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Abstract Complex models of biochemical reaction systems have become increas-
ingly common in the systems biology literature. The complexity of such models can
present a number of obstacles for their practical use, often making problems difficult
to intuit or computationally intractable. Methods of model reduction can be employed
to alleviate the issue of complexity by seeking to eliminate those portions of a reaction
network that have little or no effect upon the outcomes of interest, hence yielding sim-
plified systems that retain an accurate predictive capacity. This review paper seeks to
provide a brief overview of a range of suchmethods and their application in the context
of biochemical reaction network models. To achieve this, we provide a brief math-
ematical account of the main methods including timescale exploitation approaches,
reduction via sensitivity analysis, optimisation methods, lumping, and singular value
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decomposition-based approaches. Methods are reviewed in the context of large-scale
systems biology type models, and future areas of research are briefly discussed.

Keywords Model reduction · Complexity · Systems biology · Mathematical
modelling

Mathematics Subject Classification 34A34 · 37N25 · 65Y20 · 92-08

Abbreviations

CSP Computational singular perturbation
DQSSA Delay quasi-steady-state approximation
ENVA Elimination of nonessential variables
GA Genetic algorithm
LASCO Lumping and subsequent optimisation
ILDM Intrinsic low-dimensional manifold method
MPVA Multiparametric variability analysis
PCA Principle component analysis
QSSA Quasi-steady-state approximation
REA Rapid equilibrium approximation
SVD Singular value decomposition
ZDP Zero-derivative principle

1 Introduction

Model complexity can be used to refer to a number of specific properties of mathe-
matical models occurring in a range of scientific contexts. It can, for example, be used
to refer to models that are overparameterised relative to the volume of collectable
data, models that are unintuitable due to their scale, or models that are computation-
ally intractable in magnitude. In each case, complexity presents a barrier to standard
tools of model analysis. Methods of model reduction offer one possible approach for
dealing with the perennial issue of model complexity by seeking to approximate the
behaviour of a model by constructing a simplified dynamical system that retains some
degree of the predictive power of the original.

Model reduction has a long history in the mathematical modelling of biological
systems; perhaps the most famous example is Briggs and Haldane’s application of
the quasi-steady-state approximation (QSSA) for the simplification of a model of
the enzyme–substrate reaction (Briggs and Haldane 1925). They demonstrated that a
simplifying assumption could take the unsolvable, nonlinear, four-dimensional system
of coupled ordinary differential equations (ODEs) that constituted the model, to a
single ODE whilst still providing an accurate description of the dynamics for a wide
range of possible parameterisations.

The mathematical modelling of biological processes often leads to highly complex
systems involving many state-variables and reactions. The relatively recent advent of
systems biology, which seeks to model such systems in detail and hence yield a high
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degree of mechanistic exploratory power, has greatly increased this complexity such
that it is now common to encounter models containing hundreds or even thousands of
variables (Li et al. 2010).

Even given this rapid increase in complexity, however, concurrent advances in com-
puting power and simulation algorithms may appear to make model reduction a less
essential process than it was in the past—it is now possible to accurately and efficiently
compute numerical simulations of even highly complex systems where previously
some degree of reduction was necessary to understand even the basic dynamical
behaviour of many models. Ease of simulation, however, does not necessarily lead
to depth of understanding; for a wide range of analyses model complexity can present
an insurmountable barrier. Methods of model reduction therefore remain a vital topic
and awidely applicable tool in the analysis andmodelling of biochemical systems. The
methods that will be discussed throughout this paper have been employed for a wide
range of purposes in the literature, including to obtain more intuitively understood
models, to reduce the number of parameters so as to obtain an identifiable model,
to lessen the computational burden of parameter fitting, and to enable the embed-
ding of such systems within agent-based modelling approaches. Here, for example, a
researcher may be interested in concurrently modelling a large number of cells com-
prising a tissue—by employing a reduced description of the individual cells, such a
problem may be made more computationally feasible.

Despite the utility ofmodel reductionmethods, familiarity is often limited to a small
range of methods that can be found in the literature. This review therefore seeks to give
an overview of the use and application of model reduction methods in this context.

Such methods are commonly applied within the fields of engineering and control
theory, and a number of reviews of methods within these contexts exist (Okino and
Mavrovouniotis 1998; Antoulas 2005). Additionally, Radulescu et al. (2012) have
reviewed timescale exploitation methods for the reduction of computational biology
models, but their work mostly focuses on the fundamental basis of such methods and
the potential applicability of model tropicalisation in this context. The aim of this
review is therefore to provide a more contextualised and up-to-date overview of such
methods, as well as a survey of the current state of the literature, so as to better assess
the possible utility of particular model reduction methodologies for application in the
field of systems biology.

The broader topic of general model reduction methods is an extensive area of study.
To review the entire field would be a challenging undertaking and beyond the scope
of this paper. As a result, this review limits itself in the following respects; firstly,
the survey of literature is limited only to those methods that have been developed,
adapted or applied in the context of biochemical reaction network models. Secondly,
it is limited to methods addressing models that are comprised of systems of ODEs.
Thirdly, it focuses particularly on those methods that have seen published application
within the previous 15 years. Ideally, such methods will be algorithmic, automatable
and produce highly accurate, significantly reduced approximations.

By reviewing such a range of literature we are able to separate methods into
categories and provide insight into their suitability in addressing certain classes of
problems. In the discussion section we provide an overview of methods and their gen-
eral applicability, collating this information in Table 1 to summarise the suitability of
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the different methods in the context of particular model properties. It is hoped this
can therefore provide guidance to the most appropriate methods currently available
for reducing models.

1.1 Problem Outline

Mathematically, this review seeks to address the reduction of large-scale models of
biochemical reaction networks represented by high-dimensional systems of (typically
nonlinear) ODEs. These are usually informed by sets of interacting chemical equations
that can be expressed in the form of ODEs via application of the Law of Mass Action.
Such a systemof chemical equations is comprised of an n-dimensional set of individual
species si ∈ S (the chemical reactants), anm-dimensional set of reactionsRdescribing
the interaction and transition of these species, and an associatedm-dimensional vector
of time-invariant kinetic parameters p ∈ R

m describing the frequencywithwhich each
of the reactions occurs under the assumption that the reactants are well stirred.

The Law of Mass Action then allows the description of the dynamics of these
reactants en masse such that the model describes the overall change in the molecular
concentration of the reactants. To achieve this, the variables xi (t) ∈ x(t) are defined to
represent the instantaneous concentrations associated with each of the species si ∈ S,
such that x(t) : S → R

n≥0, with t an independent variable representing time. It
is common notation to use square brackets to represent the instantaneous molecular
concentration of a species, hence in this form xi (t) = [si ]. The Law of Mass Action
then states that the rate of concentration change due to a given reaction is proportional
to the product of the active masses of the reactants each raised to a power equal to their
reactant stoichiometric coefficient. Additionally, the coefficient of proportionality is
equal to the corresponding kinetic parameter pi ∈ p. Given this, it is possible to
define a vector of reaction rates v (x(t), p) explicitly describing the rate of molecular
concentration change due to each reaction.

To understand how these reaction rates influence the overall dynamics of the system,
it is further necessary to account for the overall network structure and to describe
how each of the species is involved in each of the reactions. A common means for
representing the network structure underlying a system of chemical equations is that
of the stoichiometry matrix. The stoichiometry matrix is an n×m matrix S, with each
of the rows corresponding to a single species and each of the columns to a reaction.
The matrix is populated such that its entries si j give the net value of the stoichiometric
coefficients (product minus reactant) of the i th species in the j th reaction. If the
concentration of a particular species is not affected by a reaction, the corresponding
entry is populated with a 0. Hence, the sign of the entry indicates whether the species is
a net reactant or a net product in the relevant reaction. A positive sign implies that the
species is a product (i.e. the number of molecules is increased by the reaction), whilst
a negative sign indicates that the species is a reactant (i.e. the number of molecules
is decreased). This matrix can be considered as mapping the vector of reaction rates
v(x(t), p) to the change in species concentration. Hence it is possible to model the
dynamics of the biochemical reaction network as a set of ODEs, such that

ẋ(t) = Sv(x(t), p), (1)
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where the over-dot represents the time derivative, such that ẋ = dx
dt . Systems of this

type are typically solved as initial-value problems with some associated set of initial
conditions, such that x(0) = x0.

Whilst a description of dynamics in the form of Eq. (1) represents a useful way
to understand a biochemical system, it is common to additionally explicitly account
for input and output terms within a model. This can be achieved by employing a
state-space representation of the form

ẋ(t) = f (x(t), p, u(t)), (2a)

y(t) = g(x(t), p), (2b)

where u(t) ∈ R
l represents the set of model inputs and y ∈ R

p represents a set of
model outputs. Hence, the dynamics of the state-variables are governed by the system
of ODEs represented by Eq. (2a) and defined by the set of functions f (x(t), p, u(t)).
Additionally, the outputs are combinations of the original state-variables defined by
some set of functions g(x(t)). This form can be related back to Eq. (1) by noting
f (x(t), p, u(t)) = ∑m

i=1 scivi (x(t)), p, u(t)), with sci referring to the i th column
of the stoichiometry matrix S.

The aimofmodel reduction is then to construct a simplermodel in termsof a reduced
set of state-variables x̃ ∈ R

n̂ and parameters p̃ ∈ R
m̂ such that either n̂ < n or m̂ < m.

A reduction in state-variables is justified on the principle that often trajectories in the
phase space associated with a complex system of ODEs can be entirely contained
within, or can be well approximated by, a lower-dimensional subspace. Finding the
set of subspaces of a given dimensionality that best approximate the trajectories of
interest is the primary goal of model reduction methods. Unfortunately, proving the
optimality of a reduction for a given trajectory (or set of trajectories) is often not
possible. Hence it is typical to seek an acceptable, as opposed to optimal, subspace to
approximate the model. The construction of a reduced model within a given subspace
is typically achieved via the Petrov–Galerkin projection.

Put simply, methods of model reduction can often be considered as a projection
of the state-variables to a lower-dimensional subspace V : dim (V) = n̂ of the
original phase space, within which some relevant set of the system’s trajectories can
be adequately approximated. Mathematically, it is the application of such a projection
to obtain a reduced dynamical system that is underpinned by the Petrov–Galerkin
projection (Antoulas 2005) as follows.

