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Abstract
The continuing decline in Arctic sea-ice will likely lead to increased human activity and
opportunities for shipping in the region, suggesting that seasonal predictions of route openings
will become ever more important. Here we present results from a set of ‘perfect model’
experiments to assess the predictability characteristics of the opening of Arctic sea routes. We
find skilful predictions of the upcoming summer shipping season can be made from as early as
January, although typically forecasts show lower skill before a May ‘predictability barrier’. We
demonstrate that in forecasts started from January, predictions of route opening date are twice as
uncertain as predicting the closing date and that the Arctic shipping season is becoming longer
due to climate change, with later closing dates mostly responsible. We find that predictive skill is
state dependent with predictions for high or low ice years exhibiting greater skill than medium
ice years. Forecasting the fastest open water route through the Arctic is accurate to within 200
km when predicted from July, a six-fold increase in accuracy compared to forecasts initialised
from the previous November, which are typically no better than climatology. Finally we find that
initialisation of accurate summer sea-ice thickness information is crucial to obtain skilful
forecasts, further motivating investment into sea-ice thickness observations, climate models, and
assimilation systems.
1. Introduction

Satellite observations have revealed that Arctic sea-ice
is in a state of rapid decline and global climate models
unanimously project this decline to continue through
the 21st century (Stroeve and Notz 2015). This decline
has led to an increase in transit shipping through the
Arctic Ocean (Melia 2016, Eguíluz et al 2016), with
Arctic routes projected to open more frequently, for
longer, (Smith and Stephenson 2013, Stephenson et al
2013) and become faster to traverse (Melia et al 2016).
However models also indicate, as shown in IPCC AR5
(e.g. Collins et al (2013) figure 12.31), that consider-
able inter-annual variability in Arctic sea-ice, and
therefore in Arctic sea route accessibility will remain
throughout the century, even in summer, and that
trans-Arctic routes will continue to close during the
winter months. This suggests a growth in demand for
seasonal forecasts of Arctic sea-ice as humans come
into greater contact with an increasingly variable and
© 2017 The Author(s). Published by IOP Publishing Ltd
mobile Arctic Ocean (Eicken 2013, Meier et al 2014,
Stewart et al 2007). This need has motivated the
development of initialised operational seasonal sea-ice
prediction systems (e.g. Chevallier et al (2013),
Sigmond et al (2013), Wang et al (2013), Peterson
et al (2014), and the SEARCH Sea Ice Outlook,
(Hamilton and Stroeve 2016)), and is a motivating
factor behind the Year of Polar Prediction (YOPP)
from mid-2017 to mid-2019 (Jung et al 2016).

To assess whether there is potential for skilful
seasonal predictions of Arctic sea route openings we
make use of the Arctic Predictability and Prediction on
Seasonal-to-Interannual TimEscales (APPOSITE)
dataset (Tietsche et al 2014, Day et al 2016) which
follows an idealised ‘perfect model’ approach whereby
initial-value ensemble-predictions are verified against
the model itself rather than observations, inspired by
earlier predictability studies by Griffies and Bryan
(1997) and Collins et al (2006). Perfect model
experiments do not suffer from model error because
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Table 1. Details of the simulations.

Modela Control years Forcing as year Start dates Initialisation months Ensemble size Arctic Ocean resolution

CanCM4 32 1979–2010 32 January 10 ≈14 km

MPI-ESM-LR 200 2005 12 November, July 9 ≈12 km

HadGEM1.2 249 1990 10 January, May, July 16 ≈12 km

aThe APPOSITE model dataset is described by Day et al (2016) and is available at Day et al (2015).
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Figure 1. Mean September sea ice thickness and variability in the Pan-Arctic Ice Ocean Modelling and Assimilation System
(PIOMAS) (Zhang and Rothrock 2003), the CanCM4 historical control simulation, and the MPI-ESM-LR and HadGEM1.2 present
day forcing control simulations (see supplementary information for July and November versions).
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the model is used to predict itself. Another key aspect
of this experiment is the perfect knowledge of the
initial state variables, which allows the importance of
memory for individual variables to be quantified
(Dunstone et al 2011). Previous such studies focusing
on Arctic sea-ice find an initialisation month
dependence for predictability (Day et al 2014b) and
large forecast errors of sea-ice thickness (SIT) around
the coasts (Tietsche et al 2014, Goessling et al 2016,
Blanchard-Wrigglesworth et al 2016) which may be
especially relevant for predicting Arctic sea routes.
Analysis of regional skill of Arctic sea-ice forecasts
shows that Russia’s Northern Sea Route (NSR) and the
Kara and Barents Sea are most predictable (Krikken
et al 2016).

