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(Received 4 November 2015; revised 17 April 2016; accepted 18 April 2016)

We consider the theory and application of a solution method for the inverse problem
in collisionless equilibria, namely that of calculating a Vlasov–Maxwell equilibrium
for a given macroscopic (fluid) equilibrium. Using Jeans’ theorem, the equilibrium
distribution functions are expressed as functions of the constants of motion, in the
form of a Maxwellian multiplied by an unknown function of the canonical momenta.
In this case it is possible to reduce the inverse problem to inverting Weierstrass
transforms, which we achieve by using expansions over Hermite polynomials. A
sufficient condition on the pressure tensor is found which guarantees the convergence
and the boundedness of the candidate solution, when satisfied. This condition is
obtained by elementary means, and it is clear how to put it into practice. We
also argue that for a given pressure tensor for which our method applies, there
always exists a positive distribution function solution for a sufficiently magnetised
plasma. Illustrative examples of the use of this method with both force-free and
non-force-free macroscopic equilibria are presented, including the full verification of
a recently derived distribution function for the force-free Harris sheet (Allanson et al.,
Phys. Plasmas, vol. 22 (10), 2015, 102116). In the effort to model equilibria with
lower values of the plasma β, solutions for the same macroscopic equilibrium in a
new gauge are calculated, with numerical results presented for βpl = 0.05.

1. Introduction
An important question in the study of plasmas is to understand the fundamental

physics involved in magnetic reconnection. Magnetic reconnection processes can
critically depend on a variety of length and time scales, for example on lengths
of the order of the Larmor orbits and below that of the mean free path (Biskamp
2000; Birn & Priest 2007). In such situations a collisionless kinetic theory could be
necessary to capture all of the relevant physics, and as such an understanding of the
differences between using magnetohydrodynamics (MHD), two-fluid, hybrid, Vlasov
and other approaches is of paramount importance, for example see Birn et al. (2001,
2005) for discussions of this problem in the context of one-dimensional (1-D) current
sheets: the ‘GEM’ and ‘Newton’ challenges.
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Current sheet equilibria are frequently considered to be the initial state of wave
processes, instabilities, reconnection and various dynamical phenomena in laboratory,
space and astrophysical plasmas, in theory and observation; see for example Fruit
et al. (2002), Schindler (2007) and Yamada, Kulsrud & Ji (2010). In particular, force-
free current sheets are relevant for the solar corona (Priest & Forbes 2000), Jupiter’s
magnetotail (Artemyev, Vasko & Kasahara 2014), the Earth’s magnetotail (Vasko et al.
2014; Petrukovich et al. 2015) and the Earth’s magnetopause (Panov et al. 2011).
Further relevant theoretical works on distribution functions (DFs) for (nonlinear) force-
free current sheets are, for example, Harrison & Neukirch (2009a,b), Neukirch, Wilson
& Harrison (2009), Wilson & Neukirch (2011), Abraham-Shrauner (2013), Allanson
et al. (2015) and Kolotkov, Vasko & Nakariakov (2015).

In the absence of an exact collisionless kinetic equilibrium solution, one has
to use non-equilibrium DFs to start kinetic simulations, without knowing how far
from the true equilibrium DF they are. In such cases, non-equilibrium ‘flow-shifted’
Maxwellian distributions are frequently used (see Hesse et al. (2005), Guo et al.
(2014) for examples). Using the DF found in Harrison & Neukirch (2009a), the first
fully kinetic simulations of collisionless reconnection with an initial condition that is
an exact Vlasov solution for a nonlinear force-free field was conducted by Wilson
et al. (2016).

Motivated by these and other considerations, this paper presents results on the
theory and application of a method that allows the calculation of collisionless kinetic
plasma equilibria. The method is specifically designed to solve the problem of
finding quasineutral collisionless equilibrium DFs, fs, for a given macroscopic plasma
equilibrium.

As intimated above, 1-D Cartesian coordinates are very frequently used in the study
of waves, instabilities and reconnection (see Schindler (2007) for example). In this
work, z is taken to be the spatial coordinate on which the system depends. Thus the
Hamiltonian, Hs, and two of the canonical momenta pxs and pys

Hs =msv
2/2+ qsφ, (1.1)

pxs =msvx + qsAx, (1.2)
pys =msvy + qsAy, (1.3)

are conserved. The particle species is denoted by s, with qs the charge, v the velocity
and φ the scalar potential. The vector potential is taken to be A = (Ax(z), Ay(z), 0),
such that B=∇×A. The macroscopic force balance is then given by

d
dz

Pzz = ( j×B)z, (1.4)

see e.g. Mynick, Sharp & Kaufman (1979) and Harrison & Neukirch (2009b), with
j= (∇×B)/µ0 the current density, µ0 the magnetic permeability in vacuo and P ij the
ij component of the pressure tensor

P ij =
∑

s

P ij,s =
∑

s

ms

∫
wiswjs fs dv. (1.5)

The particle velocity relative to the bulk is given by wi = vi − 〈vi〉s, for 〈vi〉s the i
component of the bulk velocity of particle species s.

A collisionless equilibrium DF is a solution of the steady-state Vlasov equation. A
method frequently used to solve Vlasov’s equation is to write fs as a function of a
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subset of the constants of motion (Jeans’ theorem) (see Schindler (2007) for example).
This paper considers collisionless plasmas described by DFs of the form

fs = n0

(
√

2πvth,s)3
e−βsHsgs(pxs, pys; vth,s), (1.6)

with gs the unknown deviation from a Maxwellian distribution, parameterised by the
thermal velocity vth,s of particle species s. This form is chosen for the DF for practical
mathematical reasons (integrability) and to be readily compared to the Maxwellian
distribution function when gs = 1. Note that for DFs of the form in (1.6), 〈vz〉s = 0,
since fs is an even function of vz. The species-dependent parameter βs = 1/(kBTs) is
the thermal β, with n0 a normalisation parameter that does not necessarily represent
the number density. The combination of quasineutrality (Ni(Ax, Ay, φ)=Ne(Ax, Ay, φ))
and a DF of the form in (1.6) results in a scalar potential that is implicitly defined as
a function of the vector potential, e.g. (Schindler 2007; Harrison & Neukirch 2009b;
Tasso & Throumoulopoulos 2014; Kolotkov et al. 2015):

φqn(Ax, Ay)= 1
e(βe + βi)

ln(Ni/Ne), (1.7)

where Ni(Ax, Ay) and Ne(Ax, Ay) are the number densities of the ions and electrons
respectively, and e is the elementary charge. In this work, parameters are chosen such
that Ni = Ne as functions over (Ax, Ay) space, and so ‘strict neutrality’ is satisfied,
implying φqn= 0. It has been shown in Channell (1976) that this form of DF, together
with strict neutrality, implies that the relevant component of the pressure tensor, Pzz,
is a 2-D integral transform of the unknown function gs, given by

Pzz(Ax, Ay) = βe + βi

βeβi

n0

2πm2
sv

2
th,s

×
∫ ∞
−∞

∫ ∞
−∞

e−βs((pxs−qsAx)
2+(pys−qsAy)

2)/(2ms)gs(pxs, pys; vth,s) dpxs dpys. (1.8)

This equation defines the inverse problem at hand, viz. ‘for a given macroscopic
equilibrium characterised by Pzz(Ax, Ay), can we invert the transform to solve for the
unknown function gs?’ Note that the current densities

jx(Ax, Ay)=
∑

s

qsns〈vx〉s =
∑

s

qs

∫
vxfs d3v,

jy(Ax, Ay)=
∑

s

qsns〈vy〉s =
∑

s

qs

∫
vyfs d3v,

 (1.9)

are themselves related to the pressure according to

j(Ax, Ay)= ∂Pzz

∂A
, (1.10)

see for example Grad (1961), Mynick et al. (1979), Schindler (2007) and Harrison &
Neukirch (2009b).

