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A method is presented for estimating the error covariance of the errors in the model
equations in observation space. Estimating model errors in this systematic way opens up
the possibility to use data assimilation for systematic model improvement at the level of
the model equations, which would be a huge step forward. This model error covariance is
perhaps the hardest covariance matrix to estimate. It represents how the missing physics
and errors in parametrizations manifest themselves at the scales the model can resolve.

A new element is that we use an efficient particle filter to avoid the need to estimate the
error covariance of the state as well, which most other data assimilation methods do require.
Starting from a reasonable first estimate, the method generates new estimates iteratively
during the data assimilation run, and the method is shown to converge to the correct
model error matrix. We also investigate the influence of the accuracy of the observation
error covariance on the estimation of the model error covariance and show that, when the
observation errors are known, the model error covariance can be estimated well, but, as
expected and perhaps unavoidably, the diagonal elements are estimated too low when the
observation errors are estimated too high, and vice versa.
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1. Introduction

Linear and linearized data assimilation (DA) rely on prescribing
or accurately estimating covariance matrices, related to the
(near-)Gaussian assumptions on the probability densities in
Bayes Theorem. For example, standard 3D- and 4D-Var stand
or fall with an accurately prescribed state covariance B, and an
accurately prescribed observation error covariance R. Especially
for the former, numerous person-years are typically needed
to tune the prior state covariance matrix. Ensemble Kalman
Filters and Smoothers need an accurate R, and their prior
covariance at each observation time is the sample covariance
from the ensemble (Evensen, 1994; Evensen and van Leeuwen,
2000). Because of the small ensemble size that can be afforded
in numerical weather prediction, that matrix is rank deficient,
underestimates the covariances, and has large Monte Carlo errors,
resulting in spurious long-range correlations. Ad hoc methods
like inflation and localization are needed to generate useful prior
covariances from the sample covariance matrix (Anderson, 2007,
2009). (Of course, for high-dimensional systems the covariance
is never calculated explicitly, but the issues and partial solutions
mentioned above are still relevant.) Several issues arise when
using inflation and localization, for instance how to localize
for an observation that is an integral along a line. In so-called

hybrid methods that combine variational and Ensemble Kalman
Filter methods, the estimation problems do not disappear, and in
iterative ensemble smoothers like 4DEnsVar one has to estimate
space–time covariances from an ensemble, leading to further
problems with localization in time (Liu et al., 2008; Buehner et al.,
2010).

Several methods to estimate state covariances have been
developed, and Bannister (2008a, 2008b) gives a good overview
of what has been done. The so-called Desroziers diagnostic
(Desroziers et al., 2005) has become very popular because of its
relative simplicity. It uses the statistics of innovations and analysis
minus observations to estimate either the prior covariance B
in observation space, or the observation error covariance R,
or sometimes both, exploring relations from linear estimation
theory. Estimation of R is very popular nowadays because it has
become clear that correlations between observation errors need
to be taken into account to extract most information from the
observations and to obtain the best analysis (Stewart et al., 2013;
Weston et al., 2014). Another issue is that the error covariances B
and R should have different characteristics, such as length-scales,
to be able to estimate both matrices together.

Recently the Desroziers method has also been used to estimate
the model error covariance Q. Todling (2015a, 2015b) gives an
alternative method to diagnose model error, which requires two
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overlapping DA systems, one sequential filter and one fixed lag-1
smoother. The model error diagnosed by Todling (2015a, 2015b)
comes from the differences between two model states. Todling
stresses the problem that estimating Q while R and B are not
known precisely can lead to attributing structures to Q that
belong in R and especially B, and vice versa.

A major advantage of particle filters is that the prior state error
covariance does not play a role, so B does not have to be prescribed
or estimated. So, under the perfect model assumption, the only
matrix to be estimated is R. No studies have been performed in this
direction to our knowledge. One of the reasons is that standard
particle filters are degenerate when the number of observations is
large, meaning that the weight that each particle obtains during
the assimilation varies enormously over the particles, with one
particle having a much larger weight than all the others. This then
means that the ensemble effectively has collapsed onto that one
particle.