For destination shipping in the Arctic, such as the
resupply of fuel to Arctic communities before and after
the winter freeze season (Brooks and Frost 2012),
predicting the opening and closing of the season is also
of vital importance; this was illustrated by a notable
December 2016–January 2017 voyage along the NSR,
when on the return leg a flotilla suddenly became stuck
in thick sea-ice (The Siberian Times 2017).

The models and experiments used in this study are
described in section 2. The effect of a changing climate
on the predictability of season length is examined in
section 3. Section 4 uses seasonal predictions
calibrated with observations to examine the effect of
forecast lead time on the paths predicted for the fastest
open routes. This lead time dependence is further
2

developed in section 5. Finally section 6 examines the
impact of not initialising SIT information (mimicking
a lack of SITobservations) to forecast skill. Section 7 is
a summary and discussion.
2. Climate models used and experimental
design

Three separate climate models are used to examine
aspects of the seasonal predictability of opening Arctic
sea routes (table 1, figure 1), based on the available
APPOSITE model simulations (Day et al 2016).

2.1. Climate models used
The CanCM4 model is used by the operational
Canadian Sea Ice Prediction System (CanSIPS)
(Sigmond et al 2013, Merryfield et al 2013). It is
the only model used here which has both been run
with estimated historical forcings, and has perfect
model predictability experiments with ensemble start
dates every year from 1979–2010. A warmer climate
has been linked to increased variability of the Arctic
summer sea-ice extent (Goosse et al 2009); the
CanCM4 transient climate simulations (section 3)
provide an opportunity to directly assess changes to
seasonal predictability between the earlier and later
years (DelSole et al 2014, Ehsan et al 2013).

The Max Plank Institute’s Earth System Model
(MPI-ESM-LR) (Notz et al 2013, Jungclaus et al 2013)



4 The southernmost NSR versions pass through the Sannikov and
Dmitry Laptev Straits which have shallow bathymetry (drafts of 13
and 6.7 m) which limits their use for larger ships (Buixadé Farré et al
2014).
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has a relatively realistic representation of present day
Arctic sea-ice compared to many of the Coupled
Model Intercomparison Project (CMIP) 3 and CMIP5
climate models (Stroeve et al 2014). We utilise a
present-day control simulation of MPI-ESM-LR, and
the simulations are further enhanced by applying a
mean and variance bias correction (MAVRIC) based
on a sea-ice thickness reanalysis, as detailed in Melia
et al (2015), Krikken et al (2016) find that calibration
techniques such as these reduce forecast errors and
improve skill for operational systems. The resulting
realistic ice distributions mean that this model can be
used to test how predictions of the fastest open water
routes through the Arctic vary with lead time.

The HadGEM1.2model (Johns et al 2006, Shaffrey
et al 2009) has the widest selection of winter, spring
and summer initialisation dates and can therefore be
used to examine the effect of lead time. We use these
simulations to examine the effect of initialising SIT
information (Day et al 2014a). The model is similar to
HadGEM1, the CMIP3 version of the UK Hadley
Centre climate model, described in Johns et al (2006)
andMcLaren et al (2006). The mean sea-ice extent and
volume in HadGEM1.2 is biased high compared to
observations during the satellite era, however multi-
model predictability studies indicate that the ice extent
and volume predictability is fairly typical of other
models (Tietsche et al 2014).