The above equation demonstrates that to reproduce a specific magnetic field, the Pzz
function must be compatible. For example, in the case of a force-free field, there is a
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simple procedure one can follow to calculate an expression for Pzz(Ax,Ay) (for details
see § 3).

In Abraham-Shrauner (1968), Hermite polynomials are used to solve the Vlasov–
Maxwell (VM) system for the case of ‘stationary waves’ in a manner like that to
be described in this paper. These correspond not to Vlasov equilibria, but rather to
nonlinear waves that are stationary in the wave frame.

In Channell (1976), two methods are presented for the solution of the inverse
problem with neutral VM equilibria. These two methods are inversion by Fourier
transforms and – once again – expansion over Hermite polynomials. First impressions
suggest that Fourier transforms do seem ideally suited to the task, since the right-hand
side of (1.8) allows the convolution theorem to be applied. The Fourier transform
method is used in Channell (1976) and Harrison & Neukirch (2009b) for example.
However, when either the Fourier or inverse Fourier transform cannot be calculated,
this method clearly fails to be of use.

The method presented in this paper should be seen as a rigorous extension/generali-
sation of the Hermite polynomial method used by Abraham-Shrauner and Channell.
As such it is complementary to the Fourier transform method.

The structure of this paper is as follows. Section 2 contains the mathematical
details of the solution of the inverse problem defined in the Introduction. First, a
formal solution is derived in § 2.2, by using known methods of inverting Weierstrass
transforms with possibly infinite series of Hermite polynomials. For the formal
solution to meaningfully describe a DF however, these series must be convergent,
positive and bounded. A sufficient condition for convergence that places a restriction
on the pressure tensor is obtained in § 2.3. In § 2.4 we argue that for an appropriate
pressure function, there always exists a positive DF, for a sufficiently magnetised
plasma. We include some technical calculations in appendix B that support the
positivity argument, including proofs for a certain class of function.

In § 3 we present non-trivial examples to demonstrate the application of the
inversion method to a recently derived force-free DF (Allanson et al. 2015) as well
as to DFs that correspond to the same magnetic field, but in a different gauge. This
work is motivated by numerical reasons, and should allow easier calculation and
visualisation of the DFs. In appendix A we present the full details of the calculations
that verify that these DFs satisfy the convergence criteria derived in § 2.3, and
that as a result the DFs are bounded. In § 4 we consider the use of the method
for a non-force-free magnetic field, considered by Channell (1976) using Fourier
transforms. This calculation is included to demonstrate the relationship between the
Fourier transform and Hermite polynomial inversion methods.

2. Solution of the inverse problem
To make mathematical progress, we make the assumption of either ‘summative’ or

‘multiplicative’ separability, i.e. that Pzz(Ax, Ay) is of the form

Pzz = n0(βe + βi)

βeβi
(P̃1(Ax)+ P̃2(Ay)) or Pzz = n0(βe + βi)

βeβi
P̃1(Ax)P̃2(Ay). (2.1a,b)

The components of the pressure, P̃1(Ax) and P̃2(Ay), are dimensionless. These
assumptions are commensurate with

gs = g1s(pxs; vth,s)+ g2s(pys; vth,s) or gs = g1s(pxs; vth,s)g2s(pys; vth,s), (2.2a,b)
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respectively, and allow separation of variables according to

P̃1(Ax)= 1√
2πmsvth,s

∫ ∞
−∞

e−βs(pxs−qsAx)
2/(2ms)g1s(pxs; vth,s) dpxs, (2.3)

P̃2(Ay)= 1√
2πmsvth,s

∫ ∞
−∞

e−βs(pys−qsAy)
2/(2ms)g2s(pys; vth,s) dpys. (2.4)

The separation constant is set to unity in the case of multiplicative separability, and
zero in the case of additive separability, without loss of generality. The components
of the pressure are now represented by 1-D integral transforms of the unknown parts
of the DF.

2.1. Weierstrass transform
The Weierstrass transform, Φ(x) of φ(y), is defined by

Φ(x)=W[φ] : x= 1√
4π

∫ ∞
−∞

e−(x−y)2/4φ(y) dy, (2.5)

see Bilodeau (1962) for example. This is also known as the Gauss transform, Gauss–
Weierstrass transform and the Hille transform (Widder 1951). As the Green’s function
solution to the heat/diffusion equation, Φ(x) represents the temperature/density profile
of an infinite rod one second after it was φ(x), see Widder (1951), implying that the
Weierstrass transform of a positive function is itself a positive function. P̃1 and P̃2 are
expressed as Weierstrass transforms of g1s and g2s in (2.3) and (2.4) respectively, give
or take some constant factors. Formally, the operator for the inverse transform is e−D2 ,
with D the differential operator and the exponential suitably interpreted, see Eddington
(1913) and Widder (1954) for two different interpretations of this operator. We should
mention that one of the existing nonlinear force-free VM equilibria known (Harrison
& Neukirch 2009a) is based on an eigenfunction of the Weierstrass transform (Wolf
1977).

Perhaps a more computationally ‘practical’ method employs Hermite polynomials,
see Bilodeau (1962). The Weierstrass transform of the nth Hermite polynomial
Hn(y/2) is xn. Hence if one knows the coefficients of the Maclaurin expansion of
Φ(x) in (2.5),

Φ(x)=
∞∑

j=0

ηjxj, (2.6)

then the Weierstrass transform can immediately be inverted to obtain the formal
expansion

φ(y)=
∞∑

j=0

ηjHj(y/2). (2.7)

For this method to be useful in our problem, the pressure function must have a
Maclaurin expansion that is convergent over all (Ax, Ay) space. Then, its coefficients
of expansion must ‘allow’ the Hermite series to converge. Questions regarding the
positivity and convergence of formal solutions represented by infinite series of Hermite
polynomials were raised by Abraham-Shrauner (1968) and Hewett, Nielson & Winske
(1976), respectively, and the same questions arise in the context of the problems in
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this paper. For some other examples of applications of Hermite polynomials to
collisionless and weakly collisional plasmas, see Camporeale et al. (2006), Suzuki
& Shigeyama (2008), Zocco (2015) and Schekochihin et al. (2016). We also remark
that the use of Hermite polynomials in kinetic theory dates back, at least, to Grad
(1949a,b) in the study of rarefied collisional gases.

2.2. Formal solution
The following discussion applies to pressure functions of both summative and
multiplicative form, with Maclaurin expansion representations (convergent over all
(Ax, Ay) space) given by

P̃1(Ax)=
∞∑

m=0

am

(
Ax

B0L

)m

, P̃2(Ay)=
∞∑

n=0

bn

(
Ay

B0L

)n

, (2.8a,b)

with B0 and L the characteristic magnetic field strength and spatial scale respectively.
In line with the discussion on inversion of the Weierstrass transform in § 2.1, we solve
for gs functions represented by the following expansions

g1s(pxs; vth,s)=
∞∑

m=0

CmsHm

(
pxs√

2msvth,s

)
, (2.9)

g2s(pys; vth,s)=
∞∑

n=0

DnsHn

(
pys√

2msvth,s

)
, (2.10)

with currently unknown species-dependent coefficients Cms and Dns. We cannot simply
‘read off’ the coefficients of expansion as in (2.7), since our integral equations are not
quite in the ‘perfect form’ of (2.5). Upon computing the integrals of (2.3) and (2.4)
with the above expansions for gs, we have

P̃1(Ax)=
∞∑

m=0

( √
2qs

msvth,s

)m

Cms Am
x , P̃2(Ay)=

∞∑
n=0

( √
2qs

msvth,s

)n

Dns An
y . (2.11a,b)

