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symmetric conical pointsI
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Abstract

We study the adjoint of the double layer potential associated with the Laplacian (the adjoint of the Neumann–Poincaré
operator), as a map on the boundary surface Γ of a domain in R3 with conical points. The spectrum of this operator
directly reflects the well-posedness of related transmission problems across Γ. In particular, if the domain is under-
stood as an inclusion with complex permittivity ε, embedded in a background medium with unit permittivity, then the
polarizability tensor of the domain is well-defined when (ε + 1)/(ε − 1) belongs to the resolvent set in energy norm.
We study surfaces Γ that have a finite number of conical points featuring rotational symmetry. On the energy space,
we show that the essential spectrum consists of an interval. On L2(Γ), i.e. for square-integrable boundary data, we
show that the essential spectrum consists of a countable union of curves, outside of which the Fredholm index can be
computed as a winding number with respect to the essential spectrum. We provide explicit formulas, depending on
the opening angles of the conical points. We reinforce our study with very precise numerical experiments, computing
the energy space spectrum and the spectral measures of the polarizability tensor in two different examples. Our results
indicate that the densities of the spectral measures may approach zero extremely rapidly in the continuous part of the
energy space spectrum.

Résumé

Nous étudions l’adjoint du potentiel de double couche associé à l’opérateur de Laplace (l’adjoint de l’opérateur de
Neumann-Poincaré) défini sur la frontière Γ d’un domaine de R3 contenant des points coniques. Le spectre de cet
opérateur est intimement lié à la résolution de problèmes de transmission à travers Γ. En particulier, dans le con-
texte de la propagation des ondes électromagnétiques, si le domaine délimité par Γ représente une inclusion contenant
un matériau de permittivité complexe ε, immergé dans un milieu infini de permittivité égale à 1, on peut définir le
tenseur de polarisabilité dès que le rapport (ε + 1)/(ε − 1) appartient à l’ensemble résolvent de l’opérateur au sens
de la norme d’énergie. Nous étudions des surfaces Γ qui possèdent un nombre fini de points coniques à symétrie
de rotation. Lorsque l’opérateur est défini sur l’espace d’énergie, nous montrons que son spectre essentiel est un
intervalle. Lorsqu’il est défini dans l’espace L2(Γ), i.e. pour des fonctions de carré intégrable sur Γ, nous montrons
que son spectre est constitué d’une union de courbes, en dehors desquelles on peut calculer l’indice de Fredholm
de l’opérateur, comme l’indice par rapport à ces courbes. Nous donnons des formules explicites, en fonction de
l’angle d’ouverture des points coniques. Nous complétons notre étude par des expériences numériques très précises,
où, pour deux exemples, nous calculons le spectre de l’opérateur au sens de l’espace d’énergie et les mesures spec-
trales du tenseur de polarisabilité. Nos résultats suggèrent que les densités des mesures spectrales approchent zéro
extrêmement rapidement dans la partie continue du spectre au sens de l’espace d’énergie.
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1. Introduction

Let Γ ⊂ R3 be a connected Lipschitz surface, enclosing a bounded open domain int(Γ) and with surface measure
dσ. We are interested in the spectrum of the layer potential operator

KΓ f (r) =
1

2π

∫
Γ

KΓ(r, r′) f (r′) dσ(r′), r ∈ Γ, (1)

based on the normal derivative of the Newtonian kernel

KΓ(r, r′) =
〈r − r′, νr〉

|r′ − r|3
, (2)

where νr denotes the outward unit normal of Γ. KΓ may also be considered for planar Lipschitz curves Γ ⊂ R2, in
which case the kernel is given by KΓ(r, r′) = 2 〈r−r′,νr〉

|r′−r|2 .
Knowledge about the spectrum of KΓ leads to existence and uniqueness results for boundary value problems

involving the Laplacian on the interior and exterior domains int(Γ) and ext(Γ) of Γ. For example, layer potential tech-
niques may be used to solve the classical Dirichlet and Neumann problems for int(Γ) by understanding the Fredholm
theory of KΓ + I and KΓ − I, respectively [51].

When Γ is non-smooth, for example if Γ has corners in 2D, or edges or conical points in 3D, the spectrum of
KΓ : X → X is highly dependent on the space X. For example, suppose that Γ is a curvilinear polygon in the plane.
KΓ + I : L2(Γ) → L2(Γ) is always invertible [51] when Γ is Lipschitz, but in the polygonal case there always exist
p0 > 2, depending on the opening angles of the corners of Γ, such that KΓ + I : Lp0 (Γ) → Lp0 (Γ) is not Fredholm
[34, 46]. The underlying explanation for this is that when Γ is an infinite wedge, the model domain to analyze corners;
then, by homogeneity of its kernel, KΓ may be realized as a block matrix of Mellin convolution operators. These
convolution kernels depend on p0, accounting for the dependence on p0 of the spectrum [18]. In 3D, similar results
were shown in [19] in the idealized cases of Γ being an infinite straight cone or an infinite three-dimensional wedge.
We refer also to [40] for an extensive account of the Lp-theory in 2D, although with results only stated for p ≤ 2.

In this paper we will, for surfaces Γ ⊂ R3, consider the action of KΓ on two different spaces: L2(Γ) and the energy
space E. The energy space consists of the distributions on Γ whose single layer potentials have finite energy in R3.
It is identifiable with the Sobolev space H−1/2(Γ) of index −1/2 on the boundary. The energy space stands out as the
most natural space on which to consider KΓ for many reasons, one of them being that KΓ : E → E is self-adjoint and
therefore, in contrast with the Lp-theory, has a real spectrum.

Our interest in the entire spectrum of KΓ arises from the transmission problem

∫
R3 |∇U |2 dV < ∞,

∆U(r) = 0, r ∈ R3 \ Γ,

Trint U(r) = Trext U(r), r ∈ Γ,

∂ext
ν U(r) = ε∂int

ν U(r) − g(r), r ∈ Γ.

(3)

Here ε , 1, and Trint and ∂int
ν denote the boundary trace and normal derivative of interior approach, Trext and ∂ext

ν the
corresponding operators of exterior approach. If g ∈ E, it turns out that there exists a solution U of (3) satisfying
limr→∞ U(r) = 0 if and only if there is f ∈ E such that

(KΓ − z) f =
g

1 − ε
, z = −

1 + ε

1 − ε
.

In the special case that g(r) = e · νr for a vector e ∈ R3, then solving the transmission problem is involved in
computing the polarizability tensor [10, 20, 28, 47] of int(Γ). In this setting, the domain is an inclusion with com-
plex permittivity ε in an infinite space of permittivity 1. The polarizability tensor is associated with a set of spectral

IThis work was supported by the Swedish Research Council under contract 621-2014-5159.
∗Corresponding author
Email addresses: helsing@maths.lth.se (Johan Helsing), k.perfekt@reading.ac.uk (Karl-Mikael Perfekt)
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Figure 1: (a): An axially symmetric surface Γ with a conical point of opening angle 2α = 5π/18. (b): A cross-section of int(Γ) with opening angle
2α = 31π/18.

measures that arise from the spectral measure of KΓ : E → E, see Section 2.2. Atoms in these spectral measures corre-
spond to values of ε for which surface plasmon resonances can be excited [2, 3]. However, not every eigenvalue of KΓ

necessarily produces a singularity in the polarizability tensor; we call such eigenvalues dark plasmons. In Section 7.3
we will observe an abundance of dark spectra for the type of surface Γ that we will consider. More precisely, the
described relationship between the transmission problem (3) and plasmonic resonances holds in the quasi-static ap-
proximation of the Maxwell equations. In the setting of smooth surfaces Γ, detailed analysis of plasmonic resonances
using the full Maxwell equations and justification of the quasi-static approximation can be found in [1, 4]. Note that
the spectrum of KΓ is pure point when Γ is smooth.

For Γ a plane polygon and g ∈ Hs(Γ), s > −1/2, the spectrum of (a more general version of) the transmission
problem (3) was studied in [14]. In [31], the spectral resolution of KΓ : E → E was determined in a model case where
Γ is constructed from two intersecting circles (equivalent to the infinite wedge). For a general curvilinear polygon in
2D, the essential spectrum of KΓ : E → E was determined in [44].

Theorem 1.1 ([44]). Suppose that Γ ⊂ R2 is a curvilinear polygon with corners of angles α1, . . . , αn. Then the
spectrum of KΓ : E → E consists of an interval and a sequence {λk} of eigenvalues with no limit point outside the
interval,

σ(KΓ,E) =

{
x ∈ R : |x| ≤ max

1≤ j≤N

∣∣∣∣∣1 − α j

π

∣∣∣∣∣} ∪ {λk}.

See also [24] for a numerical experiments in agreement with this theorem. In the special case that Γ coincides with
two line segments in a neighborhood of each corner, a different approach to Theorem 1.1, yielding more information,
very recently appeared in [6]. In three dimensions, only a few results concerning the entire spectrum seem to be
available. As mentioned, the Lp-theory for infinite straight cones and wedges was considered in [19]. Also for the
infinite straight cone, the generalized eigensolutions to the transmission problem (3) were explicitly computed in
[32, 41, 48] – these will be important in our determination of the spectrum of KΓ : E → E. For the more general type
of infinite cone Γ = R+ω, where ω is a smooth curve on the sphere, the invertibility of KΓ − z on certain weighted
Sobolev spaces has via Mellin convolutions been reduced to the invertibility of a parametric system of operators on ω
[9, 45].