Assuming we have a given projection T ∈ R
n̂×n applied to create a reduced set of

state-variables x̃ ∈ R
n̂ , such that

x̃ = Tx,

and an associated generalised right-inverse T̄ ∈ R
n×n̂ , with T T̄ = I n̂ , then the

Petrov–Galerkin projection allows a reduced dynamical description of these state-
variables as

˙̃x = T Sv(T̄ x̃(t), p),

ȳ(t) = g(T̄ x̃(t), p),
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when applied to a model of the form of Eq. (1). More details are given in Additional
file 1—Supplementary information Section 1.1.

The quality of a given reduction is typically assessed by comparing some given
metric of error ε between the output of the original and the reduced models, such that

ε = ‖ y(t) − ȳ(t)‖ . (3)

Methods of model reduction are therefore considered here as either a projection of
the set of reactants or of the reactions to some subspace within which some subset
of the original dynamical behaviour can be satisfactorily approximated as dictated
by a given metric of error. Throughout this paper a range of methods from the lit-
erature will be introduced and outlined with reference to the general model forms
represented by Eqs. (1) and (2). For several of the core methods we have also provided
an example of more direct application to a nonlinear example model in Additional file
1—Supplementary information Section 2.

There are several issues that often arisewith the reduction of large-scale biochemical
models that in many ways define the suitability of model reduction methods in this
context; these include nonlinearity, stiffness, high dimensionality, and thewide ranging
aims of model reduction within this field.

Nonlinearity Systems of coupled, nonlinear ODEs are typically analytically
intractable; hence, we are often constrained to using numerical approaches in the
reduction of such models. Linearisation methods do exist for such systems, but their
application typically incurs a relatively high degree of error which is often strongly
dependent upon the parameterisation of the model and the nature of the nonlinearities
seen.

Stiffness It is often the case in such models that reactions occur across a wide
range of timescales. As a result the systems of ODEs governing these models are
often considered numerically stiff and therefore require care when being simulated.
In highly stiff systems some degree of numerical error under simulation is likely, even
for specialised numerical methods, and can lead to issues for certain model reduction
methods.

High Dimensionality Systems biology, due to its holistic approach, often produces
very large systems of equations. Whilst model reduction obviously seeks to reduce
such systems, this level of complexity has a number of associated issues. In particular
such systems cannot be easily intuited, the numerical stability of reduction methods
becomes especially important, and the computational calculation time for many meth-
ods in this setting can become prohibitive due to the combinatorial explosion in the
range of possible model subspaces.

Aims of Model Reduction The choice of model reduction method employed is
typically constrained by the aims of the researcher. For example, the optimal reduction
that retains the biological meaning of the state-variables is likely to be non-optimal
in a setting where transformations of the state-variables are permitted. The preferred
reduction is also likely to differ if we select the reduction that can best approximate
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all state-variables as opposed to some subset, and depending upon the metric of error
that is employed.

Note that whilst we have here outlined the process of modelling biochemical reac-
tion networks in the context of the Law of Mass Action, most reduction methods
reviewed in this paper are applicable in the broader context of general ODE systems.
The Law of Mass Action typically represents the main theoretic basis for the deter-
ministic modelling of systems biology type networks. However, it is also common
that other terms such as Hill, logistic, or other mathematical functions are used to
describe certain biological phenomena. Certain methods that are reviewed (e.g. Samal
et al. 2015) do require that the model contains only polynomial terms or, in certain
instances, that the model has a specific structure (e.g. Löwe et al. 2016) or that it
is linear (e.g. Sunnåker et al. 2010). Where the methods do require a more specific
structure than a general system of ODEs, this will be highlighted as part of the review.

2 Model Simplification Methods

Conservation analysis, nondimensionalisation, and model decomposition are three
commonly applied techniques for the simplification and analysis of models of bio-
chemical systems.All threemethods are strongly related tomodel reduction techniques
and can be seen as simplifying the representation of a model without incurring any
associated error cost. Hence they can be considered to produce simplified model real-
isations as opposed to acting as true model reductions. These techniques are often
applied prior to the use of model reduction methods with the aim of obtaining the
simplest or most easily manipulated version of a system.

2.1 Conservation Analysis

Models of biochemical reaction networks commonly possess subsets of reactants that,
under a given linear combination, remain constant at all times (Klipp et al. 2013).
These subsets are typically referred to as conserved moieties and the specific linear
combinations as conservation relations. In combination with the system of ODEs
described by Eq. (2a), the existence of conservation relations implies that the model
can be expressed as a system of differential algebraic equations (DAEs), such that

ẋ(t) = f (x(t), p, u(t)), (4a)

0 = Γ f (x(t), p, u(t)), (4b)

where Γ is an h × n matrix referred to as the conservation matrix, the rows of which
represent the linear combinations of reactants that are constant in time. As Eq. (4b)
is linear following integration, it can be solved explicitly and used to eliminate up
to h state-variables and their associated ODEs from the system defined by Eq. (4a).
This replacement of state-variables via the algebraic exploitation of conservation rela-
tions is a common first step in the analysis of biochemical reaction networks and,
for large systems, typically results in a reduction of 10–15% of the state-variables
(Vallabhajosyula and Sauro 2006).
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For small networks conservation relations are usually obvious and easily exploited.
For very large systems, however, these relations are often not readily apparent. As such
it is common to turn to algorithmic approaches for finding the conservation matrix Γ .
As is discussed in Reder (1988), this can be achieved by computing the left null-space
(and hence the linear dependencies) of the network’s associated stoichiometry matrix.
A review of a range of methods to find the left null-space of this matrix, including
Gaussian elimination and singular value decomposition, can be found in Sauro and
Ingalls (2004). Such methods, however, are often numerically unstable for systems of
very high dimension, which can lead to some conservation relations being missed. A
more numerically stable method based upon the construction of a QR decomposition
via Householder reflections has been developed by Vallabhajosyula et al. (2006). An
example of the application of algorithmic conservation analysis to a nonlinear example
model is provided in Additional file 1—Supplementary information Section 2.1.

2.2 Nondimensionalisation

Nondimensionalisation refers to a process of scaling the variables in a system such
that the physical units are removed from the model (Murray 2002). In the case of the
systems considered here, this is most often units of molecular concentration and time.
There are number of purposes for nondimensionalisation in the analysis of biochemical
systems—primary amongst these is its use in accessing characteristic or intrinsic
differences in scale between the components of the reaction network. Usually these
are represented by ratios of rate parameters and conserved values that enable greater
intuition into how the parameterisation of a model governs its behaviour. As will
be discussed in later sections, these characteristic parameters can be crucial for the
application of model reduction methods based upon singular perturbation theory.

For a model represented in the stoichiometric form given by Eq. (1) the aim of
nondimensionalisation is to rescale the state-variables xi (t) ∈ x(t) and the indepen-
dent variable t such that they are dimensionless. This produces a transformation to
rescaled variables of the form

xi → x̂i : xi = ai x̂i , (5a)

t → τ : t = bτ, (5b)

where ai ∈ a each typically represent some, to be determined, constant of molecular
concentration and b represents a constant of time. Note that the transformation of all
state-variables given by Eq. (5a) can hence be written as x = Θ x̂ whereΘ is an n×n
diagonal matrix of the form Θ = diag (a1, . . . , an). Therefore, applying this transfor-
mation to the original system (1) yields a nondimensionalised system of the form

dx̂(τ )

dτ
= bΘ−1Sv

(
Θ x̂(τ ), p̂

)
. (6)

This yields a nondimensionalised parameter set p̃with entries representing specific
ratios of the original parameters p. Often, this approach can result in a reduction in
the dimension of the new parameter set p̃ by finding ratios that are fixed to one irre-
spective of the original parameterisation. This does not, however, result in a reduction
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in the number of modelled reactions and hence does not reduce model complexity as
previously defined. Additionally, the dimensionless parameters may lose their innate
biological meaning as the ratios they represent may not always hold particular biolog-
ical significance.

2.3 Model Decomposition

Biochemical reaction networks are often highly modular in nature (Hartwell et al.
1999; Milo et al. 2002; Bruggeman et al. 2002; Sauro 2008). This implies that the
elements (species or reactions) of most networks in this context, as compared to a ran-
domly generated network, can be more easily partitioned into sub-networks that are
highly connected within themselves and possess a low number of connections to ele-
ments outside of their partition. Additionally, complex phenomenological behaviours
can often be shown to be driven by small sub-networks contained within the larger
network (Lauffenburger 2000; Tyson et al. 2003). The approach of dividing the system
into interacting sub-networks (often referred to asmodules) is known asmodel decom-
position. Given the high degree of network modularity common in this field and the
likelihood of certain modules to dominate the dynamical behaviour of interest, model
decomposition is an attractive technique in the modelling of biochemical systems.

Methods of model decomposition are also highly complementary to methods of
model reduction as they can be used to separate the system into modules of differing
‘importance’ and hence be used to guide reduction. For example, it may be the case
that only those portions of a signalling pathway model addressing the initial receptor
binding of an extracellular ligand and the phosphorylation of a particular protein
downstream are of interest to the modeller. In this instance it may make sense to
decompose the system into twomodules representing these portions and a thirdmodule
describing the ‘unimportant’ components of the network. This can then be used to
guide model reduction such that the module deemed unimportant can be reduced
in isolation and, potentially, approximated with a lower degree of accuracy than the
important modules.

As an example, consider the phosphorylation cycle [a description of phosphoryla-
tion cycles and their modelling can be found in Salazar and Höfer (2009)] depicted
in Fig. 1a. Given a system of this form a biologically reasonable decomposition is to
partition the system into phosphorylation and dephosphorylation modules as depicted
in Fig. 1 as modules A and B, respectively. If, for example, the modeller was primarily
interested in the dephosphorylation module, it might be possible to reduce the phos-
phorylation module significantly, as shown in Fig. 1b, whilst still retaining an accurate
description of the biological mechanisms of interest.

