Biophysical homoeostasis of leaf temperature: a neglected process for vegetation and land-surface modelling

It is advisable to refer to the publisher's version if you intend to cite from the work.

To link to this article DOI: http://dx.doi.org/10.1111/geb.12614

Publisher: Wiley

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur
CentAUR

Central Archive at the University of Reading

Reading's research outputs online
Biophysical homoeostasis of leaf temperature: a neglected process for vegetation and land-surface modelling

N. Dong1,3*, I.C. Prentice1,2*, S.P. Harrison1,3, Q.H. Song4, Y.P. Zhang4,5

1 Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
2 AXA Chair Programme in Climate and Biosphere Impacts, Imperial College London, Department of Life Sciences, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
3 Centre for Past Climate Change and School of Archaeology, Geography and Environmental Sciences (SAGES), University of Reading, Whiteknights, RG6 6AH, Reading, UK
4 Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
5 National Forest Ecosystem Research Station at Ailao Mountains, Jingdong 676200, China

*Joint first authors

Key words: leaf temperature, energy balance, crossover temperature, stomatal conductance, boundary-layer conductance, transpiration, DGVM, land-surface model

Corresponding author: ning.dong@students.mq.edu.au

The running title: Biophysical homoeostasis of leaf temperature

The number of references: 50 references
The number of words in the abstract: 235
The number of words in the main body: 4562
ABSTRACT

Aim Leaf and air temperatures are seldom equal, but many vegetation models assume that they are. Land-surface models calculate canopy temperatures, but how well they do so is unknown. We encourage consideration of leaf- and canopy-to-air temperature differences (ΔT) as a benchmark for land-surface modelling, and an important feature of plant and ecosystem function.

Location Tropical SW China.

Methods We illustrate diurnal cycles of leaf- and canopy-air temperature difference (ΔT) with field measurements in a tropical dry woodland, and continuous monitoring data in a tropical seasonal forest. The Priestley-Taylor (PT) and Penman-Monteith (PM) approaches to evapotranspiration are used to provide insights into the interpretation and prediction of ΔT. Field measurements are also compared to land-surface model results obtained with the Joint UK Land Environment Simulator (JULES) set up for the conditions of the site.

Results ΔT followed a consistent diurnal cycle with negative values at night (due to negative net radiation) becoming positive in the morning, reaching a plateau and becoming negative again when air temperature exceeded a “crossover” in the 24-29°C range. Daily time courses of ΔT could be approximated by either the PT or PM model, but JULES tended to underestimate the magnitude of negative ΔT.

Main conclusions Leaves with adequate water supply are partially buffered against air-temperature variations, through a passive biophysical mechanism. This is likely important for optimal leaf function, and land-surface and vegetation models should aim to reproduce it.
INTRODUCTION

It has long been known that the temperature of leaves can differ by several degrees (Campbell & Norman, 1998), and sometimes even by more than 10 degrees (Lange, 1959; Gates et al., 1964), from that of the surrounding air. Net radiation at the leaf surface must be balanced by the combined fluxes of sensible and latent heat. The former is proportional to the product of the leaf-to-air temperature difference (ΔT) and the leaf boundary-layer conductance to heat. The latter is proportional to transpiration, which in turn is proportional to the product of the leaf-to-air vapour pressure deficit (that is, the vapour pressure deficit evaluated at the temperature of the leaf) and the combined boundary-layer and stomatal conductances to water. ΔT adjusts rapidly to maintain this balance.

