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Low-dimensional space- and time-coupled power
system control policies driven by high-dimensional

ensemble weather forecasts
Joseph Warrington?, Member, IEEE, Daniel Drew†, and John Lygeros?, Fellow, IEEE

Abstract—Many predictive control problems can be solved
at lower cost if the practitioner is able to make use of a
high-dimensional forecast of exogenous uncertain quantities. For
example, power system operators must accommodate significant
short-term uncertainty in renewable energy infeeds. These are
predicted using sophisticated numerical weather models, which
produce an ensemble of scenarios for the evolution of atmospheric
conditions. We describe a means of incorporating such forecasts
into a multistage optimization framework able to make use
of spatial and temporal correlation information. We derive
an optimal procedure for reducing the size of the look-ahead
problem by generating a low-dimensional representation of the
uncertainty, while still retaining as much information as possible
from the raw forecast data. We then demonstrate application of
this technique to a model of the Great Britain grid in 2030, driven
by the raw output of a real-world high-dimensional weather
forecast from the UK Met Office. We also discuss applications
of the approach beyond power systems.

Index Terms—Power systems, predictive control for linear
systems, robust control

I. INTRODUCTION

MANY systems are operated in the presence of high-
dimensional disturbance forecasts. Examples include

transportation networks with uncertain usage patterns, air traf-
fic control carried out under complex atmospheric conditions,
and power systems with estimated short-term renewable power
infeeds. This paper focuses on power system dispatch in the
presence of uncertain wind power injections, but we note from
the outset that the approach we present is general, and could
be applied to other uncertainty sources or other applications.

Uncertainty in power systems is accommodated via a
reserve mechanism, in which parts of the capabilities of
generators and other devices are set aside to compensate
for forecast errors as they arise. Recent work [1], [2] has
formalized the notion of a planned affine response to the
uncertainty realizations, achieved in real time through changes
to Automatic Generator Control (AGC) parameters [3]. A
key challenge of such formulations is to ensure that the
solution respects system constraints under different possible
realizations of the forecast error. Recent formulations derive
policies which satisfy constraints with high probability in cases
where only limited forecast data is available, and the true
distribution of forecast errors is unknown [2], [4].
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Our previous work [1] is based on multistage recourse
policies originally developed for robust predictive control [5].
That theory enabled the development of so-called reserve
policies, a time-coupled generalization of affine responses
which allows device actions to depend not only on the forecast
error realization at a future power delivery time, but also
on realizations that will have been discovered between now
and that future time [1], [6]. Such linear recourse approaches
are a restriction with respect to general nonlinear policy
functions, but the result may often in practice be near-optimal
[7], and extensions to non-linear “liftings” of the underlying
uncertainty are also available [8], [9]. We note that due to the
high dimension of this decision problem, other well-known
approaches such as dynamic programming (DP) or dual DP
[10] would not be tractable except for very small problem
instances.

In contrast to the min-max formulations of [6], [11], we
consider the minimization of an expected short-run cost. This
is because a power system operator who prioritizes optimality
for worst-case scenarios, which in practice rarely arise, would
in general bring about economic losses in the long run. To
optimize expected cost under uncertainty, it becomes necessary
to include statistics of the correlation (in space and time) of
forecast errors in the cost function [1].

This paper is concerned with accommodating such statistics
in a tractable manner for optimization purposes, even when
they arise from an underlying model of high dimension. We
describe an optimal means of reducing the dimension of the
uncertainty model, such that the resulting control policies
can be described by a relatively low number of parameters,
while still guaranteeing a supply-demand balance under all
modelled uncertainty realizations. This is attractive for both
practical and computational reasons, and for power systems
allows the reserve policy approach of [1] to accept real-world
high-dimensional forecasts as input data.

Section II describes the system model and optimization
approach. Section III describes the procedure for optimal
uncertainty dimension reduction, and Section IV demonstrates
the method for a case study using real outputs from the
UK Met Office’s MOGREPS weather model [12]. Section V
concludes and discusses applications beyond power systems.

