on the structure of the singular spectrum
for Hankel operators, applicable for instance to operators on the Dirichlet and Bergman spaces.
Finally, we show by example that the connection between the classical AAK-theorem and rational
approximation fails for the Dirichlet space.

1. Introduction and Statement of Main Result

In the classical setting, a Hankel operator on a Hilbert space X is one which has the following matrix
representation

(1.1) Γ ∼


γ0 γ1 γ2 · · ·
γ1 γ2 γ3 · · ·

γ2 γ3 γ4
. . .

...
...

. . . . . .

 , γn ∈ C,

with respect to some canonical basis. Note that this structure is perturbed by basis changes, and
hence being Hankel is a property depending on the particular basis used. If X = l2(N), the basis
is understood to be {ej}∞j=0 where ej(i) = (δj(i))

∞
i=0 and δj denotes the Kronecker delta function.

This definition can be recast in the setting of the standard Hardy space H2 as follows; Let S denote
the unilateral shift operator, i.e. Sf(z) = zf(z), and let B denote the backward shift, B = S∗. An
operator Γ : H2 → H2 is then a Hankel operator if it satisfies

(1.2) ΓS = BΓ.

This simply means that the matrix representation of Γ in the standard basis (zk)∞k=0 has the form
(1.1).

We now introduce Hankel operators in a more abstract setting. Given a Hilbert space X we let
L(X) denote the set of bounded operators on X. We follow a number of authors, see for example
([17], Vol 1, Part B, Sec 1.7), and generalize the definition of Hankel operators as follows.

Definition 1.1. Let X1 and X2 be Hilbert spaces and let S ∈ L(X1) and B ∈ L(X2) be given
operators. A bounded operator Γ : X1 → X2 will be called Hankel (with respect to S and B) if it
satisfies (1.2).

In [21], Treil and Volberg consider the case when S is an expansive operator (∥Sx∥ ≥ ∥x∥) and B
a contractive operator (∥Bx∥ ≤ ∥x∥). Our work will also be concerned with this setting, aiming to
further develop the AAK-type theory of [21] for generalized Hankel operators. The next example
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2 F. ANDERSSON, M. CARLSSON, AND K.-M. PERFEKT

gives concrete examples of Hankel operators on the type of spaces that we primarily will be concerned
with.

Example 1.2. Let w = (wk)
∞
k=0 be a positive sequence that satisfies

(1.3) lim
k→∞

wk+1

wk
= 1,

and define H2
w as the completion of the holomorphic polynomials with respect to the norm

∥f∥2H2
w
=

∞∑
k=0

|ak|2wk, f(z) =
∑

akz
k.

The condition (1.3) implies that H2
w becomes a space of analytic functions on the unit disc D. In

particular, the Hardy space H2 is obtained when w = (1)∞k=0. Another example is the Dirichlet
space, obtained when w = (k + 1)∞k=0. Given two sequences w and v, let S be the shift on H2

w and
B the backward shift on H2

v ,

(1.4) Sf(z) = zf(z), Bg(z) =
g(z)− g(0)

z
, f ∈ H2

w, g ∈ H2
v .

Note that Γ : H2
w → H2

v is Hankel with respect to S and B if and only if its matrix representation
has the form of (1.1) (with respect to (zk)∞k=0, considered as a spanning sequence in both H2

w and
H2

v ). Also note that S and B are expansive and contractive, respectively, if and only if w and v are
increasing.

We now review the basics of AAK-theory. Let Γ : X1 → X2 be any bounded operator and recall
that its singular values σ0, σ1, . . . are defined by

(1.5) σn = inf{∥Γ|M∥ : M ⊂ X1 and codim M = n} = inf
K:X1→X2

{∥Γ−K∥ : Rank K = n},

where M ⊂ X1 means that M is a closed subspace of X1 and Γ|M denotes the restriction of Γ
to M. As usual, we denote by σ∞ = limn→∞ σn the essential norm of Γ. Whenever σn > σ∞,
standard spectral theory (see e.g. [15]) implies that σn is an isolated point of the spectrum of√
Γ∗Γ : X1 → X1, of finite multiplicity. The multiplicity of σn as an eigenvalue of

√
Γ∗Γ is equal to

the number of times it occurs in the sequence (σn)
∞
n=0. The corresponding eigenvectors are called

singular vectors. That is, a vector un ∈ X1 is a σn-singular vector if ∥un∥ = 1 and

σ2
nun = Γ∗Γun.