The influence of leaf size and morphology on the leaf energy balance (through their effects on boundary-layer conductance), and the implications of ΔT for photosynthesis, transpiration and optimal leaf form, were active research topics in the 1960s and 1970s (Linacre, 1964; Gates, 1968; Parkhurst & Loucks, 1972; Taylor, 1975; Givnish & Vermeij, 1976; Smith, 1978; Zangerl, 1978; Upchurch & Mahan, 1988). But Dynamic Global Vegetation Models (DGVMs), first developed in the 1990s (reviewed by Prentice & Cowling, 2013), have generally disregarded the biophysical effects of leaf size and morphology and simply assumed $\Delta T = 0$. Biophysical land-surface models – used in climate and Earth System models, and coupled to DGVMs in some cases – compute a surface energy balance, and use the predicted canopy temperatures to drive leaf-level physiological processes. But to our knowledge there has been no attempt to evaluate these model predictions, or to analyse the implications of the modelled leaf-to-air temperature differences for plant and ecosystem function.
As observed more than half a century ago by Gates (1964) and Linacre (1964, 1967), and discussed in two recent articles (Michaletz et al., 2015, 2016), there is abundant empirical evidence that under well-watered conditions in the daytime leaves are generally warmer than air at low air temperatures but cooler than air at higher air temperatures – a phenomenon that has been called “limited homoeothermy” (Mahan & Upchurch, 1988, Upchurch & Mahan, 1988, Michaletz et al., 2015, 2016). We prefer the term “biophysical homoeostasis”, which avoids any implied analogy with the metabolically active process of homoeothermy in animals. Leaves are generally cooler than air during the night and the periods just before sunset and just after sunrise, when net radiation is negative – in other words, there is net loss of energy from the land surface. In the daytime, leaf temperatures can be maintained within a narrower range than air temperatures, varying around a “crossover” or “equivalence” temperature (where $\Delta T = 0$) that can vary according to environmental conditions, but which generally lies within the optimum range for photosynthesis (Michaletz et al., 2016). Oxygen isotope evidence suggests that the effective photosynthetic operating temperature in forest canopies varies surprisingly little from the boreal zone to the subtropics (Helliker & Richter, 2008) and is only a few degrees greater even in the tropics (Song et al., 2011), indicating that leaves are partially buffered against spatial and temporal variations in the temperature of the air.

This Concept Paper aims to increase awareness of the biophysical causes and ecological significance of leaf-temperature homoeostasis, and to point out the potential use of canopy temperature as a benchmark for the evaluation and improvement of terrestrial ecosystem and land-surface models. We illustrate the temperature crossover phenomenon using (a) sequential field measurements on leaves of different species during two consecutive sampling days at a tropical dry woodland site, and (b) continuous monitoring of the upper canopy of an intact tropical seasonal forest. The Joint UK Land Environment Simulator (JULES), which provides the land-surface component of the UK Met Office
Hadley Centre Earth System Model (Best et al., 2011), was set up for the specific environmental conditions and vegetation composition of the site and the results compared with our field measurements.

THEORY

Variations in ΔT (K) on a time scale of minutes or longer (Schymanski et al., 2013) are closely to the steady-state energy balance (see e.g. Jones 2013, p. 225):

\[R_n - c_p g_b \Delta T - \lambda E = 0 \]

(1)

where R_n is the net radiation at the leaf surface (W m$^{-2}$), c_p is the specific heat capacity of air at constant pressure (J mol$^{-1}$ K$^{-1}$), g_b is the leaf boundary-layer conductance to heat (mol m$^{-2}$ s$^{-1}$), λ is the latent heat of vaporization of water (J mol$^{-1}$) and E is the transpiration rate (mol m$^{-2}$ s$^{-1}$). This equation states that the leaf-level net radiation is balanced by the sum of the sensible and latent heat fluxes – the sensible heat flux depending on ΔT as well as on g_b, which is inversely related to the thickness of the leaf boundary layer. Larger leaves generally have lower g_b, as indicated by the empirical equation $g_b = 0.135 \sqrt{u/d}$ mol m$^{-2}$ s$^{-1}$ (Campbell & Norman, 1998, p. 101) where u is the wind speed (m s$^{-1}$) and d is the characteristic dimension of the leaf (m) – about 0.74 times the maximum width of the leaf (Taylor, 1975).

It follows by re-arrangement of equation (1) that:

\[\Delta T = (R_n - \lambda E) / (c_p g_b) \]

(2)

Thus leaves are warmer than air if $R_n > \lambda E$, and more so for large leaves and at low wind speeds. This explains why leaves have to be small in order to avoid overheating when air temperatures are high and water is in short supply (Gates, 1968; Parkhurst & Loucks, 1972). However, under well-watered conditions, it is possible that $R_n < \lambda E$ if the air...
temperature is high enough – resulting in leaves cooler than air. This cooling, relative to air temperature, is also stronger in large leaves and at low wind speeds.

One way to predict the sign and magnitude of ΔT invokes the equation of Priestley & Taylor (1972) (henceforth PT), an approximate empirical formula for evapotranspiration – either from freely evaporating (wet) surfaces, or from vegetation that is well supplied with soil moisture. The PT equation is based on the observation that the latent heat flux (λE) is strongly determined by the available energy supply (R_n):

$$\lambda E = \alpha [s/(s + \gamma)] R_n$$ \hspace{1cm} (3)

where s is the derivative of the Clausius-Clapyron relationship between saturated vapour pressure and temperature (Pa K$^{-1}$), evaluated at the ambient air temperature; γ is the psychrometer constant (Pa K$^{-1}$), equal to Pc_p/λ where P is atmospheric pressure (Pa); and α is a dimensionless parameter, found empirically to take values typically in the range 1.1 to 1.4 and with a canonical value of 1.26 (see e.g. McAneney & Itier, 1996; Jones, 2013, p. 109).