A full review of decomposition methods is beyond the scope of this paper. A wide
range of approaches for finding suitable decompositions can be found in the literature
(Holme et al. 2003; Saez-Rodriguez et al. 2004, 2005; Vecchio and Sontag 2009;
Kaltenbach et al. 2011; Anderson et al. 2011; Sivakumar and Hespanha 2013; Prescott
and Papachristodoulou 2014). Relatedmethods for determiningwhether a givenmodel
can be found as a sub-network in a larger system have also been discussed (Gay
et al. 2010). Sun and Medvedovic (2016) have proposed the decomposition of models
into linear and nonlinear sub-modules for the purpose of parameter fitting via Rao–
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Fig. 1 Schematic depiction of a simple phosphorylation cycle and a potential decomposition of the network.
IThe network depicted here represents a simple enzymatic phosphorylation cycle—a kinase K mediates the
phosphorylation of a protein X , whilst a phosphatase P performs the process of dephosphorylation. Here
a biologically guided decomposition of the network into two sub-modules A and B is depicted—with A
representing the unphosphorylated protein and the kinase binding step, B representing the phosphorylated
protein and the phosphatase binding step, and only the phosphorylation and dephosphorylation reactions
linking the two sub-modules. II An example of a decomposition guided model reduction of the phospho-
rylation cycle. In this example module A representing the kinase binding has been reduced to a single
state-variable, whilst the full biological detail of the phosphatase binding and dephosphorylation of X has
been retained

Blackwellised particle filters decomposition methods. Additionally, approaches for
determining which sub-modules of a network drive particular dynamical behaviour of
amodel (oscillations, for example) (Schmidt and Jacobsen 2004)may have a particular
applicability within the context of model reduction, guiding the use of reduction so as
to preserve phenomena of interest.

3 Model Reduction Methods

3.1 Timescale Exploitation Methods

Timescale exploitationmethods are themost commonly applied approaches for reduc-
ing models of biochemical systems. Methods in this area seek to partition the system
into different timescales by exploiting the often wide variation (commonly spanning
orders of magnitude) between individual reaction rates and the speed with which
the differing reactants equilibrate. Such variation is common within biochemical
reaction networks. Differences in timescales can, for instance, allow some reaction
processes to be classed as fast or slow relative to the dynamics of interest. These dif-
ferences can be exploited to reduce a model; for example, relatively slow dynamical
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Fig. 2 A schematic depiction of
model reduction via timescale
decomposition. Here
state-variables are either
grouped as slow or fast. This
allows each group to be excluded
via approximation at differing
timescales of interest. For
example, for dynamics at fast
timescales it may be reasonable
to assume the slow variables are
constant, hence producing a
reduction in state-variables

processes can be assumed to be constant or relatively fast processes to equilibrate
rapidly on the timescale of interest. Figure 2 provides a schematic depiction of the
concept of dividing species into fast and slow timescales for the purpose of model
reduction.

Given this definition, timescale exploitation methods fall into two major groups:
those that preserve the meaning of the state-variables in the dynamical description of
the system (coordinate preserving) and those that do not (coordinate transforming).
Based upon these classifications, the following sections provide an overview of the
most commonly applied methods and recent publications addressing their application
in the context of biochemical reaction networks.

3.1.1 Coordinate Preserving Timescale Methods

These methods are based upon identifying either species or reactions which can be
considered as exhibiting ‘fast’ dynamics in comparison with the remainder of the
network, hence partitioning the system into fast and slow components. Often this
involves finding some nondimensionalisation that exposes a small parameter δ � 1
that can be used to distinguish between species and reactions occurring on fast and
slow timescales. Once such a representation has been found, application of singular
perturbation theory enables the reduction of the system.

Singular perturbation for the reduction of systems of first-order ODEs was origi-
nally developed by Tikhonov (1952). His original paper is in Russian, but an excellent
synopsis in English is given by Klonowski (1983) which guides the description pro-
vided here.

Tikhonov’s theorem on dynamical system states that, under certain conditions, if a
system of first-order differential equations can be expressed in the form
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ẋ1(t) = f (x1, x2, t) , (7a)

δ ẋ2(t) = g (x1, x2, t) , (7b)

where Eq. (7a) is commonly referred to as the degenerate system and (7b) as the
adjoined system, then as δ → 0 the solution of the whole system tends to that of the
degenerate system, such that

ẋ1(t) = f (x1, x2, t) , (8a)

x2(t) = φ (x1, t) , (8b)

with φ (x1, t) a root of the equations g (x1, x2, t) = 0. Clearly, Eq. (8b) can be
substituted into Eq. (8a) to produce a reduced system of ODEs in terms only of state-
variables x1(t).

In order for this reduction to hold, Tikhonov’s theorem requires the following
conditions to be met:

1. x2(t) = φ (x1, t) must be an ‘isolated’ (i.e. non-repeated) root of the equations
g (x1, x2, t) = 0;

2. the solution x2(t) = φ (x1, t) must be a stable steady state of the adjoined system
(7b); and

3. the initial conditions used in the reduced system must be in the basin of attraction
for this steady state of the adjoined system.

This approach to reduction is commonly referred to as singular perturbation.
Assuming δ = 0 is equivalent to a first-order truncation of the asymptotic expan-
sion in terms of δ. Higher-order approximations can often be computed, potentially
providing more accurate reduced models for somewhat larger values of δ. Koko-
tovic (1984) additionally demonstrates how singular perturbation can be applied to a
control-theoretic state-space model in the form of (2).

Species Partitioning In the case where a timescale separation for the rates of species
evolution can be observed, it is possible to partition x such that

x(t) =
(
xs(t)
x f (t)

)

, (9)

where xs(t) represents those state-variables that evolve slowly in comparison with
x f (t). For such a partitioning of a system to exist, it must be possible, via some
nondimensionalisation, to express it in the form

(
ẋs(t)

δ ẋ f (t)

)

=
(
Ss
S f

)

v
(
xs(t), x f (t), p

)
, (10)

with the positive constant δ � 1 corresponding to the difference in evolution speeds
for the different species. Setting δ ẋ f (t) ≈ 0 yields the system of differential algebraic
equations (DAEs)
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ẋs(t) = Ssv
(
xs(t), x f (t), p

)
, (11a)

0 = S f v
(
xs(t), x f (t), p

)
. (11b)

Clearly, where Eq. (11b) can be solved, variables x f (t) can be eliminated from
Eq. (11a) to yield a reduced model. This method of model reduction is commonly
referred to as the quasi-steady-state approximation (QSSA), and its most famous
application is in reducing the Michaelis–Menten equation as outlined by Briggs and
Haldane (1925). An example of the direct application of the QSSA to a nonlinear
example model can be found in Additional file 1—Supplementary information Sec-
tion 2.3.

Such a reduction is valid where the timescale of the slowest fast species (τ f,max) is
significantly shorter than the timescale of the fastest slow species (τs,min), such that
τ f,max � τs,min. This is guaranteed to be the case where a formulation for the model
of the form (10) can be found with δ � 1; typically such a formulation is found via
searching through possible nondimensionalisations of the system.

Petrov et al. (2007), for example, recently applied the QSSA to a nondimension-
alised and singularly perturbed model of the extracellular regulatory kinase (ERK)
signalling pathway regulated by a Raf kinase inhibitor protein (RKIP). They showed
that an 11-dimensional system can be reduced to 5 dimensions, and crucially, this
reduced model can, unlike the original system, be solved analytically. This enables
the biological insight that the RKIP protein only provides a regulatory role in the ERK
pathway far from the system’s steady state.

A number of variations of the QSSA approach can also be found in the literature;
Schneider and Wilhelm (2000) discussed how the QSSA can be extended to singular,
singularly perturbed systems and how this approximation can be extended to higher
orders via asymptotic expansion. Vejchodskỳ et al. (2014) and Vejchodskỳ (2013)
have introduced the delay quasi-steady- state approximation (DQSSA), enabling the
QSSAmethod to compensate for the time error incurred by forcing the approximation
that the timescale of the fast species is equal to zero. This time error can be particu-
larly problematic for oscillatory systems where it can result in a mismatched phase.
Compensating for this effect can greatly increase the accuracy of the QSSA in the case
of such systems. Their approach is demonstrated via application to a 9-dimensional
model of circadian rhythms which can be reduced to 2 dimensions; the standard QSSA
incurs a 30% error for this reduction due to a mismatch in phase, whereas the DQSSA
only incurs a 2% error.

Unfortunately, the QSSA is somewhat limited in the models it can be applied to, as
it requires that the species exhibit a clear separation in timescales and a formulation
amenable to singular perturbation. For simpler examples, searching through the range
of possible nondimensionalisations and employing intuition of the system in order
to find such a formulation is often feasible. For very large models, however, such an
approach can be prohibitive due to the combinatorial explosion in the range of possible
model representations. As a result of the difficulties that commonly occur in finding
a suitable partitioning of species, a number of publications in this area are dedicated
to providing algorithmic methods for determining species that can potentially be con-
sidered ‘fast’. Choi et al. (2008), for example, have devised an algorithmic approach
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to rank the timescale factors of species via analysis of the system’s Jacobian after a
short initial transient period. Similarly, West et al. (2014) have recently introduced a
notion of ‘speed coefficients’ that can be calculated for the state-variables of a model
via analysis of the system’s Jacobian and used to guide the fast/slow partitioning of
the species.

The zero-derivative principle (ZDP) provides a computational approach for extend-
ing the QSSA to higher-order approximations (see Additional file 1—Supplementary
information Section 1.2). Härdin et al. (2009) have demonstrated use of the ZDP for the
reduction of biochemical reaction networks via application to the Michaelis–Menten
enzyme–substrate model and a phosphotransferase system (PTS) within the context
of glucose transport. In the case of the PTS model it was demonstrated that a first-
order ZDP approximation enabled the reduction of the original 9-dimensional system
to a single state-variable whilst retaining a high degree of accuracy which was not
attainable solely under the QSSA.

Reaction Partitioning An alternative approach to partitioning the species x(t) is to
instead partition the reaction rates v (x(t), p) into fast and slow groups, such that

v (x(t), p) =
(

vs (x(t), p)
δ−1v f (x(t), p)

)

, (12)

with δ � 1. Here vs (x(t), p) corresponds to the slow reaction rates and v f (x(t), p)
to those that can be considered fast in comparison (as denoted by the associated small
parameter δ). This leads to a dynamical system of the form

ẋ(t) = (
Ss S f

)
(

vs (x(t), p)
δ−1v f (x(t), p)

)

, (13)

where Ss and S f represent submatrices of the stoichiometry matrix comprising those
columns corresponding to the slow and fast reactions, respectively.