In the current contribution, we will characterize the spectrum of KΓ : L2(Γ) → L2(Γ) and KΓ : E → E in the
case that Γ is a rotationally symmetric surface with a conical point, see Figure 1. Our main results straightforwardly
generalize to surfaces with a finite number of conical points, each of which is locally rotationally symmetric around
some axis. However, since the level of complexity is already quite high, we will never do so explicitly.

We now state our main theorems, beginning with our result on the L2(Γ)-spectrum. In the statement, Pn
λ(x) denotes

an associated Legendre function of the first kind (see the Appendix), and Ṗn
λ denotes its derivative in x.
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Theorem 5.5. Let Γ be a closed surface of revolution with a conical point of opening angle 2α, obtained by revolving
a C5-curve γ. For n ∈ Z, denote by Πn the closed curve

Πn =

Pn
iξ(cosα)Ṗn

iξ(− cosα) − Pn
iξ(− cosα)Ṗn

iξ(cosα)

Pn
iξ(− cosα)Ṗn

iξ(cosα) + Pn
iξ(cosα)Ṗn

iξ(− cosα)
: −∞ ≤ ξ ≤ ∞

 ,
with orientation given by the ξ-variable. Then the operator KΓ : L2(Γ, dσ)→ L2(Γ, dσ) has essential spectrum

σess(KΓ, L2) =

∞⋃
n=−∞

Πn.

If z < σess(KΓ, L2), then KΓ − z has Fredholm index

index(KΓ − z) =

∞∑
n=−∞

W(z,Πn) = W(z,Π0) + 2
∞∑

n=1

W(z,Πn)

where W(z,Πn) ≤ 0 denotes the winding number of z with respect to Πn and the right-hand side is always a finite sum.
In particular, every point z lying inside one of the curves Πn belongs to the spectrum σ(KΓ, L2).

Whenever z is not a real number, it holds that dim ker(KΓ − z) = 0, so that

index(KΓ − z) = − codim ran KΓ, z ∈ C \ R.

In particular, if index(KΓ − z) = 0 (so that z lies outside every curve Πn), then either KΓ − z is invertible or z = x is
real and an eigenvalue of KΓ.
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Figure 2: The essential spectrum of KΓ for a surface Γ with a conical point of opening angle 2α = 5π/18. index(KΓ − z) is marked in the regions
of non-essential spectrum. Zoom to the right.

Theorem 5.5 is illustrated in Figure 2. After reversing the signs of the winding numbers, the first paragraph of
the theorem applies equally well to the adjoint operator (KΓ)∗ : L2(Γ) → L2(Γ), known as the Neumann–Poincaré
operator. As a consequence, the number of eigenfunctions of (KΓ)∗ : L2(Γ) → L2(Γ) to the eigenvalue z ∈ C is equal
to the winding number of z with respect to the essential spectrum, except at certain exceptional real values z ∈ R.

Next, we state our characterization of the E-spectrum.

Theorem 6.3. Let Γ be a closed surface of revolution with a conical point of opening angle 2α, obtained by revolving
a C5-curve γ. For n ∈ Z, denote by Σn the closed interval

Σn =

Pn
iξ−1/2(cosα)Ṗn

iξ−1/2(− cosα) − Pn
iξ−1/2(− cosα)Ṗn

iξ−1/2(cosα)

Pn
iξ−1/2(− cosα)Ṗn

iξ−1/2(cosα) + Pn
iξ−1/2(cosα)Ṗn

iξ−1/2(− cosα)
: −∞ ≤ ξ ≤ ∞

 .
4



Then the self-adjoint operator KΓ : E → E, where E is the energy space of Γ, has essential spectrum

σess(KΓ,E) =

∞⋃
n=−∞

Σn.

Hence, the spectrum of KΓ consists of this interval and a sequence of real eigenvalues {λk} with no limit point outside
of it,

σ(KΓ,E) = {λk} ∪ σess(KΓ,E).

In Section 7 we will develop a method to numerically determine the polarizability tensor and spectrum of KΓ

for rotationally symmetric surfaces Γ. We offer one of our numerical results already here, which at the same time
illustrates Theorem 6.3. In the proof of Theorem 6.3 we decompose KΓ : E → E according to its Fourier modes,
KΓ = ⊕Kγ

n . Figure 3 demonstrates the indicator function for mode n = 0, which detects the spectrum of Kγ
0 , for

a surface Γ of opening angle 2α = 31π/18 > π. The set where the indicator function is equal to 1/2 coincides
with the interval Σ0 of Theorem 6.3, i.e. the essential spectrum of Kγ

0 . The points where the indicator function is 1
correspond to eigenvalues. It turns out (only numerically demonstrated) that in this case there is an infinite sequence
of eigenvalues outside the essential spectrum, and every eigenvalue but one yields a plasmon resonance.

−1 −0.5 0 0.5 1
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0.1

0.2

0.3
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0.5

0.6

0.7

0.8

0.9

1
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x

Figure 3: The indicator function for a surface Γ with a conical point of reflex opening angle 2α = 31π/18 and mode n = 0. 275 eigenvalues are
drawn.

We now explain the layout of the paper, with some remarks on the content of each section. Section 2 contains
preliminary material on layer potentials, the energy space, the transmission problem, limit polarizability, Fredholm
operators, Mellin transforms, Sobolev spaces and singular integral operators.

In Section 3 we study the model case in which Γ is an infinite straight cone. We provide the spectral resolution
of both operators KΓ : L2(Γ) → L2(Γ) and KΓ : E → E. The first case is quite straightforward, and the relevant
analysis appears implicitly in [19]. Each modal operator Kγ

n is in this case unitarily equivalent to a Mellin convolution
operator, and this leads to the spectral resolution. On the energy space we make use of a special norm related to the
single layer potential which has several advantages. For one, this norm decomposes orthogonally with respect to the
Fourier modes. Secondly, it allows us to exploit that we can calculate the action of the single layer potential on the
generalized eigenfunctions of KΓ on the infinite cone. We remark that for the case of intersecting disks, the same
norm was used in [31] to realize the spectral theorem of KΓ.

In Section 4 we show, in a certain sense, that KΓ is a compact perturbation of KΓα , where Γα is a straight cone of
the same opening angle. The proof proceeds by writing the difference of kernels as a sum of products of Riesz kernels
with smooth, small kernels. The Riesz transforms are however not bounded on E; since νr < H1/2(Γ) this would
contradict [39, Eq. (6.50)]. Hence, the indicated argument provides compactness on L2(Γ), but for E we have to work
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harder. We combine certain algebraic identities (the Plemelj formula) with further estimates and real interpolation in
this case.

In Section 5 we prove Theorem 5.5. The index formula is proven by showing that the modal operators Kγ
n are

pseudodifferential operators of Mellin type, for which there is a well-developed symbolic calculus [17, 35, 36]. The-
orem 6.3 is proven in Section 6. The method of proof is to first show that on the infinite cone, the singularities of KΓα

at the origin and at infinity contribute equally to the essential spectrum. The theorem is then pieced together from the
results in Sections 3 and 4.

Section 7 contains our numerical results. We first define the indicator function, and establish its properties. Then
we give an overview of the numerical method, after which we present numerical results on the polarizability tensor
and the spectrum of KΓ for the two surfaces Γ illustrated in Figure 1.

Finally, the Appendix contains explicit expressions for the various modal kernels we will consider, in terms of
special functions. Our theory and numerical method both depend on these explicit formulas. In particular, we will
defer the proof of the technical Lemma 3.1 to the Appendix.

Notation
If A and B are two non-negative quantities depending on some variables, we write A . B to signify that there is a

constant c > 0 such that A ≤ cB. If A . B and B . A, we write A ' B.

2. Background, definitions and notation

2.1. Single and double layer potentials

For a function f on Γ, its single layer potential S Γ f is given by

S Γ f (r) =

∫
Γ

S Γ(r, r′) f (r′) dσ(r′), r ∈ R3, (4)

where
S Γ(r, r′) =

1
2π

1
|r − r′|

.

Note that S Γ f (r) is a harmonic function for r ∈ R3 \ Γ = int(Γ) ∪ ext(Γ). If f is any reasonable function or distribu-
tion, S Γ f (r) will have traces from both the interior domain int(Γ) and the exterior domain ext(Γ). Due to the weak
singularity of the kernel, these traces coincide with evaluating S Γ directly on Γ,

Trint S Γ f (r) = Trext S Γ f (r) = S Γ f (r), r ∈ Γ.

In the most general case, these traces may be understood in the sense of convergence in nontangential cones for almost
every point of Γ [51], or in a distributional sense [43]. Most of the time we will consider S Γ as map directly on Γ,
since the well-posedness of the interior and exterior Dirichlet problems ensure that S Γ f can be uniquely identified
with its values on Γ, see [43].

The layer potential KΓ f , evaluated on the boundary, is given by the principal value integral (1) with kernel defined
in (2). The adjoint operator (KΓ)∗ (with respect to L2(Γ)) is usually referred to as the boundary double layer potential,
or the Neumann–Poincaré operator. Note also that the choice of normalizing constant in front of (1) may be different
in other works.