By combining equations (2) and (3), we obtain:

$$\Delta T = R_n \{1 - \alpha [s/(s + \gamma)]\} / (c_p g_b)$$ \hspace{1cm} (4)

The ratio $s/(s + \gamma)$ is steeply dependent on air temperature, being 0.40 at 0°C, 0.55 at 10°C, 0.68 at 20°C, 0.78 at 30°C and 0.85 at 40°C. Setting $\alpha = 1.26$, equation (4) implies that there should be a crossover temperature (the value at which $\Delta T = 0$, implying $\alpha = 1 + \gamma/s$) around 31°C (Li et al., 2013).

The predicted crossover temperature is sensitive to the value of α, however, and this parameter varies with environmental conditions. A number of studies (see e.g. Idso et al.,
1981; Michaletz et al., 2016) have indicated lower crossover temperatures, in the range 25 to 28°C, consistent with somewhat larger values of α than the canonical 1.26.

There is an extensive literature (e.g. De Bruin, 1983; McNaughton & Spriggs, 1986; Lhomme, 1997; Huntingford & Monteith, 1998; Raupach, 2000) devoted to explaining in terms of more fundamental physical processes why α might be expected to be a relatively conservative quantity. The PT equation is an expression of the large-scale average evapotranspiration rate. It has also been applied successfully in the modelling of transpiration by leaf canopies (e.g. Agam et al. 2010). At the leaf scale, however, different plant species may have different traits influencing energy and water exchanges – including leaf orientations influencing R_n (Chow 1994), and stomatal and boundary-layer conductances – so there is likely to be variation among leaves, both above and below the large-scale integrated rate.

A more detailed model for the leaf-level energy balance can be derived using the so-called Penman linearization, which also underpins the Penman-Monteith (henceforth PM) combination equation for transpiration (see e.g. Jones, 2013, pp. 104-105). The Penman linearization approximates the leaf-to-air vapour pressure deficit via the initial terms of a Taylor series:

$$D(T + \Delta T) \approx D(T) + s \Delta T$$

(5)

where $D(T) = e_s(T) - e_a$ (with $e_s(T)$ the saturated water vapour pressure at air temperature T and e_a the actual water vapour pressure) and $D(T + \Delta T)$ is the same quantity evaluated at the leaf temperature. Equation (5) is a good approximation provided $\Delta T \ll T$. Equation (2) combined with equation (5) leads to:

$$\Delta T = \left[R_n - \lambda g \cdot (D + s \Delta T)/P \right] / (c_p g_b)$$

(6)
where \(g \bullet \) is the combined (in series) stomatal and boundary-layer conductance to water,
\[g \bullet = g_s g_b / (g_s + g_b) \] (the small difference between the boundary-layer conductances to water and heat is neglected here). Division by \(P \) is required for consistency with the molar units used for \(\lambda, g_s \) and \(g_b \). As \(\Delta T \) appears on both sides of equation (6), it is necessary to re-arrange it in order to solve for \(\Delta T \):

\[\Delta T = (R_n - \lambda g \bullet D / P) / \left[c_p (g_b + \varepsilon g \bullet) \right] \]
\[\text{(7)} \]

with \(\varepsilon = s / \gamma \). Equation (7) is equivalent to formulae given by Monteith & Szeicz (1962), Linacre (1972), Paw U (1984) and others. Campbell & Norman (1998, pp. 224-229) used this formulation to show how various plausible combinations of air temperature and vapour pressure deficit can lead to negative daytime values of \(\Delta T \).

Additional insight can be obtained by further manipulation of equation (7). A crossover temperature \(T_x \) can be inferred from equation (7) as the air temperature for which \(\Delta T = 0 \), implying that \(D (T_x) / P = R_n / \lambda g \bullet \) or, equivalently, \(e_s (T_x) / P = R_n / \lambda g \bullet + e_a / P \). It is plausible that the ratio of \(R_n \) to \(g \bullet \) might be relatively conservative during the daytime due to the covariation of both \(R_n \) and \(g_s \) with irradiance, leading to a relatively conservative value of \(T_x \). (This covariance must break down at night however, or near to dawn and dusk, as \(R_n \) is then dominated by the long-wave component). The definition \(\gamma = P c_p / \lambda \) allows equation (7) to be re-written in a compact form, as follows:

\[\Delta T = -[e_a(T) - e_a(T_x)] / \left[\gamma (1 + \varepsilon + g_b / g_s) \right] \]
\[\text{(8)} \]

if a value \(T_x \) is assumed to exist and \(e_a \) is assumed constant. Constancy of \(e_a \) is a reasonable assumption for variations in \(D \) that may be expected due to rapid air temperature changes during a day, when \(e_a \) normally varies much less than \(e_s \). Because \(e_s(T) \) increases steeply with \(T \), equation (8) indicates that \(\Delta T \) will be negative for all \(T > T_x \). The rate of change of \(\Delta T \) with \(T \), evaluated at the crossover temperature \(T_x \), is:
\[\frac{\partial (\Delta T)}{\partial T} = -\varepsilon \left(1 + \frac{g_b}{g_s}\right) \]