2.2. Truth simulations and ensemble initialisation
To diagnose the predictability of sea route openings in
MPI-ESM-LR and HadGEM1.2 a suite of ensemble
predictions were utilised. ‘Truth’ simulations were
defined from a number of well-spaced start dates
throughout the length of the control simulation (all
with ‘present-day’ radiative forcings defined in table 1).
In order to sample different sea-ice conditions, start
dates were chosen to sample a range of high, medium,
and low summer sea-ice extent and volume states, see
Tietsche et al (2014). For each of these years a multi-
member ensemble is initialised from several different
months prior to the sea-ice minimum. Initial
conditions for the ensemble generation are taken
from the control simulation at each date, along with a
spatially varying Gaussian white noise perturbation to
the sea surface temperatures (with a standard
deviation, s < 10�4 K) for each ensemble member
(Day et al 2016). The difference in the evolution of
each ensemble member is solely determined by the
chaotic nature of the simulated climate system. With
CanCM4, experiments were initialised from a
transient simulation with historical radiative forcings
(see section 3 for more details).

2.3. Sea routes
Typically Arctic predictability experiments attempt to
predict metrics such as sea-ice extent and volume.
However, for shipping routes, ice presence and
thickness along specific routes through the Arctic
3

Ocean are of primary importance. In most of the
analyses (sections 3, 5, and 6) we define a set of six fixed
routes for both the NSRoff Russia’s northern coast and
for the North West Passages (NWP) through the
Canadian Archipelago (see Melia et al (2016) and
supplementary information) and examine whether any
of them are navigable in the simulations4. To examine
the effect of forecast lead time on route selection
(section 4) an explicit ‘fastest-route algorithm’ from
Melia et al (2016) is used. Two vessel classes are
considered. Standard open water (OW) vessels which
can navigate through 0.15 m thick sea-ice (sections 3
and 4), and Polar Class 6 (PC6) vessels which can
navigate through 1.2m thick sea-ice (sections 5 and 6)
(Transport Canada 1998). Route navigability is binary
(i.e. a route is either open or closed), so different vessel
classes will give quantitatively different values, however
the qualitative predictability characteristics and trends
investigated are robust.
3. Season length and predictability in a
transient climate

In CanCM4 the historical simulation uses all forcings
(greenhouse gases, aerosols, volcanic eruptions etc.)
and ‘perfect’ predictions are initialised from January of
each year from 1979–2010, with ten ensemble
members. Here we focus on the predictability of
OW conditions for the NSR passages. CanCM4 has a
low mean sea-ice bias, and therefore NSR openness is
more analogous to mid-21st century high-emission
conditions, based on the bias corrected GCM
simulations in Melia et al (2015).

The initialised simulations illustrated in figure 2
show a 54% lengthening of the shipping season from
104 to 160 d over the 32 years, on average resulting
from earlier openings and later closing dates increasing
the season length by 1.7 d per year. The later closing of
the season accounts for 60% of this trend and the
earlier opening accounts for 40%. The ensemble
forecast range in season length is from 0 d to 180 d,
with a mean length of 130 d, and a standard deviation
of 38 d, showing that interannual variability is far
larger than the forced signal. It is precisely because of
this high inter-annual variance that there is such a
pressing need for dynamic Arctic seasonal predictions.

The high variance in open season length exhibited
in figure 2, suggests that predictability from January is
low. For all years at least one January ensemble
member predicts an ice-free NSR as early as June;
however, in five of the years some members show an
entirely closed NSR for OW vessels. The ensemble
standard deviation for predicting the opening dates
is 26 d, double the 13 d for predicting the closing date.
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Figure 2. CanCM4 10member ensemble predictions of the NSR season length for OW vessels, using simulations started each January,
showing ranked ensemble member opening/closing dates and ensemble mean trend.
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This is due to the larger variability in climatological
SIT for all simulations along the NSR for opening
dates compared to closing dates (see supplementary
information available at stacks.iop.org/ERL/12/
084005/mmedia). These findings are supported by
Sigmond et al (2016) by using sea-ice concentration
data to attribute the low skill of sea-ice retreat forecasts
(opening dates) to the variable persistence of initial
sea-ice anomalies, whereas the sea-ice advance
forecasts (closing dates) benefit from the more
predictable in ocean temperature variability, which
is the dominant mechanism in determining the sea-ice
growth season. However it is clear that while the longer
term changes to the season length, driven by external
forcings, are predictable, predicting the NSR opening
date for any particular year, at least from January, is
more challenging.
4. Present day predictability and route
selection