Below we recall the celebrated result of Adamyan, Arov and Krein [1], which states that for a Hankel
operator Γ on H2, the best rank n approximation K of Γ is actually realized by a Hankel operator
K. We call this result the AAK-theorem, although we note that preliminary versions of the result
had also been obtained by D. N. Clark [9].

Theorem (AAK). Let Γ : H2 → H2 be a bounded Hankel operator and let σn be its n:th singular
value. Then there is a Hankel operator K of at most rank n such that

σn = ∥Γ−K∥.

The natural generalization of Theorem AAK to weighted spaces with increasing weights is in general
false, which we show in Section 4. However, a key observation in AAK-theory, concerning the zeroes
of the singular vectors, persists to the weighted setting, and this is the main result of the present
paper. To explain our result, we begin by noting that the classical AAK-theorem is actually stronger
than the statement above, in the sense that its proof provides a way of calculating the best rank-n
Hankel approximation. This in turn is related to the curious fact that the n:th singular vector un

has precisely n zeroes in the unit disc (see [5, 9]), assuming that σn+1 < σn < σn−1. We now outline
this in greater detail.
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It is easy to see that a classical rank-1 Hankel operator has the form

(1.6) Γ(z0) =


1 z0 z20 · · ·
z0 z20 z30 · · ·

z20 z30 z40
. . .

...
...

. . . . . .

 , |z0| < 1,

generated by the symbol (1−z0z)
−1. That is, the entries of (1.6) are given by the Fourier coefficients

(with positive index) of this function. In general, Kronecker’s theorem states that any rank-n Hankel
operator has a symbol of the form r(z) where zr(z) is a rational function of degree n with all poles
lying in {z ∈ C : |z| > 1}, (see e.g. [18]). In terms of applications, (see e.g. [4]), the power of the
AAK-theorem comes from the fact that the location of these poles can be easily calculated using
the singular vectors. For simplicity, let us assume that (σn)

∞
n=0 is a strictly decreasing sequence (i.e.

the σn’s are distinct). Fix n and denote the corresponding singular vector by un. The proof of the
AAK-theorem shows that un has precisely n roots (zj)nj=1 in D, counted with multiplicity, and that
the poles of the rational symbol for the rank-n approximant K of the AAK-theorem are located at
(1/zj)

n
j=1, again counted with multiplicity. In particular, if un has distinct zeroes, then the best

rank-n Hankel approximant of Γ is a linear combination of n matrices of the form (1.6) with z0
replaced by zj , j = 1, . . . , n. As mentioned above, we show in Section 4 that this type of result fails
for the weighted spaces under consideration. However the main result of the present paper shows
that the statement concerning the number of zeroes of un does extend to many weighted spaces.

For f ∈ H2, the closed subspace generated by {Smf : m ≥ 0} will be denoted by [f ]S , where S is
the unilateral shift on H2. Note that if [f ]S has finite codimension n, then, by Beurling’s theorem, f
has precisely n zeroes in D (counted with multiplicity), and [f ]S consists precisely of those functions
that share the zeroes of f (to at least the same multiplicity as f). Using Beurling’s and Nehari’s
theorem, a short argument shows that the AAK-theorem can be equivalently stated as follows.

Theorem (AAK*). Let Γ : H2 → H2 be a Hankel operator and let σn be its n:th singular value.
Then there is a singular vector un to σn such that codim [un]S ≤ n and ∥Γ|[un]S∥ = σn.

We will now discuss S. Treil and A. Volberg’s extension of the AAK*-theorem in [21]. We hence
return to the general situation where X1 and X2 denote Hilbert spaces and Γ : X1 → X2 a Hankel
operator with respect to some operators S ∈ L(X1) and B ∈ L(X2). We give a slightly more specific
statement of ([21], Theorem 3.2), which follows upon examination of its proof.