(9)

where \(\varepsilon \) is evaluated at \(T_x \). Note that the rate of decrease in \(\Delta T \) following equation (9) depends only on \(T_x \) and the ratio of \(g_b \) to \(g_s \). The variation of leaf temperature with respect to air temperature (evaluated around \(T = T_x \)) has a slope that is less than unity by the amount given in equation (9).

A number of simplifications have been made in the treatment above. Michaletz et al. (2016) noted that (a) \(R_n \) is not independent of \(\Delta T \), as we have implicitly assumed so far, because the long-wave radiation emitted by the leaf increases with the fourth power of the leaf temperature following the Stefan-Boltzmann law; and (b) the Penman linearization, appropriate for small \(\Delta T \), becomes less accurate the further the leaf temperature departs from the air temperature. Point (a) is described in textbooks and a standard approximation exists to correct for it (see e.g. Jones, 2013, p. 225), allowing the isothermal net radiation (the value of \(R_n \) when \(\Delta T = 0 \)) to be used in place of the true \(R_n \) in a more precise formula that accounts for the first-order effect of \(\Delta T \) on \(R_n \). Point (b) is dealt with in Michaletz et al. (2016) by representing \(e_s(T) \) as a nearly exact fourth-degree polynomial in \(T \), which can be combined with the known temperature-dependence of \(R_n \) leading to a quartic equation in \(T \), which can be solved analytically. The reader is referred to Michaletz et al. (2016) for details.

METHODS AND RESULTS

Field measurements

The selected field site was in a tropical dry woodland, Mandan, Yunnan province, SW China (23.69° N, 101.85° E, 758 m a.s.l), with mean annual temperature 21.8°C and mean annual precipitation 981 mm. Solar noon occurs at 13:00 local time. Measurements were made at two topographic locations within the site, on two consecutive sunny days.
during the dry season (October 2013). The location measured on the second day had slightly denser vegetation, apparently due to run-on from surrounding slopes. However, similar results were obtained for both days/locations. The canopy at both locations is sparse, so most leaves receive high illumination and fully sunlit leaves were readily accessible for measurement. Three species were selected. All were canopy-dominant small trees or tall shrubs, having sclerophyllous, hypostomatous leaves with typical areas of 25 cm² (*Terminthia paniculata*), 1 cm² (*Pistacia weinmannifolia*) and 0.9 cm² (*Osteosperma schweiniana*). The smaller leaves of the two latter species were closely packed along the branches, suggesting that their smaller size may not be biophysically significant. Each day, the temperatures of three replicate top-canopy sunlit leaves of each species were measured at half-hourly intervals using a hand-held infrared thermometer (The Fluke 574, Everett, USA), pre-calibrated by the manufacturer, with emissivity set to 0.98. Air temperature was recorded with a mercury thermometer. The stated measurement uncertainty of the infrared thermometer is ± 0.75 K and that of the mercury thermometer is ± 0.1 K. The uncertainty of our estimates of Δ*T* is therefore small compared to the range of observed Δ*T* (–6.2 to +7.5 K).

A consistent diurnal time course was observed across the different species and sampling days/locations (Fig. 1). The data points in Fig. 1 have been smoothed using a quadratic curve to highlight the characteristic diurnal pattern. Δ*T* was negative (reflecting negative *Rₙ*) in the early morning, became positive during the morning, then peaked and began to decline before solar noon (while *Rₙ* continued to increase). Δ*T* became negative again when the air temperature exceeded a crossover value in the range 26 to 28°C. There were no significant differences in observed crossover temperatures either among species or between days/locations. The observed values suggest α somewhat larger than 1.26, but well within the theoretically predicted range (up to 1.391 according to Huntingford &
Monteith, 1998). A similar diurnal time course of ΔT has been observed in other studies and environments, for example by Yu et al. (2015) in a desert.