Three solutions have been presented in the literature: localized
particle filters, like the Local Ensemble Transform Particle Filter
by Reich (2013), and the localized particle filter by Poterjoy
(2016), methods that combine Particle Filters with Ensemble
Kalman Filters (Lei and Bickel, 2011; Frei and Künsch, 2013),
and methods that explore the proposal density freedom (Chorin
and Tu, 2009; van Leeuwen, 2010; Zhu et al., 2016). Reich (2013)
estimates a local transformation matrix via optimal transportation
to transform the weighted prior ensemble into an equal-weighted
posterior ensemble, while Poterjoy (2016) employs a very delicate
smoothing procedure to ensure smooth resampled particles. A
problem with particle filters that use localization is that the
localization radius has to be taken very small to avoid this weight
collapse, as the variance of the weights scales with the number
of independent observations within the localization area. The
Poterjoy (2016) scheme avoids this issue by setting a minimal
weight for each particle, and this issue has not been discussed yet
for the other schemes. Furthermore, issues with localization as
mentioned above for ensemble Kalman filters play a role here too,
and also inflation has to be applied. The second method needs
to estimate sample covariance matrices for the EnKF part of the
algorithm, again with the same issues as above. The third method
needs model errors to be able to move the particles in state
space different from the deterministic model equations. Hence
for particle filters practical for high-dimensional geophysical
problems, we need localization or we need to estimate Q.

Interestingly, there is a huge advantage having to estimate Q
over B. B is just a statistical quantity that tells us something about
the accuracy of a best estimate, while Q contains information
about how and where our model is wrong. So estimating Q gives
us a direct route to improving our model, one of the holy grails
of DA, in which very little progress has been made in the last
30 years.

This article is organized as follows. The new scheme for
estimating the model error covariance is described in section 2;
other variants are described in Appendix 4, and details on
convergence are presented in Appendix A2. The method is tested
on the 1000-dimensional Lorenz-96 model and discussed further
in section 3. A summary and conclusions are included in section 4.

2. Estimating the model error covariance

In the Desroziers diagnostic, one calculates the innovation and/or
the analysis minus observation statistics, or the statistics of the
combination of these two. In a particle filter there is no unique best
forecast or analysis. One could choose the ensemble mean, but
that is not always the natural choice, for instance the probability
density functions (pdfs) can be bimodal with modes of similar
magnitude. So, instead, it is natural to explore the innovations of
all particles. The model equations are denoted as

xn = f (xn−1) + βn, (1)

in which the superscript denotes the time index, f (..) denotes
the nonlinear deterministic model, and βn denotes the stochastic
term representing the missing physics in the model, taken as
additive noise drawn from N(0, Q).

To simplify the notation we introduce fi = f (xn−1
i ) with i the

particle index, f is the ensemble mean of the fi, and ft = f (xn−1
t )

in which the subscript t denotes the true state. We then find

yn−H(fi)

= yn − H(xn
t ) + H(xn

t ) − H(fi)

= εn
o + H(xt − ft + ft) − H(fi)

≈ εn
o + H̃(xt − ft) + H(ft) − H(fi)

= εn
o +H̃εn

q +H(ft)−H(f )+H(f )−H(fi), (2)

in which εn
o = yn−H(xn

t ), εn
q = xt−ft. This allows us to write

yn − H(fi) ≈ εn
o + H̃εn

q + vn
t + vn

i , (3)

in which the approximation is due to the Taylor series expansion
of H at point ft and H̃ is the derivative of H to its argument at
that point. If H is linear, the above is true without approximation
taking H̃ = H.

From now on we will denote H(..) (note the parentheses) as the
full nonlinear H, and H.. (without parentheses) for the derivative
of H(..) at the true value. Furthermore,

vn
i = H(f ) − H(fi) (4)

and similarly for vn
t = H(ft) − H(f ).

Assuming all terms in the particle innovations are independent,
we can now form

C = 1

N − 1

∑
i

{yn − H(fi)}{yn − H(fi)}T

= R+HQHT+ 1

N−1

∑
i

vn
t vn

t
T+ 1

N−1

∑
i

vn
i vn

i
T, (5)

in which we use the linearized H in the last line exploring
the notation explained above. We now note that, for a well-
performing DA system, on average the distance of an ensemble
member to the ensemble mean is equal to the distance between
the truth and the ensemble mean, so the ensemble variance is
equal to the square of the RMSE, so that the last two terms are
approximately equal. This allows us to approximate

C = R + HQHT + 2V (6)

with

V = 1

N − 1

∑
i

vn
i vN

i
T

= 1

N−1

∑
i

{H(f ) − H(fi)}{H(f ) − H(fi)}T. (7)

This then allows us to find an estimate for HQHT as:

HQHT = C − R − 2V. (8)

As with the Desroziers diagnostics, we could also try to use the
statistics of (yn − Hxn

i ), i.e. the difference between observation at
time n and the ensemble members at time n. In the appendix we
show that, at least for the particle filter we use here, these methods
do not reveal new information, but they rather complicate the
computation of HQHT.