We will consider two different function/distribution spaces for the action of KΓ. First, we will consider KΓ : L2(Γ)→
L2(Γ) as an operator on L2(Γ) = L2(Γ, dσ). KΓ is always bounded on L2(Γ) [51], but note that KΓ is not a self-adjoint
operator in this space. When Γ has singularities, so that KΓ is not a compact operator, the spectrum of KΓ on L2(Γ) is
typically not real. This is illustrated by our main theorem on the L2(Γ)-spectrum, Theorem 5.5. See also [40] for the
2D-case.

The second space we will consider is the Hilbert space E, obtained by completing L2(Γ) in the positive definite
scalar product

〈 f , g〉E = 〈S Γ f , g〉L2(Γ).
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By applying the classical jump formulas for the interior and exterior normal derivatives of S Γ f and Green’s formula,
we have that

〈 f , f 〉E =
1
2

∫
R3
|∇S Γ f |2 dV. (5)

A proof, which carries over verbatim to the Lipschitz case (see [43]) may be found in [33, Lemma 1]. Here dV denotes
the usual volume element on R3. Hence, we refer to E as the energy space, as it consists of charges generating single
layer potentials S Γ f with finite energy in R3. In light of this physical interpretation, it is not a complete surprise that
KΓ : E → E is self-adjoint as an operator on E. Indeed, from the Plemelj formula

S ΓKΓ f (r) = (KΓ)∗S Γ f (r), r ∈ Γ (6)

it follows that
〈KΓ f , g〉E = 〈 f ,KΓg〉E,

see [31, 33, 43]. By considering trace theorems and well-posedness of Dirichlet problems, it can be deduced that the
E-norm is equivalent to the Sobolev norm of index −1/2 on the boundary (see Section 2.5),

‖ f ‖E ' ‖ f ‖H−1/2(Γ). (7)

Again we refer the reader to [33], or to [43] for a treatment explicitly for the Lipschitz case. By interpolating between
L2(Γ) and H−1(Γ), where KΓ is bounded by the classical theory [51], it now follows that KΓ : E → E is bounded.

It is known [11, Theorem 2.5] that as an operator on E the spectrum of KΓ is contained in (−1, 1],

σ(KΓ,E) ⊂ (−1, 1]. (8)

However, without additional hypotheses on Γ such as convexity or smoothness, it is not even known if the essential
norm of KΓ : L2(Γ)→ L2(Γ) is less than 1,

‖KΓ‖L2(Γ)→L2(Γ),ess ≤ 1?

We refer to [52] for a discussion.
In addition to bounded domains, we will consider one instance of an unbounded surface. Namely, we will consider

an infinite straight cone Γα of opening angle 2α, 0 < α < π, α , π/2. In general the layer potential theory for domains
with non-compact boundary is rather delicate, but in our particular case Γα is a Lipschitz graph. In any case, since Γα
will be our model for studying domains with axially symmetric conical points, we will make precise calculations from
which the boundedness and other basic properties of KΓα : L2(Γα) → L2(Γα) and KΓα : E → E will be apparent. All
of the properties of S Γ, KΓ, and E mentioned in this subsection continue to hold, except that we (the authors) are not
entirely sure about the available results on the Dirichlet problem. In particular, we are not sure if (7) holds. However,
in view of (5) and the boundedness of the trace [38], we at least have that

‖ f ‖E = sup
‖g‖E=1

〈S Γαg, f 〉L2(Γα) ≤ sup
‖g‖E=1

‖Tr S Γαg‖H1/2(Γα)‖ f ‖H−1/2(Γα) . ‖ f ‖H−1/2(Γα). (9)

Furthermore, if ρ ∈ C∞c (Γα) is a smooth compactly supported function, then

‖ρ f ‖E ' ‖ρ f ‖H−1/2(Γα), (10)

with implicit constants possibly depending on ρ.

2.2. The transmission problem and limit polarizability

In the transmission problem (3), with g ∈ E, the normal derivatives ∂ext
ν U and ∂int

ν U of exterior and interior
approach need to be understood in a distributional sense. Making the ansatz U = S Γ f , the jump formulas

∂int
ν S Γ f (r) = f (r) − KΓ f (r), ∂ext

ν S Γ f (r) = − f (r) − KΓ f (r), r ∈ Γ (11)

7



imply that U solves the transmission problem if and only if f ∈ E and

(KΓ − z) f =
g

1 − ε
, z = −

1 + ε

1 − ε
.

In fact, in the case that Γ is a bounded surface, any solution to the transmission problem which satisfies limr→∞ U(r) =

0 must be of this form, as mentioned in the introduction. See [28, Proposition 5.1].
To define the polarizability tensor of Γ we understand int(Γ) as an inclusion with permittivity ε, embedded in

infinite space of permittivity 1. For a unit field e ∈ R3, we seek a potential U such that

∫
R3 |∇U − e|2 dV < ∞,

∆U(r) = 0, r ∈ R3 \ Γ,

Trint U(r) = Trext U(r), r ∈ Γ,

∂ext
ν U(r) = ε∂int

ν U(r), r ∈ Γ.

The single layer potential ansatz
U(r) = e · r + S Γρ(r)

yields [28, Section 2] the equation

(KΓ − z)ρ = ge, ge(r) = (e · νr), z = −
1 + ε

1 − ε
.

If the solution U exists uniquely for all e, then the polarizability tensor ω, a linear map on R3, scaled by the volume
| int(Γ)| of int(Γ), is defined by

ω(z)e =
(ε − 1)
| int(Γ)|

∫
int(Γ)
∇U(r) dV(r).

To evaluate the polarizability, we make use of Green’s formula∫
int(Γ)
〈∇U,∇V〉 dV =

∫
Γ

U∂int
ν V dσ, (12)

valid for U and V harmonic in int(Γ) and of sufficient smoothness.
We suppose now that Γ is rotationally symmetric around the r3-axis. Then ω(z) is diagonal, and its first two

diagonal entries are equal, ω11(z) = ω22(z). We refer to ω j j(z) as polarizability in the r j-direction, j = 1, 2, 3.
Applying (12) and the jump formulas (11) yields that

ω j j(z) = e j · ω(z)e j =

∫
Γ

ρ(r)he j (r) dσ(r) = 〈(KΓ − z)−1ge j (r), he j (r)〉L2(Γ), (13)

where e j denotes the jth unit vector in the standard basis of R3, and

he(r) = −2
e · r
| int(Γ)|

.

In Section 7.1 we will see that (13) is associated with a spectral measure µ j,

ω j j(z) =

∫ 1

−1

dµ j(s)
s − z

. (14)

This statement is a little more subtle than it appears, since KΓ is not a self-adjoint operator in the L2-pairing. An
appropriate formalism was developed in [28, Section 5], and we shall carry out the corresponding details for our
situation in Section 7.1. Alternative approaches may be found in [10, 20, 21, 42]. Some of these references concern
the effective permittivity tensor rather than polarizability. However, the polarizability tensor may be viewed as a
limiting case of the effective permittivity tensor.
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By the representation of the polarizability as a Cauchy integral (14), the limit

ω−j j(x) = lim
y→0−

ω j j(x + iy)

exists almost everywhere x ∈ R, even when x lies in the support of µ j. We refer to ω−j j(x) as the limit polarizability.
When x lies outside the support of µ j the limit polarizability and polarizability coincide. For axially symmetric
domains with a conical point, we will find that the spectral measure µ j typically has an absolutely continuous part, in
addition to a possible singular part. The absolutely continuous part is recognized by the fact that almost everywhere
x ∈ R it holds that

µ′j(x) = −
=mω−j j(x)

π
.

By [28, Remark 5.1 and Theorem 5.2], −µ j is a positive measure, and ρ and µ j satisfy that∫
Γ

ρ(r) dσ(r) = 0, (15)

∫ 1

−1
dµ j(s) = −2. (16)

Let µpp
j be the pure point part of µ j. By [28, Theorem 5.6] there are eigenvectors φi ∈ E and ψi ∈ H1/2(Γ) of KΓ and

(KΓ)∗, respectively, normalized so that
〈φi, ψk〉L2(Γ) = δik,

such that ∫
Γ

dµpp
j (s) =

∑
i

uivi, ui = 〈φi, he j〉L2(Γ), vi = 〈ψi, ge j〉L2(Γ).

In particular, if µ j has no singular continuous part, then (16) takes the form

∑
i

uivi +

∫ 1

−1
µ′j(x) dx = −2. (17)

We strongly believe, but will not prove, that µ j never has a singular continuous part for the surfaces Γ we consider.
We shall use the rules (15) and (17) to verify the accuracy of our numerical results.

2.3. Fredholm operators
Recall that a bounded operator S : H → H on a Hilbert space H is Fredholm if it has closed range and both its

kernel and cokernel are finite-dimensional. Equivalently, S is Fredholm if and only if it is invertible modulo compact
operators. If S is Fredholm, its index is given by

index S = dim ker S − codim ran S .

Definition 2.1. If two operators S : H1 → H1 and T : H2 → H2 on Hilbert spacesH1 andH2 are unitarily equivalent,
we write that S 'ue T .