Monitoring

Canopy temperature is continuously monitored at the flux tower site located in an intact tropical seasonal forest at Xishuangbanna Tropical Botanical Garden, XTBG (21.93°N, 101.27°E, 570 m a.s.l.), Yunnan province, China, with mean annual temperature 21.7°C and mean annual precipitation 1492 mm. Solar noon occurs at 13:15. An infrared temperature sensor (Apogee Instruments Inc., Logan, UT) has been installed 3 m above the canopy. Air temperature is monitored using the HMP45C instrument (Vaisala, Helsinki, Finland). Data are logged half-hourly.

We show the data from the dry season (January) of 2013 (Fig. 2). The same general diurnal time course is seen at canopy level in the seasonal forest (Fig. 2) as we observed at leaf level in the dry forest (Fig. 1). The observed crossover temperature was near 24°C.

A test of JULES with field measurements

We ran JULES in a standard configuration for stand-alone operation (i.e. not coupled to a climate model) with non-limiting soil moisture prescribed in all soil layers. Driving data on wind speed, relative humidity, and long- and short-wave radiation components through the days of measurement were obtained from the flux tower at Yuanjiang, 2 km from the field site. Appropriate values were prescribed in JULES for vegetation cover broken down by plant functional types (47% broadleaf evergreen trees, 3% C3 grasses, 25% C4 grasses, 12.5% shrubs and 12.5% bare ground) and soil properties (15% sand, 50% silt and 35% clay) based on a field assessment.
Fig. 3 compares the JULES results to our field measurements. The model simulates negative ΔT after about 14:00 local time, but the measurements show an earlier onset of negative values. Measured ΔT approached –6 K for each day/location and all species (Figs 1, 3), but JULES’ simulated ΔT never fell below –2 K during the daytime.

Establishing the precise reasons for this discrepancy would require a series of sensitivity experiments to be carried out. However, we note that JULES simulates a precipitous decline in stomatal conductance from about 10:00 local time (Fig. 3), which would restrict transpiration rates.

Comparisons using simple analytical models

We attempted to fit our field-observed leaf-to-air temperature differences using both the PT and PM approaches (Fig. 4) by non-linear regression using the ‘nls’ function in R. We treated α and g_b as the parameters to be estimated in equation (4) (PT), and g_b and $g_i\ast$ as the parameters to be estimated in equation (7) (PM). Note that these model fits are approximate. A full implementation of the PM approach would require time-varying g_s, which was not measured. The assumption of constant g_b in both PT and PM models is also a simplification, as wind speed variations are expected to influence g_b. The fitted parameter values are given in Table 1. Negative ΔT was correctly simulated by both approaches (Fig. 4), with approximately the right timing and magnitude. Fig. 4 also shows JULES results for comparison and highlights the tendency of JULES to underestimate negative ΔT during the hottest part of the day.

We fitted equations (4) and (7) in the same way to the canopy monitoring data, including half-hourly measurements for each day during January 2013. For the PT model, the estimated α was 1.32 ± 0.005 (p < 0.001), corresponding to a crossover temperature of 26.8°C. The fitted value for g_b in equation (4) was 0.68 ± 0.03 mol m$^{-2}$ s$^{-1}$ (p < 0.001). In
comparison to monitored canopy temperature, the PT model yielded a highly significant
slope of 0.67 with $R^2 = 79\%$ (Fig. 5). For the PM model, we estimated a somewhat larger
value of g_b (1.45 ± 0.02 mol m$^{-2}$ s$^{-1}$, $p < 0.001$), and $g\bullet = 0.51 \pm 0.007$ mol m$^{-2}$ s$^{-1}$. The
regression between model predictions and the canopy monitoring data was again highly
significant, with slope 0.94 and $R^2 = 85\%$ (Fig 5).

We also fitted both models to the monitoring data for each day separately (Appendix S2).
This yielded for the PT model a median α of 1.34 (lower and upper quartiles: 1.32, 1.36)
corresponding to a median crossover temperature of 26.0 (24.9, 27.3) $^\circ$C, and fitted
values for g_b in equation (4) of 0.61 (0.48, 0.68) mol m$^{-2}$ s$^{-1}$. For the PM model, we again
estimated values of g_b larger than for the PT model: 1.45 (1.26, 1.66) mol m$^{-2}$ s$^{-1}$, and
values of $g\bullet$ of 0.57 (0.50, 0.64) mol m$^{-2}$ s$^{-1}$. Both models fitted the monitoring canopy
temperature well on visual comparison (Figs 5 and S2). A general underestimation of the
magnitude of ΔT during the night (Fig. S2) probably relates to our simplifying
assumption of constant g_b, neglecting the fact that wind speeds are generally lower at
night than in the day. Low wind speeds would lead to smaller g_b and, accordingly, larger
differences between canopy and air temperatures.