II. SYSTEM MODEL

This section describes the system model. Although we
present a power system application in this paper, the notation
is general and could in principle be applied to other systems
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of similar structure with minor modifications. We consider
the optimal control of Np generic grid-connected devices or
participants, such as thermal generators and energy storage
facilities, operating amidst uncertain power injections and/or
withdrawals, for example from wind power and demand. We
aim to operate the controllable devices at minimum expected
cost while remaining robust to uncertainty, whose value is
revealed stage-wise over a planning horizon. The grid on
which the devices operate is modelled as a standard linearized
AC network, in which phase angle differences between nodes
are small, line losses negligible, and nodal voltage magnitudes
equal. Line power flow constraints may be present.

A. Grid-connected devices
Each device i is modelled in state space form as a linear,

time-invariant system with ni states whose output connects it
to the grid. Its dynamics at time step k are given by xik+1 =

Ãix
i
k+B̃iu

i
k, where Ã ∈ Rni×ni and B̃i ∈ Rni×1 are the state

and input transition matrices respectively. Input uik is a scalar.
Over a time horizon of length T , we represent the device’s
dynamics in stacked form in the usual manner for predictive
control, denoting its current state xi0:

xi = Aix
i
0 +Biu

i , (1)

where xi := [xi1
′, . . . , xiT

′]′ ∈ RniT and ui :=
[ui0
′, . . . , uiT−1

′]′ ∈ RT are the stacked state and input vectors,
and Ai ∈ RniT×ni and Bi ∈ RniT×T are built from Ãi and
B̃i, as in [1]. We use symbol ′ to signify a vector or matrix
transpose. Vector xi0 is a given initial state.

Each such device has a cost function applicable over the
same look-ahead horizon, consisting of constant, linear, and
quadratic terms in xi (e.g. to penalize a stored energy state)
and ui (e.g. to penalize generation costs):

Ji(x
i,ui) := fxi

′xi+
1

2
xi′Hx

i x
i+fui

′ui+
1

2
ui′Hu

i u
i+ci (2)

Note that xi depends on ui, and by substitution from (1) it can
be shown that for optimization purposes Ji is convex in ui if
and only if matrix (B′iH

x
i Bi +Hu

i ) is positive semidefinite.
Alongside controllable dynamics, each device i may be the

originator of uncontrollable power injections, represented as
ri + Giδ, where ri ∈ RT is a nominal component and the
term Giδ arises from an exogenous random vector δ ∈ RNδT ,
where Nδ is the uncertainty dimension. The vector takes the
form δ := [δ′1, . . . , δ

′
T ]′ and is common to the whole system.

Gi ∈ RT×NδT is a device-specific mapping.
The value of δ is unknown at the start of the time horizon.

However, we assume that it will be possible to measure sub-
vectors δk as they are revealed, sequentially over the horizon
(this is discussed further in Section II-C). The uncertainty δ
belongs to a set ∆ ⊂ RNδT , and we assume that an estimate
of the first and second moments of its probability distribution,
E[δ] and E[δδ′], is available.

Constraints apply to devices’ state and input vectors, and
these may also depend linearly on the uncertainty vector δ.
This is expressed via a set Zi, defined for each device i as:

Zi :=


 xi

ui

δ

 ∣∣∣∣∣∣ Tixi + Uiu
i + Viδ ≤ wi

 , (3)

where Ti, Ui, Vi, and wi define inequalities coupling the state,
input, and uncertainty vector. Note that xi is itself a function
of ui, although this is not made explicit in (3).

B. Network constraints

The network sees power flows as a linear mapping from
each controllable device i’s state, C̃ixik at each time step k,
plus terms arising from the uncontrollable power injections
associated with each device. Using the stacked notation of (1),
the requirement that power injections and withdrawals balance
over the network is represented by the following constraint,
which has one row for each of the T time steps:

Np∑
i=1

(ri +Giδ + Cix
i) = 0, ∀δ ∈ ∆ , (4)

where Ci := IT ⊗ C̃i maps the device’s state to power
injections or withdrawals seen by the network over the horizon.
IT represents the T ×T identity matrix, and ⊗ the Kronecker
product. Line flow constraints may also be present, and are
represented by linear inequalities,

Np∑
i=1

Γi(ri +Giδ + Cix
i) ≤ p̄, ∀δ ∈ ∆ , (5)

where coefficient matrices Γi are built from consideration of
a standard linearized line flow model [1].