Definition 2.2. We write S ' T if there exist Hilbert spaces H ′1 and H ′2 and a compact operator K : H2 ⊕ H
′
2 →

H2 ⊕H
′
2 such that S ⊕ 0 : H1 ⊕H

′
1 → H1 ⊕H

′
1 is similar to (T ⊕ 0) + K : H2 ⊕H

′
2 → H2 ⊕H

′
2.

The point of the above definition is that if S ' T and z , 0, it holds that S − z is Fredholm if and only if T − z is
Fredholm and then the Fredholm indices satisfy

index(S − z) = index(T − z).

For a (not necessarily self-adjoint) operator S : H1 → H1 we will denote its essential spectrum in the sense of
invertibility modulo compacts by σess(S ,H1).
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Definition 2.3. The essential spectrum of S : H1 → H1 is the set

σess(S ,H1) = {z ∈ C : K − z is not Fredholm}.

We will also make use of another concept of essential spectrum, also invariant under compact perturbations. We
say that a bounded sequence (xn) ⊂ H1 is a singular sequence for the operator S : H1 → H1 and spectral point λ if
(xn) has no convergent subsequences and (S − λ)xn → 0 inH1 as n→ ∞.

Definition 2.4. The point λ ∈ C belongs to σea(S ,H1) if and only if there is a singular sequence (xn) for S and λ.

Note that if S : H1 → H1 is a self-adjoint operator, then the two type of essential spectra agree by Weyl’s criterion,
σea(S ,H1) = σess(S ,H1). Furthermore, in this case index(S − λ) = 0 whenever λ < σess(S ,H1).

2.4. Mellin transforms
For g ∈ L1([0,∞), dt/t), letMg = ĝ be its Mellin transform,

Mg(ζ) = ĝ(ζ) =

∫ ∞

0
tζg(t)

dt
t
.

The L1-hypothesis on g implies that Mg(ζ) is well-defined and bounded at least for ζ = iξ ∈ iR. We will denote
Mellin convolution by ?,

u ? v(t) =

∫ ∞

0
u(t/t′)v(t′)

dt′

t′
, t > 0.

The Mellin transform is the Fourier transform of the multiplicative group of (0,∞); for sufficiently nice functions u
and v and appropriate ζ it holds that

M(u ? v)(ζ) =Mu(ζ)Mv(ζ).

Young’s inequality for the Mellin transform says that

‖u ? v‖L2(dt/t) ≤ ‖u‖L1(dt/t)‖v‖L2(dt/t). (18)

Another way to see this is by noting that W : L2(dt/t)→ L2(R) is a unitary operator,

Wv(ξ) =
1
√

2π
Mv(iξ), (19)

with inverse

W−1ψ(t) =
1
√

2π

∫ ∞

−∞

t−iξψ(ξ) dξ.

In particular, Plancherel’s formula takes the form

1
2π

∫ ∞

−∞

∣∣∣∣∣∫ ∞

0
tiξv(t)

dt
t

∣∣∣∣∣2 dξ =

∫ ∞

0
|v(t)|2

dt
t
. (20)

2.5. Singular integral estimates on Sobolev spaces
Suppose first that Γ is a Lipschitz graph

Γ = {(x, y, ϕ(x, y)) : (x, y) ∈ R2}.

The parametrization (x, y) → (x, y, ϕ(x, y)) then induces tangential derivatives ∂x on ∂y on Γ. The (inhomogeneous)
Sobolev space H1(Γ) consists of those functions f such that

‖ f ‖2H1(Γ) = ‖ f ‖L2(Γ) + ‖∂x f ‖L2(Γ) + ‖∂y f ‖L2(Γ) < ∞.

This also allows us to define H1(Γ) in the case that Γ is a bounded Lipschitz surface, via its Lipschitz manifold
structure. In this setting, we will make use of the fact that H1(Γ) is characterized by single layer potentials.
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Lemma 2.5 ([51], Theorem 3.3). Let Γ be a bounded and simply connected Lipschitz surface. Then

S Γ : L2(Γ)→ H1(Γ)

is a continuous isomorphism.

For 0 < s < 1 we define the Sobolev-Besov space Hs(Γ) via the Gagliardo-Slobodeckij norm

‖u‖2Hs(Γ) = ‖u‖2L2(Γα) +

∫
Γ

∫
Γ

|u(r) − u(r′)|2

|r − r′|2+2s dσ(r) dσ(r′). (21)

The spaces Hs(Γ), 0 < s < 1, coincide with the real interpolation scale between L2(Γ) and H1(Γ), see for instance
[50]. For 0 < s ≤ 1 we define the space of distributions H−s(Γ) as the dual space of Hs(Γ) with respect to the scalar
product of L2(Γ). Recall that H−1/2(Γ) coincides with the energy space E, with equivalent norms.

Our goal in Section 4 is to view the operator KΓ, where Γ has a single axially symmetric conical point, as a
perturbation of KΓα , where Γα is a straight cone. In doing so we will encounter many integral operators with weakly
singular kernels. It is well known that such kernels generate compact operators, see for example [8] and [49]. However,
we have been unable to locate a precise statement which covers all of our cases. We therefore sketch a proof of a
statement which is far from sharp, but sufficient for our purposes.

Lemma 2.6. Let Γ be a bounded and simply connected Lipschitz surface, and let H(r, r′) be a kernel on Γ×Γ satisfying

|H(r, r′)| .
1

|r − r′|
, (22)

|H(r, r′) − H(r∗, r′)| .
|r − r∗|
|r − r′|2

, |r − r∗| <
1
2
|r − r′|, (23)

and
|H(r′, r) − H(r′, r∗)| .

|r − r∗|
|r − r′|2

, |r − r∗| <
1
2
|r − r′|. (24)

Then the integral operator

H f (r) =

∫
Γ

H(r, r′) f (r′) dσ(r′)

defines compact operators H : H−1/2(Γ)→ H−1/2(Γ), H : L2(Γ)→ L2(Γ), and H : H1/2(Γ)→ H1/2(Γ).

Proof. For β < 2 it is easy to show that the operator

Gβ f (r) =

∫
Γ

1
|r − r′|β

f (r′) dσ(r′)

is bounded on L2(Γ), for instance by interpolating between the spaces L1(Γ) and L∞(Γ), on which the boundedness
property is evident. Next, inequalities (22) and (23) imply that

|H(r, r′) − H(r∗, r′)| .
|r − r∗|3/4

|r − r′|7/4
+
|r − r∗|3/4

|r∗ − r′|7/4
, r, r∗, r′ ∈ Γ.

Hence, for f ∈ L2(Γ)
|H f (r) − H f (r∗)| . |r − r∗|3/4(G7/4| f |(r) + G7/4| f |(r∗)).

From this estimate we obtain that

‖H f ‖H1/2(Γ) . 2
∫

Γ

[
G7/4| f |(r)

]2
∫

Γ

1
|r − r∗|3/2

dσ(r∗) dσ(r) .
∫

Γ

[
G7/4| f |(r)

]2 dσ(r) . ‖ f ‖L2(Γ).

Hence H : L2(Γ) → H1/2(Γ) is bounded. In particular H : L2(Γ) → L2(Γ) is compact, since H1/2(Γ) is compactly
contained in L2(Γ). By (24) the same argument yields that the L2(Γ)-adjoint H∗ also maps L2(Γ) into H1/2(Γ). Equiv-
alently, by duality, H maps H−1/2(Γ) into L2(Γ) boundedly. Since L2(Γ) is compactly contained in H−1/2(Γ) it follows
that H : H−1/2(Γ) → H−1/2(Γ) is compact. By duality, this is equivalent to saying that H∗ : H1/2(Γ) → H1/2(Γ) is
compact. Since the statement of the lemma is symmetric with respect to H and H∗, it follows that also H : H1/2(Γ)→
H1/2(Γ) is compact.
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Remark 2.7. If Γ is a C2-surface, then H = KΓ satisfies the hypotheses of the lemma. Hence KΓ is a compact operator
in this case (as is well known). Another example we have in mind is given by the kernel

H j(r, r′) =
r j − r′j
|r − r′|2

,

where r j denotes the jth coordinate of r, j = 1, 2, 3.

We will also make use of the fact that the Riesz transforms are bounded when Γ is Lipschitz, which was first
proven in [13, Theorem IX]. See also [16].

Lemma 2.8. Let Γ be a bounded Lipschitz surface, or a Lipschitz graph. For j = 1, 2, 3, let RΓ
j be the corresponding

Riesz transform on Γ,

RΓ
j f (r) =

∫
Γ

r j − r′j
|r − r′|3

f (r′) dσ(r′).

Then RΓ
j : L2(Γ)→ L2(Γ) is bounded. In fact, if

MRΓ
j f (r) = sup

ε>0

∣∣∣∣∣∣
∫
|r−r′ |>ε

r j − r′j
|r − r′|3

f (r′) dσ(r′)
∣∣∣∣∣∣ ,

then
‖MRΓ

j f (r)‖L2(Γ) . ‖ f ‖L2(Γ).

3. Fourier analysis on a straight cone

3.1. Spectral resolution on L2

Let Γα be the infinite straight cone with opening 2α, 0 < α < π, α , π/2, parametrized by

r(t, θ) = (sin(α)t cos θ, sin(α)t sin θ, cos(α)t), θ ∈ [0, 2π], t > 0.