This result appears species dependent. However, to ensure neutrality (Ni(Ax, Ay) =
Ne(Ax, Ay)) – as in Channell (1976), Harrison & Neukirch (2009a) and Wilson &
Neukirch (2011) – we have to fix the pressure function to be species independent. It
clearly must also match with the pressure function that maintains equilibrium with the
prescribed magnetic field. The conditions derived here are critical for making a link
between the macroscopic description of the equilibrium structure with the microscopic
one of particles. These requirements imply by the matching of (2.8) and (2.11) that( √

2qs

msvth,s

)m

Cms =
(

1
B0L

)m

am H⇒ Cms = sgn(qs)
m

(
δs√

2

)m

am, (2.12)( √
2qs

msvth,s

)n

Dns =
(

1
B0L

)n

bn H⇒ Dns = sgn(qs)
n

(
δs√

2

)n

bn, (2.13)

with sgn(qe)=−1 and sgn(qi)= 1. The species-dependent magnetisation parameter, δs,
see Fitzpatrick (2014) for example, is defined by

δs = msvth,s

eB0L
. (2.14)
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It is the ratio of the thermal Larmor radius, ρs= vth,s/|Ωs|, to the characteristic length
scale of the system, L. The gyrofrequency of particle species s is Ωs = qsB0/ms. The
magnetisation parameter is also known as the fundamental ordering parameter in
gyrokinetic theory (see Howes et al. (2006) for example). (In particle orbit theory,
δs� 1 implies that a guiding centre approximation will be applicable for that species,
see Northrop 1961.)

2.3. Convergence of the distribution function
Here we find a sufficient condition that, when satisfied, guarantees that the Hermite
series representations in (2.9) and (2.10) converge. This provides some answers
to questions on the convergence of Hermite polynomial representations of Vlasov
equilibria dating back to Hewett et al. (1976).

THEOREM 1. Consider a Maclaurin expansion of the form

P̃j(A)=
∞∑

m=0

am

(
A

B0L

)m

(2.15)

that is convergent for all A. Then for εs=m2
sv

2
th,s/2 the function gjs, calculated in the

inverse problem defined by the association

P̃j(A) := P̃INT(A)= 1√
4πεs

∫ ∞
−∞

e−( ps−qsA)2/(4εs)gjs( ps; vth,s) dps (2.16)

of the form

gjs( ps; vth,s)=
∞∑

m=0

amsgn(qs)
m

(
δs√

2

)m

Hm

(
ps√

2msvth,s

)
(2.17)

converges for all ps, provided

lim
m→∞
√

m
∣∣∣∣am+1

am

∣∣∣∣< 1/δs, (2.18)

in the case of a series composed of both even- and odd-order terms, or

lim
m→∞

m
∣∣∣∣a2m+2

a2m

∣∣∣∣< 1/(2δ2
s ), lim

m→∞
m
∣∣∣∣a2m+3

a2m+1

∣∣∣∣< 1/(2δ2
s ), (2.19a,b)

in the case of a series composed only of even-, or odd-order terms, respectively.

Proof. For a series composed of even- and odd-order terms, we have that

gs(ps; vth,s)=
∞∑

m=0

amsgn(qs)
m

(
δs√

2

)m

Hm

(
ps√

2msvth,s

)
. (2.20)

An upper bound on Hermite polynomials (see e.g. Sansone (1959)) is provided by the
identity

|Hj(x)|< k
√

j!2j/2 exp(x2/2) s.t. k= 1.086435. (2.21)
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This upper bound implies

am sgn(qs)
m

(
δs√

2

)m

Hm

(
ps√

2msvth,s

)
< kamδ

m
s

√
m! exp

(
p2

s

4m2
sv

2
th,s

)
. (2.22)

Working on the level of the series composed of upper bounds, the ratio test clearly
requires

lim
m→∞

∣∣∣∣am+1

am

∣∣∣∣√m+ 1< 1/δs,

H⇒ lim
m→∞

∣∣∣∣am+1

am

∣∣∣∣√m< 1/δs,

 (2.23)

for a given δs ∈ (0,∞). Then, the comparison/squeeze test implies that if the condition
of (2.23) is satisfied, that since the series composed of upper bounds will converge,
so must gs(ps). An analogous argument holds for those series with only even- or odd-
order terms, with the ratio test giving

lim
m→∞

∣∣∣∣a2m+2

a2m

∣∣∣∣m< 1/(2δ2
s ), or lim

m→∞

∣∣∣∣a2m+3

a2m+1

∣∣∣∣m< 1/(2δ2
s ), (2.24a,b)

respectively. By the same argument as above, the comparison test implies that if the
condition of (2.24) is satisfied, that since the series composed of upper bounds will
converge, so must gs(ps). �

2.4. Positivity of the distribution function
In this subsection, we consider the positivity of the Hermite series representation of
gs – given by (2.9) and (2.10) – and hence positivity of the DF. This provides some
answers to questions on the positivity of DF representation by Hermite polynomials
dating back to Abraham-Shrauner (1968) and also raised by Hewett et al. (1976).

For an example of a gs function that is not necessarily always positive despite
the pressure function being positive, consider a pressure function (e.g. from Channell
(1976)) that is quadratic in the vector potential. In our notation, the pressure function
considered by Channell is

P̃= 1
2

(
a0 + a2

(
Ax

B0L

)2
)
+ 1

2

(
a0 + a2

(
Ay

B0L

)2
)
. (2.25)

The resultant gs function is of the form

gs ∝ 1
2

[
a0 + a2

(
δs√

2

)2

H2

(
pxs√

2msvth,s

)]
+ 1

2

[
a0 + a2

(
δs√

2

)2

H2

(
pys√

2msvth,s

)]
.

(2.26)
Once these Hermite polynomials are expanded, by substituting pxs = pys = 0 we see
that positivity of gs is – for given values of a0 and a2 – contingent on the size of δs,

a0 − a2δ
2
s > 0 H⇒ δ2

s <
a0

a2
. (2.27)
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However, there is not necessarily anything ‘special’ about the point 0, as compared to
other points in momentum space. For example, consideration of the pressure function

P̃j =
(

a0 + a2

(
A

B0L

)2

+ a4

(
A

B0L

)4
)
, (2.28)

gives a gs function that can, for given values of a0, a2, a4 and for δs sufficiently large,
be positive at ps = 0 and negative at some other points.

It is worth considering how a gs function that is negative for some ps can transform
in the manner of (2.3) and (2.4) to give a positive P̃j(A). One might expect that for
certain values of A such that the Gaussian

e−(ps−qsA)2/(4εs) (2.29)

is centred on the region in ps space for which gs is negative, that a negative value of
P̃j(A) could be the result.

Essentially, the Gaussian will only ‘successfully sample’ a negative region of gs to
give a negative value of P̃j(A) if the Gaussian is narrow enough – for a given value of
εs – to ‘resolve’ a negative patch of gs. In other words, if the Gaussian is too broad,
it will not ‘see’ the negative patches of gs, and hence P̃j(A) will be positive. Hence
the non-negativity of P̃j(A) is a restriction on the possible shape of gs and how that
shape must scale with εs.