C. Finite horizon optimization

We wish to operate the power system devices for minimum
expected cost by choosing control policies ui = πi(δ) for each
device i. Each policy specifies in advance how device i should
react to δ as its value unfolds. Applying the state dynamics
(1) to the objectives and constraints described above yields the
following optimization problem:

min
Causal πi(·)

Np∑
i=1

E[Ji(Aix
i
0 +Biπi(δ), πi(δ))] (6a)

s.t.
Np∑
i=1

ri +Giδ + Ci(Aix
i
0 +Biπi(δ)) = 0 ,∀δ ∈ ∆ (6b)

Np∑
i=1

Γi(ri +Giδ + Ci(Aix
i
0 +Biπi(δ))) ≤ p,∀δ ∈ ∆ (6c) Aix

i
0 +Biπi(δ)
πi(δ)
δ

 ∈ Zi ,∀δ ∈ ∆ (6d)

“Causal πi(·)” means that the input determining the state at
time k can depend only on elements known up to time k:

uik−1 = [πi(δ)]k−1 = φik(δ1, . . . , δk) , (7)

for some function φik : ×kj=1RNδ → R. We allow uik−1 to
depend on δk on the assumption that controller gains on each
device can be adjusted to respond to time step k’s disturbance
as it is revealed in continuous time [1]. For power systems,
this is the manner in which equality constraint (6b) can be
satisfied in real time for all realizations of δ [2].
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For tractability, we limit πi(·) to affine policies with a
nominal term ei ∈ RT and a matrix Di ∈ RT×NδT of linear
responses to δ:

ui = πi(δ) = Diδ + ei . (8)

Matrix Di is composed of blocks of dimension 1×Nδ , where
the (l,m) block [Di]l,m determines the response at time l
to the uncertainty realization discovered at time m. Causality
requirement (7) is encoded in a constraint that Di be block-
lower-triangular, i.e., [Di]l,m = 0 for all m > l.

We also define the expected cost J̃i(x
i
0, Di, ei) :=

E[Ji(x
i,ui)], which contains the statistics E[δ] and E[δδ′] as

well as the terms in (2). Problem (6) can then be written

min
(Di,ei)∈Fi(xi0)

Np∑
i=1

J̃i(x
i
0, Di, ei) (9a)

s.t.
Np∑
i=1

ri +Giδ + Ci(Aix
i
0 +Bi(Diδ + ei)) = 0 ,

∀δ ∈ ∆ (9b)
Np∑
i=1

Γi(ri +Giδ + Ci(Aix
i
0 +Bi(Diδ + ei))) ≤ p ,

∀δ ∈ ∆ , (9c)

where Fi(xi0) is the set of constraint-admissible, causal poli-
cies for the current state of device i:

Fi(xi0) :=

(Di, ei)

∣∣∣∣∣∣∣∣∣
[Di]l,m = 0, ∀m > lAxi0+Bi(Diδ + ei)

Diδ + ei
δ

∈Zi,∀δ ∈ ∆


D. Solution method

The difficulty of solving problem (9) depends to a great
extent on how the uncertainty is modelled. In this paper we
are concerned with data arising from a numerical prediction
model producing a finite ensemble of Nens forecast scenarios,

∆ := {δ(n), n = 1, . . . , Nens} .

In this case the inequality constraint (9c), as well as those
present in the definitions of each device’s constraint set
Fi(xi0), can be replaced by Nens sets of scenario constraints.1

It is trivial to show that the following two constraints
together imply equality constraint (9b):

Np∑
i=1

(ri + CiAix
i
0 + CiBiei) = 0 (10a)

Np∑
i=1

(Gi + CiBiDi) = 0 (10b)

1If set ∆ does not have a finite number of elements, then this constraint
enumeration approach cannot be used directly. Alternatively, if it consists of
a finite but very large number of scenarios, then the added constraints may
become too numerous for the problem to be tractable. In both these cases, an
outer approximation such as a polytope may have to be found, following which
a tractable reformulation employing auxiliary matrix variables is available [1].
However, in the case of ensemble weather forecasts, it is currently typical
for Nens to extend only up to a few dozen scenarios, such that it remains
preferable to enumerate the constraints by scenario.