The ensemble estimate of C and V , and hence HQHT will be
of very low rank because of the limited ensemble size, typically of
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order 10 to 250. This leads to a large sampling error. To this end,
we apply averaging over both space and time of the estimated
HQHT, as described below.

An important point is that the scheme described above only
updates Q in observation space, so HQHT, and the rest of Q
is untouched. This is a shortcoming of the estimation scheme,
similar to estimating HBHT using innovations in linear estimation
theory. A partial solution is to identify parts of the state space
with similar physics and copy HQHT from observed parts of the
state space to unobserved parts with similar physics. For parts of
the state that have no observed counterpart defined in this way we
would have to rely on interpolation, with all problems attached
to that. We have no full solution to this problem. In the following
we assume we can estimate Q completely, and in the numerical
experiments we assume that we observe the whole state space.

2.1. Temporal smoothing

The temporal averaging is described by the following algorithm.

Algorithm 1 Estimating Q

1. Q0 ← sB
2. for k ← 1, 150
3. Qe ← Estimate Q (using Q = Q0 in the DA)
4. Qm ← k−1

k Qm + 1
k Qe

5. end for
6. for k ← 151, 250
7. Qe(k)←Estimate Q(updating Q=Qm in the DA)
8. Qm ← k−1

k Qm + 1
k Qe

9. end for

In the algorithm, Qe(k) is the estimated model error covariance
in time step k and Qm is the average of the Qe matrices in the past
k time steps. s is a scalar which is multiplied by B to find an initial
value of Q0. This B matrix comes from the prior at the start of
the DA procedure, and plays no role in the rest of the algorithm
or the particle filter. If better initial estimates of Q0 are available,
they should be used, of course. The algorithm is split in two parts.
The first part uses the first-guess model error covariance Q0 as
the current value in the first 150 time steps of the DA. So, we
do estimate Q at each observation step, but we do not use that
raw estimate yet in the DA. The second part uses the average of
the estimated model error covariances as the current estimate of
model error covariance in the DA. The reason for this two-stage
algorithm is that, because of the relatively small ensemble size,
the instantaneous estimates for Q have large sampling error, and
the temporal averaging will increase this sample size. The initial
averaging is taken here over 150 time steps in the pseudocode and
the total running time of the whole scheme is 250 time steps, but
that can (and should) be tested for each DA system separately.

2.2. Spatial smoothing

Because of the small ensemble size, the temporal filtering will not
be enough, or has to be done over an unrealistically long time,
to eliminate sampling error even in places where the correlations
are high. To this end we smooth the elements over areas that we
know have similar physics. In this paper two ways of smoothing
are applied, localization to smooth perpendicular to the diagonal,
and a simple 10 grid-point moving average over the diagonals of
the estimated covariance matrix.

Localization is a way of increasing the rank of the estimated
model error covariance matrix and eliminating spurious
long-distance correlations. A simple localization strategy has
been implemented here, which is the covariance localization
(Houtekamer and Mitchell, 2001). Covariance localization is
performed by element-wise (Shur) multiplication of the model

error covariance matrix with a predefined correlation matrix
(denoted as L here) representing a decaying function of distance:

Qk
s = L ◦ Qk

m. (9)

We use a localization radius of five grid points. Many other
localization methods could be considered, tailored to specific
applications.

2.3. Convergence of the method

In the following we discuss the convergence properties of the
scheme used to estimate the model error covariance matrix
HQHT. The actual convergence of the method will depend on
the particle-filter method used. Here we provide results using
the Implicit Equal-Weights Particle Filter (IEWPF) of Zhu et al.
(2016) as an example of how one could go about such a proof.
We first describe that particle filter briefly, followed by the actual
proof.

2.3.1. The implicit equal-weights particle filter

The Implicit Equal-Weight Particle Filter (IEWPF) is described
in detail in Zhu et al. (2016). It is a particle filter that uses a
proposal density as follows. For simplicity we concentrate only
on the states at time n and n − 1, and assume that all observations
up to time n − 1 have been used to find a set of particles at n − 1
with weights wn−1

i . Then we can write

p(xn, xn−1|yn) = p(yn|xn)

p(yn)
p(xn|xn−1)p(xn−1)

= p(yn|xn)

p(yn)
p(xn|xn−1)

1

N

∑
i

{δ(xn−1 − xn−1
i )}

= p(yn|xn)

Np(yn)

×
∑

i

p(xn|xn−1
i )

q(xn|X n−1, yn)
q(xn|xn−1, yn){δ(xn−1−xn−1

i )} (10)

in which q(xn|X n−1, yn) is the proposal density that is conditioned
on all particles at time n − 1, indicated by the X n−1. It will be
chosen such that the weights of all particles are equal. We note
that, no matter what we choose for q, the weights will be given by

wi = p(yn|xn
i )

p(yn)

p(xn
i |xn−1

i )

q(xn
i |X n−1, yn)