DISCUSSION

The thermal homoeostasis of sunlit leaves is a passive mechanism, dependent on ample
water supply for transpiration, which has the effect of keeping leaf temperatures in a
more limited range than air temperatures. We observed leaves to be cooler than air during
the midday period, even during the dry season in a tropical dry woodland (Fig. 1),
presumably thanks to deep roots allowing water to continue to be transpired at a
sufficiently high rate. However, along a gradient of declining rainfall, transpirational
cooling must become ineffective at some point; so that the leaves will again be warmer
than the air during the hottest time of day. Where this point occurs along rainfall
gradients remains to be determined.

Leaf-temperature homoeostasis has important practical implications under climate
warming scenarios. For example, the study of urban street trees by Leuzinger et al. (2010)
projected extremely high future leaf temperatures, in scenarios where D was held
constant. However, D is the proximal driver of transpiration rate, and it is expected to
increase nearly everywhere (see e.g. Sherwood & Fu, 2014) – leading to reduced, and
ultimately negative, ΔT. As air temperatures rise, even in temperate regions, the
transpirational cooling effect of green infrastructure may become increasingly important
for the environment of cities. Increased transpiration rates due to high D should also help
to protect natural ecosystems and crops, to some extent, against potential adverse effects
of high temperature. In this perspective, high D is not necessarily a stress on plants.
Provided sufficient water is available for transpiration, high evaporative demand provides
a degree of leaf-temperature buffering against high air temperatures.

DGVMs could be modified to include leaf-to-air temperature differences with the help of
the theory discussed above. One key phenomenon that they currently do not capture is the
negative feedback (via transpiration) under well-watered conditions, which maintains leaf
temperatures within a more restricted range than air temperatures. DGVMs lacking this
feedback are likely to overestimate the direct impacts of warming on the gas exchange of
leaves in well-watered vegetation – including irrigated crops (Siebert et al., 2017), and
deeply-rooted plants even in relatively dry environments, as well as in moist forests. On
the other hand, drought (in the sense of insufficient precipitation to support moist soils) is
a potential double menace to tropical moist forests (Schymanski et al., 2013) as stomatal
closure under water limitation is expected to reduce transpiration; eventually to the point
where negative ΔT is no longer possible – potentially compounding the effects of
hydraulic failure (Rowland et al., 2015) with photosynthetic inhibition and even overheating damage. Deleterious effects of high leaf temperature would be felt soonest by large leaves, because of their low boundary-layer conductance. How the effective boundary-layer conductance actually varies under field conditions as a function of leaf morphology and canopy architecture remains a topic for investigation, potentially opening a route to the incorporation of more realistic plant functional diversity in DGVMs.

Land-surface models like JULES, designed for climate-model coupling, already contain the necessary equations (including explicit simulation of convective boundary layer dynamics and thermodynamics) to simulate canopy temperature from physical principles. However, to do so reliably, such models requires good representations of leaf boundary-layer and stomatal conductances. In JULES, the irradiance absorbed by the canopy follows Beer’s law with a fixed light extinction coefficient based on the “big leaf” approach (Clark et al, 2011), thus not allowing for possible variation in leaf-angle distributions. Stomatal conductance is treated as a decreasing function of vapour pressure deficit, following the Jacobs (1994) equation (Cox et al., 1998). Boundary layer conductance is implicit, and cannot be altered in the current configuration of JULES. Our example indicates that the simulation of leaf energy balance with JULES might be inaccurate. In particular, the modelled cooling of leaves at high air temperatures was weaker than observed. Fig. 3 also indicates that stomatal closure was predicted to occur early in the day, restricting transpiration to a perhaps unrealistic extent. The “optimal stomatal conductance” equation, independently derived (from different assumptions) by Medlyn et al. (2011) and Prentice et al. (2014), implies that transpiration continuously increases with vapour pressure deficit despite partial stomatal closure; whereas the Jacobs equation used in JULES reduces g_s to a minimum value at a fixed maximum vapour pressure deficit. This difference may be important. Alternatively, or additionally,
reductions of transpiration at high temperatures – in the field (Duursma et al., 2008, Medlyn et al. 2001), and in models like JULES that explicitly couple photosynthesis and stomatal behaviour – may be caused by the exceedance of photosynthetic temperature optima, prompting examination of whether the locations of these optima in current models (especially for tropical plant types) are realistic.