Hence, the dynamics for the species concentrations ẋ(t) can be decomposed into
fast and slow contributions as a sum, such that ẋ(t) = [ẋ(t)]s + [ẋ(t)] f . Note here
that, unlike the equivalent terms in the species partitioning case, [ẋ(t)]s does not nec-
essarily correspond to a proper subset of x(t)—rather it represents the slow dynamical
contribution of each reaction to all of the modelled species concentrations.

Taking the approximation δ → 0, singular perturbation yields

[ẋ(t)]s = Ssvs (x(t), p) , (14a)

0 = S f v f (x(t), p) . (14b)

As x(t) still depends on both the slow and fast dynamical contributions, the aim is to
solve Eq. (14b) in such a way that (14a) can be decoupled from the fast contributions,
leaving a reduced model that accurately describes the slow timescale. This method
operates under the assumption that certain reactions occur fast enough so as to be
approximated as equilibrating instantaneously; hence, it is commonly referred to as
the rapid equilibrium approximation (REA). The most famous application of the REA
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is Michaelis and Menten’s original reduction of the enzyme–substrate reaction model
(Michaelis and Menten 1913).

The rapid equilibrium approximation has been applied in the work of Vora and
Daoutidis (2001), Gerdtzen et al. (2002) and Gerdtzen et al. (2004) to a number of
models, in particular a model of the glycolytic pathway in Saccharomyces cerevisiae
where they were able to reduce the system from 21 to 18 reactions whilst maintaining
a high degree of accuracy, and a model of central carbon metabolism in humans where
they were able to similarly achieve a reduction from 25 to 20 reactions.

More recently, Prescott and Papachristodoulou have developed a variant of this
approach (Prescott andPapachristodoulou 2013, 2014) that further generalises the pro-
cess of dividing such systems based upon differences in reaction timescales and hence
partitioning the columns of the stoichiometry matrix. This work yielded an automat-
ablemodel decompositionmethod they term layering (Prescott and Papachristodoulou
2014). They highlight the fact that such an approach can present a more natural means
of model decomposition as opposed to the traditional approach of partitioning species
into modules.

Finding Timescale Partitions The main difficulty associated with these timescale
partitioning methods is that of finding a formulation of the system for which an appro-
priate parameter δ � 1 can be identified. A range of approaches addressing this issue
have been discussed in the literature.

Noel et al. (2012, 2013), Soliman et al. (2014) and Radulescu et al. (2015) have
proposed, developed and refined an approach ofmodel tropicalisation for the reduction
of biochemical models—this is a method of model abstraction which can guide the
application of both the species- and reaction-based singular perturbation approaches
described above. Samal et al. (2015) further develop the method of tropicalisation in
the context of systemswith entirely polynomial governing equations by introducing an
algorithm allowing the automatic computation of tropical equilibrations based upon
the Newton polytope and edge filtering.

Holland et al. (2011) have also provided an a posteriori means of analysing systems
for the existence of possible QSSA or REA simplifications. The system is simulated
under two conditions—the introduction and the removal of a fixed input into the sys-
tem. The trajectories of these simulations are then plotted in each of the 2-dimensional
phase planes between all possible pairs of state-variables. In each case the hysteresis
between these two trajectories is used to judge the possibility that each pair can be
considered to rapidly equilibrate with respect to one another and hence guide appli-
cation of the timescale exploitation methods described throughout this section. This
method was applied to a 25-dimensional model of β1-adrenergic signalling, where it
was shown that a 6-dimensional reduced model was capable of accurately capturing
the original system’s dynamics.

Löwe et al. (2016) demonstrate that for models which can be recast in the form of
S-systems, it is always possible to algorithmically rank the timescales of species and
to obtain a simple description of how this varies with model parameterisation. This is
achieved by expressing the system in the form of a generalised Lotka–Volterra model
through the analysis of a specific constant matrix and application of singular value
decomposition, and it is then possible to study how the timescales of the state-variables
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depend upon both the specific parameterisation and stoichiometry of the system. This
approach is demonstrated via application to three real-world examples a model of
yeast glycolysis, the citric acid (TCA) cycle and purine metabolism.

3.1.2 Coordinate Transforming Timescale Methods

In the previous section it was discussed that often a nondimensionalisation of a system
was required in order to clearly expose the timescale differences between species and
reactions. In this section, however, it is shown that a change of basis for the state-
variables can often be used to obtain a transformed model where timescale separation
is significantly more readily apparent and exploitable. Such approaches can often lead
to lower-dimensional and more accurate model reductions than the methods so far
discussed. However, this is weighed against the fact that the transformations employed
will often obfuscate the biological interpretability of the reduced dynamical system.

The methods outlined in this section aim to find a transformation of the state-
variables under which the fast and slow dynamics can be decoupled and then used to
reduce the system whilst retaining a high degree of accuracy between the simplified
and originalmodels. In essence, suchmethods seek a low-dimensionalmanifoldwithin
the phase space of the system upon which trajectories of interest for the dynamical
model can be satisfactorily approximated on the timescale of interest.

Usually the aim is to describe the dynamics on the slow timescales and thus seek a
manifold that can approximate trajectories after a short initial transient period through
to steady-state. This is commonly known as an inertial manifold (or in special cases,
as the slow manifold Debussche and Temam 1991). The methods discussed in this
section provide approximations of such manifolds.

The simplest example involves linearisation and transformation of the state-
variables into the system’s eigenbasis. First note that a system of the form described
by Eq. (1) can be linearised (i.e. approximated by a linear system of ODEs) around a
given state xc of the system by calculating the Jacobian matrix

J xc = SE|x(t)=xc , (15)

with E commonly referred to as the elasticity matrix, whose entries are given by

E =
{

ei j = ∂vi (x, p)
∂x j

}

. (16)

Then, via a first-order Taylor expansion, the system can be approximated in the neigh-
bourhood of xc by

ẋ(t) ≈ Sv (xc, p) + J xc (x(t) − xc) . (17)

The eigenvectors νi , for i = 1, . . . , n, of J xc represent directions of movement
around this point in phase space, and the corresponding eigenvalues λi determine the
speed of movement along that direction. Hence if the state-variables are transformed
so as to correspond with the directions of the eigenvectors (i.e. into the eigenbasis),
clear timescales τi = −1/ |Re(λi )| can be associated with each new variable. If there
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is a sufficiently large gap between any two successive eigenvalues (i.e. an eigengap), a
timescale decomposition of the transformed state-variables into slow and fast groups
is possible, and hence, singular perturbation can be applied to obtain a reduced sys-
tem. Unfortunately, if some of the eigenvalues are tightly clustered or are replicated,
standard eigendecomposition approaches may suffer issues of numerical inaccuracy.

The intrinsic low-dimensional manifold method (ILDM), originally developed as a
means of model reduction by Maas and Pope (1992) within the context of combustion
chemistry, provides a numerically stable means of applying an eigenbasis decom-
position. ILDM has seen a number of applications within the field of biochemical
modelling, and a more detailed account of the methodology is given in Additional file
1—Supplementary information Section 1.3. Vallabhajosyula and Sauro have also pro-
vided a brief review of the ILDM method within the context of biochemical reaction
networks (Vallabhajosyula and Sauro 2006). An example of the direct application of
the ILDM method to a nonlinear example model can also be found in Additional file
1—Supplementary information Section 2.4.

Notably, Zobeley et al. (2005) have developed a time-varying form of the ILDM
methodwhere the time course of themodel is split intomultiple intervals with differing
reductions. This approach was demonstrated via application to a model of peroxidase–
oxidase reaction coupled with enzyme activity consisting of 10 ODEs. Under their
approach the model could be reduced to between 3 and 5 state-variables at each time-
interval whilst maintaining a high degree of accuracy. Surovtsova and Zobeleya (2006)
have also examined this approach via application to amodel of glycolysis in yeast cells.
In particular they sought to answer the question of how far the ILDM continues to
provide an accurate timescale decomposition away from the point of linearisation xc.

Surovtsova et al. (2009) have developed a highly automatable and time-dependent
formof the ILDMmethod for implementation in theCOPASI software package (Hoops
et al. 2006). Time dependency is achieved by not decoupling the fast and slow trans-
formed state-variables foundunder the ILDM.Here, instead, theQSSA is applied to the
species that are shown to contribute most to the set of fast transformed state-variables.
Hence, although it has its roots in ILDM, this approach is coordinate preserving as
opposed to employing a change of basis. This approach is demonstrated via applica-
tion to models of calcium oscillation and glycolysis in Saccharomyces cerevisiae. In
both cases good reductions could be obtained, with a maximal relative error of around
0.5% across all reactants in the glycolysis case.

Bykov and Goldshtein (2016) outline a similar method to the ILDM termed the
global quasi-linearisation method (GQL) that can be used to exploit fast/slow decom-
positions of the system. By combining the conservation relations and the singularly
perturbed eigendecomposition of the systems GQL matrix, it is possible to replace a
number of species with algebraic relations and hence reduce the system. This approach
is demonstrated for a 28-dimensional system describing the intracellular signalling of
FAS induced apoptosis; this system was reduced to 15 dimensions whilst incurring
<1% relative error.

An alternative coordinate transforming method based upon timescale decompo-
sition is that of computational singular perturbation (CSP). The CSP method was
originally published in 1985 by Lam (1985) and further developed in a series of
papers by Lam and Goussis (1991), Lam (1993) and Lam and Goussis (1994). More
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recent work by Kaper and Kaper (2002) and Zagaris et al. (2004a, b) has provided
a rigorous analysis of the asymptotic behaviour of CSP and its relationship to other
timescale-based methods such as ILDM.

Like ILDM, CSP seeks to provide a general framework for applying a timescale
decomposition where no obvious nondimensionalisation exposing a singularly per-
turbed form can be found. This is again achieved by applying a change of basis.
Unlike the ILDM method, however, CSP seeks to transform the set of reactions into
a new basis that exposes clear timescale differences between the set of transformed
reactions. The fast transformed reactions can then be assumed to equilibrate instanta-
neously, and hence their dynamical contribution can be neglected in a reduced model.

In computing these transformed reaction rates, CSP also yields timescale estimates
for the original set of reactions and state-variables. These timescale indices can be to
guide the application of more traditional methods of reduction such as QSSA or REA.
CSP is a highly automated approach that iteratively constructs a change of basis for
the reactions. In doing so, application of CSP can provide significant analytical insight
into the driving factors of a dynamical system. Further details on the application of
CSP can be found in Additional file 1—Supplementary information Section 1.4.