It is generated by revolution of the straight line γα(t) = (sin(α)t, cos(α)t), t > 0. The surface element on Γα is given by

dσ(t, θ) = sin(α)t dt dθ,

and the outward normal νr by
νr = (cosα cos θ, cosα sin θ,− sinα).

Note that the kernel KΓα (t, θ, t′, θ′) := KΓα (r(t, θ), r(t′, θ′)), defined in (1), only depends on t, t′, and θ − θ′,

KΓα (t, θ, t′, θ′) = KΓα (t, θ − θ′, t′, 0). (25)

For a function f : Γα → C, f (t, θ) := f (r(t, θ)), let fn be its nth Fourier coefficient,

fn(t) =
1
√

2π

∫ 2π

0
e−inθ f (t, θ) dθ, t > 0,

so that

f (t, θ) =
1
√

2π

∞∑
n=−∞

fn(t)einθ.

Then ∫
Γα

| f (r)|2 dσ(r) =

∞∑
n=−∞

∫ ∞

0
| fn(t)|2 sin(α)t dt,

12



reflecting the fact that L2(Γα, dσ) decomposes into the direct sum

L2(Γα, dσ) '
∞⊕

n=−∞

L2([0,∞), sin(α)t dt). (26)

For n ∈ Z, let

Kα
n (t, t′) =

∫ 2π

0
e−inθKΓα (t, θ, t′, 0) dθ, t, t′ > 0.

Then property (25) implies that

(KΓα f )n(t) =

∫ ∞

0
Kα

n (t, t′) fn(t′) sin(α)t′ dt′, f ∈ L2(Γα). (27)

If by Kα
n we also denote the associated integral operator Kα

n : L2(sin(α)t dt)→ L2(sin(α)t dt),

Kα
n f (t) =

∫ ∞

0
Kα

n (t, t′) f (t′) sin(α)t′ dt′, (28)

then we have observed that

KΓα 'ue

∞⊕
n=−∞

Kα
n .

Since the kernel KΓα is homogeneous of degree −2, the same is true of Kα
n ,

Kα
n (λt, λt′) =

1
λ2 Kα

n (t, t′), λ > 0. (29)

Consider the unitary map V : L2(sin(α)t dt)→ L2(dt/t),

V f (t) =
√

sin(α)t f (t).

Observe that

V
(
Kα

n f
)

(t) = sin(α)
∫ ∞

0

t
t′

Kα
n

( t
t′
, 1

)
V f (t′)

dt′

t′
=

(
hαn ? V f

)
(t),

where hαn (t) = sin(α)tKα
n (t, 1) and ?, as before, denotes Mellin convolution.

In other words, Kα
n is unitarily equivalent to the Mellin convolution operator on L2(dt/t) with kernel hαn (t). This

allows us to determine the spectral resolution of Kα
n and KΓα . Before proceeding we will establish the following result

on the properties of Kα
n . Its proof is rather lengthy and depends on an explicit formula for Kα

n (t, t′) in terms of special
functions. As to not break the flow of this section we defer the proof to the Appendix.

Lemma 3.1. For all t > 0 it holds that Kα
n (1, t) = tKα

n (t, 1). There is a constant C > 0, depending only on α, such that

|Kα
0 (t, 1)| ≤

C
t3 , t ≥

3
2
, |Kα

n (t, 1)| ≤
C

t|n|+2 , t ≥
3
2
, n , 0, (30)

and such that
|Kα

0 (t, 1)| ≤ C, t ≤
1
2
, |Kα

n (t, 1)| ≤ Ct|n|−1, t ≤
1
2
, n , 0. (31)

At t = 1, Kα
n (t, 1) has a logarithmic singularity: there is an analytic function G(t) on [1/2, 3/2] such that Kα

n (t, 1) −
log |1 − t|G(t) is analytic on [1/2, 3/2].

Furthermore, for every β, −1 < β < 2, the functions bn(t) = tβKα
n (t, 1) satisfy

‖bn‖L1(dt/t) .
1
n
. (32)
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For every n ∈ Z, let Πn be the set

Πn = {Mhαn (iξ) : −∞ ≤ ξ ≤ ∞} = {sin(α)M[Kα
n (·, 1)](1 + iξ) : −∞ ≤ ξ ≤ ∞}.

Since hαn ∈ L1(dt/t) we have by the Riemann-Lebesgue lemma that Mhαn (iξ) is a continuous function vanishing at
infinity, so that Πn is actually a closed curve in C.

Theorem 3.2. For each n, let Mn : L2(R)→ L2(R) be the multiplication operator

Mnψ(ξ) = sin(α)M[Kα
n (·, 1)](1 + iξ)ψ(ξ).

Then

KΓα 'ue

∞⊕
n=−∞

Mn. (33)

In particular, the spectrum of KΓα : L2(Γα, dσ)→ L2(Γα, dσ) is given by the union of the closed curve Πn,

σ
(
KΓα , L2

)
=

∞⋃
n=−∞

Πn.

The curves Πn tend to 0 as 1/|n| when |n| → ∞,

max{|z| : z ∈ Πn} .
1

|n| + 1
.

Remark 3.3. In Theorem 3.6 we will computeM[Kα
n (·, 1)] explicitly to show that

Πn =

Pn
iξ(cosα)Ṗn

iξ(− cosα) − Pn
iξ(− cosα)Ṗn

iξ(cosα)

Pn
iξ(− cosα)Ṗn

iξ(cosα) + Pn
iξ(cosα)Ṗn

iξ(− cosα)
: −∞ ≤ ξ ≤ ∞

 ,
where Pn

λ(x) denotes an associated Legendre function of the first kind, and Ṗn
λ denotes the derivative in x.

Proof. We have shown that

KΓα 'ue

∞⊕
n=−∞

Kα
n ,

where each operator Kα
n : L2(sin(α)t dt) → L2(sin(α)t dt) is unitarily equivalent to the operator of Mellin convolution

with hαn on L2(dt/t). Hence (33) follows from applying the unitary Mellin transform operator of (19). Note also that

‖Mn‖ ≤ ‖hαn‖L1(dt/t) .
1

|n| + 1

by (18) and (32). The spectrum of Mn is equal to Πn, and therefore

max{|z| : z ∈ Πn} ≤ ‖Mn‖ .
1

|n| + 1
.

Hence

σ
(
KΓα , L2

)
= closC

∞⋃
n=−∞

Πn =

∞⋃
n=−∞

Πn,

where the last equality follows since Πn are closed curves tending to the origin as |n| → ∞.

Another interpretation of Theorem 3.2 is the following. Suppose that ĥαn (iξ) is a point in σ
(
KΓα , L2

)
. The change

of variable t = s/s′ and the homogeneity (29) then gives us that

ĥαn (iξ) =

∫ ∞

0
tiξ+1Kα

n (t, 1) sin(α)
dt
t

= siξ+1
∫ ∞

0
(s′)−iξ−1Kα

n (s, s′) sin(α)s′ ds′. (34)
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Comparing with (28) and letting f (t) = t−iξ−1 we see that

Kα
n f (t) = ĥαn (iξ) f (t).

Hence f (t, θ) = t−iξ−1einθ is an eigenfunction of KΓα for the eigenvalue ĥαn (iξ). The function f (t, θ) = t−iξ−1einθ just
barely fails to belong to L2(Γα, dσ) and we think of it as a generalized eigenfunction for the point ĥαn (iξ) of the
spectrum.

Note that the parity relation Kα
n (1, t) = tKα

n (t, 1), the change of variable t = s′/s and the homogeneity (29) also
gives that

ĥαn (iξ) =

∫ ∞

0
tiξKα

n (1, t) sin(α)
dt
t

= s−(iξ−2)
∫ ∞

0
(s′)iξ−2Kα

n (s, s′) sin(α)s′ ds′.

Hence f (t, θ) = tiξ−2einθ is a second eigenfunction of KΓα for the eigenvalue ĥαn (iξ).

3.2. The transmission problem
It will follow from Lemma 5.1 that M[Kα

n (·, 1)](ζ) is well-defined and holomorphic in the strip 0 < <e ζ < 3.
Considering a value sin(α)M[Kα

n (·, 1)](3/2 + iξ), ξ ∈ R, we find as in (34) that

sin(α)M[Kα
n (·, 1)](3/2 + iξ) =

∫ ∞

0
tiξ+3/2Kα

n (t, 1) sin(α)
dt
t

= siξ+3/2
∫ ∞

0
(s′)−iξ−3/2Kα

n (s, s′) sin(α)s′ ds′.

Hence
eξ,n(t, θ) = t−iξ−3/2einθ (35)

is an eigenfunction of KΓα to the eigenvalue sin(α)M[Kα
n (·, 1)](3/2 + iξ). We will see that this function just barely

fails to lie in E and we therefore think of it as a generalized eigenfunction for this space. The parity relation Kα
n (1, t) =

tKα
n (t, 1) also yields a second generalized eigenfunction dξ,n(t, θ) = tiξ−3/2einθ.

For a complex number ε , 1, we now consider the transmission problem
U continuous on R3 \ {0},
∆U(r) = 0, r ∈ R3 \ Γα,

∂ext
ν U(r) = ε∂int

ν U(r), 0 , r ∈ Γα.