. (11)

Instead of drawing directly from q, which will be complicated
because of the equal weight procedure, we draw implicitly from a
Gaussian q(ξ), leading to weights

wi = p(yn|xn
i )

p(yn)

p(xn
i |xn−1

i )

q(ξ)

∥∥∥ dx

dξ

∥∥∥. (12)

As explained in Zhu et al. (2016), equal-weight particles can be
constructed for instance by assuming

xn
i = f (xn−1

i )+K{yn−Hf (xn−1
i )}+α

1/2
i P1/2ξn

i , (13)

where
K=QHT(HQHT+R)−1 and P= (Q−1+HTR−1H)−1, where Q is
the model error covariance matrix, H is the observation operator
and R is the observation error covariance matrix, and in which αi

is a free parameter. Using this expression in the expression for the
weights, the weight of particle i becomes a nonlinear function of
parameter αi, for each particle index i. We now set a target weight
as the lowest maximal weight of all particles, so

wtarget = mini{maxxi (wi)} (14)

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. (2017)



M. Zhu et al.

and fix the αs such that the weight of each particle is equal to this
target weight by solving

wi(αi) = wtarget. (15)

As mentioned, full details are given in Zhu et al. (2016).

2.3.2. Convergence results

The proof of convergence is rather lengthy and is provided in
Appendix A2. The numerical experiments in the next section
confirm this convergence on a nonlinear 1000-dimensional
problem.

3. Experiments

In this section we will verify our scheme in a moderately high-
dimensional setting of the Lorenz 1996 model. The Lorenz 96
model (Lorenz, 1995) is a dynamical nonlinear model given by:

dxj

dt
= −xj−2xj−1 + xj−1xj+1 − xj + F, (16)

where xj is the state variable of the model at position j and F
is a forcing constant, which is typically chosen as 8 for chaotic
behaviour. The dimension of Lorenz 96 model is chosen as 1000
for all experiments discussed here. We use a time step of�t = 0.05
with a fourth Runge–Kutta scheme for the deterministic part and
an Euler–Maruyama scheme for the stochastic part of the model.

The detailed description of the IEWPF scheme can be found
in Zhu et al. (2016). For the IEWPF scheme we choose the initial
background-error covariance matrix B as a tridiagonal matrix
with main diagonal value 1 and sub-/super-diagonal value 0.25.
The true model error covariance matrix Qt is also chosen as a
tridiagonal matrix with main diagonal value 0.2 and both sub-
and super-diagonal values are 0.05 for all the experiments in this
section. The observation error covariance denoted as R is chosen
as a diagonal matrix, with variances varying with experiment.
The initial ensemble member perturbations are generated by
random sampling from a Gaussian with covariance matrix the
background-error covariance and with zero mean.

To illustrate the method, we observe every grid point at every
time step for the model evolution process for all the experiments
in this paper. This approach was taken because it is unclear how
results from extensive experimentation with different observation
strategies will carry over to other models.

The typical total evolving time of the modelling scheme is set
to be 250 time steps, with a few longer experiments to study
convergence. The temporal averaging time is set to 150 time steps
and the second iterative part of the estimation scheme is set to
100 time steps for all the experiments except for those described
in section 3.4.

3.1. The importance of spatial smoothing

The spatial smoothing strategy is described in section 2.2, and
the localization radius is chosen to be five grid points, with a
ten-grid-point moving average along the diagonal.

We choose R = 0.005 and the initial first guess Q0 = 0.25B.
The number of ensemble members is set to be 40.

Figure 1 shows the 1000 main diagonal entries of the estimated
model error covariance with and without smoothing after the 250
time steps, which are arranged in a 40 × 25 matrix in sequential
order.

It shows that smoothing strongly reduces the variance of
the noisy main diagonal entries, leading to a more accurate
covariance than without smoothing. Part of the full estimated
model error covariance matrix with and without smoothing is
given in Figure 2.
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Figure 1. The main diagonal entries of estimated model error covariance Qm

with R = 0.005, 40 ensemble members and Q0 = 0.25 (a) with and (b) without
smoothing.

3.2. Sensitivity to ensemble size

Since the number of the ensemble members will always be
much smaller than the rank of the model error covariance, we
need to use the localization and smoothing described above. We
investigate the impact of the ensemble size while incorporating
this localization and smoothing. The ensemble size is increased
from 40 to 200 and 400. The main diagonal value of observation
error covariance is again set to 0.005. The initial first guess of
model error covariance is again Q0 = 0.25B.