Surovtsova et al. (2012) have discussed the implementation the CSP algorithm in
the COPASI software package and also demonstrated its application for the reduction
of amodel of glycolysis in S cerevisiae. Specifically, they showed the use of themethod
in guiding the application of the QSSA and the REA. They were hence able to reduce
the original system, involving 22 state-variables and 24 reactions, to a 17-dimensional
model detailing 19 reactions that remained accurate for a wide range of dynamical
regimes.

Kourdis et al. (2008, 2010) similarly applied the method to a model of glycolysis in
S. cerevisiae. Here, however, they were only concerned with the long-term dynamical
description of the system on a limit-cycle and, additionally, the transformation of
the reactions into a new basis was permitted. Under this approach they were able to
demonstrate that the limit-cycle contained within an 11- dimensional manifold and
that evolution along this trajectory could be accurately described using only three
state-variables. The publication also explored the use of CSP in guiding conventional
model reduction approaches, but found that a 10-dimensional reduction attained via
guided application ofQSSAandREAperformed significantlyworse than that obtained
via the construction of a transformed reaction basis. In a further work, Kourdis et al.
(2013) sought to analyse a model of the NF-κB signalling system via application of
CSP and the computation of timescale indices, but did not propose a specific reduced
model.

3.1.3 Summary of Timescale Exploitation Methods

Coordinate transforming model reduction methods can often be applied with good
results to models for which an exploitable, singularly perturbed form is not readily
available. Additionally, these methods are often algorithmic, automatable and readily
applicable to very large systems of ODEs. As a result of these advantages, coordinate
transforming timescale-basedmethods canoften produce lower- dimensional andmore
accurate reduced models than coordinate preserving alternatives.

123



Methods of Model Reduction for Large-Scale Biological… 1467

Unfortunately, coordinate transformations can sometimes undermine the purpose
of seeking amodel reduction. In particular the reduced biochemical network will often
lose some degree of biological intuitiveness as the transformed state-variables can only
be interpreted as combinations of the originals. Whilst it is possible to map reduced
state-variables back to the original ones, the network structure of the reduced model
will typically be biologically inscrutable. Hence the choice of timescale exploitation
method must be carefully considered along with the intended aim of the reduction.

3.2 Optimisation-Based Methods and Sensitivity Analysis

Optimisationmethods seek tomaximise orminimise a functionwithin a given range of
acceptable perturbations. Such approaches have broad applicability within the context
of model reduction; this can be considered as an optimisation problem, where the
number of dimensions is defined as an objective function that reduction seeks to
minimise subject to the constraint that the error ε (from Eq. 3) remains sufficiently
small.

To obtain an optimal solution to such a problem it is common to take one of two
approaches:

1. either seek to measure how ‘sensitive’ the constraint variable ε is to changes in the
network’s structure or parameterisation and use this knowledge to guide a reduc-
tion. These methods are referred to here as sensitivity analysis-based approaches;
or

2. employ a trial-and-error-based approach where multiple reduced systems are
tested. From the range of possibilities, an optimal or near-optimal reduced system
is returned. These methods are referred to as optimisation-based approaches.

A brief overview of each approach is provided here.

3.2.1 Sensitivity Analysis

Sensitivity analysis can be local or global and represents a commonly applied method-
ology in the systems biology literature (Zi 2011). It is typically employed to determine
how robust the system’s response is to fluctuations in parameter values; however, sen-
sitivity analysis can also be used in model reduction to guide the elimination of the
least influential reactions or species in a system.

Given the state-space representation of Eq. (2), the aim of sensitivity analysis is to
determine how the output y(t) changes under perturbations to the parameters p and the
state-variables x(t). To then reduce the system, the most common approach is simply
to eliminate those species or parameters found to be the least sensitive in affecting
the model. This is typically achieved by setting insensitive parameters equal to zero
and fixing insensitive state-variables to some constant value (typically its steady-state
value). Figure 3 provides a schematic depiction of this approach to model reduction.
Note that this method of sensitivity analysis preserves the meaning of the reduced
state-variables and reactions as no transformation is employed.
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Fig. 3 Schematic depiction of sensitivity analysis versus optimisation. I Sensitivity analysis allows the
rankingof the relative importance of the parameters on the outputs of interest. The least influential parameters
can be fixed as constant lessening the burden of parameter fitting or can enable model reduction through
the elimination of associated parameters. II The optimisation approaches differ in that they typically aim
to eliminate the least influential state-variables by fixing them to be constant in time

Local Sensitivity Analysis Local sensitivity analysis studies the response of the
system to small perturbations in the model parameterisation around some specified
operating point p = p∗. More specifically, such an analysis usually aims to describe
variation of the model’s state-variables with respect to parameter variation by con-
structing a sensitivity matrix R(t) = {

ri j (t)
}
where the entries represent the effect

of perturbing the j th model parameter on the i th state-variable. As is discussed in
Kirch et al. (2016), for example, it is also common to normalise these indices of
sensitivity such that measures of sensitivity remain invariant under the rescaling of
state-variables. Further details on computing the sensitivity matrix are provided in
Additional file 1—Supplementary information Section 1.5, and an example of the
direct application of normalised, local sensitivity analysis to a nonlinear example
model can be found in Section 1.5. Once a matrix of sensitivity coefficients has been
constructed, principle component analysis (PCA) is an established method for ranking
the importance of individual reactions and determining which can be eliminated from
the model (Turanyi et al. 1989). An example of the direct application of normalised,
local sensitivity analysis and PCA to a nonlinear example model can be found in
Additional file 1—Supplementary information Section 2.5.

Degenring et al. (2004) applied this method to amodel of the glycolysis and pentose
phosphate pathway in E. coli (122 parameters and 22 reactions). Employing sensitiv-
ity analysis and PCA 49 of the parameters could be discarded from the model whilst
retaining an acceptable error bound. Liu et al. (2005) applied an approach using sensi-
tivity analysis, PCA and flux analysis to determine which reactions can be eliminated
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from a signalling model of the EGRF pathway. They demonstrated that (in one mod-
ule of the pathway) the number of reactions could be reduced from 85 to 64 whilst
retaining a 5% error bound. Smets et al. (2002) used the same approach for a model
of gene expression in the Azospirillum brasilense Sp7 bacterium. Here, 14 parameters
in the full model were reduced to 6 without a substantial loss of accuracy. Apri et al.
(2012) introduced an algorithmic derivative-based sensitivity analysis approach to
rank parameter importance. The algorithm then attempts to eliminate each parameter
in order of sensitivity and gauges the sensitivity of the model output to each elimi-
nation. Unfortunately, the resulting reduction was not reliable and demonstrated that
local sensitivity analysis is not always sufficient to capture the desired behaviour of
the system.

Global Sensitivity Analysis Local sensitivity analysis approaches are strongly
dependent upon the nonlinearity in the system and the point p∗ at which the coeffi-
cients are evaluated. The obtained sensitivity coefficient estimates will not necessarily
remain accurate far from this point and can give misleading results where nonlinear
effects are involved. More statistical approaches that involve sampling large volumes
of the parameter space and evaluate the interaction between multiple parameters can
lead to more objective estimates of sensitivity. These approaches, known as global
sensitivity analysis methods, attempt to establish better estimates of how perturba-
tions in a model’s parameterisation propagate through the system and how they affect
the model output.

Estimating global sensitivity indices can be a challenging task, as it is typically
not possible to analytically evaluate them. Hence, researchers resort to numerical
approaches where, for large systems, such a process can be extremely computationally
expensive due to the need to test sensitivity over a large range of parameter space. A
wide range of methods to achieve this exist in the literature, as have been reviewed
by Zhang and Goutsias (2010), with Monte Carlo sampling being perhaps the most
common. Additionally, whilst it does not cover sensitivity analysis’s application to
model reduction, Zi (2011) provides a review of sensitivity analysis methods seen in
the literature, including a survey of global sensitivity analyses that have been applied
to systems biology models and their estimated computational cost.

The use of global sensitivity analysis methods in the reduction of biochemical
systems models has seen limited application. Most notably Maurya et al. (2005)
introduced a method of multiparametric variability analysis (MPVA) which tests
the sensitivity of the objective function in response to multiple parameter changes
simultaneously, as opposed to testing a single parameter’s sensitivity at a time. A
genetic algorithm (GA)-based approach is then used to search parameter space and
find reduced parameter sets that accurately replicate the original dynamics of the out-
put. This approach is demonstrated by application to a 17-dimensional model of the
GTPase-cycle module with 48 associated rate parameters. The results show that good
agreement can be obtained whilst retaining only 17 parameters. Jayachandran et al.
(2014) applied Sobol’s global sensitivity analysis method to three mechanistic mod-
els associated with the use of chemotherapy in the treatment of acute lymphoblastic
leukaemia. They were able to reduce the number of parameter across the models from

123



1470 T. J. Snowden et al.

23 to 12. This enabled parameter fitting of these models for individual patients and
hence the development of individualised treatment schemes.

3.2.2 Optimisation Approaches

An ‘optimisation approach’ here refers to those methods of model reduction that seek
to reduce a system by testing a range of ‘candidate’ n̂-dimensional reduced models by
calculating an associated error metric ε (potentially based upon either a posteriori or
a priori information) for each and then selecting the best possible reduction. Of key
interest is how the set of candidate reduced models are selected or sampled and what
measure of model reduction error is employed in their evaluation. Such methods share
a similarity with sensitivity analysis in that they are essentially testing the sensitivity
of the error to changes (albeit typically in terms of species as opposed to reactions) in
the reduced system.

A large range of optimisation-based reduction approaches have been applied in the
context ofmodelling biochemical reaction networks.Danø et al. (2006) havedeveloped
and applied an approach they term elimination of nonessential variables (ENVA). Here
the system is simulated where one-by-one each state-variable is eliminated by being
fixed at its steady-state value. For a given dimensionality, the reduced model that most
accurately reflects the original model dynamics is then returned. The method was
applied to a 20-dimensional model of yeast glycolysis where it was able to yield an
accurate 6-dimensional reduced model.