(36)

To solve it, we make an ansatz with the single layer potential S Γα of Γα, see (4). For points r = r(t, θ) ∈ Γα, using the
same parametrization of Γα as in Section 3.1, consider for n ∈ Z the operator S α

n ,

S α
n f (t) =

∫ ∞

0
S α

n (t, t′) f (t′) sin(α)t′ dt′,

with kernel

S α
n (t, t′) =

∫ ∞

0
e−inθS Γα (t, θ, t′, 0) dθ.

The kernel of S Γα is rotationally invariant, so just as for KΓα the Fourier coefficients of S Γα can be obtained from S α
n ,

(S Γα f )n(t) = S α
n fn(t).

Hence, for sufficiently nice f it holds that

S Γα f (t, θ) =
1
√

2π

∞∑
n=−∞

S α
n fn(t)einθ. (37)

If f ∈ L1
(
Γα,

dσ(t,θ)
1+t

)
∩C1((0,∞)), say, the jump formulas hold with pointwise convergence,

∂int
ν S Γα f (r) = f (r) − K f (r), ∂ext

ν S Γα f (r) = − f (r) − K f (r), r ∈ Γα \ {0}.
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It follows that S Γα f solves the transmission problem if and only if

(KΓα − z) f = 0, z = −
1 + ε

1 − ε
.

In particular, S Γαeξ,n solves the transmission problem (36) for the number ε such that

sin(α)M[Kα
n (·, 1)](3/2 + iξ) = −

1 + ε

1 − ε
. (38)

Lemma 3.4. Let fξ,n(t, θ) = t−iξ−1/2einθ. There is a constant C = Cn(ξ, α) such that

S Γαeξ,n|Γα = C fξ,n.

Proof. For r ∈ Γα, we may compute S Γαeξ,n(r) as follows, using the change of variable t′ = st and that S α
n is

homogeneous of degree −1,

1
√

2π
(S Γαeξ,n)n(t) =

∫ ∞

0
t−iξ−3/2S α

n (t, t′) sin(α)t′ dt′

=

∫ ∞

0
t−iξ−1/2s−iξ−3/2S α

n (1, s) sin(α)s ds = t−iξ−1/2 sin(α)M[S α
n (1, ·)](−iξ + 1/2).

This shows that S Γαeξ,n|Γα = C fξ,n, for C = sin(α)M[S α
n (1, ·)](−iξ + 1/2).

On the other hand, explicit computations have been made for the transmission problem (36) [32, 41, 48]. Write
r ∼ (t, ϕ, θ) in spherical coordinates and let

V(r) =

t−iξ−1/2einθPn
iξ−1/2(cos(ϕ)), r ∈ int(Γα),

Dt−iξ−1/2einθPn
iξ−1/2(− cos(ϕ)), r ∈ ext(Γα),

D =
Pn

iξ−1/2(cos(α))

Pn
iξ−1/2(− cos(α))

.

Then V solves the transmission problem for

ε = −
Pn

iξ−1/2(cosα)Ṗn
iξ−1/2(− cosα)

Pn
iξ−1/2(− cosα)Ṗn

iξ−1/2(cosα)
.

Here Pn
λ(x) denotes an associated Legendre function of the first kind, and Ṗn

λ denotes its derivative in x, see the
Appendix. We implement the Legendre function through the formula [29],

Pn
λ(x) = (1 − x2)n/2(−λ)n(λ + 1)n

∞∑
k=0

(n − λ)k(n + λ + 1)k

k!(k + n)!2n+k (1 − x)k, |1 − x| < 2, (39)

where (λ)n denotes the Pochhammer symbol,

(λ)n =
Γ(λ + n)

Γ(λ)
, (40)

Γ denoting the usual gamma function. Note that V |Γα = C′ fξ,n, where C′ = Pn
iξ−1/2(cos(α)) , 0 is a constant.

Lemma 3.5. S eξ,n = (C/C′)V.

Proof. We consider the interior of Γα to be the set where 0 < ϕ < α. Treating the interior first, we have found two
solutions of the Dirichlet problem ∆U(r) = 0, r ∈ int(Γα),

U |Γα (r) = fξ,n(r), r ∈ Γα \ {0},

and we want to show that they are the same. For convenience, we may apply the translation r 7→ r + (0, 0, 1), so that
Γα is the cone with vertex at (0, 0, 1), and U and fξ,n instead denote the translated functions. Let B(0,R) be a ball with
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center at the origin and radius R chosen so small that B(0,R) ⊂ ext(Γα). For r ∈ R3, let r∗ denote its inversion in the
surface of B(0,R),

r∗ =
R2

|r|2
r.

Let Γ∗α be the inversion of Γα. It is a bounded, rotationally symmetric lens domain, smooth except for two conical
points at 0 and (0, 0,R2). In particular it is a Lipschitz domain.

The Kelvin transform of U is the function

U∗(r∗) = |r∗|−1U(r),

harmonic on int(Γ∗α). We similarly define f ∗ξ,n. It is continuous on Γ∗α \ {0, (0, 0,R
2)} and satisfies that

f ∗ξ,n(r) '
1
√
|r|
, Γ∗α 3 r→ 0

and
f ∗ξ,n(r) '

1√
|r − (0, 0,R2)|

, Γ∗α 3 r→ (0, 0,R2).

Let dσ∗ denote surface measure on Γ∗α. In a Lipschitz parametrization r = r(x, y) of Γ∗α, it is clear that

dσ∗(r)
dr

' dist(r, 0), Γ∗α 3 r→ 0,

and
dσ∗(r)

dr
' dist(r, (0, 0,R2)), Γ∗α 3 r→ (0, 0,R2),

cf. Section 4. It follows that f ∗ξ,n ∈ L2(Γα, dσ∗). Hence, we have produced two solutions to the interior Dirichlet
problem ∆U∗(r) = 0, r ∈ int(Γ∗α),

U∗|Γ∗α (r) = f ∗ξ,n(r), r ∈ Γ∗α \ {0, (0, 0,R
2)}.

The equality on the boundary in particular holds almost everywhere dσ∗. But since f ∗ξ,n ∈ L2 the Dirichlet problem is
uniquely determined, by Dahlberg’s theorem [15]. Hence S eξ,n(r) = (C/C′)V(r) on int(Γα). Equality in the exterior
domain is proven in the same way.

Since ε is unique for a given function, we deduce that

sin(α)M[Kα
n (·, 1)](3/2 + iξ) =

Pn
iξ−1/2(cosα)Ṗn

iξ−1/2(− cosα) − Pn
iξ−1/2(− cosα)Ṗn

iξ−1/2(cosα)

Pn
iξ−1/2(− cosα)Ṗn

iξ−1/2(cosα) + Pn
iξ−1/2(cosα)Ṗn

iξ−1/2(− cosα)
.

It follows that for every ζ in the strip 0 < <e ζ < 3 we have that

sin(α)M[Kα
n (·, 1)](ζ) =

Pn
ζ−2(cosα)Ṗn

ζ−2(− cosα) − Pn
ζ−2(− cosα)Ṗn

ζ−2(cosα)

Pn
ζ−2(− cosα)Ṗn

ζ−2(cosα) + Pn
ζ−2(cosα)Ṗn

ζ−2(− cosα)
,

since both sides are meromorphic in the strip and they agree on the line ζ = 3/2 + iξ. In particular, letting ζ = 1 + ξ
yields an explicit formula for the curve Πn. Note that we have made use of the parity identity Pn

λ = Pn
−λ−1. Incidentally,

this identity is consistent with the existence of two eigenfunctions for each eigenvalue.

Theorem 3.6. The closed curve Πn is given by

Πn =

Pn
iξ(cosα)Ṗn

iξ(− cosα) − Pn
iξ(− cosα)Ṗn

iξ(cosα)

Pn
iξ(− cosα)Ṗn

iξ(cosα) + Pn
iξ(cosα)Ṗn

iξ(− cosα)
: −∞ ≤ ξ ≤ ∞

 .
17



Lemma 3.5 also lets us compute the constant C = Cn(ξ, α) explicitly.

Lemma 3.7. The constant Cn(ξ, α) of Lemma 3.4 is given by

Cn(ξ, α) = −
2

sinα

Pn
iξ−1/2(cosα)Pn

iξ−1/2(− cosα)

Pn
iξ−1/2(cosα)Ṗn

iξ−1/2(− cosα) + Pn
iξ−1/2(− cosα)Ṗn

iξ−1/2(cosα)
.

In particular, Cn(ξ, α) is uniformly bounded in n ∈ Z and ξ ∈ R, and Cn(−ξ, α) = Cn(ξ, α) and Cn(ξ, α) > 0 for all
such n and ξ.

Proof. For r ∈ Γα we have that

∂int
ν V(r) =

1
t
∂V
∂ϕ

(r) = − sinαṖn
iξ−1/2(cos(α))t−iξ−3/2einθ.

Since V solves the transmission problem we also know that

∂ext
ν V(r) − ∂int

ν V(r) = (ε − 1)∂int
ν V(r).

On the other hand, having established that V = (C′/C)S eξ,n in Lemma 3.5, the jump formulas for the single layer
potential give us that

∂ext
ν V(r) − ∂int

ν V(r) = (C′/C)
(
∂ext
ν S eξ,n(r) − ∂int

ν S eξ,n(r)
)

= −2(C′/C)eξ,n(t, θ)

Recalling that C′ = Pn
iξ−1/2(cos(α)) and comparing the two expressions yields the explicit formula.