The MPI-ESM-LR simulations with the MAVRIC sea-
ice calibration allow for a ‘close to real world’
assessment of forecast optimum routes from different
lead times using 12 years of ensemble predictions. As
the predictions have a binary outcome (open/closed
route) we define a ‘skilful forecast’ here as exhibiting a
Brier Skill Score (BSS) of greater than zero (Wilks
1995, Hamill and Juras 2006). The BSS compares the
ensemble probability forecast with the climatological
4

probability. A score of one is returned if all ensemble
members perfectly match the ‘truth’, zero indicates that
the forecast performs equivalent to the climatology,
scores less than zero indicate a performance worse than
climatology, or a ‘forecast bust’. The BSS is a hard test to
score as skilful as a lot of emphasis is placed on correct
timings, and a negative BSS can often hide useful
information within the forecast ensembles (Mason
2004); for example a predictions that forecasts a short
season length (a fewweeks), butmisplaces the timing of
the season could be ascribed a negative BSS. The
timeseries panels of figure 3 show the probability
(fraction of ensemble members) that routes are open to
OW vessels on the NSR. By eye, it is clear that the blue
(July) probabilities are generallymuch closer to the grey
shading (‘truth’) than the pink (November) probabili-
ties. The July initialised forecasts show greater than
climatological skill in 10out of 12 years, twice asmany as
forecasts from the previous November (which have
equivalent to climatological skill).

The forecast skill is state dependent. For high ice
years where the deterministic control simulation or
‘truth’ is entirely closed (years: 2104, 2185, 2223, 2263
and 2273) the July forecasts show high levels of skill
with an average BSS of 0.89, while the November
forecasts exhibit positive skill in only three of these
years. For median ice conditions (years: 2114, 2142,
2168 and 2285) route opening skill is the most difficult
to predict, showing no average skill from either July
(BSS=�0.01) or November forecasts. In particular,
year 2285 forecasts are a ‘bust’, highlighting the

http://stacks.iop.org/ERL/12/084005/mmedia
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Figure 3. The predictability for the opening of the NSR for OW vessels in the MAVRIC calibrated MPI-ESM-LR simulations. The
twelve top timeseries panels each plot the percentage of ensembles open through the season amongst various forecasts. The grey
shading represents the control run deterministic ‘truth’ solution (binary open or closed); the pink and blue lines represent the
ensemble consensus when forecasts are initialised from the previous November and from July respectively. Black dashed lines
represent the mean openness of all years in the control simulation. The BSS is shown in the bottom right for all the selected years for
both start months. The maps show the predictions for the fastest mid-season (September 15th) OW routes from New York and
Rotterdam to Yokohama from three open years. Pink (November) and blue (July) lines represent each ensemble member’s optimum
route, with line weight indicate number of forecasts sharing the route segment; the thick orange line shows the ‘truth’ (September 15th
deterministic solution).
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potential for unpredictable weather to reduce forecast
skill. For low ice years showing extended open
conditions (years: 2200, 2228, 2237), the July forecasts
have an average BSS= 0.75 while the November
forecasts show no skill.

In addition to the binary open/closed metric we
also examine the effect of decreasing forecast lead time
on the path of the optimum (fastest) predicted route,
following the method developed in Melia et al (2016).
We select the mid-season date of September 15th to
characterise the season peak for the most open years
(2200, 2228, and 2237); where all ensemble members
from the July forecasts are open, while half the
forecasts from November are closed. We define the
‘forecast route deviation’ as the mean spatial distance
of the forecast routes from the true optimal September
15th route. For routes starting from European ports
the forecast route deviation initialised fromNovember
is on average 1098 km based on utilising both the
NWP and the NSR (using only ensemble members
that are open), while the July forecasts all remain
confined to the NSR and show a far tighter spatial
5

grouping, with route deviations of only 195 km, a six-
fold improvement over November forecasts. For
routes starting from North American ports, via the
NWP, variations arise from whether the shorter
‘northern NWP’ via the M’Clure strait is open or if
the longer and less ice prone ‘southern NWP’ is
required. The NWP route opening is more sensitive as
ice present at a few key grid cells in the Canadian
Archipelago can completely shut the route forcing a
re-routing via the NSR. The open NWP routes from
the November forecasts show a deviation of 686 km;
by July this error has reduced to 253 km, approxi-
mately a three-fold improvement.