Maurya et al. (2005, 2009) develop a method that simultaneously uses a model
reduction and a parameter re-estimation algorithm. Here the least influential reaction
rates are set to zero to obtain a reduction in the number of reactions. The opti-
mal arrangement for eliminating reactions is expressed as a mixed integer nonlinear
programming problem that is solved via a GA. This approach is demonstrated via
application to a model of the GTPase-cycle, and it is shown that the original 48 reac-
tions in the system can accurately be reduced to 17whilst retaining sufficient predictive
accuracy. Hangos et al. (2013) highlighted a similar method for the optimal elimina-
tion of reactions expressed as a mixed integer quadratic programming problem. Their
approach was demonstrated via application to a model of the Arabidopsis thaliana
circadian clock involving 7 state-variables and 27 reactions. The model was reduced
under three cases relating to no light, a constant light source and a pulsing light source.
Across these cases they were able to reduce the model by between 1 and 4 parameters
whilst retaining an average error in the species dynamics of <6%.

Taylor and Petzold (2008) describe an optimisation approach based upon the ‘para-
metric impulse phase response curve’ (pIPRC) which essentially describes how the
phase of the limit-cycle in an oscillatorymodel varies in response to changes in param-
eter values and the error associated with approximating such a cycle. Their reduction
methodology is then based upon a minimisation of both the number of state-variables
and the pIPRC-associated error such that the reducedmodel seeks to preserve the oscil-
lation phase. Given these nonlinear constraints the optimisation problem is then solved
via a GA that seeks to fix the values of unnecessary state-variables. This approach was
demonstrated via application to a 61-dimensional model of the mammalian circadian
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clock, which was accurately reduced to 13 dimensions whilst incurring only a 5%
error in the pIPRC.

Anderson et al. (2011) and Prescott and Papachristodoulou (2012) have developed
methods for obtaining an a priori upper bound on the worst-case reduction error under
the L2 norm associated with a particular reduced model. In their initial work the esti-
mate required a time-varying linearisation of the system such that an error estimate
could be calculated via solving a Lyapunov equation.More recently, a worst-case error
bound for the nonlinear system has been developed using the sum of squares decompo-
sition for polynomials. These bounds have been used to develop an optimisation-based
method of model reduction. Such an approach will often be faster than other methods
as no simulation of the system is required to obtain a metric of reduction accuracy.

3.3 Lumping

Lumping originated as a methodology for the reduction of dynamical systems in the
1960s with the work of Wei and Kuo (1969) and Kuo and Wei (1969). A lumping
removes at least one set of state-variables from the system and replaces them with
a new dynamical ‘lumped’ variable that represents some direct mapping from the
originals. The literature on lumping can be divided into two main categories: (I) those
papers that discuss the different types of mapping and their specific properties, and
(II) papers that provide algorithms to find a suitable mapping to reduce a given model.

The term lumping is a broadly applicable term that can refer to wide a range of
methods; hence, the first set of literature describes the differentiating factors used to
specify particular lumping methodologies. These sub-classifications tend to provide
constraints on how state-variablesmaybe combined during a reduction and are detailed
as follows:

Proper Versus Improper Lumping Proper lumping (Wei and Kuo 1969) refers to
any scheme where each of the original species appears in only one lumped variable
of the reduced model, whilst under improper lumping each of the original species can
map to multiple lumped variables (see Fig. 4 for a schematic depiction). An alternative
way of understanding proper lumping is as a partitioning of the original species under
which each partition can be reduced to a single independent dynamical variable in the
kinetics of the reduced model. The majority of lumping methodologies discussed in
the literature are proper, which can be constrained so as to maintain some degree of
biological interpretability in the reduced network structure.

Linear Versus Nonlinear Lumping Schemes Linear lumping (Wei and Kuo 1969;
Kuo andWei 1969) produces lumps that are strictly linear combinations of the original
species. Meanwhile, nonlinear schemes (Li et al. 1994a, b; Tomlin et al. 1994) include
any lumping that creates lumps via some nonlinear mapping of the original species.
The majority of lumping methods discussed in the literature are linear as, similar to
proper lumping, such an approach produces reduced networks that are more easily
interpreted biologically.

Exact Versus Approximate Schemes An exact lumping is one where the dynamics
of the reduced system can be exactly mapped to the original dynamics using only new,
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Fig. 4 Schematic depiction of proper versus improper lumping. I Proper lumping: each of the original
species (the left column) corresponds to, at most, one of the lumped states (the right column). II Improper
lumping: each of the original states can correspond to one or more of the lumped states

time-invariant rate parameters (Wei and Kuo 1969; Li et al. 1994a). The conditions for
exactness only hold true for a certain subset of lumping schemes and for models with
specific properties. As a result, the majority of naive lumping schemes, and most of
the lumping methodologies discussed in the literature, will only provide approximate
reductions. The issue of how to choose a lumping that will minimise the approximation
error comprises the main topic of papers in the literature.

Given the above definitions, the term lumping is generally used to refer to linear,
proper lumping in the literature. When applied to systems in the form of Eq. (2), this
implies reduction via some linear projection L ∈ {0, 1}n̂×n , where each row of L is
pairwise orthogonal. The reduced state-variables x̃(t) can then be computed as

x̃(t) = Lx(t). (18)

Thedynamics of the systemnowacting upon the reducedvariables x̃(t) canbe obtained
via application of the Petrov–Galerkin projection as previously outlined. This yields
a reduced system of the form

˙̃x(t) = L f (L̄ x̃(t), p, u(t)), x̃(0) = Lx(0) = x̃0, (19a)

ỹ(t) = g(L̄ x̃(t), p). (19b)

Note that L̄ can be any generalised inverse of L, and therefore, an infinite number of
ways of constructing such a matrix exist. In the original Wei and Kuo papers (Wei and
Kuo 1969; Kuo andWei 1969) outlining linear, proper lumping they suggest selecting
the L̄ that reconstructs the steady state of the system such that x∗ = L̄ x̃∗ with x∗ =
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limt→+∞ x(t). In contrast, Dokoumetzidis and Aarons (2009), following the work of
Li and Rabitz (1990), suggest using the Moore–Penrose inverse L+ presumably for
the purposes of simplicity and ease of calculation. This choice of lumping inverse,
however, can have a significant influence on the model reduction error obtained. An
example of the application of linear, proper lumping to a nonlinear example model is
given in Additional file 1—Supplementary information Section 2.6.

In recent years, lumping has been used to reduce a number of biochemical systems
in the literature. Danø et al. (2006) applied an approach of lumping and subsequent
optimisation (which they term LASCO) to a 20-dimensional mode of yeast glycolysis.
It was demonstrated that this system could be reduced to 8 dimensions whilst retaining
good accuracy. It was also shown that subsequent application of their ENVA reduction
approach (as previously outlined) could accurately produce further reductions in the
model down to a system of only 3 dimensions that maintained the existence of a Hopf
bifurcation.

Dokoumetzidis and Aarons (2009) introduced an algorithmic approach for linear,
proper lumping. This is an optimisation-based reduction approach using lumping to
obtain candidate reduced models. Their approach seeks to sum two state-variables at
each step, testing every possible pair by simulating the resulting reduced model and
comparing its output with the original. At each step the pair resulting in the most
accurate reduction is lumped, and then the process is repeated a pair at a time. This is
continued until the desired reduced dimensionality is reached. Clearly, for large mod-
els this can lead to an enormous number of lumpable pairs need to be tested; however,
a range of enhancements to reduce the computational burden of this approach were
also provided.Much like Danø et al., subsequent parameter optimisation was also sug-
gested to improve the fit of the reduced model to simulated data from the original. This
approach was applied to a 26-dimensional model of the NF-κB signalling pathway.
Reasonable agreementwith the originalmodelwas retained down to around13 reduced
state-variables, below which the oscillatory behaviour of the system was lost. Gulati
et al. (2014) applied the Dokoumetzidis and Aarons methodology to a 62-dimensional
model studying the effect of snake venom administration. It was shown that a
5-dimensional model can be produced which reflects the original system dynamics
to within a maximal relative error of 20%.

Koschorreck et al. (2007) applied a lumping style approach they termed ‘layer-based
reducedmodelling’. Finding a lumping under this approach requires a relatively good a
priori understanding of the model in order to decompose it into lumpable modules. All
components that are strongly connected by a specified class of reactions are considered
a ‘layer’ and are subsequently lumped together.Most notably, they apply their approach
to a model of an extended subsystem of the insulin signalling pathway, reducing the
24-dimensional system to 11 dimensions with a reduction error ‘within the range of
measurement errors in typical experiments’.

Sunnåker et al. (2010, 2011) introduced proper lumping approacheswith an empha-
sis on the ‘zoomability’ of the model, i.e. the ability to switch between particular
dimensionalities of reduced models depending upon the application and accuracy
desired. This was achieved via use of specific, fractional lumping inverses. In both
papers the methods used for finding a suitable lumping have their basis in timescale
analysis of the system. In their first paper (Sunnåker et al. 2010) a method was devel-
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oped to analyse linear systems, under which the system is decomposed into fast and
slow species. The algorithm then uses a graph-theoretic approach to analyse the fast
part of the system looking for strongly connected components. If found, lumping of the
associated species is attempted along with lumping of any linked sink state-variables.
This approach is demonstrated via application to a 26-dimensional model of fluores-
cence emission in photosynthesis, which is reduced to 6 dimensions yielding only a
negligible difference in the output profile of the reduced model. In the second paper
(Sunnåker et al. 2011) Sunnåker et al. extend their approach to nonlinear models. To
find a suitable lumping for a nonlinear system they begin by decomposing the model
into fast and slow reactions. Conservation analysis is then applied to the stoichiometry
matrix associated only with the fast reactions in the system to find what they term the
‘apparent conservation relations’. Subsets of the variables in these apparent conser-
vation relations are then lumped to produce a reduced model. This methodology is
used to reduce a model of glycolysis in S. cerevisiae from 9 down to 5 state-variables
which still provides an ‘excellent description of the state dynamics’.

3.4 Singular Value Decomposition-Based Model Reduction

Singular value decomposition (SVD) methods are based upon the matrix decompo-
sition of the same name and the resulting lower-rank approximations of matrices it
yields. Essentially, the relative magnitude of quantities known as the ‘singular values’
of a matrix determines the extent to which it can be approximated by a matrix of lower
rank, and it is this property that is exploited by such methods of model reduction.