It is a short algebraic exercise to rewrite (2.16) in the form

∞∑
n=0

an(sgn(qs)δsÃ)n = 1√
2π

∫ ∞
−∞

e−(p̃s−Ã)2/2ḡs(p̃s; δs) dp̃s, (2.30)

by using the following associations

Ã= A
B0L

, p̃s = ps√
2εs
, gs(ps; εs)= ḡs(p̃s; δs), (2.31a−c)

and with

ḡs(p̃s; δs)=
∞∑

n=0

an sgn(qs)
n

(
δs√

2

)n

Hn

(
p̃s√

2

)
. (2.32)

We shall assume that the right-hand side of (2.32) represents a differentiable function.
Note that the Gaussian in (2.30) is of fixed width 2

√
2 (defined at 1/e), in contrast

to the Gaussian of variable width defined in (2.16).
If the Hermite series satisfies the condition in Theorem 1 then it is convergent, so

(2.21) gives
|ḡs(p̃s; δs)|< Lep̃2

s /4 (2.33)

for some finite and positive L, determined by the sum of the (possibly infinite) series.
Note that these bounds automatically imply integrability of fs since, for some finite
L′ > 0, we have that |ḡs(p̃s; δs)| < L′ep̃2

s /2 implies integrability, which is a less strict
condition. This can be seen from (2.30).

The bounds on ḡs given above demonstrate that ḡs cannot tend to infinity for
finite p̃s. Hence it can only reach −∞ as |p̃s| → ∞. We argue however that the
positivity of the pressure prevents the possibility of ḡs being without a finite lower
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bound. The heuristic reasoning is as follows: the expression on the right-hand side
of (2.30) treats – in the language of the heat/diffusion equation – the ḡs function
as the initial condition for a temperature/density distribution on an infinite 1-D line,
and the left-hand side represents the distribution at some finite time later on (half a
second later, see Widder (1951)). Were ḡs to be unbounded from below, this would
imply for our problem that a smooth ‘temperature/density’ distribution that is initially
unbounded from below could, in some finite time, evolve into a distribution that has
a positive and finite lower bound. This seems entirely unphysical since this would
imply that an infinite negative ‘sink’ of heat/mass would somehow be ‘filled in’ above
zero level in a finite time. In appendix B we give some more technical mathematical
arguments to support our claim that this is not possible, including proofs for a certain
class of ḡs functions.

If ḡs (and hence gs) is indeed bounded below, then that means that one can always
add a finite constant to gs to make it positive, should the lower bound be known.
However this constant contribution would directly correspond to raising the pressure
(through the zeroth-order Maclaurin coefficient a0). But if we wish to consider a
pressure function that is ‘fixed’, then we have a fixed a0, and so it is not immediately
obvious whether or not we can obtain a gs that is positive over all momentum space.
We have already seen some examples in the discussion above for which the sign of
gs depended on the value of δs. Consider ḡs evaluated at some particular value of p̃s.
We see from (2.32) that positivity requires

a0 + c1δs + c2δ
2
s + · · ·> 0, (2.34)

for c1, c2, . . . finite constants. We also know that a0 > 0 since P(0) > 0, i.e. the
pressure is positive. This clearly demonstrates that positivity of gs places some
restriction on possible values of δs.

Let us now suppose that for a given value of δs, that there exists some regions in
p̃s space where ḡs < 0. Our claim that ḡs has a finite lower bound, combined with the
expression in (2.32), implies that the ḡs function is bounded below by a finite constant
of the form a0 + δsM, with

M= 1√
2

inf
p̃s

∞∑
n=1

an sgn(qs)
n

(
δs√

2

)n−1

Hn

(
p̃s√

2

)
, (2.35)

and finite. By letting δs→ 0, we see that ḡs will converge uniformly to a0, with

lim
δs→0

ḡs(p̃s, δs)= a0 > 0. (2.36)

Hence, there must have existed some critical value of δs= δc such that for all δs < δc
we have positivity of ḡs. Note that if the negative patches of ḡs do not exist for any
δs, then trivially δc =∞ as a special case.

To summarise, we claim – provided gs is differentiable and convergent – that for
values of the magnetisation parameter δs less than some critical value δc, according to
0< δs < δc 6∞, gs is positive for any positive pressure function.

3. Examples: DFs for nonlinear force-free magnetic fields
3.1. Basic theory of 1-D force-free fields

Force-free fields are those whose current density is everywhere parallel to the
magnetic field, giving zero Lorentz force

j= αB ⇐⇒ j×B= 0. (3.1)
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The nature of α determines three distinct classes. Potential fields have α = 0, linear
force-free fields have α = const. and nonlinear force-free fields have α = α(r). One-
dimensional force-free fields can be represented without loss of generality by

B= (Bx(z), By(z), 0)=
(
−dAy

dz
,

dAx

dz
, 0
)
, B2 = const. (3.2a,b)

This leads on to a pressure balance of the form

d
dz

Pzz = 0 H⇒ Pzz = const. (3.3)

As demonstrated in Harrison & Neukirch (2009a) and Neukirch et al. (2009), the
assumption of summative separability (the first option in (2.1)) determines the
components of the pressure according to

n0
βe + βi

βeβi
P̃1(Ax)+ 1

2µ0
B2

y(Ax)= const., n0
βe + βi

βeβi
P̃2(Ay)+ 1

2µ0
B2

x(Ay)= const.

(3.4a,b)
These expressions can now be used as the left-hand side of the integral equations (2.3)
and (2.4), and one could attempt to invert the Weierstrass transforms. This method was
used in Harrison & Neukirch (2009a) to derive a summative pressure for the ‘force-
free Harris sheet’ (FFHS) magnetic field, and to derive the corresponding DF.

As shown in Harrison & Neukirch (2009b), Ampère’s law admits an infinite number
of pressure functions for the same force-free equilibrium. Once a Pzz(Ax,Ay) with the
correct properties has been found, one can define another pressure function giving rise
to the same current density by using the nonlinear transformation

P̄zz(Ax, Ay)=ψ ′(Pff )
−1ψ(Pzz). (3.5)

Here, any differentiable, non-constant function ψ can be used, such that the right-
hand side is positive, with Pff the pressure, Pzz, evaluated at the force-free vector
potential Aff .

Obviously, even if the integral equation (1.8) can be solved for the original function
Pzz(Ax, Ay), it is by no means clear that this is possible for the transformed function
P̄zz. Usually one would expect that solving (1.8) for gs is much more difficult after
the transformation to P̄zz. This pressure transformation theory is important for the
derivation of the low-β DF for the nonlinear FFHS (Allanson et al. 2015). As
explained therein, if the pressure transformation

ψ(Pzz)= exp
[

1
P0
(Pzz − Pff )

]
, (3.6)

is used, for P0 a positive constant, it can be readily seen that P̄zz|Aff =P0 and so free
manipulation of the constant pressure is possible. This is of particular interest because
it allows us to freely choose the plasma β, βpl, the ratio between the thermal and
magnetic energy densities (in our system the gas/plasma pressure and the magnetic
pressure respectively)

βpl = kB

(B2
0/2µ0)

∑
s

nsTs = 2µ0Pzz

B2
0
. (3.7)
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3.2. On the gauge for the vector potential
A free choice of the plasma β is not possible in the summative Harrison–Neukirch
equilibrium DF since that equilibrium has a lower bound of unity for the plasma β.
Note that the Pzz used in that work is of a ‘summative form’

Pzz = P1(Ax)+ P2(Ay). (3.8)

In fact it seems to be a feature generally observed that for pressure tensors (that
correspond to force-free fields) constructed in this manner (Harrison & Neukirch
2009a; Wilson & Neukirch 2011; Abraham-Shrauner 2013; Kolotkov et al. 2015) the
plasma-β is necessarily bounded below by unity. In a recent paper, Allanson et al.
(2015) used the pressure transformation techniques described above, resulting in a
pressure tensor of ‘multiplicative form’

Pzz = P1(Ax)P2(Ay), (3.9)

to construct a DF with any βpl. However, the exact form of the DF was challenging
to calculate numerically for low βpl, with plots for βpl only modestly below unity
presented (βpl= 0.85). The ‘problem terms’ are those that depend on pxs. The specific
problem is that the Ax function used in previous papers is neither even nor odd as a
function of z,

Ax = 2B0L arctan
(

exp
( z

L

))
, (3.10)

and as a result, the range of pxs for which it is necessary to numerically calculate
a convergent DF can be obstructive, say over a symmetric range in velocity space.
Specifically, it is challenging to attain numerical convergence for sums over Hermite
polynomials when the modulus of the argument is large. When Ax is neither even nor
odd, then |pxs| can take on larger than ‘necessary’ values for a given vx.