The MPI-ESM-LR simulations show significant
improvement in forecast skill for route openness and
route accuracy when predictions are made from July
compared to the previous November. At eight months
apart however initial sea-ice states are very different and
it is desirable to test predictions from intermediate lead
times. These are examined in the following sectionwith
HadGEM1.2, where ensembles are available from
January, May and July initialisation dates.



Figure 4. HadGEM1.2 perfect model NSR forecast openings for PC6 vessels. Coloured lines represent the percentage of ensembles
predicting open routes for the initialisation month. The grey region is the deterministic simulation from the control run taken to be
the ‘truth’ to verify against. Panel legends depict the Brier Skill Score (BSS) of the forecast openings for the period shown.
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5. Predictability lead time barriers

Fundamental time limits to predictive skill are
expected in the climate system due to the non-linear
chaotic nature of the governing physics (Lorenz 1963).
For example, Collins et al (2002) find a spring
predictability barrier for perfect model predictions of
El Niño, which is also seen in real-world predictions.
Experiments by Day et al (2014b) also find Arctic sea-
ice area and volume predictions initialised on or before
May 1st often show little skill, and are not statistically
different from predictions made from as early as
January and which are only marginally better than
climatology. Route openings need not follow the same
pattern as these pan-Arctic results so we use these
same simulations to examine the lead time skill
dependence of predicting the opening of the NSR.
HadGEM1.2 has a high SIT climatological bias
(figure 1) and the NSR never becomes ice-free, so
we examine the prospects for Polar Class 6 (PC6)
vessels, which can break through up to 1.2 m of ice,
instead of OW vessels, on the NSR.

Figure 4 shows that predictions made from July are
on average better than from either May or January
initialisations. The bottom right image in figure 4
collects the BSS statistics for each year and finds a
median BSS for January= 0.44, May= 0.31 and
July= 0.71. The BSS from May are no better than
from January, despite the lower lead time, supporting
the presence of a predictability barrier around May,
before which skilful forecasts are problematic.

However, as in the MPI-ESM-LR predictions in
section 4, we find that skill is state dependent, and this
dependency extends to the predictability barrier as
well. In figure 4 high ice conditions resulting in closed
6

routes (years: 2180, 2230, 2292 and 2330) are more
predictable, with July BSS > 0.95 and predictability as
far in advance as January with mean BSS > 0.6,
indicating that no strong predictability barrier is
present. Caution is still required, evident for example
in the forecast bust of May 2230 (BSS �0.6). Low ice
conditions resulting in largely open routes in figure 4
(years: 2202, 2267 and 2359) show more strongly
increasing predictability with decreasing forecast lead
time. Year 2202 shows a dramatic improvement from
the July predictions compared to May and January,
which do no better than climatology. However for
years 2267 and 2359 the May and January predictions
still have some skill, which further improves by July.
Medium or marginal ice conditions with short open
route periods (years: 2164, 2304 and 2345) actually
have decreased skill with shorter lead times because the
predictions struggle to capture the timing of the short
open route windows. At shorter lead times the
forecasts do capture more of these short route
openings but still miss the timing, thus the season
average difference between the forecast and the truth
becomes greater and is penalised by the strict BSS.