Constraint (10a) ensures the nominal power infeeds (i.e., those
when δ = 0) sum to zero, and constraint (10b) ensures
that all forecast errors δ are matched by the compensating
actions of devices, described by policy matrices Di. Moreover,
equations (10a) and (10b) are equivalent to (9b) if ∆ has been
constructed to include the origin in the interior of its convex
hull [1].2

III. DIMENSIONALITY REDUCTION

If Nδ , the dimension of the uncertainty set, is large, then
choosing a reaction to each of the elements of δ requires heavy
computation. Moreover, the high complexity of the controller
may be unacceptable to the practitioner.

A. Response basis vectors

One way of reducing this burden is to choose a priori, based
on the characteristics of the forecast data, a limited number
of vectors ρpk ∈ RNδ , p = 1, . . . , P , that form a basis for the
system’s response to uncertainty during any given time step
k. The matrix Di in equation (8) would then take the form

ui = Diδ + ei =

P∑
p=1

D̄p
iR

pδ + ei (11)

where D̄p
i ∈ RT×T is a lower-triangular matrix of scalar

response coefficients for component p of the basis,

D̄p
i =


dpi,0,0 0 . . . 0

dpi,1,0 dpi,1,1 . . . 0
...

...
. . .

...
dpi,T−1,0 dpi,T−1,1 . . . dpi,T−1,T−1

 , (12)

where the lower-triangular structure ensures that the system
response does not rely on parts of the vector δ that have not
yet been revealed. Each matrix Rp ∈ RT×NδT is a block-
diagonal matrix common to all participants i, containing row
vectors weighting the elements of vectors δ1, . . . , δT :

Rp =


ρp1
′ 0 . . . 0

0 ρp2
′ . . . 0

...
...

. . .
...

0 0 . . . ρpT
′

 . (13)

Following a straightforward reformulation of problem (9)
using substitution (11), there will now only be O(NpPT

2)
optimization variables to choose in relation to the Di matrices,
as opposed to order O(NpNδT

2) in the original problem.3 The
basis vectors and choice of P affect how much of the (spatial
and temporal) correlation information encoded in E[δδ′] enters
into the optimization through the cost function (9a) via terms
of the form RpE[δδ′]Rp′.

2In the case where Nens < NδT + 1, set ∆ will consist of coplanar
points and its convex hull will therefore have an empty interior. However the
practitioner is still likely to prefer to implement the sufficient constraints (10a)
and (10b), on the assumption that the Nens scenarios were sampled from a
distribution with full-dimensional support, and subsequent samples will not
in general be coplanar with those already modelled.

3Note that with minor adjustments to the formulation, one could in principle
use a different value of P for each time step k.



2475-1456 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2017.2720467, IEEE Control
Systems Letters

The question arises how to choose the P basis vectors ρpk
for each time step k, with P � Nδ , such that

1) Constraint (10b) is satisfied, meaning the Di-matrices
still track any disturbance δ ∈ ∆ after imposing the
structural constraint (11);

2) The resulting basis is in some sense “optimal”, in that
it allows the system to respond in directions that matter
most in the space of possible uncertainty realizations.

B. Conditions for a feasible response basis

We now develop conditions under which a reduced-
dimension response to uncertainty can still balance the sys-
tem, i.e., satisfy constraint (10b). We make the following
assumptions, which can straightforwardly be made to hold for
reasonable forecast models, and for devices connected to a
single node of the network:

Assumption 1. Each matrix Gi ∈ RT×NδT , which mod-
els how uncertainty δ contributes to participant i’s uncon-
trollable power injections, is block-diagonal with the form
Gi = blkdiag(g′i,1, . . . , g

′
i,T ), for some vectors gi,k ∈ RNδ .

Assumption 2. As described in the appendix of [1], each
controllable device i has been modelled such that its input
appears with unity scaling factor as a net power injection on
the network, leading to the simplification CiBi = IT .

Under Assumptions 1 and 2, consider the case P = 1, i.e.
only one basis component is allowed. Then from examination
of the (k, k) block of constraint (10b), for each k the only
permissible choices of basis vector ρ1k are those satisfying

Np∑
i=1

gi,k +

 Np∑
i=1

d1i,k,k

 ρ1k = 0 . (14)

Equation (14) restricts ρ1k to be a scalar multiple of∑Np

i=1 gi,k. In such a case, the control policy can only be driven
by a single parameter, namely the scalar

∑Np

i=1 g
′
i,kδk.