Figure 3 depicts the time evolution of the estimated main and
sub-diagonals of the estimated Q matrix. What strikes the eye
is the large value at initial times, much larger than the initial
estimate of Q, which is 0.25 for the main diagonal. The reason
is simply that the DA needs some time to adjust, and the values
we see here are actually close to those of the initial background
covariance matrix B. After a few time steps those values are
forgotten and we settle quickly at the correct value, which is 0.2.
This transient is visible in all experiments, both for the diagonal
and the off-diagonal elements.

The true values are 0.2 and 0.05. The figure shows that the
ensemble size has little impact on the estimation methods.
Therefore a small ensemble size of 40 is used in the rest of
this paper. We do note, however, that this result does depend on
the amount of localization and smoothing used in the estimate
of Q.
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Figure 2. Enlarged part of the estimated model error covariance (a) with and (b)
without smoothing.

3.3. Sensitivity to initial model error covariance Q0

In the following experiments we study the sensitivity of the
estimation scheme to different initial covariance estimates Q0.
Specifically, we test the behaviour of the scheme for Q0 = 0.5B,
0.25B and 0.1B. The observation error variance is set to be 0.005
and the ensemble size is 40.

Figure 4 illustrates that the convergence rate of the mean
diagonal and super- and sub-diagonal values is not sensitive to
the value of Q0, at least not in the range tested here.

3.4. Sensitivity to observation error covariance R

In this section two studies will be performed. First we will test the
sensitivity of the method to different values of the observation
error covariance matrix R, followed by experiments in which we
assume wrong values for R in the assimilation scheme.

We first test the behaviour of the scheme for diagonal values
of the observation error covariance set to 0.005, 0.05, 0.1 and
0.2. Forty ensemble members are used in this experiment and the
initial first guess is set to Q0 = 0.25B.

All values for R showed convergence of Q to the true value
as above, except the largest value of R = 0.2 I. We found that
when R = 0.2 I the estimation scheme is struggling to find good
values for Q because the estimated matrix is not positive definite.
Instead of fixing that directly, we used the practical approach
which can easily be applied to larger systems too. Instead of using
Q = C − R − 2V, we use Q ∼ C − R − 1.5V in our initial 150
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Figure 3. Time evolution of (a) the mean of the main diagonal entry and (b) the
mean of the sub-/super-diagonal entries using three different ensemble sizes.
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Figure 4. As Figure 3, but for three different values of Q0.

estimates, and use Q = C − R − 2V in the resulting 100 time
steps.

Figures 5 and 6 show that accurate estimates for Q can be
obtained, but the convergence is to a too high value of Q in the
first 150 time steps. Using the correct equation for estimating Q
in the rest of the time steps gives a slow but definite convergence
to the true value. The slow convergence is thought to be due
to two processes. Firstly, new estimates for Q contribute a small
amount to the Q used in the DA scheme because the new estimate
is averaged with all the old estimates of Q. Secondly, a larger
value of elements in R will lead to a larger ensemble spread, so a
larger amplitude of spurious fluctuations, so slower convergence
to the actual value. With reference to Appendix A2, the slow
convergence suggests that the matrices An and Bn, which contain
these ensemble averages, are larger here then for smaller R.

We now test the performance of the scheme when R is not
known very accurately. This is the more realistic case. Our tests
allow for a 50% error in R, so we test the scheme for diagonal
values of R in the range 0.025, 0.05, and 0.075, with a true value
of R = 0.05.

Figure 7 shows that the diagonal elements for Q are well
estimated when the true R is used, but systematically too high and
too low when the diagonal values of R are chosen too low and
too high, respectively. This is a direct consequence of the way we
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Figure 5. Time evolution over 350 time steps of the main diagonal entries of
estimated model error covariance with four different values for R.
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Figure 6. As Figure 5, but for the super- and sub-diagonal entries of estimated
model error covariance.

calculate Q. On the other hand, as shown in Figure 8, the super-
and sub-diagonal elements in Q are affected to a much lesser
extent, showing that only those elements in Q which are directly
affected by R suffer most from an inaccurate R estimate.

4. Conclusions and discussion

A new iterative scheme of estimating model error covariance
in observation space, HQHT, using particle filters is presented,
exploring the innovation vectors of all particles. A simple temporal
and spatial smoothing strategy is applied in the new scheme to
speed up and stabilize the estimating process, increasing the rank
of the estimated matrix and adding smoothness where we expect
that to be appropriate. A convergence proof for the new method
has also been developed.