6. Initialising sea-ice thickness

Previous studies have shown that sea-ice thickness
initialisation is an important requirement for pre-
dictions of summer sea-ice extent (Guemas et al 2016,
Collow et al 2015, Day et al 2014a); however,
observations of SIT during the melt season are more
challenging than for sea-ice concentration and hence
their assimilation into seasonal forecast systems is
problematic. In this section we investigate their
importance for shipping route forecasts by examining



Figure 5. HadGEM1.2 perfect model NSR forecast openings for PC6 vessels. SITINIT January and July (solid lines), deterministic
(grey shading), climatology (black dashed line) and BSS are as in figure 4. The dashed coloured lines represent the SITCLIM
simulations that have their SIT replaced with the climatological values at the time of initialisation. Panel legends depict the Brier Skill
Score (BSS) of the forecast openings for the period shown.
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the effect of resetting SIT initial conditions to
climatological values in forecast simulations, following
(Day et al 2014a).

We use the same HadGEM1.2 years studied in
section 5 with only the January and July ensemble start
dates, and compare two parallel sets of simulations
which are initialised with (i) true SIT (as above) and
(ii) climatological SIT initial conditions, leaving the
concentrations practically unchanged (further details
are given in Day et al (2014a)). The ‘SIT-initialised’
simulations are hereafter referred to as SITINIT, and
the climatological (SITCLIM) experiment is analo-
gous to having no SIT observations in an operational
prediction system; similar to the current operational
forecast situation in summer where sea-ice concen-
tration is known, but SIT is not. The Climate Forecast
System Reanalysis (CFSR) handles this by relaxing the
model SIT field to that of the Pan-Arctic Ice Ocean
Modelling and Assimilation System (PIOMAS)
(Collow et al 2015).

The median BSS (figure 5, bottom right panel) are,
for January initialisations SITCLIM= 0.18, SITINIT
= 0.44, and July initialisations, SITCLIM=�0.45,
SITINIT= 0.71. The addition of the initialised SIT
information for the January predictions leads to an
increase of the BSS compared to using climatological
SIT data. It follows that some of the skill available in
January is attributed to SIT initialisation and the
remainder from other sources e.g. ocean heat content
(Guemas et al 2016).

For the July initialisations the effect of removing
the SIT information is larger than in the January
initialisations, with the median July BSS becoming
worse than both the January initialisations and
climatology. Low ice conditions resulting in open
7

routes (figure 5, years: 2202, 2267, and 2359)
generally show similar SITCLIM predictions to
SITINIT; medium or marginal ice conditions
resulting in short windows of open routes (figure
5, years: 2164, 2304 and 2345) also show similar
behaviour. However, high ice conditions resulting in
closed routes (figure 5, years: 2180, 2230, 2292 and
2330) for July SITCLIM are forecast ‘busts’ with a
mean BSS of −1.47 compared to July SITINIT BSS of
0.98. The source of the July busts is the relatively short
time for SITCLIM conditions to recover to SITINIT
conditions, compounded by the dominance of
positive feedbacks on sea-ice evolution in the melt
season helping to maintain or grow the SITCLIM
anomalies (see supplementary information).

The January SITCLIM simulations exhibit better
BSS than the July SITCLIM simulations. This is partly
due to the larger SITCLIM anomaly recovery time
from January than from July. Additionally, during the
freeze season, negative feedbacks dominate the sea-ice
evolution, largely due to an ice growth-thickness
relationship (thin ice grows faster than thick ice e.g.
Bitz and Roe (2004) and Tietsche et al (2011)), which
acts to reduce the SITCLIM perturbation to the
SITINIT conditions (see supplementary information),
a phenomenon not present following the July
initialisations.
7. Discussion

We have examined the predictability of Arctic sea route
accessibility in a range of idealised ‘perfect model’
simulations using several different climate models,
taking advantage of the available ensemble runs
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(table 1). The analysis of seasonal sea-ice predictions
in a transient climate using estimated historical
forcings in the CanCM4 model (figure 2) shows the
shipping season extending, with later closing dates
contributing most to this extension, but still with
substantial variability from year-to-year. Predictions
for the opening date of shipping routes in any given
year are less accurate than predicting the closing dates
due to greater climatological variability in the melt
season (see supplementary information).