Leaf and canopy temperatures are measurable at spatial scales from field measurements on single leaves, through monitoring of vegetation canopies, to remotely sensed data at a global scale (Li et al., 2015). As a sensitive indicator of the effectiveness of transpirational cooling, observations of ΔT would repay more extensive application to evaluate and improve the representation of vegetation-atmosphere energy and water exchanges in land-surface models, and plant functional diversity and climate-change impacts in DGVMs.

ACKNOWLEDGEMENTS

This research was supported by the Australian Research Council through a Discovery Grant ‘Next-generation vegetation modelling based on functional traits’ to ICP and Ian Wright. DN was supported by an international Macquarie Research Excellence Scholarship. We thank Martin Best, Jon Lloyd, Belinda Medlyn, Lina Mercado, Sean Michaletz, Anne Verhoef and Ian Wright for discussions; Lina Mercado and Felix Leung for JULES setup help; Jian Ni, Shuangxi Zhou, Yangyang Wu and Shubin Zhang for assistance in the field; and Stan Schymanski for detailed reviews of the manuscript. Fieldwork was funded by the State Key Laboratory of Environmental Geochemistry (SKLEG2013817) and the Hundred Talents Program of the Chinese Academy of Sciences (CAS) (2011031). Weather data were obtained from Yuanjiang Research Station for Savanna Ecosystems, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science. Monitoring was supported by the Joint National-Yunnan foundations ‘The
typical forest ecosystems response to climate change in Yunnan’ (U1202234) and Yunnan Natural Science Foundation (2013FB077) grants to Y.P. Zhang. This work is a contribution to the AXA Chair Programme in Biosphere and Climate Impacts and the Imperial College initiative on Grand Challenges in Ecosystems and the Environment.

SUPPORTING INFORMATION

Appendix S1 Leaf temperature measurements and climate data at two topographic locations in a tropical dry woodland in Fig. 1 (Mandan, Yunnan province, China).

Appendix S2 Diurnal cycles of observed (Fig. 5) canopy-to-air temperature differences compared with daily Priestley-Taylor (red) and Penman-Monteith (blue) simulations in a tropical seasonal forest (XTBG, Yunnan province, China).

Appendix S3 Parameters values in the Priestley-Taylor and Penman-Monteith models for the ΔT simulations in Fig S2, estimated from half-hourly canopy temperature monitoring.

DATA ACCESSIBILITY

Field data used in this study can be found in Appendix S1.

BIOSKETCH

ND’s research aims for a better understanding of temperature effects on biological processes, and its application to large-scale vegetation models through a new approach that emphasizes simple, theoretical models to interpret observations on the interaction of traits and environment. ICP is a long-time pioneer of global vegetation modelling and is currently leading the development of a next-generation trait-based model for improved analysis of the coupling between biogeochemical and hydrological cycles, climate impacts and climate-vegetation feedbacks. SPH works on multiple aspects of global environmental and ecological data and their application to the modelling and
reconstruction of past environments. QHS works on ecosystem monitoring and analysis of
forest canopy processes. YPZ leads research on global change and ecosystems at
Xishuangbanna Tropical Botanical Garden.

REFERENCES

Agam, N., Kustas, W.P., Anderson, M.C., Norman, J.M., Colaizzi, P.D., Howell, T.A.,
approach in a two-source surface energy balance model. *Journal of Hydrometeorology*,
11, 185-198.

Best, M., Pryor, M., Clark, D., Rooney, G., Essery, R., Ménard, C., Edwards, J., Hendry,
model description – Part 1: energy and water fluxes. *Geoscientific Model Development*, 4,
677-699.

Chow, W.S. (1994) Photoprotection and photoinhibitory damage. *Advances in Molecular

Clark, D., Mercado, L., Sitch, S., Jones, C., Gedney, N., Best, M., Pryor, M., Rooney, G.,
model description – Part 2: carbon fluxes and vegetation dynamics. *Geoscientific Model
Development*, 4, 701-722.

Table 1. Parameter values (with standard errors) and goodness-of-fit statistics in the Priestley-Taylor and Penman-Monteith models for leaf-to-air temperature difference (ΔT, K) as given in Fig 4, estimated from field measurements during the second day in a tropical dry woodland site (Mandan, Yunnan province, China).