SVD implies that any m × n matrix A can be decomposed into the form

A = UΣV ∗, (20)

withU anm×m matrix,Σ anm×n diagonal matrix , and V ∗ an n×n matrix. Under
such a decomposition, the m diagonal entries σi of Σ are referred to as the singular
values of A.

Via theEckart–Young–Mirsky theoremEckart andYoung (1936), the SVDprovides
a way to approximate A with a lower-rank matrix Ã. If a reduced approximation of

rank n̂ is sought, such that Rank
(
Ã
)

= n̂, this can be computed as

Ã = U1Σ̃V ∗
1, (21)

where that Σ̃ = diag (σ1, . . . , σn̂), and U and V ∗ have been partitioned such that

U = (
U1 U2

)
, V ∗ =

(
V ∗

1
V ∗

2

)

. (22)

It is this approximation of amatrix by one of lower rank that is exploited by SVD-based
methods of model reduction.
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Fig. 5 Model reduction via
balanced truncation. The method
seeks to reduce a system whilst
preserving the input–output
relationship of the model. This is
achieved via a coordinate
transformation of the
state-variables

Balanced Truncation

One SVD method that has been employed in the reduction of biochemical systems
is that of balanced truncation (Liebermeister 2005; Liebermeister et al. 2005; Meyer-
Bäse andTheis 2008). Themethod ismost commonly used in the field of control theory
andwasoriginally devised in the early 1980s (Moore1981). Itwas subsequently refined
by a number of authors and has become a well-developed methodology covered in
many textbooks on control theory (Skogestad and Postlethwaite 2005; Dullerud and
Paganini 2000). It is applicable to controlled models in a state-space representation
form and focuses on reducing systems whilst preserving the overall input–output
behaviour of the model. Typically, the method is used for the simplification of time-
invariant, linear systems and does not rely upon timescale separation of fast and slow
processes (Fig. 5).

Crucially, balanced truncation seeks to exploit the concepts of controllability (how
strongly each of the state-variables responds to changes in the input) and observability
(how strongly the output responds to changes in the state-variables). To quantify these
concepts it is possible to construct a pair of matrices known as the controllability and
observability Gramians. Balanced truncation seeks a ‘balancing’ transformation of
the state-variables under which these Gramians are equalised and diagonalised. This
implies that the transformed state-variables are orthogonal in the input–output space
of the model and those contributing least to the overall input–output relationship can
therefore be truncated without impacting the remaining variables.

In the linear case, balanced truncation begins with a controlled system of the form

ẋ = Ax + Bu,

y = Cx.
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The controllability and observability Gramians, P and Q, respectively, can then be
obtained by solving the Lyapunov equations

AP + PAᵀ + BBᵀ = 0, and AᵀQ + QA + CᵀC = 0.

The aim is then to find a balancing transformation which, when applied to the state-
variables, equalises and diagonalises both P and Q. Such a transformation can be
obtained via the following steps; first, perform a Cholesky factorisation of both of the
Gramians to give

P = LᵀL, and Q = RᵀR.

Now take a singular value decomposition of the newly formed matrix LRᵀ to obtain

LRᵀ = UΣVᵀ,

using this, the balancing transformation T and its inverse T̄ can be computed as

T = Σ− 1
2 VᵀR and T̄ = LᵀUΣ− 1

2 .

Given a reduced dimensionality n̂ the reduced model can be constructed via the fol-
lowing transformations

x → x̃ = PTx,

A → Ã = PT AT̄ Pᵀ,

B → B̃ = PT B,

C → C̃ = CT̄ Pᵀ,

where P is an n̂×nmatrix of the form P = [
I n̂ 0

]
. This gives a reduced, n̂-dimensional

model of the form

˙̃x = Ãx̃ + B̃u,

ỹ = C̃ x̃.

Such an approach has a number of strengths, especially in the construction of highly
reduced systems that will provide an accurate approximation of output for any given
input values. Additionally the method provides the ability to construct an a priori error
bound for a given reduction based upon the singular values of the balanced Gramian
(known as the Hankel singular values). Unfortunately, the transformation applied to
the state-variables will typically mask the biological interpretability of the reduced
dynamical system, and as such, balanced truncation can be considered as a black-box
approach to model reduction.

Balanced truncation was originally devised for the reduction of linear systems;
however, in recent years generalisations for nonlinear cases have emerged (Härdin
and van Schuppen 2006; Lall et al. 2002; Hahn and Edgar 2000, 2002). For nonlinear
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systems, however, the Gramians computed are typically only an approximation. Given
the usually nonlinear nature of biochemical models it is these methods that may pos-
sess the most relevance. In particular, empirical balanced truncation, which constructs
approximate Gramians via repeated numerical simulations of the model under pertur-
bations, may be highly applicable within the context of biochemical systems but has
not yet seen published use. An example of the application of linearisation and balanced
truncation to a nonlinear example model is given in Additional file 1—Supplementary
information Section 2.7.

In the biochemical modelling literature balanced truncation has seen relatively
limited application. Liebermeister et al. (2005) outlined an approach that involved
partitioning a model into two sets of species: a ‘core’ set containing the species and
reactions of primary interest to the modeller and an ‘environmental’ set of terms
present in the model, but of little interest. The approach then seeks to linearise and
apply balanced truncation to the set of environmental species in order to construct a
reduced model. This method was applied to a model of glycolysis from the KEGG
database. A particular 3- dimensional sub-module was chosen to represent the core
set, and the remaining 20 interacting species were found to be environmental relative
to these dynamics of interest. It was demonstrated that this environmental set could be
reduced to a single state-variable whilst retaining an accurate description of the core
dynamics.

Härdin and van Schuppen (2006) demonstrate a similar approach of system lineari-
sation followedbybalanced truncation to amodel of yeast glycolysis. They showed that
a 13-dimensional model could be reduced to 3 state-variables. Unfortunately, whilst
the application of balanced truncation incurred very little error, the initial linearisation
step was shown to suffer a prohibitive error cost.

Sootla andAnderson (2014) developed amethod of balanced truncation for applica-
tion to linearised systems. To avoid issues of biological interpretability, they impose the
condition that Gramians must be block diagonal, hence preserving meaning between
sub-modules, with the interior of modules reduced by a balancing transformation.
Their method requires that the system is monotone in order to obtain such block
diagonal Gramians.

3.5 Miscellaneous Methods

There are a range of model reduction methods described in the literature that do not
sit comfortably within any of the areas so far covered in this review. The following
section provides a brief overview of these methods.

Motif Replacement Such approaches decompose a system into various intercon-
nected sub-modules that can be replaced by simpler motifs. Typically this requires a
relatively high degree of heuristic insight in order to spot replacement motifs. Conzel-
mann et al. (2004) developed a motif replacement method where the model is initially
decomposed into a number of sub-modules, and each module is then treated in isola-
tion. Reactions feeding into a sub-module are considered as inputs, and those exiting
in the sub-module are considered outputs. Each sub-module is then simulated under
perturbations of its inputs in order to construct an overall input–output profile. Com-
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parison of the input–output profiles with each other and standard profile types from
signal theory can be used to replace the modules with simpler motifs that replicate
their behaviour. The method was demonstrated via application to a model of EGF
receptor signalling enabling the accurate reduction of several sub-modules. A sim-
ilar approach of partitioning a biochemical network into sub-modules and applying
motif replacement based upon their input–output profiles was also briefly discussed
by Vallabhajosyula and Sauro (2006).

Reduction Workflow This topic concerns the general heuristics used to guide the
application of model reduction methods.

Quaiser et al. (2011) propose an approach whereby a model is reduced iteratively
until the system is sufficiently identifiable, i.e. until the variances associated with
the parameter estimates are sufficiently small. This method was demonstrated via
application to a model of JAK–STAT signal transduction. Over 6 reduction steps the
number of state-variables was reduced from 17 to 10 and the number of parameters
from 25 to 10, at which point the model parameters could be accurately estimated
given a limited set of input–output data.

Apri et al. (2014) propose an iterative heuristic for obtaining a reducedmodel. Given
a system in the form of (2), with experimental results that can be treated as outputs and
experimental conditions that can be treated as inputs, the approach is twofold. Firstly,
model reduction is performed via an iterative algorithm involving state-variable and
parameter truncation, lumping, and the re-fitting of parameters. Reduction is repeat-
edly applied until the reducedmodel cannot capture the experimental behaviour within
an adequate error bound. Secondly, model ‘discrimination’ is performed to determine
the experimental conditions (within a feasible range) that maximise the error between
the reduced and original models. If the maximal error exceeds the previously defined
limit, then new experimental data obtained under the error-maximising conditions
are included and the reduction step is rerun. These steps are applied recursively until
a reduced model is obtained that adequately captures the results under all possible
experimental conditions. The method is demonstrated via application to two systems:
firstly a model of a genetic interaction network in flower development of A thaliana
where it is shown that a reduction from 37 to 31 parameters still maintains accuracy
for all reasonable experimental conditions, and secondly, to a model of the EGFR
signalling pathway where it is shown that a reduction from 23 to 17 state-variables
and 50–25 kinetic parameters was sufficient to yield no more than a 25% error for all
possible experimental conditions.

Maiwald et al. (2016) present a heuristic for reduction whereby a model is reduced
until it is identifiable relative to the experimental data available. This is achieved by
evaluating parameter profile likelihoods and then seeking to reduce reactions asso-
ciated with the least identifiable parameters. Structurally non-identifiable parameters
can, at least theoretically if not practically, be eliminated from the system via the
exploitation of intrinsic symmetries in the system. In the case of the weakly identifi-
able parameters in the system, associated reactions are reduced via approaches such
as lumping, deletion of species, and algebraic replacement until an identifiable system
is obtained.
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Reducing Combinatorial Complexity Particular attention can be given to model
reduction in the context of combinatorially complex systems such as those found in
the modelling of scaffold proteins. Such proteins have a large number of binding sites
and can form complexes in many different combinations. Using a standard modelling
approach each possible binding configuration is considered a separate species and its
concentration is modelled as such. Clearly this can lead to a combinatorial explosion
in the number of state-variables, and hence, there exist a number of methods of model
reduction which seek to alleviate this complexity. Borisov et al. (2005) demonstrated
a model reduction approach for such systems via a transformation of the possible
states into ‘macro-states’, effectively improper lumpings of the original terms. How-
ever, this work only applies to scaffold proteins with independent binding sites or with
only one controlling domain. Subsequently, Conzelmann et al. (2006, 2008) extended
this approach to more general models of scaffold protein interactions (or models with
similar combinatorially complex interactions). A hierarchical state-variable transfor-
mation is introduced; this transformation is guided a form of sensitivity analysis under
the assumption that many of the possible complexes will have a limited effect on the
outputs of interest.