Forecasting from July in the MPI-ESM-LR model
(figure 3), the ice conditions in mid-September are
well enough predicted for the optimum route to be
identified with a position error of only 195 km, a six-
fold improvement over forecasts from the previous
November which show equivalent skill to climatology.
This is accurate enough to be able to predict which
straits on the NSR or NWP are most likely to be
available for routing. This has important logistical
planning implications as many of these channels have
draft restrictions, and foreknowledge may help inform
on vessel size limits and whether ice-breaker escort will
be required. Since applications for sailing the NSR are
needed several weeks to months in advance this July
information, available at least two months ahead of
likely crossing, is potentially operationally useful
(Arctic Logistics Information Office 2016).

Regulations for the NSR, such as vessel class
restrictions, are adapted according to heavy, medium,
or light ice years. We find that predictive skill is
fundamentally correlated with these operational
conditions which could enhance guidance for the
upcoming season. High ice years, leading to
completely closed routes, possess the most predict-
ability, and can generally be skilfully identified as far in
advance as January. Skilful forecasts are also possible
for low ice years, resulting in open route forecasts also
as far in advance as January, although these predictions
typically exhibit less skill than in high ice years.
However, predictions for median ice years with
marginal accessibility show little to no skill in
identifying the timing of the short accessibility
periods, even when forecasts are initialised from July
conditions; however, alternative skill metrics may be
able to reveal useful information, about the season
length for example, within these forecasts (Mason
2004). With respect to operational shipping consider-
ations, the state dependent predictability configura-
tion is valuable since higher confidence can be ascribed
early on to pivotal ‘go/no-go’ decisions, but lower
confidence will be apparent with a split ensemble when
conditions are likely to be marginal and caution would
likely be applied regardless. However, there are still
likely to be forecast ‘busts’ in some years due to
unpredictable weather conditions.

The HadGEM1.2 model suggests that May
sometimes presents a predictability threshold, after
which predictive skill increases; although skilful
forecasts are possible before May, particularly for
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high ice conditions (figure 4). Generally we find that
there is no forecast improvement in the four months
from January to May, with forecast skill then rapidly
increasing from May 1st to July 1st. Simulations with
HadGEM1.2 that replace initial sea-ice thickness (SIT)
with climatological values (Day et al 2014a) provide
insight into the performance limitations for sea route
predictions due to the lack of summer SIT observa-
tions, which up to now have not been available beyond
May (Tilling et al 2016), which coincides with this
crucial time for seasonal sea-ice forecasts. Seasonal
route predictions with initialised SIT information in
this period show that skilful predictions of sea route
openings are possible for approximately 70% of years
(figure 5), but positive feedbacks present during the
melt season, combined with only climatological SIT
information, dramatically reduce forecast skill, show-
ing the high sensitivity to the SIT information used to
initialise summer sea-ice forecasts. During this melt
period sea-ice mobility increases and hence the role of
the atmosphere becomes more important. Experi-
ments that assimilate additional radiosonde data into a
forecasting system, by Inoue et al (2015) using the
Earth Simulator (Ohfuchi et al 2004), and Ono et al
(2016) using a mesoscale eddy-resolving ice–ocean
coupled model (that explicitly treats ice floe collisions
in marginal ice zones) (De Silva et al 2015), drastically
improve sea-ice forecasts for the NSR region.

All these results are based upon perfect model
simulations and as such illustrate the potential
predictability available within operational systems
(Hawkins et al 2015, Serreze and Stroeve 2015, Shi et al
2015, Eade et al 2014). Future work into seasonal
Arctic shipping forecasts should focus on analysis of
operational prediction hindcast products, such as the
CanSIPS (Sigmond et al 2013) and the UK Met
Office’s GloSea5 system (MacLachlan et al 2015), as
these will provide a direct measure of operational
predictability.

Our findings indicate that seasonal predictions for
Arctic sea routes are potentially possible. Acquiring
this foresight will be of vital importance to increasing
Arctic operations, considering that operating in the
hostile polar environment requires months of pre-
planning. Although operational seasonal predictions
for the Arctic region are still an emerging field of
climate science, results presented here quantify their
potential, reinforcing the call for continued investment
into improving models and further developing Arctic
observation networks so that the potential seasonal
forecast skill demonstrated here can be realised.
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