If we allow more basis components, i.e., P > 1, more
nuanced responses to the uncertainty become possible. In par-
ticular, the extra freedom allows the optimization to produce
responses governed by different weightings of the elements of
vector δk. Constraint (14) becomes

Np∑
i=1

gi,k +
P∑
p=1

 Np∑
i=1

dpi,k,k

 ρpk = 0 . (15)

We define Rk(ρ1k, . . . , ρ
P
k ) as an affine subspace of RNδ ,

parameterized by basis vectors ρ1k, . . . ρ
P
k , of summed, or

aggregated, system responses at time k that are feasible for
constraint (10b),

Rk(ρ1k, . . . , ρ
P
k ) :=α1ρ

1
k + . . .+ αP ρ

P
k

∣∣∣∣∣∣
Np∑
i=1

gi,k +
P∑
p=1

αpρ
p
k = 0

 .

(16)

Then (ρ1k, . . . , ρ
P
k ) is a permissible basis as long as there exist

scalars (α1, . . . , αP ) that satisfy
∑Np

i=1 gi,k +
∑P
p=1 αpρ

p
k = 0

for given vectors gi,k.

C. Optimal response basis

For each time step k, the basis vectors should be chosen
from permissible parameterizations of Rk such that as much
as possible of the information in the original set of data points
is preserved for the purpose of system optimization.4 Formally,
we wish to maximize the mutual information between points
δ
(n)
k and their projections onto the space spanned by {ρpk}Pp=1.

The following proposition describes how to achieve this.

Proposition 1. Define matrix Mg,k := I − gk(g′kgk)−1g′k,
where gk =

∑Np
i=1 gi,k, and the matrix

Wk := M ′g,k

[
δ
(1)
k , · · · , δ(n)k

]
δ
(1)
k
′

...
δ
(n)
k
′

Mg,k . (17)

Then the matrix Rk := [λ1,k , λ2,k , · · · , λP−1,k , gk] ∈
RNδ×P (where λ1,k, . . . , λP−1,k ∈ RNδ are the first P − 1
eigenvectors of matrix Wk sorted in descending order of the
magnitudes of their corresponding eigenvalues), maximizes
the mutual information between scenario data points δ

(n)
k

and their projections Rk(R′kRk)−1R′kδ
(n)
k =: Πkδ

(n)
k . This

corresponds to maximizing the determinant of the covariance
matrix of the projected points,

det

(
1

Nens

Nens∑
n=1

(
Πkδ

(n) −ΠkE[δ]
)(

Πkδ
(n) −ΠkE[δ]

)′)
.

To achieve this maximization, for each time step k, matrices
Rp defined in equation (13) should therefore be populated
according to ρpk = λp,k for p = 1, . . . , P − 1, and ρpk = gk
for p = P .

Proof. The proof follows the argument made by Rolle [13,
§3.1] for constrained Principal Component Analysis. The sum
of squared distances of a group of points from their projections
onto a given P -dimensional subspace, constrained to include
vector gk, is minimized when the first P − 1 eigenvectors of
Wk are used as a basis for the remaining P − 1 dimensions.
This also maximizes the determinant of the covariance matrix
of the projected points.

Corollary 1. The optimal response to a high dimensional
uncertainty when P = 1 is constrained in the manner
described in equation (14), i.e. ρ1k = βgk for any scalar β 6= 0.
When P > 1 is permitted, it is optimal to use the same vector
plus the first P − 1 eigenvectors of Wk.

Note that since Mg,kδ is the residual vector of the projection
of δ onto the ray in direction gk, gk is itself in the nullspace
of Mg,k (and also in the nullspace of Wk). Therefore all
eigenvectors of Wk are by construction orthogonal to gk.

4In principle, optimal basis vectors ρpk could be chosen as part of problem
(9). However, alongside other numerical issues this would introduce awkward
bilinearities, since matrices Rp multiply other optimization variables. There-
fore we restrict ourselves to an a priori choice before solving (9).
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IV. NUMERICAL EXAMPLE

We now demonstrate the approach on the output of a real-
world weather forecast model, applied to a lumped model
of the Great Britain (GB) power system based on real data.
Subsection IV-A explains how the uncertainty scenarios δ(n)

are extracted from the weather model, and Subsection IV-B
explains how these feed into the power system model.