Hence, in this paper, we shall ‘re-gauge’ the vector potential component Ax to be
an odd function,

Ax = 2B0L arctan
(

tanh
( z

2L

))
, (3.11)

which is commensurate with By being an even function and results in the same By =
B0 sech(z/L) as the one derived from the Ax defined in (3.8). As a consequence the
numerical calculation of the DFs that we shall calculate for the FFHS become easier
in the low-βpl regime.

The structure of this section is as follows. In § 3.3 we include the particulars of
the recently derived FFHS equilibrium, in the original gauge, for completeness. In
§ 3.4 we calculate DFs corresponding to the ‘re-gauged’ FFHS, that are multiplicative.
These ‘re-gauged’ DFs are essentially equivalent to those derived in Allanson et al.
(2015), as functions of z and v. However they are different as functions of ps.
The involved calculations that prove the necessary properties of convergence and
boundedness of the above DFs, by using techniques established in this paper, are
included in appendix A.

3.3. Multiplicative DF for the FFHS in the ‘original’ gauge: βpl ∈ (0,∞)
The ‘summative’ pressure used in Harrison & Neukirch (2009a) for a FFHS
equilibrium is of the form

Pzz(Ax, Ay)= B2
0

2µ0

[
1
2

cos
(

2Ax

B0L

)
+ exp

(
2Ay

B0L

)]
+ Pb. (3.12)
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Pb>B2
0/(4µ0) is a constant that ensures positivity of Pzz. This is the function that we

exponentiate according to (3.5) and (3.6). To suit the problem we choose a pressure
function and gs function of the form

P̄zz = n0 exp
(
− 1

2βpl

)
βe + βi

βeβi
P̄1(Ax)P̄2(Ay), (3.13)

gs = exp
(
− 1

2βpl

)
g1s(pxs; vth,s)g2s(pys; vth,s). (3.14)

To use the method presented in § 2, we now need to Maclaurin expand the
complicated pressure function P̄zz. There is a result from combinatorics due to Eric
Temple Bell that allows one to extract the coefficients of a power series, f (x), that
is itself the exponential of a known power series, h(x), see Bell (1934). If f (x) and
h(x) are defined

f (x)= eh(x), h(x)=
∞∑

m=1

1
m!ζmxm, (3.15a,b)

then we can use ‘complete Bell polynomials’, also known as ‘exponential Bell
polynomials’ and hereafter referred to as CBPs, to write f (x) as

f (x)=
∞∑

m=0

1
m!Ym(ζ1, ζ2, . . . , ζm)xm. (3.16)

Ym(ζ1, ζ2, . . . , ζm) is the mth CBP. Instructive references on CBPs can be found in
Riordan (1958), Comtet (1974), Kölbig (1994) and Connon (2010) for example. Here,
the Maclaurin coefficients for the exponential and cosine functions of (3.12) are used
as the arguments of the CBPs. These CBPs are used to form the Maclaurin coefficients
of P̄1 and P̄2 as in (3.16). As detailed in Allanson et al. (2015), the result is a pressure
function of the form

P̄zz = n0 exp
( −1

2βpl

)
βe + βi

βeβi

∞∑
m=0

a2m

(
Ax

B0L

)2m ∞∑
n=0

bn

(
Ay

B0L

)n

, (3.17)

with a2m and bn defined by

a2m = exp
(

1
2βpl

)
(−1)m22m

(2m)! Y2m

(
0,

1
2βpl

, 0, . . . , 0,
1

2βpl

)
, (3.18)

bn = exp
(

1
βpl

)
2n

n!Yn

(
1
βpl
, . . . ,

1
βpl

)
. (3.19)

The resultant DF is given by

fs = n0e−1/(2βpl)

(
√

2πvth,s)3
e−βsHs

∞∑
m=0

a2m

(
δs√

2

)2m

H2m

(
pxs√

2msvth,s

)

×
∞∑

n=0

bnsgn(qs)
n

(
δs√

2

)n

Hn

(
pys√

2msvth,s

)
. (3.20)
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3.4. Multiplicative DF for the ‘re-gauged’ FFHS: βpl ∈ (0,∞)
We will now calculate a multiplicative DF for the ‘re-gauged’ FFHS, in the same style
as Allanson et al. (2015), in the effort to produce a low-β DF for the FFHS that is
easier to calculate numerically, and hence plot. This re-gauging is equivalent to adding
a constant to Ax and so corresponds to a shift in the origin of the Ax dependent part of
the summative Pzz used in Harrison & Neukirch (2009a). As a result, one can derive
a new summative pressure function in the same manner as in Harrison & Neukirch
(2009a), corresponding to this new gauge, as

Pzz = B2
0

2µ0

[
sin2

(
Ax

B0L

)
+ exp

(
2Ay

B0L

)]
. (3.21)

The next step is to construct a multiplicative pressure tensor. Using the same pressure
transformation technique as in Allanson et al. (2015) and § 3.3, on the Pzz given in
(3.21), we arrive at the ‘re-gauged’ multiplicative pressure

Pzz = P0e−1/βpl exp
[

1
βpl

(
sin2

(
Ax

B0L

)
+ exp

(
2Ay

B0L

))]
(3.22)

= P0 exp

[ ∞∑
n=1

1
(2n)!ν2n

(
Ax

B0L

)2n
]

exp

[ ∞∑
n=1

1
n!ξn

(
Ay

B0L

)n
]
, (3.23)

with the coefficients defined by

ν2n = (−1)n+122n−1

βpl
, ξn = 2n

βpl
. (3.24a,b)

We now use the theory of CBPs, as in Allanson et al. (2015) and § 3.3, to write the
pressure as

Pzz = P0

∞∑
m=0

1
(2m)!Y2m(0, ν2, 0, ν4, . . . , 0, ν2m)

(
Ax

B0L

)2m

×
∞∑

n=0

1
n!Yn(ξ1, ξ2, . . . , ξn)

(
Ay

B0L

)n

. (3.25)

Using a simple scaling argument as in Bell (1934), Connon (2010), Yj(ax1, a2xx, . . . ,

ajxj)= ajYj(x1, x2, . . . , xj), gives

Pzz = P0

∞∑
m=0

(−1)m22m

(2m)! Y2m

(
0
−1
2βpl

, 0,
−1
2βpl

, . . . , 0,
−1
2βpl

)(
Ax

B0L

)2m

×
∞∑

n=0

2m

n! Yn

(
1
βpl
,

1
βpl
, . . . ,

1
βpl

)(
Ay

B0L

)n

. (3.26)



On the inverse problem of 1-D collisionless equilibria 15

Using the methods established in this paper, namely expansion over Hermite
polynomials, we calculate a DF that gives the above pressure

fs = n0

(
√

2πvth,s)3
e−βsHs

∞∑
m=0

a2m

(
δs√

2

)2m

H2m

(
pxs√

2msvth,s

)

×
∞∑

n=0

bnsgn(qs)
n

(
δs√

2

)n

Hn

(
pys√

2msvth,s

)
, (3.27)

for

a2m = (−1)m22m

(2m)! Y2m

(
0
−1
2βpl

, 0,
−1
2βpl

, . . . , 0,
−1
2βpl

)
,

bn = 2m

n! Yn

(
1
βpl
,

1
βpl
, . . . ,

1
βpl

)
.