Theorem 1.3 (Treil, Volberg). Assume that S is expansive and that B is contractive and let
Γ : X1 → X2 be a Hankel operator. Let σn be a singular value of Γ. Then there exists an S-
invariant subspace M with codim M ≤ n such that ∥Γ|M∥ = σn. If σn < σn−1 there always exists
such a subspace with codim M = n.

We remark that earlier extensions of AAK* and even AAK exist, see e.g. [11, 16]. However, these
assume that S is isometric and that B is a compression of a unitary operator. Thus they typically
apply to weighted Hardy spaces H2(µ) where µ is a weight on the unit circle T, but not to spaces
of the form considered in Example 1.2.

Treil and Volberg’s proof relies on a fixed point lemma of Ky Fan and does not give information
concerning the singular vectors. In particular, it is not clear whether

(1.7) M = [un]S ,

or, which is weaker statement, whether M is determined by the zeroes of un. As before, [un]S is the
closed linear span of {Smun : m ≥ 0}. Clearly (1.7) is not to be expected in the full generality of
the above theorem. For instance, if X1 is a vector valued Hardy space, e.g. H2 ⊕H2, and S is the
shift operator (as defined in (1.4)), it is easy to see that codim [u]S = ∞ for all u ∈ X1. On the other
hand, for the concrete spaces H2

w and H2
v considered in Example 1.2, the question is very natural.
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The expansivity and contractivity of S (the shift) and B (the backward shift), respectively, is in
this case equivalent to w and v being increasing sequences. We will further impose that either S is
strictly increasing (∥Sx∥ > ∥x∥, x ̸= 0) or B is strictly decreasing (∥Bx∥ < ∥x∥, x ̸= 0), meaning
that either w or v should be strictly increasing.

In our main result the role of X1 will be played by a general Hilbert space H of analytic functions
on D. That is, H should be continuously contained in Hol(D), the latter space equipped with the
open-compact topology. The reproducing kernel of H at λ ∈ D will be denoted kλ; we assume
that kλ does not vanish identically for any λ ∈ D. From now on S will denote the the operator of
multiplication by z, Sf(z) = zf(z), f ∈ H. We assume that S : H → H is bounded and that H has
the division property. Namely, if f ∈ H and f(λ) = 0 for some λ ∈ D, then there exists g ∈ H such
that f = (S − λ)g. It follows that (S − λ) is a Fredholm operator with ind (S − λ) = −1 for every
λ ∈ D. See [19] for a more thorough discussion.

Among these standard analytic reproducing kernel Hilbert spaces, our attention will be restricted
to those that satisfy

(1.8) cl [(S − λ)H] = H, λ ∈ C \ D.
This condition is studied in [3]. We are content to point out that bounded point evaluations on
T = ∂D serve as the typical obstruction to the validity of (1.8). We also remark that in this setting,
spaces of the form [f ]S of finite codimension have the same characterization as in the H2-case –
they are completely determined by the zeroes of f in D, see Proposition 2.1.

Definition 1.4. Let H be a Hilbert space of holomorphic functions in D, on which S, multiplication
by z, is a bounded operator. We say that H is of type (H) if it is continuously contained in Hol(D),
zero-free (i.e. no reproducing kernel is identically zero), has the division property, and satisfies (1.8).

In Section 3, we give simple conditions for the spaces considered in Example 1.2 to be of type (H).
Let us point out explicitly that the Dirichlet space is a space of type (H). We now state our main
result.

Theorem 1.5. Let H and X be Hilbert spaces, where H is of type (H). Suppose that the shift S
is expansive and that B : X → X is a given contractive operator. Further assume that either S is
strictly expansive, or B is strictly contractive.

Let Γ : H → X be a Hankel operator with respect to S and B, and let σn be a singular value such
that σn > σ∞. Then σn has multiplicity 1. Moreover, if un is a corresponding singular vector, let
λj ∈ D denote its zeroes in D with respective multiplicities sj ∈ N. Then

∑
j sj = n and if M is the

codimension-n S-invariant subspace

M = {f ∈ H : f has a zero at each λj of multiplicity ≥ sj}
we have

∥Γ|M∥ = σn.