From (39) we have that

Pn
iξ−1/2(x) = (1 − x2)n/2(1/2 − iξ)n(1/2 + iξ)n

∞∑
k=0

(n + 1/2 − iξ)k(n + 1/2 + iξ)k

k!(k + n)!2n+k (1 − x)k.

Since the Pochhammer symbol is given by

(λ)n = λ(λ + 1)(λ + 2) · · · (λ + n − 1)

it is clear that Pn
iξ−1/2(x) > 0 and that Ṗn

iξ−1/2(x) < 0 for every ξ and −1 < x < 1. Hence Cn(ξ, α) > 0. It is also
clear that Cn(−ξ, α) = Cn(ξ, α). The easiest way to see that Cn is uniformly bounded is to recall from Lemma 3.5 that
Cn(ξ, α) is the Mellin transform of

bn(t) = sin(α)
√

tS α
n (1, t).

It is clear that
sup

n
‖bn‖L2(dt/t) < ∞,

and hence the statement follows from an obvious estimate.

3.3. Spectral resolution on E
Let S denote the space of smooth compactly supported functions in (0,∞), and let En denote the Hilbert space

completion of S in the positive definite scalar product

〈 fn, gn〉En = 〈S α
n fn, gn〉L2(sin(α)t dt).

Since
‖ f ‖2E = 〈S Γα f , f 〉L2(Γα),

we deduce from (26) and (37) that

E '

∞⊕
n=−∞

En. (41)
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By (27) it follows that KΓα : E → E acts diagonally with respect to the decomposition (41),

KΓα 'ue

∞⊕
n=−∞

Kα
n ,

where Kα
n : En → En is considered as an operator on En.

To understand the operator Kα
n , let V : En → Ẽn be the unitary map

V f (t) =
√

t f (t),

where the space Ẽn is defined by the requirement that V be unitary. It is the completion of S under the scalar product

〈 f , g〉
Ẽn

= 〈V−1S α
n V−1 f , g〉L2(sin(α)t dt).

Note that
S̃ α

n = V−1S α
n V−1

is a positive definite (in particular symmetric) unbounded operator on L2(sin(α)t dt). By polarizing the Plancherel
formula (20) and using that S̃ α

n is symmetric in the L2(sin(α)t dt)-pairing we obtain, initially for f , g ∈ S, that

〈S̃ α
n f , g〉L2(sin(α)t dt) =

sin(α)
2π

∫ ∞

−∞

∫ ∞

0
tiξ−1S̃ α

n f (t)t dt
∫ ∞

0
tiξ−1g(t)t dt dξ

=
sin(α)
√

2π

∫ ∞

−∞

Cn(ξ)
∫ ∞

0
tiξ−1 f (t)t dt

∫ ∞

0
tiξ−1g(t)t dt dξ.

Here Cn(ξ) = Cn(ξ, α) > 0 is the constant of Lemma 3.4 and Lemma 3.7, now interpreted as a function of ξ. Hence

W̃ f (ξ) =

∫ ∞

0
tiξ−1 f (t)t dt

defines a unitary map

W̃ : Ẽn → L2
(

sin(α)
√

2π
Cn(ξ) dξ

)
,

since W̃ maps S to a dense subset of L2(Cn(ξ) dξ).
Next we unitarily transfer Kα

n : En → En to the operator K̃α
n : Ẽn → Ẽn,

K̃α
n = VKα

n V−1.

Let Fn denote the function of Section 3.2,

Fn(ξ) = sin(α)M[Kα
n (·, 1)](3/2 + iξ) =

Pn
iξ−1/2(cosα)Ṗn

iξ−1/2(− cosα) − Pn
iξ−1/2(− cosα)Ṗn

iξ−1/2(cosα)

Pn
iξ−1/2(− cosα)Ṗn

iξ−1/2(cosα) + Pn
iξ−1/2(cosα)Ṗn

iξ−1/2(− cosα)
.

The change of variable t = s′/s yields that

Fn(ξ) =

∫ ∞

0
tiξ+3/2Kα

n (t, 1) sin(α)
dt
t

= s−iξ+1/2
∫ ∞

0
(s′)iξ−1/2Kn(s′, s) sin(α)s′ ds′.

Hence (Kα
n )∗(siξ−1/2)(t) = Fn(ξ)tiξ−1/2, where the adjoint is taken with respect to the scalar product of L2(sin(α)t dt).

Therefore,

〈K̃α
n f , g〉

Ẽn
= 〈S̃ α

n K̃α
n f , g〉L2(sin(α)t dt)

=
sin(α)
√

2π

∫ ∞

−∞

Cn(ξ)
∫ ∞

0
tiξ−1/2Kα

n V−1 f (t)t dt
∫ ∞

0
tiξ−1g(t)t dt dξ,

=
sin(α)
√

2π

∫ ∞

−∞

Fn(ξ)Cn(ξ)
∫ ∞

0
tiξ−1 f (t)t dt

∫ ∞

0
tiξ−1g(t)t dt dξ,
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where we have used that Fn(ξ) = Fn(−ξ) (cf. the proof of Lemma 3.7). It follows that

K̃α
n = W̃−1MFn W̃,

where MFn : L2
(

sin(α)
√

2π
Cn(ξ) dξ

)
→ L2

(
sin(α)
√

2π
Cn(ξ) dξ

)
denotes the operator of multiplication by Fn. Since Cn(ξ) is a

strictly positive function it follows that K̃α
n is unitarily equivalent to the same multiplication operator MFn : L2(R) →

L2(R) acting on the usual L2-space of the real line.
We have realized the spectral theorem for KΓα : E → E.

Theorem 3.8. For n ∈ Z, let Fn be the real-valued function

Fn(ξ) =
Pn

iξ−1/2(cosα)Ṗn
iξ−1/2(− cosα) − Pn

iξ−1/2(− cosα)Ṗn
iξ−1/2(cosα)

Pn
iξ−1/2(− cosα)Ṗn

iξ−1/2(cosα) + Pn
iξ−1/2(cosα)Ṗn

iξ−1/2(− cosα)
,

and let MFn : L2(R) → L2(R) denote the operator of multiplication by Fn. Then KΓα : E → E is unitarily equivalent
to the direct sum of the operators MFn ,

KΓα 'ue

∞⊕
n=−∞

MFn .

In particular, letting Σn be the interval
Σn = {Fn(ξ) : −∞ ≤ ξ ≤ ∞},

we have that

σ(KΓα ,E) =

∞⋃
n=−∞

Σn.

Remark 3.9. That Fn(ξ) is real-valued follows abstractly from our considerations, but can also be seen directly from
the explicit formula. It follows from Lemma 3.1 that the sets Σn shrink to zero as |n| → ∞ (on the order of 1/|n|),
compare with the proof of Theorem 3.2.

4. Perturbation of a straight cone

We consider a surface Γ obtained by revolving a curve γ in the xz-plane around the z-axis, see Figure 1 for two
examples. We suppose that γ is a simple C5-curve, r = γ(t) = (γ1(t), γ2(t)), 0 ≤ t ≤ 1, such that γ(0) = 0, γ1(t) > 0 for
0 < t < 1, γ1(1) = 0, γ2(1) > 0, and γ′2(1) = 0. We normalize the curve so that |γ′(0)| = 1 and assume that γ′1(0) , 0
and γ′2(0) , 0. Let 0 < α < π, α , π/2, be the angle which γ′(0) makes with the z-axis. Let γc be a curve of the same
type as γ such that

γc(t) = (sin(α)t, cos(α)t), 0 ≤ t ≤ 1/2,

and denote its surface of revolution be Γc. The goal in this section is to establish that KΓ ' KΓc , on L2(Γ) and on E, so
that we may study the essential spectrum of KΓ by considering KΓc .

Γ has the parametrization

r(t, θ) = (γ1(t) cos θ, γ1(t) sin θ, γ2(t)), θ ∈ [0, 2π], 0 ≤ t ≤ 1, (42)

and therefore
dσ(t, θ) = γ1(t)|γ′(t)| dt dθ.

When t → 0 we have by assumption that γ1(t)|γ′(t)| = sin(α)t+O(t2) and similarly the outward unit normal νr satisfies

νr = (cosα cos θ, cosα sin θ,− sinα) + O(t). (43)

As we did earlier for the infinite straight cone, we write KΓ(t, θ, t′, θ′) = KΓ(r(t, θ), r(t′, θ′)), and adopt a similar
convention for other functions and kernels on Γ.

We will first study the action of KΓ on L2(Γ), and begin with the following simple lemma.
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Lemma 4.1. Let b(t) be a bounded function on [0, 1] such that b(t) = o(1) as t → 0. Let Mb denote the operator of
multiplication by b(t) on L2(Γ, dσ). Then KΓMb and MbKΓ are compact on L2(Γ, dσ).

Proof. For every 0 < ε < 1, let ρε ∈ C∞c ([0, 2ε)) be such that ρε(t) = 1 for t ∈ [0, ε] and 0 ≤ ρε(t) ≤ 1 for all t.
KΓMbM1−ρε has a weakly singular kernel and is therefore a compact operator by Lemma 2.6, cf. [44, Lemma 1]. But
for f ∈ L2(Γ) it holds that

‖KΓMb f − KΓMbM1−ρε f ‖L2 = ‖KΓMbMρε f ‖L2 ≤ ‖KΓ‖L2(Γ)→L2(Γ)‖bρε f ‖2L = o(1)‖ f ‖L2 .