The new scheme is easy to implement with the implicit equal-
weights particle filter. It was tested using numerical experiments
on the 1000-dimensional Lorenz (1996) model. The ensemble
size has little impact on the estimating procedure, related to the
temporal and spatial smoothing and localization applied. The
resulting model error covariance matrices quickly converge to the
correct matrix. These results are robust to varying initial guesses
for Q, and varying sizes of observation error. Large values for
the observation errors lead to slower convergence of the method
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Figure 7. Time evolution of the main diagonal entries of estimated model error
covariance with inaccurate R.
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Figure 8. Time evolution of the sub-/super-diagonal entries of estimated model
error covariance with inaccurate R.

as the ensemble spread will be larger, so the sampling errors are
larger.

We also tested the method in the situation where R is not
known accurately. The results are as reported for the Desroziers
method when trying to estimate HBHT, i.e. too low R values
lead to too large HBHT values and vice versa (Desroziers et al.,
2005, 2009). Our numerical experiments indicate that only those
elements of Q in which R is inaccurate are affected, but the
generality of this statement is not tested, and is difficult to test
exhaustively using only the simple model used here.

A weakness of the method is that we can only estimate HQHT,
so Q in observation space. Indeed, in the experiments we assumed
that the whole state space is observed directly, which is not very
realistic. For a full Q one will have to rely on spatial interpolation,
with all problems related to that. Furthermore, H is assumed to
be linear, or its linearization has to be accurate. However, apart
from spatial smoothness we can explore the connection to the
physics. Since Q is related to model physics, one could use that
part of Q estimated in an observed area to infer Q in unobserved
areas with similar physics. This is a clear advantage of estimating
Q over B: Q is a matrix related to the model physics, while B
is a matrix related to the accuracy of the state, which will vary
over space and time, not directly related to the physics (Bannister,
2008a, 2008b).
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We assumed that the HQHT matrix can be stored, which will
not be true in realistic high-dimensional applications. However,
Q, and hence HQHT will be a narrow matrix, as it represents
the influence of model errors which are largest at the model grid
scale, with small horizontal length-scales. So we only have to store
the (block) diagonal and a few super- and sub- (block) diagonals,
which should not be too problematic. This statement is not true
for non-local observations, such as several satellite observations
that are line integrals. In that case Q is still sparse, but off-diagonal
elements can be large, and localization has to be done with care.
Ideally one would like to store Q in operator form, but it is unclear
at this moment how to estimate these operations directly. That
would mean that one would need to generate Q1/2x for arbitrary
x; this needs further research, which could be quite exciting in its
own right.

The accuracy of the method for estimating Q is dependent
on the accuracy which with we know R. Unfortunately, when
our estimate of R is poor, we will get less accurate estimates
for Q without knowing this to be the case; the method cannot
detect issues like this. The most straightforward test might be to
study the statistics of predictions, which is a non-trivial exercise
given the complex relation in a nonlinear model between errors
in Q and errors in prediction statistics. In our experiments we
only looked at diagonal R, while it is well known that R tends
to be non-diagonal, for instance due to representation errors
(Stewart et al., 2008; van Leeuwen, 2014; Hodyss and Nichols,
2015). Although not studied, the expectation is that inaccurate
off-diagonal elements in R will lead to inaccurate non-diagonal
elements in Q. Another related issue is that we assumed that
the observation operator H is known exactly, which is often not
the case. To first order (Lorenc, 1986; van Leeuwen, 2014), these
errors can be incorporated in R, and the discussion above holds
also for this case.

Although estimating Q is in its infancy, it is good to realise the
importance of increasing the effort in this area. Estimated model
errors give us a direct insight into which parts of the model are
in error at the level of the model equations, allowing for direct
model improvement. That would make DA into a tool much
more powerful than is used at present. It is true that there are
numerous issues with estimating Q, and no doubt we will never
be able to estimate it completely, but that is not an argument for
not trying. The potential benefits are enormous.

Appendices

A. Estimating Q using the analysis ensemble

In this appendix we describe two other methods for estimating
HQHT, and show that they will be less efficient than the method
presented in the main text.