Note that we trivially have [un]S ⊂ M. Whether equality holds is an open problem. However, even
in concrete examples such as the Dirichlet space, the cyclic vectors in invariant subspaces are not
completely understod, although partial results exist [12]. We also remark that the identity

(1.9) ∥Γ|[un]S∥ = σn

was given a constructive proof in [7], relying on matrix inequalities.

Let us clarify the relationship between Theorem 1.3 and Theorem 1.5. If σn > σ∞, the latter
theorem gives an explicit construction of a subspace M satisfying the conclusion of the former
theorem. We do not know if M is always unique. In the case that σn = σ∞ = 0, Γ is of finite rank
and the sought subspace M is clearly given by the orthogonal complement of the first n singular
vectors of Γ. In the remaining case σn = σ∞ > 0, further information is given by the following
theorem.
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Theorem 1.6. In the setting of Theorem 1.5, suppose that σn = σ∞ > 0 for some n ∈ N. Then
the multiplicity of σn is 0 or 1. In the latter case, the conclusion of Theorem 1.5 still holds (with n
the first integer such that σn = σ∞).

Theorem 1.5 shows that unlike the classical AAK-theory of H2, the only possible obstruction to
having a strictly decreasing sequence of distinct singular numbers σn is that the sequence may
eventually become stable at σ∞, σm = σ∞ for all m ≥ n, for some n ∈ N. If it is not a strictly
decreasing sequence and Γ is not of finite rank, σ∞ can have multiplicity at most 1 as an eigenvalue
of

√
Γ∗Γ, and is hence not an isolated point of the spectrum. In particular, if Γ is compact and not

of finite rank, then (σn)
∞
n=0 is a strictly decreasing sequence.

In Section 2 we give proofs of the above theorems. Section 3 is devoted to concrete examples and
applications, and we develop Example 1.2 further. We also show that Theorem 1.5 is false if the
conditions on S and B are not fulfilled, but that the statements concerning multiplicity of the
singular vectors can be extended for example to Hankel operators on the Bergman space. Finally, in
Section 4 we give remarks on rational approximation, to which the classical AAK-theory is strongly
connected, as explained above. We conclude that the equivalent formulation of Theorem AAK in
general fails in the weighted setting.

2. Proof of the Main Result

For Hilbert spaces of analytic functions of type (H), there is a natural characterization of the (closed)
S-invariant subspaces with finite codimension. For an integer s ≥ 0 and λ ∈ D, let kλ,s ∈ H be the
function such that

f (s)(λ) = ⟨f, kλ,s⟩, f ∈ H,

where f (s) denotes the s:th derivative of f .

Proposition 2.1 ([6]). Let m ∈ N and let M ⊂ H be a closed S-invariant subspace such that
dim(H/M) = m. Then there are a finite number of points λj ∈ D and integers sj ∈ N such that∑

j sj = m and

M =
(
∪j

{
kλj ,t

}sj−1

t=0

)⊥
= Ran

∏
j

(S − λj)
sj

= {f ∈ H : f has a zero at each λj of multiplicity ≥ sj}

Conversely, any set of this form is a closed S-invariant subspace with codimension m.

We now give one proof that establishes both Theorem 1.5 and 1.6. Let EΓ be the projection valued
measure associated with

√
Γ∗Γ, as given by the spectral theorem (see e.g. [10]).

Proof. Consider a fixed n with σn ̸= 0, and pick uk ∈ Ran EΓ({σk}), 1 ≤ k ≤ p, in such a way that
{uk}k is an orthonormal basis for the p-dimensional space Ran EΓ((σn,∞)). Let up+1 be a unit
vector in Ran EΓ({σn}) – if it does not exist there is nothing to prove. By Theorem 1.3, there exists
an S-invariant subspace of codimension p+ 1 such that

(2.1) ∥Γ|M∥ = σp+1 = σn.