A. Weather forecast model
We consider the output of a numerical weather prediction

model in which atmospheric dynamics are solved over a large
grid containing Ngrid cells. It consists of an ensemble of
forecast scenarios, q(n) = [q

(n)
1
′, q

(n)
2
′, . . . , q

(n)
T
′]′ for n =

1, . . . , Nens. Each sub-vector q(n)k ∈ RNgrid

+ contains the value
of the weather variable modelled at each of Ngrid points, at
time step k in scenario n.

In this simulation q
(n)
k represents modelled wind speeds.

To obtain wind power forecasts, q(n)k must be mapped to
normalized power availability via a wind turbine characteristic
function, y(n)k = f(q

(n)
k ), where f : RNgrid

+ → [0, 1]Ngrid .
Only some forecast locations will be relevant to the power

system. Assuming for ease of presentation that wind farm
locations coincide with grid points, the wind power output
at time k under scenario n can be expressed in the vector

ywf
k

(n) := Φwfy
(n)
k , (18)

where the rows of matrix Φwf ∈ RNδ×Ngrid contain a non-
zero element equal to the wind farm rating for the appropriate
grid point. Nδ is the number of wind farms, and therefore
the dimension of forecast errors arising for wind farms, as
described below. We define ywf(n) := [ywf

1
(n)′, . . . , ywf

T
(n)′]′

and E[ywf ] = 1
Nens

∑Nens

n=1 y
wf(n).

Relating this to the model described in Section II-A, each
device i’s vector of uncontrolled power outputs over the
forecast horizon, ri ∈ RT , is then given by

ri := rotheri + ΨiE[ywf ] (19)

where rotheri denotes uncontrolled flows that are unrelated
to the wind model, such as power demand. Each block-
diagonal matrix Ψi ∈ RT×NδT contains “ones” selecting the
appropriate elements of E[ywf ], or contains only zeroes if
participant i does not include a wind farm.

We define δ := ŷwf − E[ywf ] as the difference between
forecast and realised quantities. Then the matrices Ψi also
describe how forecast errors feed into the grid as described in
Section II-A, i.e. Gi = Ψi. This respects Assumption 1.

B. Power system model
A lumped network model5 of the island of Great Britain

(GB) in 2030 was created, in order to simulate a look-ahead
optimization over 12 one-hour steps. The electricity supply
capacities and gas generation costs were based on the National
Grid (NG) Future Energy Scenarios (FES) 2016 [14]; the
transmission zones were based on the 7 simplified regions
presented in [15], with transmission capacities between these
zones as estimated for 2030 in NG’s public ELSI model.6

5http://control.ee.ethz.ch/index.cgi?page=publications&action=details&id=5656.
6http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=39022

n = 1
k = 1

n = 1
k = 3

n = 1
k = 5

Fig. 1. Slices from the ensemble forecast output of the MOGREPS model,
showing wind speed for scenario n = 1. Black represents a wind speed of
zero, and white represents speeds of at least 15 m/s. The forecast was carried
out at 03:00 on 2nd Nov 2014, and k is measured from this time.

Non-wind generation was modelled as 49 controllable de-
vices, in part according to the layout of existing generation and
in part under reasonable assumptions given the long-term lo-
cational incentives offered by GB’s TNUoS charging regime.7

Each zone contained generation classed as Biomass/CHP,
Gas, Hydro, Interconnectors, Nuclear, Other Renewables, or
Storage.

The simulation was fed by the Met Office MOGREPS model
of the region, as illustrated in Fig. 1. This contains a control
forecast plus 11 perturbed variations; for demonstration pur-
poses these were considered as Nens = 12 equally-weighted
scenarios. Each scenario contains Ngrid = 230,287 spatial
points evenly covering the geographical area in a 2 × 2 km
grid, and hourly time steps out to 36 hours ahead, of which the
first 12 were used. 337 wind farm locations were derived from
real-world data, with capacities consistent with projections for
2030. As a result, the dimension of the uncertainty introduced
to the model is also Nδ = 337. The normalized wind power
mapping f(·) took value 0 for argument below 4 m/s, increased
from this point to a maximum of 1 at 16 m/s, and kept this
value up until a cut-out speed of 24 m/s, above which point
it took value 0.

The computer had an Intel Core i7 CPU at 2.3 GHz (4 cores
with 2 threads each), and 16 GB RAM. Implementation was
in Python 2.7 and Gurobi 6.5.0.