A1. Estimating Q based on (yn−Hxn
i )(yn−Hxn

i )T

This method uses the analysis instead of the forecast to form the
covariance, as:

C = 1

Ne − 1

Ne∑
i=1

(yn − Hxn
i )(yn − Hxn

i )T. (A1)

To evaluate this, we use, suppressing the time index n,

y−Hxi = y−Hxt + Hxt−Hxi

= y−Hxt + Hxt−Hft + Hft−Hxi. (A2)

Now we use the expression for xi from the IEWPF, given by:

xi = fi + K(yn − fi) + α
1/2
i P1/2ξi (A3)

leading to

y − Hxi = L(y − Hxt) + LH(xt − ft)

+ LH(ft − fi) − HP1/2α
1/2
i ξi, (A4)

in which we defined L via

L = (1 − HK)

= {
1 − HQHT(HQHT + R)−1

}
= R(HQHT + R)−1. (A5)

Using this expression in C, and assuming that all cross-terms
vanish, leads to

C ≈ LRLT + LHQHTLT + 2LVLT + W, (A6)

in which

V ≈ 1

N − 1

N∑
i=1

(Hfi − f̄ )
(

Hfi − f̄
)T

(A7)

and

W = HP1/2 1

N − 1

N∑
i=1

αiξiξi
TP1/2T

HT. (A8)

We thus find

LHQHTLT ≈ C − L(R + 2V)LT − W, (A9)

which is similar to the expression for HQHT from the main text,
but contains an extra matrix L, and W. To solve this equation,
one can rewrite it as

LHQHTLT = D (A10)

with

D = C − L(R + 2V)LT − W. (A11)

One way to solve this equation is to define Z = HQHTLT leading
to

LZ = D, (A12)

and form an SVD of L = U�VT to find

Z = V�−1UTD. (A13)

Now solve Z = HQHTLT using the same SVD of L as

HQHT = V�−1UTDU�−1VT. (A14)

This method is much more involved as it needs the SVD of L,
which can be prohibitively expensive when the dimension of the
system is large. Other methods than the SVD could be explored,
but that is beyond the scope of this paper.

A2. Estimating Q via {yn−Hf (xn−1
i )}(yn−Hxn

i )T

Finally, Q could be estimated exploring the cross-covariance via

C = 1

N−1

N∑
i=1

{
yn−Hf

(
xn−1

i

)}
(yn−Hxn

i )T. (A15)
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To evaluate this, we again suppress the time index and use the
expressions for (y − Hfi) and (y − Hxi) to find for C

C ≈ RLT + HQHTLT + 2VLT, (A16)

in which

V ≈ 1

N − 1

N∑
i=1

(Hfi−Hf̄ )(Hfi−Hf̄ )T (A17)

and

L = (1 − HK). (A18)

Furthermore, we assumed that the αi term cancels with the other
terms on average.

We can rewrite this equation as

HQHTLT = D, (A19)

with

D = C − (R + 2V)LT. (A20)

Define the SVD of L as L = U�VT to find

HQHT = DU�−1VT. (A21)

This method is better conditioned than the method above, but
still needs the SVD of L.

B. Convergence of the estimation method

First recall that the update equation for the IEWPF from
section 2.3.1 is

xn
i = f (xn−1

i )+Kn(yn−Hf n
i )+(Pn)1/2(αn

i )1/2
ξn

i (B1)

in which now

f n
i = f (xn−1

i ), (B2)

Kn = QnHT(HQnHT + R)−1, (B3)

and

Pn = {(Qn)−1 + HTR−1H}−1, (B4)

and Qn is our current estimate of Q.
In our estimate of C and V, we need to calculate f n

i which can
be written as:

f n
i = f (xn−1

i )

= f
{

f n−1
i +Kn−1(yn−1−Hf n−1

i )

+ αn−1
i

1/2
Pn−11/2

ξn−1
i

}
. (B5)

For ease of notation, we drop the time index from now on, noting
that Q = Qn−1, P = Pn−1, K = Kn−1, α = αn−1, and ξi = ξn−1

i .
Let us now write our estimate Q in terms of the true covariance
Qt and a systematic perturbation, as

Q = Qt + ε, (B6)

in which we assume that the matrix ε is much smaller in magnitude
than Qt. Also note that ε = εn−1, so it is a time-dependent matrix.
Then we can write, to first order in ε,

K = (Qt + ε)HT{H(Qt + ε)HT + R}−1

≈ Kt + εHT(HQtH
T + R)−1

− KtHεHT(HQtH
T + R)−1

= Kt + (1 − KtH)εHT(HQtH
T + R)−1. (B7)

For matrix P we find:

P = {
(Qt + ε)−1 + HTR−1H

}−1

= Q − QHT(HQHT + R)−1HQ

= Qt+ε −(Qt+ε)HT
{

H(Qt +ε)HT+R
}−1

(Qt+ε)

≈ Qt− QtH
T(HQtH

T + R)−1HQt + (1−KtH)ε

− (1 − KtH)εHTKT
t

= Pt + (1 − KtH)ε(1 − KtH)T

= Pt + PtQ
−1
t εQ−1

t Pt. (B8)