Further Approaches Rao et al. (2013, 2014) developed an approach that seeks to
reduce the set of chemical equations defining a biochemical reaction network via an
iterative process of equilibrating and deleting one complex (as defined under chemical
reaction network theory Feinberg 1987) at a time. This approach is applied using an
optimisation algorithm until a pre-defined error tolerance is reached. The method is
demonstrated via application to a model of yeast glycolysis where it was found that
deletion of 4 complexes (producing a reduction from 12 state-variables, 88 parameters
and 12 reactions to 7 state-variables, 50 parameters and 7 reactions) incurred a <8%
average error across time and state-variables. A model of fatty acid beta oxidation
was also considered where the deletion of 14 complexes (corresponding to a reduction
from 42 state-variables to 29) could be obtained incurring an average error of 7.5%.

Whiteley (2010) applies an approach of mesh refinement via a posteriori error
analysis, commonly used in improving the numerical simulation of partial differential
equations via finite element methods, to the reduction of biochemical systems. Via an
iterative process, this approach determines which state-variables should be retained
and which can be fixed (beginning with the ‘all fixed’ possibility) within each time-
interval to meet some pre-assigned error bound.

Transtrum and Qiu (2016) outline an approach based on differential geometry
known as the manifold boundary approximation method. This approach allows the
construction of a model manifoldM describing the parameter-dependent variation in
certain pre-defined outputs or ‘quantities of interest (QoIs)’. By repeatedly evaluating
the Fisher information matrix it is typically possible to construct geodesics along M
that can be used to define boundaries in parameter space. These boundaries imply that
at certain positions in parameter space the QoIs can be captured by a reduced system.
Using this information it is possible to construct reduced systems in these spaces by
allowing certain combinations of parameters to tend to infinity or zero. In the paper it
is demonstrated that this approach can recover the QSSA for the Michaelis–Menten
enzyme–substrate reaction model. They also demonstrate the methods application to
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a 15-dimensional model of ERK activation via the interacting EGF and NGF path-
ways. Here they recover models in various states of reduction depending upon the
specific QoIs—notably, they demonstrate that a 6-dimensional network can describe
the overall input output behaviour of EGF, NGF and their effect on ERK.

Finally, Schmidt et al. (2008) develop a method for reducing complexity in indi-
vidual rate expressions that can be expressed as a rational function, i.e. the ratio of
two polynomials. The method employs the notion of identifiability—recall that if an
expression is unidentifiable, it implies that another parameter set can be used to pro-
duce the same dynamic behaviour. Exact reduction can often be obtained via exploiting
linear dependencies arising from unidentifiability of reaction rates for simulated data
sets. This can be exploited further to obtain an approximate reduction by discarding
those terms in the rate expression that contribute least to the reaction.

4 Discussion

There exists no one-size-fits-all method of model reduction which can be considered
optimal for all large-scale biochemical systems irrespective of the context in which
it is applied. Indeed, the ‘best’ reduced model that can be obtained for a particular
system is inextricably linked to both the overall aims of the modeller, the scope and
scale of the of the approximation error they are willing to incur, and the nature of the
model they are seeking to reduce.

This review defined a method of reduction as any approach seeking to approximate
the dynamics of a given model by a simpler system, featuring a smaller number of
reactions or reactants. As was shown, even given this relatively narrow definition,
methods for the reduction of biochemical systems can take a wide number of forms.
Table 1 provides an overview of the main methods of model reduction reviewed within
this paper and their attributes.

Table 1 Comparison of methods of model reduction for biochemical reaction networks

Suitable for very
high-dimensional
systems

Suitable for stiff
systems

Nonlinear
systems

Preserves species
meanings

Coordinate preserving
timescale methods

– � � �

Coordinate
transforming
timescale methods

– – � ×

Sensitivity analysis – – – �
Optimisation
approaches

� � � �

Lumping � � � –

Balanced truncation � – – ×
� Implies a method is suitable for this context, – implies certain variants are suitable for this context and
others are not, and × implies a method is not suitable for this context
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Timescale exploitation methods are particularly applicable where reactions in the
system occur across a wide range of timescales (typically dictated by widely varying
reaction rate constants) or the modeller wishes to access a reduced model that is accu-
rate within a particular time-interval. Coordinate preserving timescale exploitation
methods usually require that the species of the system can be explicitly defined as
either fast or slow. Where this is possible, it enables access to intuitively understood
reductions of the system. Coordinate transforming timescale exploitation methods can
be used in a more general setting and will often produce more accurate reductions,
but the biological meaning of the reduced model can be somewhat obscured by the
change of variables.

Optimisation- and sensitivity analysis-based approaches to model reduction are the
most intuitive of the methods reviewed here. These approaches can be applied to any
model in general, but can be highly computationally expensive for large models where
the parameter space to be searched and simulated is often prohibitive.

Lumping is a broad class of model reduction, but in its common definition of linear,
proper lumping it represents a highly algorithmic and relatively intuitivemethodology.
However, the question of how the best lumping is determined for a nonlinear system
is still somewhat open—approaches in the literature often rely upon trial and error,
which can be computationally expensive for very large systems.

SVD methods represent some of the more esoteric methods that can be applied.
They apply transformations to the state-variables that typically produce transformed
variables with an obscured biological meaning. However, these methods work espe-
cially well when a model can be treated as a black-box and only the input–output
behaviour is of interest to the modeller. These methods can often produce very accu-
rate and low-dimensional reductions.

The relatively recent advent of systems biology has produced a wealth of highly
detailed models, providing great insight into the mechanistic underpinnings of phys-
iological systems. It seems inevitable that researchers in both academia and industry
will increasingly seek to use these models in new ways beyond exploratory research.
As they do so, the perennial issue of complexity will be necessarily brought into focus
again. In those areas of science, such as engineering, most used to pragmatic com-
promise in the face of systemic complexity, methods of model reduction are already a
well-utilised tool of research. Hence model reduction techniques, such as those intro-
duced throughout this review,must also become amore familiar tool in the biochemical
modeller’s arsenal.

Whilst such methods have the potential to provide substantial benefits, enabling
previously intractable problems to be tackled and allowing modellers to extract
insight from complexity, their application should never be considered a ‘magic bul-
let’. Reduced systems typically only remain valid within a specific region of parameter
space or predictive for a set of pre-defined outputs. Even in archetypal examples such
as the QSSA being applied to the enzyme–substrate equation, validity is only guaran-
teed for particular model parameterisations and, when used inappropriately, can lead
to the loss of dynamical phenomena in the original system (Flach and Schnell 2006). In
general, model reduction can therefore be thought of as a trade between the simplicity
of the reduced model and the predictive power that it retains. Hence, before applying
such methods, it is important to be clear on how the reduced model will be used, the
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specific questions you are aiming to answer, and how the reduction method should be
constrained in terms of loss of information.

The development and application of model reduction methods for the field of sys-
tems biology remain an ongoing and active area of research. There are a number of
likelyways forward including the combining of existingmethodologies, the further tai-
loring of methods to a biological context, and study of the relationship between model
reduction and parameter identifiability. Methods from other fields, such as those based
upon proper orthogonal decomposition and Krylov subspaces (Antoulas 2005), might
also find specific applications in this setting.
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Vejchodskỳ T, Erban R, Maini PK (2014) Reduction of chemical systems by delayed quasi-steady state
assumptions. arXiv:1406.4424

VoraN,Daoutidis P (2001)Nonlinearmodel reduction of chemical reaction systems. AIChE J 47(10):2320–
2332

Wei J,Kuo JC (1969)Lumping analysis inmonomolecular reaction systems. analysis of the exactly lumpable
system. Ind Eng Chem Fundam 8(1):114–123

West S, Bridge LJ, White MR, Paszek P, Biktashev VN (2014) A method of speed coefficients for biochem-
ical model reduction applied to the NF-κB system. arXiv:1403.1610

Whiteley JP (2010) Model reduction using a posteriori analysis. Math Biosci 225(1):44–52
Zagaris A, Kaper HG, Kaper TJ (2004) Analysis of the computational singular perturbation reduction

method for chemical kinetics. J Nonlinear Sci 14(1):59–91
Zagaris A, Kaper HG, Kaper TJ (2004) Fast and slow dynamics for the computational singular perturbation

method. Multiscale Model Simul 2(4):613–638
Zhang HX, Goutsias J (2010) A comparison of approximation techniques for variance-based sensitivity

analysis of biochemical reaction systems. BMC Bioinform 11(1):246
Zi Z (2011) Sensitivity analysis approaches applied to systems biology models. IET Syst Biol 5(6):336–346
Zobeley J, Lebiedz D, Kammerer J, Ishmurzin A, Kummer U (2005) A new time-dependent complexity

reduction method for biochemical systems. In: Transactions on computational systems biology I.
Springer, New York, pp 90–110

123

http://arxiv.org/abs/1312.2825
http://arxiv.org/abs/1406.4424
http://arxiv.org/abs/1403.1610

	Methods of Model Reduction for Large-Scale Biological Systems: A Survey of Current Methods and Trends
	Abstract
	1 Introduction
	1.1 Problem Outline

	2 Model Simplification Methods
	2.1 Conservation Analysis
	2.2 Nondimensionalisation
	2.3 Model Decomposition

	3 Model Reduction Methods
	3.1 Timescale Exploitation Methods
	3.1.1 Coordinate Preserving Timescale Methods
	3.1.2 Coordinate Transforming Timescale Methods
	3.1.3 Summary of Timescale Exploitation Methods

	3.2 Optimisation-Based Methods and Sensitivity Analysis
	3.2.1 Sensitivity Analysis
	3.2.2 Optimisation Approaches

	3.3 Lumping
	3.4 Singular Value Decomposition-Based Model Reduction
	Balanced Truncation

	3.5 Miscellaneous Methods

	4 Discussion
	Acknowledgements
	References