Since Span {uk}p+1
k=0 is (p + 2)-dimensional, it has a non-zero intersection with M, so there are

c0, . . . , cp+1 such that
p+1∑
k=0

ckuk ∈ M.
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By (2.1) we have

σ2
p+1(

p+1∑
k=0

|ck|2) =

∥∥∥∥∥σp+1

p+1∑
k=0

ckuk

∥∥∥∥∥
2

H

≥

∥∥∥∥∥√Γ∗Γ(

p+1∑
k=0

ckuk)

∥∥∥∥∥
2

H

=

∥∥∥∥∥
p+1∑
k=0

σkckuk

∥∥∥∥∥
2

H

=

p+1∑
k=0

σ2
k|ck|2

which, since σk > σp+1 for k < p + 1, is only possible if ck = 0 for all k < p + 1. We thus have
up+1 ∈ M. Since up+1 was an arbitrary unit vector in Ran EΓ({σn}), this gives

(2.2) Ran EΓ({σn}) ⊂ M.

Let sj ∈ N and λj ∈ D characterize M as in Proposition 2.1. By (2.2) every u ∈ Ran EΓ({σn}) has a
zero of multiplicity at least sj at every point λj . Suppose there exists a non-zero u ∈ Ran EΓ({σn})
having a zero at some λ where either λ ̸∈ {λj}j or where λ = λj0 for some j0 but the multiplicity
of the zero λ is greater than sj0 . We will show that this leads to a contradiction. Note that this
also proves that σn has multiplicity 1, because if there would exist linearly independent u, ũ ∈
Ran EΓ({σn}), a linear combination u+ cũ ∈ Ran EΓ({σn}) would have p+2 zeros. Hence (σm)∞m=0

is strictly decreasing, in particular forcing p + 1 = n, until σ∞ is reached by some finite m, if this
happens.

Let a ∈ H be the element satisfying u = (S − λ)a. Note that a ∈ M, by Proposition 2.1. Let also
b = Γ(a)/σp+1. Combining ∥Γ|M∥ = σp+1 and the hypotheses of the theorem we have

(2.3) ∥Bb∥X ≤ ∥b∥X ≤ ∥a∥H ≤ ∥Sa∥H,

with one of the outer inequalities being strict. Moreover,

⟨(B − λ)b, b⟩X =

⟨
(B − λ)

Γ(a)

σp+1
,
Γ(a)

σp+1

⟩
X

=

⟨
Γ∗Γ((S − λ)a)

σ2
p+1

, a

⟩
H

= ⟨u, a⟩H = ⟨(S − λ)a, a⟩H ,

implying that
Re λ⟨Bb, b⟩X − |λ|2∥b∥2X = Re λ⟨Sa, a⟩H − |λ|2∥a∥2H.

Combining this with (2.3), recalling that one of the inequalities was strict, we get

∥u∥2H = ∥(S − λ)a∥2H = ∥Sa∥2H − 2Re λ⟨Sa, a⟩H + |λ|2∥a∥2H
= ∥Sa∥2H − 2Re λ⟨Bb, b⟩X + 2|λ|2

(
∥b∥2X − ∥a∥2H

)
+ |λ|2∥a∥2H

= ∥Sa∥2H − ∥Bb∥2X + |λ|2
(
∥b∥2X − ∥a∥2H

)
+ ∥Bb∥2X − 2Re λ⟨Bb, b⟩X + |λ|2∥b∥2X

> ∥Bb∥2X − 2Re λ⟨Bb, b⟩X + |λ|2∥b∥2X = ∥(B − λ)b∥2X = ∥Γ(u)/σp+1∥2X = ∥u∥2H,

yielding a contradiction.

�

3. Examples and further results

In this section we revisit Example 1.2. We hence fix two positive increasing sequences w and v, one
of which is strictly increasing. We assume additionally that the sequences satisfy

(3.1) lim
k→∞

wk+1

wk
= lim

k→∞

vk+1

vk
= 1.

In order to be able to apply Theorem 1.5 we also impose that
∞∑
k=0

1

wk
= ∞,

which is easily checked to be precisely the description of those spaces H2
w such that λ → f(λ),

f ∈ H2
w, does not define a bounded point evaluation for λ ∈ T.