 (3.28)

One can readily calculate the number density for this DF using standard integral
results (Gradshteyn & Ryzhik 2007) to be

Ns(Ax, Ay)= n0

∞∑
m=0

a2m

(
Ax

B0L

)2m ∞∑
n=0

bn

(
Ay

B0L

)n

= P0
βeβi

βe + βi
. (3.29)

3.5. Plots of the exponential ‘re-gauged’ distribution function for the FFHS
We now present plots for the DF given in (3.27), for βpl = 0.05 and δe = δi = 0.03.
This value for βpl is substantially lower than the value used in Allanson et al. (2015),
which had βpl= 0.85. The ability to go down to lower values of the plasma β is due
to the re-gauging process as explained in § 3.2. The plots that we show are intended
to demonstrate progress in the numerical evaluation of low-β DFs for nonlinear force-
free fields, and as a proof of principle. Note that whilst the re-gauging process has
allowed us to attain numerical convergence for low values of βpl, the DF is proven to
be convergent for all values of the relevant parameters.

The value of δs is chosen such that δs < βpl, since as explained in Allanson et al.
(2015), attaining convergence numerically has not been easy for values of δs > βpl
when βpl < 1.

Initial investigations of the shape of the variation of the DF in the vx and vy
directions indicate that the DF seems to have a Gaussian profile, as in the DFs
analysed in Allanson et al. (2015). Hence, as in that work, we shall compare the
DFs calculated in this work to ‘flow-shifted’ Maxwellians,

fMaxw,s = n0

(
√

2πvth,s)3
exp

[
(v − 〈v〉s(z))2

2v2
th,s

]
, (3.30)

in order to measure the actual difference between the Vlasov equilibrium fs and the
Maxwellian fMaxw,s. The above distribution reproduces identical zeroth- and first-order
moments (as functions of z) as the DF defined by (3.27), namely n0 and n0〈v〉s.
However, unlike the DF derived in this paper, fMaxw,s is not a solution of the Vlasov
equation and hence not an equilibrium solution. For examples of using ‘flow-shifted’
Maxwellians in kinetic simulations, see Hesse et al. (2005) and Guo et al. (2014).
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(a) (b)

(c) (d)

(e)

FIGURE 1. Contour plots of fi − fMaxw,i for z/L = −1 (a), z/L = −0.5 (b), z/L = 0 (c),
z/L= 0.5 (d) and z/L= 1 (e). βpl = 0.05 and δi = 0.03.

In figures 1(a–e) and 2(a–e) we give contour plots in (vx/vth,s, vy/vth,s) space of
the ‘raw’ difference between the DFs defined by (3.27) and (3.30). These figures bear
close resemblance to those presented in Allanson et al. (2015). Specifically, we see
‘shallower’ peaks for the exact Vlasov solution, fs, than for fMaxw,s. There is also a
clear anisotropic effect in that fs falls of more quickly in the vx direction than the vy

direction as compared to fMaxw,s. Note that whilst the raw differences plotted in these
figures may not seem substantial, they can in fact be substantial as a proportion of
fMaxw,s, and even of the order of the magnitude of fMaxw,s. As a demonstration of this
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(a) (b)

(c) (d)

(e)

FIGURE 2. Contour plots of fe − fMaxw,e for z/L = −1 (a), z/L = −0.5 (b), z/L = 0 (c),
z/L= 0.5 (d) and z/L= 1 (e). βpl = 0.05 and δe = 0.03.

fact we present plots in figures 3(a–e) and 4(a–e) of the quantity defined by

fdiff ,s = ( fs − fMaxw,s)/fMaxw,s (3.31)

for line cuts through (vx/vth,s, vy/vth,s = 0) and (vx/vth,s = 0, vy/vth,s), respectively, for
the ions. As suggested by the contour plots, fdiff ,i takes on significantly larger values
in the vy direction, indicating that the tail of fi falls off less quickly than fMaxw,i in vy
than in vx.

We are yet to observe multiple peaks in the multiplicative DFs for the FFHS,
derived herein and in Allanson et al. (2015). However, the summative Harrison–
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(a) (b)

(c) (d)

(e)

FIGURE 3. Line plots of fdiff ,i against vx/vth,i at vy = 0 for z/L=−1 (a), z/L=−0.5 (b),
z/L= 0 (c), z/L= 0.5 (d) and z/L= 1 (e). βpl = 0.05 and δi = 0.03.

Neukirch equilibria (Harrison & Neukirch 2009a) could develop multiple maxima for
sufficiently large values of the magnitude of the drift velocities. For the DF derived
in this paper, and as in Allanson et al. (2015), the ‘amplitude’ of the drift velocity
profile across the current sheet is given by

us

vth,s
= 2 sgn(qs)

δs

βpl
, (3.32)

where us represents the maximum value of the drift velocities. As a result, large values
of the drift velocity correspond to large values of δs/βpl, and these are exactly the
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(a) (b)

(c) (d)

(e)

FIGURE 4. Line plots of fdiff ,i against vy/vth,i at vx = 0 for z/L=−1 (a), z/L=−0.5 (b),
z/L= 0 (c), z/L= 0.5 (d) and z/L= 1 (e). βpl = 0.05 and δi = 0.03.

regimes for which we are struggling to attain numerical convergence. This theory
suggests that we may not be seeing DFs with multiple maxima because we are not
in the appropriate parameter space.

4. Illustrative case for a non-force-free magnetic field
The work in this paper was initially motivated by attempts to find DFs for force-free

equilibria (j×B=∇Pzz= 0). However there is nothing in the formal solution method
for the inverse problem Pzz(Ax,Ay)→ gs(pxs, pys) that requires the magnetic field under



20 O. Allanson, T. Neukirch, S. Troscheit and F. Wilson

consideration to be force free. Here we give an example of the use of the solution
method to a pressure function that was first discussed in Channell (1976). In that
paper, Channell actually solved the inverse problem by the Fourier transform method,
and showed that the solution was valid given certain restrictions on the parameters. We
tackle the problem via the Hermite polynomial method, and find that for the resultant
DF to be convergent, we require exactly the same restrictions as Channell. This parity
between the validity of the two methods is reassuring, and implies that the necessary
restrictions on the parameters are in a sense ‘method independent’, and are the result
of fundamental restrictions on the inversion of Weierstrass transformations.

The magnetic field considered by Channell is of the form

B= (Bx(z), 0, 0), (4.1)

with a pressure function
Pzz = P0e−γ Ã2

y (4.2)

for Ãy = Ay/(B0L) and γ > 0 dimensionless. Note that the γ used by Channell has
dimensions equivalent to 1/(B2

0L2). Note also that since the pressure is not constant,
P0 does not represent the value of the pressure, rather it is just some reference value.
We can now write the details of the inversion. The equation we must solve, for a DF
given by

fs = n0

(
√

2πvth,s)3
e−βsHsgs(pys; vth,s) (4.3)

is

P0 exp

(
−γ A2

y

B2
0L2

)
= n0(βe + βi)

βeβi

1√
2πmsvth,s

∫ ∞
−∞

e−(pys−qsAy)
2/(2m2

s v
2
th,s)gs dpys. (4.4)

We can immediately formally invert this equation as per the methods described in this
paper, given the Macluarin expansion of the pressure

Pzz = P0

∞∑
m=0

a2m

(
Ay

B0L

)2m

s.t. a2m = (−1)mγ m

m! , (4.5)

to give

gs(pys)=
∞∑

m=0

(
δs√

2

)2m

a2mH2m

(
pys√

2msvth,s

)
. (4.6)