C. Summary of approach

The following steps were used to construct the reduced-
order response to an (Nens × Ngrid × T )-dimensional raw
forecast dataset for given approximation order P :

(a) Convert raw wind speed scenarios q(n) to wind power
availability y(n);

(b) Map power availability at the Ngrid raw forecast points
to wind farm power availability at the Nδ wind farm
locations, ywf(n) = Φwfy(n);

(c) For each time step k, form matrix Wk according to (17),
with δ(n)k = ywf

k
(n) − E[ywf

k ];
(d) Set ρPk = g, and if P > 1 set ρpk = λp,k as described in

Proposition 1 for p = 1, . . . , P − 1, for all steps k;
(e) Form matrices Rp and insert into problem (9) using

relationship (11).

7http://www2.nationalgrid.com/UK/Industry-information/System-charges/
Electricity-transmission/Transmission-network-use-of-system-charges/
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Fig. 2. Basis vectors for P = 3, for responding to correlated wind power
forecast errors during hour k = 4. The figures show visualizations of vectors
λ1, λ2, and gk , as derived from the method in Proposition 1. Clear structures
arise from the underlying forecast data; within each component, forecast errors
at blue points are negatively correlated with those at red points. Note all
elements of gk (third plot) are positive, since these relate higher-than-expected
wind power availability to grid power injections.

D. Results

The following configurations were simulated:
(1) Perfect foresight: A deterministic optimization was car-

ried out with full knowledge of the realization of δ, (a)
for the nominal case δ = 0, and (b) for each δ scenario
and averaging the resulting costs.

(2) Full time-coupled (lower-triangular) policy matrices
Di: The uncertainty model reduction procedure of
Proposition 1 was performed.

(3) Diagonal policy matrices Di: As with (2) above, but
with the recourse matrices Di restricted to block-
diagonal form. The effect of this is to disallow time
coupling in the control policy. This resembles current
secondary reserve mechanisms, as discussed in [1].

The resulting costs and computation times are given in
Table I, and an example of the reduced forecast model is
shown in Fig. 2 for P = 3. Costs decreased rapidly for even
modest choices of P above 1, and costs also reduced when
time-coupled responses were permitted.8 Solver time increased
steeply beyond P = 3 in case (2), which may in part be
related to the numerical conditioning of the problem. In case
(3), time-decoupled policies, the diagonal form of matrices
D
p

i allowed the solver to eliminate the off-diagonal variables
and solution times are lower. The average reserve cost under
perfect foresight, case (1b), represents a lower bound (0.439%
in this case) on the cost that one could aim to achieve for any
causal policy with a robustness requirement; configuration (2)
with P as low as 3 was almost able to match this.

V. CONCLUSIONS

We have demonstrated a means of solving stochastic
look-ahead optimization problems made difficult by high-
dimensional forecast uncertainty, with particular application to
power system control. The method allows the raw output of
a real-world numerical forecast model to be incorporated into

8On the test hardware it was not possible to solve the unreduced model
(P = Nδ), which has over 2.4 million decision variables. We also note that
since Nens = 12 in this case, the full original forecast information can in
fact be reconstructed with P = 12, although this was also too large to solve
on the test hardware.

TABLE I
NUMERICAL RESULTS

Configuration Vars1 Cost Reserve Solver
(×106) cost time2 (s)

(1a), δ = 0 588 7.39775 — 0.020
(1b), average 588 7.43023 0.439% 0.020
(2), P = 1 4410 7.47856 1.092% 4.36
(2), P = 3 12054 7.43194 0.462% 8.57
(2), P = 5 19698 7.43087 0.448% 1086
(3), P = 1 1176 7.66483 3.610% 2.53
(3), P = 3 2352 7.57503 2.397% 3.76
(3), P = 5 3528 7.52922 1.777% 6.25

1 Excludes variables trivially constrained to zero.
2 Plus basis computation time in cases (2) and (3) of 2.77 s.

balanced system dispatch decisions, and preserves the main
spatial and temporal correlations while substantially reducing
the number of decision variables required.

Although this paper has focused on a power system appli-
cation, our approach to uncertainty model reduction is generic
and can be extended to other systems with similar structure
to (9), in which expected costs for multiple devices or agents
should be minimized in the presence of local constraints and
coupling (equality and/or inequality) constraints.
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