Lemma 3.1. Under the above assumptions H2
w is a Hilbert space of type (H).
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Proof. All the required properties are straightforward and standard to check. We give only the short
argument that cl [(z − λ)Hw] = Hw for |λ| = 1. Suppose that u =

∑∞
k=0 ukz

k ∈ H2
w is orthogonal

to (z − λ)Hw, and for each k, let hk be the polynomial such that zk = λk + (z − λ)hk. Then

ukwk = ⟨u, zk⟩H2
w
= ⟨u, λk⟩H2

w
= λ̄ku0w0,

which implies that if u ̸= 0, then |uk| ∼ 1/wk and hence
∞∑
k=0

1

wk
∼ ∥u∥2H2

w
< ∞,

a contradiction. �

Letting S be the usual shift on H2
w, Sf(z) = zf(z), f ∈ H2

w, and B the backward shift Bg(z) =
g(z)−g(0)

z , g ∈ H2
v , we see that Theorem 1.5 applies to any bounded Hankel operator Γ : H2

w → H2
v

in this setting.

Note that our theorem a priori assumes that Γ is bounded. We refer to [21] for a description of the
bounded Hankel operators Γ : H2

w → H2
v in the case that (1/vk)

∞
k=0 is generated by the moments

of a positive measure. For boundedness conditions in the particular case of the Dirichlet space, see
also [2].

Concrete examples of singular vectors are easily constructed using Hankel operators whose defining
sequences (γj)∞j=0 have finite support (in {0, . . . , N}, say). Then Γ is completely determined by the
finite matrix

G =


γ0 γ1 · · · γN

γ1 γ2
. . . 0

...
. . . . . . . . .

γN 0 · · · 0


and Γ∗ is represented by I−1

v G∗Iw where Iv is a diagonal matrix with the weights (vj)
N
j=0 and G∗

is the usual matrix adjoint of G. The singular vectors are thus eigenvectors of I−1
v G∗IwG. With

these observations, singular vectors are easily computed using computer software. For example, the
Hankel operator

G =

 3 2 1
2 1 0
1 0 0


acting on the Dirichlet space (w = v = (j + 1)∞j=0) has singular values (rounded) 22.72, 0.53, 0.08

with corresponding singular vectors ǔ0(z) = 0.97 + 0.25z + 0.08z2, ǔ1(z) = −0.47 + 0.81z + 0.35z2

and ǔ0(z) = 0.13 − 0.51z + 0.85z2. The zeroes in D are ∅, {0.48} and {0.30 ± 0.25i}, respectively,
in accordance with Theorem 1.5.

A peculiar phenomenon which we have observed is that Iwun also seems to generate polynomials
with precisely n zeroes in D. We have not been able to prove this, but note that its validity is
related to the inequality (c.f. (1.9))

∥Γ|[un]I−1
w SIw

∥ ≤ σn,

which also seems to be true according to our numerical tests.

Finally, some remarks on the case when the weights are not increasing. If we let G (as above) act
on the Bergman space (w = v = ( 1

j+1 )
∞
j=0), it is easily computed that all singular vectors generate

2 zeroes in D (although the singular values are distinct). In general, we have found no instances
where one of the sequences w or v is not increasing, but where Theorem 1.5 seems to hold. In spite
of this, the following corollary is easily obtained by a duality argument.
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Corollary 3.2. Let w and v be strictly decreasing weights that satisfy (1.3), and suppose that∑∞
j=0 vj = ∞. Let Γ be a Hankel operator from H2

w → H2
v (with respect to S and B). If σn > σ∞,

then σn has multiplicity 1. If σn = σ∞, then σn has multiplicity ≤ 1.

Proof. With the unweighted pairing (also called the Cauchy pairing), it is easily seen that the dual
of H2

w is H2
w−1 . Moreover, the dual operator of Γ with this pairing becomes a new Hankel operator

Γ∗ : H2
v−1 → H2

w−1 (with respect to the shift and backward shift). The conditions imposed on w and
v, together with Lemma 3.1, show that Theorems 1.5 and 1.6 apply to Γ∗. The desired conclusion
now follows from the elementary fact that Γ and Γ∗ share the same singular values. �

In particular, the above corollary applies to the Bergman space [13].