We need the square root of Pn in the direction of ε. A first-order
Taylor series expansion for matrix functions reads, for μ a small
scalar,

g(X + μY) ≈ g(X) + μ
d

dμ

∣∣∣∣
μ=0

g(X + μY). (B9)

So we write ε = μE, in which μ is a small scalar, and use
g(X) = X1/2 in the above equation to find:

P1/2 = (
Pt + μPtQ

−1
t EQ−1

t Pt
)1/2

≈ P1/2
t + μ

d

dt

∣∣∣∣
μ=0

(
Pt + μPtQ

−1
t EQ−1

t Pt
)1/2

= P1/2
t + 1

2
μP−1/2

t PtQ
−1
t EQ−1

t Pt

= P1/2
t + 1

2
P1/2

t Q−1
t ε Q−1

t Pt . (B10)

Q also appears in αi, but that dependence is rather complicated
as the argument of an exponential that is part of a complicated
argument of the Lambert W function. Instead we will argue below
that we do not need to explore this further.

Using these first-order approximations, we find for f (xn
i ), to

first order in ε,

f n
i = f (xn−1

i )

= f
{

f n−1
i +Kt(yn−1−Hf n−1

i )+αi
n−1
t

1/2
Pt

1/2ξn−1
i

}
+Fn

i (1−KtH)εHT(HQtH
T+R)−1(yn−1−Hf n−1

i )

− 1

2
Fn

i αit
1/2P1/2

t Q−1
t ε Q−1

t Ptξi

+ Fn
i

(
∂αit

1/2

∂Qt

)T

ε P1/2
t ξi, (B11)

in which Fn
i is the linearized model at state xn−1

i .
We now develop C to first order in ε, leading to

Cn = Cn
t + 1

N−1

N∑
i=1

(yn−Hf n
i )(yn−1−Hf n−1

i )T

×(HQtH
T+R)−1Hε(1−KtH)TFTHT+(..)T

− 1

2

1

N−1

N∑
i=1

(yn−Hf n
i )ξT

i αi
1/2
t PtQ

−1
t εQ−1

t P1/2
t FTHT

+ (..)T

+ 1

N−1

N∑
i=1

(yn−Hf n
i )ξi

TP1/2
t ε

∂αit

∂Qt
FTHT+(..)T, (B12)

where (..)T denotes the transpose of the previous term in the
equation. First we note that, since ξi is independent from all other
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factors and has mean zero when averaged over the ensemble, so
all terms that contain ξi will be small, and even zero for an infinite
ensemble size. We cannot use that argument for the second
term and its transpose because the (yn−Hf n

i ), (yn−1−Hf n−1
i )

and Fn
i have non-zero ensemble means. In fact, using the same

development as in Eq. (2), we find that the ensemble mean for

these terms is εn+βn
t , εn−1+βn−1

t , and Fn
i

T = FT respectively, for
large ensemble sizes. However, these terms are dependent over
time, so when we average over time in the first part of the scheme
used to estimate Q, these terms become small also, and this is
further amplified by smoothing over space.

For the sample matrix Vn we find

Vn =Vn
t + 1

N−1

∑
i

(Hf n−Hf n
i )(Hf n−1−Hf n−1

i )T

×(HQtH
T+R)−1Hε(1−KtH)TFTHT+(..)T

− 1

2

1

N−1

N∑
i=1

(Hf n−Hf n
i )ξT

i αit
1/2

×PtQ
−1
t ε Q−1

t P1/2
t FTHT+(..)T

+ 1

N−1

N∑
i=1

(Hf n−Hf n
i )ξT

i P1/2
t ε

∂αit

∂Qt
FTHT+(..)T, (B13)

and a similar convergence argument applies as for the RHS terms
of Cn.

In the second part of the iterative scheme, we use the estimated
Q in the DA. The update scheme is

Qn = Cn − R − 2Vn

= Ct −R−2Vt+Anεn−1(Bn)T+Bnεn−1(An)T

= Qt + Anεn−1(Bn)T + Bnεn−1(An)T, (B14)

in which An and Bn are small and depend only weakly on εn−1, as
argued above. Furthermore, we can write

Qn = Qt + εn . (B15)

Combining these two equations, we find

Qn = Qt + Anεn−1BnT + Bnεn−1AnT = Qt + εn. (B16)

We thus find for εn the recursion

εn = Anεn−1BnT + Bnεn−1AnT, (B17)

and we can write

|εn| ≤ 2|An| |εn−1| |Bn| . (B18)

Since |An| and |Bn| are small as argued above, this iteration
will make εn smaller and smaller with increasing n, so that
Qn converges to Qt. The numerical experiments confirm this
convergence on a nonlinear 1000-dimensional problem.
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