Let us turn to the question of convergence. Theorem 1 states that if

lim
m→∞

m
∣∣∣∣a2m+2

a2m

∣∣∣∣< 1/(2δ2
s ), (4.7)

then the gs function is convergent. This is readily seen to imply that if γ satisfies

γ <
1

2δ2
s

, (4.8)

then the Hermite series representation for gs is convergent. This condition is exactly
equivalent to the one derived by Channell (equation (28) in the paper). Note that now
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that we have established convergence for particular γ , then boundedness results follow
as per other results given in this paper, detailed in appendix A. One more question
remains, namely how does the gs function derived compare to the Gaussian gs(pys)
function derived by Channell

gs ∝ e−4γ 2δ4
s p2

ys/(1−4γ 2δ4
s ) (4.9)

(in our notation) using the method of Fourier transforms? In fact, one can see by
setting y= 0 in Mehler’s Hermite polynomial formula (Watson 1933)

1√
1− ρ2

exp
[

2xyρ − (x2 + y2)ρ2

1− ρ2

]
=
∞∑

n=0

ρn

2nn!Hn(x)Hn(y), (4.10)

and using

Hm(0)=
{

0 if m is odd,
(−1)m/2m!/(m/2)! if m is even,

(4.11)

(see Gradshteyn & Ryzhik (2007) for example) we see that the Hermite series
represents a Gaussian function in the range |ρ| < 1. This is equivalent to the
condition derived above for convergence, γ < 1/(2δ2

s ). Hence, we have shown that
for this specific example – solvable by using both Hermite polynomials and Fourier
transforms – the two methods used to solve the inverse problem give equivalent
functions with equivalent ranges of validity.

5. Summary
The primary result of this paper is the rigorous generalisation of a solution method

that exactly solves the ‘inverse problem’ in 1-D collisionless equilibria, for a certain
class of equilibria. Specifically, given a pressure function, Pzz(Ax, Ay), of a separable
form, neutral equilibrium distribution functions can be calculated that reproduce the
prescribed macroscopic equilibrium, provided Pzz satisfies certain conditions on the
coefficients of its (convergent) Maclaurin expansion, and is itself positive. In particular,
for force-free magnetic fields, there is an algorithmic path taking the magnetic field,
B(A), as input, and giving the distribution function fs as output.

The distribution function has the form of a Maxwellian modified by a function
gs, itself represented by – possibly infinite – series of Hermite polynomials in the
canonical momenta. It is crucial that these series are convergent and positive for
the solution to be meaningful. A sufficient condition was derived for convergence
of the distribution function by elementary means, namely the ratio test, with the
result a restriction on the rate of decay of the Maclaurin coefficients of Pzz. We also
argue that for such a pressure function that is also positive, that the Hermite series
representation of the modification to the Maxwellian is positive, for sufficiently low
values of the magnetisation parameter, i.e. lower than some critical value. This was
actually proven for a certain class of gs functions, and differentiability of gs was
assumed. It would be interesting in the future to investigate whether this critical
value of the magnetisation parameter can be determined. Note that whilst we have
not yet determined the critical value, we have not yet observed negative distribution
functions for the pressure functions and parameter ranges studied.

Examples of the use of the Hermite polynomial method are given for DFs that
correspond to the force-free Harris sheet, including calculations for a DF with a
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different gauge to that considered previously, motivated by numerical reasons. We
have presented some plots of a comparison between the re-gauged DFs and shifted
Maxwellian functions, as a proof of principle, namely that numerical convergence
for values of βpl lower than previously reached, can now be attained (βpl = 0.05).
Verification of the analytical properties of convergence and boundedness of the
distribution functions written as infinite sums over Hermite polynomials are given in
appendix A. Note that the verification of these distribution functions is rather involved
due to the complex nature of the specific Maclaurin expansions that we consider, and
is simpler for more ‘straightforward’ expansions, e.g. for the example considered in
§ 4.

We have demonstrated the application of the solution method presented in this paper
to the force-free Harris Sheet magnetic field. However, potential uses go beyond this
example, including magnetic fields that are not force free. To this end we consider a
non-force-free example in § 4. This particular example already has a known solution
and range of validity in parameter space, obtained by a Fourier transform method
in Channell (1976). We obtain a solution with an alternate representation using the
Hermite polynomial method. The Hermite series obtained is shown to be equivalent to
the representation obtained by Channell, and to have the exact same range of validity
in parameter space. It is not clear if this equivalence between solutions obtained by
the two different methods is true in general. Our problem is somewhat analogous to
the heat/diffusion equation, and in that ‘language’ the question of the equivalence
of solutions is related to the ‘backwards uniqueness of the heat equation’ (see e.g.
Evans (2010)). The degree of similarity between our problem and the one described
by Evans, and its implications, are left for future investigations.

Also, whilst we have assumed that the pressure is separable (either summatively or
multiplicatively), the method should be adaptable in the ‘obvious way’ for pressures
that are a combination of the two types. Interesting further work would be to see if
the method can be adapted to work for pressure functions that are non-separable, i.e.
of the form

Pzz =
∑
m,n

Cmn

(
Ax

B0L

)m ( Ay

B0L

)n

. (5.1)

This would be pertinent for pressure tensors transformed in such a way that they are
no longer separable.

Other future work could involve an in-depth parameter study of the new re-gauged
multiplicative distribution function for the FFHS, with an analysis of how far the exact
equilibrium distribution function differs from an appropriately flow-shifted Maxwellian,
frequently used in fully kinetic simulations for reconnection studies. In particular
it would be interesting to see how much the distribution functions differ from
flow-shifted Maxwellians as the set of parameters (βpl, δs) are varied across a wide
range. Preliminary numerical investigations verify that plotting distribution functions
for the FFHS with a lower βpl than previously achieved, namely βpl= 0.05 rather than
βpl = 0.85, has been made possible by the theoretical developments in this paper. We
have not yet observed multiple maxima for the distribution functions, but do see
significant deviations from Maxwellian distributions, and an anisotropy in velocity
space.
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Appendix A. Convergence and boundedness of the FFHS DFs
A.1. Multiplicative DF for the FFHS in the ‘original’ gauge: βpl ∈ (0,∞)

A.1.1. Convergence of the Hermite representation of gs

Here we include the full details of the calculations that confirm the validity of the
Hermite polynomial representation of the multiplicative FFHS equilibrium in original
gauge (Allanson et al. 2015), for the first time. We shall first verify the convergence
of g2s (expanded over n in (3.20)) using the convergence condition from § 2.3, and
then verify convergence of g1s by comparison with g2s. As Theorem 1 states, we can
verify convergence of g2s provided

lim
n→∞

n
∣∣∣∣bn+1

bn

∣∣∣∣< 1/δs. (A 1)

Explicit expansion of the exponentiated exponential series by ‘twice’ using Maclaurin
series (as opposed to the CBP formulation of (3.16)) gives

bn = 2n

n!
∞∑

k=0

kn

βk
plk!