4. Remarks on rational approximation

Given a function ϕ ∈ L∞(T), we let Γϕ denote the Hankel operator on l2(N) whose defining sequence
is given by the Fourier coefficients of positive index (i.e. (γj)∞j=0 = (ϕ̂j)

∞
j=0 in (1.1)). ϕ will be called

the symbol of Γϕ. We denote by P the Riesz projection, the operator P : L2(T) → L2(T) such
that P (ϕ)(z) =

∑∞
j=0 ϕ̂jz

j . Let Rn denote the set of rational functions r = p/q where p and q are
polynomials such that deg p < n, deg q ≤ n and q has no zeroes in D. One may think of Rn as the
closure of functions of the form

∑n
j=1

cj
1−λjz

, where λj ∈ D and cj ∈ C.

Note that the matrices of the form (1.6) arise from symbols in R1. Kronecker’s theorem states that
Γϕ has rank n if and only if Pϕ ∈ Rn \Rn−1. Theorem AAK can thus be restated as

(4.1) inf
r∈Rn

∥Γϕ − Γr∥ = σn,

where σn is the n:th singular value of Γϕ. Important for applications is that the minimizer r0 = p/q
can be found explicitly, and the key observation behind this is that the poles of q are located at
{ 1
λj
}j , where the λj ’s are as in Theorem 1.5. When this phenomenon holds also in the weighted

setting, we refer to it as the “strong form” of the AAK-theorem.

In addition, by Nehari’s theorem this can be reformulated as a result on best rational approximation
with respect to a quotient norm in L∞. More precisely, letting (H1)⊥ denote the subset of L∞ with
functions whose Fourier coefficients with index in N are zero, we have that

(4.2) inf
r∈Rn

∥ϕ− r∥L∞/(H1)⊥ = σn.

We refer to [8] for further details and applications to control theory.

It is known [2, 7, 17, 21] that no sharp version of Nehari’s theorem exists in the weighted setting.
Moreover, in [7] it is shown that the strong form of the AAK-theorem fails for Hankel operators
between spaces H2

w and H2
v , as long as the weights are strictly increasing. Below we show that the

weaker form, Theorem AAK, also fails – that is, even if we do not require the poles to be determined
by the zeroes of the n:th singular vector – in the case of Hankel operators on the Dirichlet space.

Example 4.1. Let H2
w = H2

v be the Dirichlet space D and consider the Hankel operator Γz : D → D
with matrix representation (as in Section 3) given by

G =

(
0 1
1 0

)
.

Then Γ∗
z is represented by (

1 0
0 2

)−1 (
0 1
1 0

)(
1 0
0 2

)
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so Γ∗
zΓz is represented by

(
2 0
0 1/2

)
and therefore σ0 =

√
2, u0 = 1, σ1 = 1/

√
2, u1 = z/

√
2.

Thus if the AAK theorem were to hold in the Dirichlet space, we would have

(4.3) inf
{∥∥∥Γz − Γ c

1−λz

∥∥∥ : c ∈ C, λ ∈ D
}
= σ1 = 1/

√
2 < 1,

where the norm refers to the operator norm on D. We show below that

(4.4)
∥∥∥Γz − Γ c

1−λz

∥∥∥ ≥
√

38

27
> 1,

in clear contrast with (4.3). To prove (4.4), note that∥∥∥(Γz − Γ c
1−λz

)
u0

∥∥∥2
D
/∥u0∥2D =

(
2− 4Re (cλ) +

|c|2

(1− |λ|2)2

)
/1,

where c ∈ C and λ ∈ D. However, it is easy to see that the expression is minimal for real positive
values of c and λ. Thus (4.4) follows if we show that

f(c, λ) = 2− 4cλ+
c2

(1− λ2)2
, 0 ≤ λ < 1, c ≥ 0

is larger than 38/27. Basic analysis yields that for fixed λ, the minimum in c is achieved at c =
2λ(1− λ2)2. Note that

f(2λ(1− λ2)2, λ) = 2− 8λ2(1− λ2)2 +
4λ2(1− λ2)4

(1− λ2)2
= 2− 4λ2(1− λ2)2

Introducing the new variable y = λ2 we see that infc,λ f = inf0<y<1 g(y) where

g(y) = 2− 4y(1− y)2.

It is easy to deduce that g attains its minimum for y = 1/3, yielding

inf
0<y<1

g(y) = 2− 4
1

3
(1− 1

3
)2 =

38

27
,

as desired.

The above proof can obviously be extended to a greater range of weights than only those giving rise
to the Dirichlet space.
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