<table>
<thead>
<tr>
<th></th>
<th>T. paniculata</th>
<th>P. weinmannifolia</th>
<th>O. schwerinae</th>
</tr>
</thead>
<tbody>
<tr>
<td>α (−)</td>
<td>1.27 ± 0.03</td>
<td>1.31 ± 0.01</td>
<td>1.32 ± 0.01</td>
</tr>
<tr>
<td>gb (mol m⁻² s⁻¹)</td>
<td>0.52 ± 0.25</td>
<td>0.20 ± 0.03</td>
<td>0.24 ± 0.04</td>
</tr>
<tr>
<td>RMSE (K)</td>
<td>1.97</td>
<td>1.63</td>
<td>1.31</td>
</tr>
</tbody>
</table>

 Priestley-Taylor model

<table>
<thead>
<tr>
<th></th>
<th>T. paniculata</th>
<th>P. weinmannifolia</th>
<th>O. schwerinae</th>
</tr>
</thead>
<tbody>
<tr>
<td>gb (mol m⁻² s⁻¹)</td>
<td>1.07 ± 0.35</td>
<td>0.86 ± 0.38</td>
<td>1.17 ± 0.55</td>
</tr>
<tr>
<td>gb (mol m⁻² s⁻¹)</td>
<td>0.53 ± 0.07</td>
<td>0.67 ± 0.1</td>
<td>0.73 ± 0.12</td>
</tr>
<tr>
<td>RMSE (K)</td>
<td>1.97</td>
<td>1.63</td>
<td>1.31</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Figure 1 Diurnal time courses of the leaf-to-air temperature difference (ΔT, K) during the dry season (October 2013) for three species, measured on consecutive days at two topographic locations in a tropical dry woodland site (Mandan, Yunnan province, China). The top panel displays measurements from the first day and the bottom panel from the second day. Species: *Terminthia paniculata*, *Pistacia weinmannifolia*, *Osteosperma schwerinae*. Vertical bars are standard errors of three replicates. Fitted smooth curves are quadratic regressions against time (solid) with 95% confidence intervals (dashed). The left-hand panels show measured half-hourly net radiation (R_n, W m$^{-2}$) from the nearest meteorological station (Yuanjiang) during sampling, and field-measured ambient temperatures (T_{air}, °C). Vertical dashed lines mark solar noon. Horizontal dashed lines mark $\Delta T = 0$.

Figure 2 Diurnal time courses of the canopy-to-air temperature difference (ΔT, K) and canopy temperature during the dry season (January 2013) in a continuous tropical seasonal forest (Xishuangbanna Tropical Botanical Garden, Yunnan province, China). Vertical bars are standard errors across the 31 days. Vertical dashed lines mark solar noon. Shaded areas represent the daylight period.

Figure 3 (a) Diurnal time courses of JULES-simulated canopy temperature and observed leaf temperatures during the sampling days shown in Fig. 1. (d-f). Different coloured symbols represent observed leaf temperatures of the three species. Air temperatures and simulated soil temperatures are also shown. (b) Diurnal time courses of stomatal conductance from JULES. Shaded areas represent the sampling period. Vertical dashed lines mark solar noon.

Figure 4 Diurnal time courses of (a) net radiation (R_n, W m$^{-2}$) and ambient temperature (T_{air}, °C), (b) vapour pressure deficit (D, in kPa) and (c) actual vapour pressure (e_a, kPa) at Yuanjiang meteorological station during the sampling days shown in Fig. 1. (d-f)
Diurnal time courses of observed leaf-to-air temperature differences (\(\Delta T\), K) for the three species, compared to modelled values obtained with the Priestley-Taylor and Penman-Monteith approaches, and with the JULES land-surface model. Green circles are observed leaf temperatures of the three species. Vertical dashed lines mark solar noon. Shaded area represents the daylight period.

Figure 5 The Priestley-Taylor and Penman-Monteith simulations for \(\Delta T\) fitted to half-hourly canopy-to-air temperature differences obtained from continuous monitoring in a tropical seasonal forest (Xishuangbanna Tropical Botanical Garden, Yunnan province, China) during the dry season (January 2013).
FIGURES

Figure 1
Figure 2

(a) and (b) show the temperature profiles over local time with shaded areas indicating specific time periods. The y-axes represent temperature in Kelvin (K), and the x-axes represent local time from 3:00 to 18:00.
Figure 3

(a) Temperature (°C) over Local Time

- O. schwennae
- T. particula
- P. weinmanniiolja
- JULES Canopy T
- JULES Soil T
- Air T

(b) Stomatal conductance (mol H₂O m⁻² s⁻¹) over Local Time
Figure 4
Figure 5

\[\Delta T_{\text{OBS}}(K)\]

\[\Delta T_{\text{P-M PRE}}(K)\]

\[\Delta T_{\text{P-T PRE}}(K)\]

Slope: 0.94 \(R^2 = 0.85^{***}\) RMSE = 0.49

Slope: 0.87 \(R^2 = 0.79^{***}\) RMSE = 0.43