(A 2)

and so

bn+1/bn = 2
n+ 1

∞∑
j=1

jn

( j− 1)!β j
pl

/ ∞∑
j=1

jn

j!β j
pl

= 2
n+ 1


1

0!βpl
+ 2n

1!β2
pl
+ 3n

2!β3
pl
+ · · ·

1
1!βpl

+ 2n

2!β2
pl
+ 3n

3!β3
pl
+ · · ·



= 2
n+ 1


1
βpl
+ 2

2n

2!β2
pl
+ 3

3n

3!β3
pl
+ · · ·

1
1!βpl

+ 2n

2!β2
pl
+ 3n

3!β3
pl
+ · · ·

 . (A 3)

The kth ‘partial sum’ of this fraction has the form

rk = p1 + 2p2 + 3p3 + · · · + kpk

p1 + p2 + p3 + · · · , (A 4)
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with pi � 1/i!, where we write g� h to mean g/h and h/g are bounded away from
0. Now since the denominator of the pi increase super-exponentially (factorially) we
have ipi � pi and hence

0<
∞∑

i=1

ipi <∞ and 0<
∞∑

i=1

pi <∞. (A 5a,b)

Thus rk→ r∞ ∈ (0,∞) and, more specifically, r∞ � 1 in n. Therefore

bn+1/bn = r∞/(n+ 1)� 1/n. (A 6)

That is to say bn+1/bn behaves asymptotically like 1/n. This satisfies the condition of
Theorem 1. Hence g2s(pys) converges for all δs and pys by the comparison test.

We shall now verify convergence of g1s by comparison with g2s. By explicitly using
the Maclaurin expansion of the exponential, and then the power-series representation
for cosn x from Gradshteyn & Ryzhik (2007)

cos2n x= 1
22n

[
n−1∑
k=0

2
(

2n
k

)
cos(2(n− k)x)+

(
2n
n

)]
,

cos2n−1 x= 1
22n−2

n−1∑
k=0

(
2n− 1

k

)
cos((2n− 2k− 1)x),


(A 7)

one can calculate

exp
(

1
2βpl

cos
(

2Ax

B0L

))
=
∞∑

m=0

a2m

(
Ax

B0L

)2m

. (A 8)

The zeroth coefficient is given by a0 = exp
(
1/(2βpl)

)
, and the rest are

a2m = 2(−1)m

(2m)!
∞∑

k=0

∑
j∈Jk

1
j!(4βpl)j

(
j
k

)
( j− 2k)2m, (A 9)

for Jk = {2k+ 1, 2k+ 2, . . .} and m 6= 0. By rearranging the order of summation, a2m

can be written

a2m = 2(−1)m

(2m)!
∞∑

j=1

1
j!(4βpl)j

b( j−1)/2c∑
k=0

(
j
k

)
( j− 2k)2m, (A 10)

where bxc is the floor function, denoting the greatest integer less than or equal to x.
Recognising an upper bound in the expression for a2m;

b( j−1)/2c∑
n=0

(
j
n

)
( j− 2n)2m 6 j2m

j∑
n=0

(
j
n

)
= 2jj2m, (A 11)
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gives

a2m <
2(−1)m

(2m)!
∞∑

j=1

2j+1j2m

j!2j(2βpl)j
= 2

(−1)m

(2m)!
∞∑

j=1

j2m

j!(2βpl)j
,

6
2

(2m)!
∞∑

j=1

j2m

j!(2βpl)j
,

= 1
(2m)!

∞∑
j=1

21−jj2m

j!β j
pl

< b2m. (A 12)

Hence we now have an upper bound on a2m for m 6= 0 and we know that a2m+1 = 0,
and so is bounded above by b2m+1. Note also that a0 < b0. Hence, each term in our
series for g1s(pxs) is bounded above by a series known to converge for all δs according
to

al

(
δs√

2

)l

Hl(x) < bl

(
δs√

2

)l

Hl(x). (A 13)

So by the comparison test, we can now say that g1s (pxs) is a convergent series. Hence
the representation of the DF in (3.20) is convergent.

A.1.2. Boundedness of the ‘original’ gauge DF
Since g1s and g2s are known to be convergent, we know that for a given z, the DF

is bounded in momentum space by

|fs| < e−βsHs exp

(
p2

xs

4m2
sv

2
th,s
+ p2

ys

4m2
sv

2
th,ss

)
S1sS2s,

= e−((1/2)(p2
xs+p2

ys)−2qs(pxsAx+pysAy)+q2
s (A

2
x+A2

y ))/(2m2
s v

2
th,s)S1sS2s, (A 14)

where S1s and S2s are finite constants. The ‘additional’ exponential factors come
from the upper bounds on Hermite polynomials used in (2.21). This clearly goes to
zero for sufficiently large |pxs|, |pys| and is without singularity. We conclude that the
distribution is bounded/normalisable.

A.2. Multiplicative DF for the ‘re-gauged’ FFHS: βpl ∈ (0,∞)
A.2.1. Convergence of the Hermite representation of gs

This DF has the exact same coefficients for the pys-dependent Hermite polynomials
as that discussed above. And so we need not verify convergence for that series. And
in fact, all that has changed in the analysis of the coefficients for the pxs-dependent
sum is that we now have to consider the Maclaurin coefficients of sin2(Ax/(B0L)) as
opposed to cos(2Ax/(B0L)). These Maclaurin coefficients both have the same factorial
dependence and as such the convergence of the one DF implies the convergence of
the other.

A.2.2. Boundedness of the ‘re-gauged’ DF
The boundedness argument is exactly analogous to that made above for the DF in

original gauge, and need not be repeated here.
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Appendix B. On the lower bound of the ḡs function

Here we give some technical remarks that support our claim that ḡs (and hence gs)
is bounded below, using an argument by contradiction.

First of all, consider a smooth ḡs function that is unbounded from below in positive
momentum space. Then, depending on the number and nature of stationary points,
either

(i) Case 1: there will be some p̃0 such that ḡs< c< 0 for all p̃s> p̃0. This is a trivial
statement if ḡs has only a finite number of stationary points, whereas in the case
of an infinite number of stationary points, all maxima of ḡs for p̃s > p̃0 must be
‘away’ from zero by a finite amount.

(ii) Case 2: in this case the (infinite number of) maxima either can rise above zero
or tend to zero from below in a limiting fashion.

If ḡs is of the type described in Case 1, then we can create an ‘envelope’ genv for
ḡs such that genv > ḡs for all p̃s. The envelope we choose is

genv =
{

Lep̃2
s /4, for p̃s 6 p̃0,

c for p̃s > p̃0.
(B 1)

We choose the Lep̃2
s /4 profile because this represents the absolute upper bound for

our convergent Hermite expansions, at a given p̃s, as seen from (2.21). If we then
substitute the genv function for ḡs in (2.30) the integrals give combinations of error
functions, from which it is seen that one obtains a negative result for sufficiently large
Ã. This is a contradiction since the left-hand side of (2.30) is positive for all Ã. Hence
we can discount the ḡs functions of the variety described in Case 1, as we have a
contradiction.

Case 2 is less simple to treat. The fact that there exists an infinite number of local
minima and that the infimum of ḡs is −∞ implies that there exists an infinite sequence
of points in momentum space, Sp = {p̃k : k= 1, 2, 3 . . .}, that are local minima of ḡs,
such that ḡs(p̃k+1) < ḡs(p̃k). Essentially, there are an infinite number of minima ‘lower
than the previous one’. For sufficiently large k= l, we have that the magnitude of the
minima is much greater than the width of the Gaussian, i.e.

|ḡs(p̃l)| � 2
√

2. (B 2)

In this case, the only way that the sampling of ḡs described by (2.30) could give
a positive result for a Gaussian centred on the minima is if ḡs rapidly grew to
become sufficiently positive, in order to compensate the negative contribution from
the minimum and its local vicinity. However, this seems to be at odds with the
condition that ḡs is smooth, since the function would have to rise in this manner
for ever more negative values of the minima (and hence rise ever more quickly) as
k→∞. We claim that this cannot happen, and hence we discount the ḡs functions
of the variety described in Case 2.

Since there is no asymmetry in momentum space in this problem, the arguments
above hold just as well for a ḡs function that is unbounded from below in negative
momentum space. It should be clear to see that if ḡs cannot be unbounded from
below in either the positive or negative direction, then it cannot be unbounded in both
directions either.
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