Hence the compact operators KΓMbM1−ρε converge uniformly to KΓMb as ε→ 0, and therefore KΓMb is compact. A
similar argument shows that MbKΓ is compact.

Having picked a parametrization of Γ, we may write down the action of KΓ explicitly,

KΓ f (t, θ) =
1

2π

∫ 1

0

∫ 2π

0
KΓ(t, θ, t′, θ′) f (t′, θ′) dσ(t′, θ′), f ∈ L2(Γ, dσ(t, θ)). (44)

Using this formula as the definition, we may also consider KΓ as an operator on

L2(Γc) = L2([0, 1] × [0, 2π], dσc(t, θ)).

The next lemma shows that this renorming only amounts to perturbing KΓ by a compact operator.

Lemma 4.2. KΓ : L2(Γ, dσ(t, θ))→ L2(Γ, dσ(t, θ)) is unitarily equivalent to a compact perturbation of

KΓ : L2(Γc, dσc(t, θ))→ L2(Γc, dσc(t, θ)).

Proof. Let U : L2(Γc, dσc(t, θ))→ L2(Γ, dσ(t, θ)) be the unitary map

U : f (t, θ) 7→

√
γc,1(t)|γ′c(t)|
γ1(t)|γ′(t)|

f (t, θ).

Let I : L2(Γ, sin(α)t dt dθ) → L2(Γ, dσ(t, θ)) be the inclusion map, I f = f . Then U = I + Mb1 and U−1 = I−1 + Mb2 ,
for functions b1 and b2 which satisfy b j(t) = O(t), j = 1, 2. Hence

UKΓU−1 = KΓ + KΓMb2 + Mb1 KΓ + Mb1 KΓMb2 ,

which by Lemma 4.1 implies the desired property of KΓ.

We can now prove our main perturbation result on L2(Γ).

Theorem 4.3. KΓ : L2(Γ)→ L2(Γ) and KΓc : L2(Γc)→ L2(Γc) are equivalent in the sense of Definition 2.2. That is,

KΓ ' KΓc .

Proof. Let ρε be as in Lemma 4.1 and let ρ = ρ1/4. By Lemma 4.2 we are justified to consider the difference KΓ −KΓc

as an operator on L2(Γc), and it sufficient to prove that it is compact. The differences KΓ−MρKΓMρ and KΓc−MρKΓc Mρ

have weakly singular kernels and therefore define compact operators by Lemma 2.6. It follows that it is sufficient to
prove that T = Mρ(KΓ − KΓc )Mρ is compact on L2 (̃Γc, dσc), where Γ̃c is the conical surface

Γ̃c = {(sin(α)t cos θ, sin(α)t sin θ, cos(α)t) : (t, θ) ∈ [0, 1/2] × [0, 2π]}

with surface measure dσc(t, θ) = sin(α)t dt dθ.
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Since T−MρεT Mρε is compact, again by Lemma 2.6, it is sufficient to show that Tε = Mρε (K
Γ−KΓc )Mρε converges

to zero in operator norm as ε→ 0. Note that for t ∈ [0, 1/2]

MρεK
ΓMρε f (t, θ) =

ρε(t)
2π

∫ 2π

0

∫ 2ε

0
KΓ(t, θ, t′, θ′)ρε(t′) f (t′, θ′) dσc(t′, θ′)

+
ρε(t)
2π

∫ 2π

0

∫ 2ε

0
KΓ(t, θ, t′, θ′)ρε(t′) f (t′, θ′)b(t′) dt′ dθ′,

where b(t′) = O(t′) as t′ → 0. The second integral in this expression has operator norm tending to zero as ε → 0 (cf.
Lemma 4.1), and hence we do not have to consider it.

We will work with Γ̃c in its Lipschitz parametrization

Γ̃c = {(x, y, cot(α)
√

x2 + y2) : x2 + y2 ≤ 1/4},

for which the surface measure is given by dσc(x, y) = (1/ sinα) dx dy and the unit outward normal is

νc
x,y = sinα

cotα
x√

x2 + y2
, cotα

y√
x2 + y2

,−1

 .
Close to the origin, Γ has by assumption the parametrization

Γ ∩ {r : |r| < δ} = {(x, y, cot(α)ϕ(
√

x2 + y2)) : x2 + y2 < δ2},

for a sufficiently small δ > 0 and a function ϕ ∈ C5([0, δ]) such that ϕ(t) = t + O(t2). For ε ≤ δ/ sin(α), we are now
left to consider the integral kernel

ρε(csc(α)
√

x2 + y2)T̃ (x, y, x′, y′)ρε(csc(α)
√

x′2 + y′2), (45)

where for x2 + y2 < δ2 and x′2 + y′2 < δ2 it holds that

T̃ (x, y, x′, y′) =
〈(x − x′, y − y′, cot(α)(

√
x2 + y2 −

√
x′2 + y′2)), νc

x,y〉

|(x − x′, y − y′, cot(α)(
√

x2 + y2 −
√

x′2 + y′2))|3

−
〈(x − x′, y − y′, cot(α)(ϕ(

√
x2 + y2) − ϕ(

√
x′2 + y′2))), νx,y〉

|(x − x′, y − y′, cot(α)(ϕ(
√

x2 + y2)) − ϕ(
√

x′2 + y′2)))|3

=
ϕ(

√
x2 + y2) − ϕ(

√
x′2 + y′2) −

√
x2 + y2 +

√
x′2 + y′2

tanα|(x − x′, y − y′, cot(α)(
√

x2 + y2 −
√

x′2 + y′2))|3︸                                                                   ︷︷                                                                   ︸
(I)

+
〈(x − x′, y − y′, cot(α)(ϕ(

√
x2 + y2) − ϕ(

√
x′2 + y′2))), νc

x,y − νx,y〉

|(x − x′, y − y′, cot(α)(
√

x2 + y2 −
√

x′2 + y′2))|3︸                                                                                 ︷︷                                                                                 ︸
(II)

+ 〈(x − x′, y − y′, cot(α)(ϕ(
√

x2 + y2) − ϕ(
√

x′2 + y′2))), νx,y〉D(x, y, x′, y′)︸                                                                                           ︷︷                                                                                           ︸
(III)

,

where

D(x, y, x′, y′) = |(x − x′, y − y′, cot(α)(
√

x2 + y2 −

√
x′2 + y′2))|−3

− |(x − x′, y − y′, cot(α)(ϕ(
√

x2 + y2)) − ϕ(
√

x′2 + y′2)))|−3.
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To prove the theorem, we will now show that T̃ decomposes into a finite sum

T̃ =
∑

i

T̃ i, (46)

where each T̃ i is of the form

T̃ i(x, y, x′, y′) = (b1(x, y) + b2(x′, y′))B(x, y, x′, y′)R(x, y, x′, y′).

Here R denotes one of the three Riesz transforms of Γ̃c, b1 and b2 are bounded functions satisfying b1(x, y) =

O(
√

x2 + y2) and b2(x′, y′) = O(
√

x′2 + y′2), and B ∈ C1(([−δ, δ] \ {0})4) is Lipschitz. Note that the operator with
kernel B(x, y, x′, y′)R(x, y, x′, y′) is bounded; in the decomposition

B(x, y, x′, y′)R(x, y, x′, y′) = (B(x, y, x′, y′) − B(x′, y′, x′, y′))R(x, y, x′, y′) + B(x′, y′, x′, y′)R(x, y, x′, y′)

the first term is weakly singular and therefore defines a compact operator by Lemma 2.6, while the second term
defines a bounded integral operator by an application of Lemma 2.8. Since b1 and b2 both tend to zero at the origin,
the argument of Lemma 4.1 hence shows that the integral operator with the kernel (45) tends to zero in operator norm
as ε→ 0. Thus, the proof is finished if we show that there is a decomposition of the type (46).

In fact, each of the terms (I), (II), and (III), decomposes in the described way. Let us first treat the term (I). Let
ψ(t) = t−2(ϕ(t) − t) ∈ C3([0, δ]). Then

(I) = ψ(
√

x2 + y2)(x + x′)
x − x′

tanα|(x − x′, y − y′, cot(α)(
√

x2 + y2 −
√

x′2 + y′2))|3

+ ψ(
√

x2 + y2)(y + y′)
y − y′

tanα|(x − x′, y − y′, cot(α)(
√

x2 + y2 −
√

x′2 + y′2))|3

+
ψ(

√
x2 + y2) − ψ(

√
x′2 + y′2)√

x2 + y2 −
√

x′2 + y′2
(x′2 + y′2)

√
x2 + y2 −

√
x′2 + y′2

tanα|(x − x′, y − y′, cot(α)(
√

x2 + y2 −
√

x′2 + y′2))|3
.

Each of the terms of this sum are of the described form. For instance, for the final term we have that b1 = 0,
b2(x′, y′) = x′2 + y′2,

B(x, y, x′, y′) =
ψ(

√
x2 + y2) − ψ(

√
x′2 + y′2)√

x2 + y2 −
√

x′2 + y′2
,

and R(x, y, x′, y′) = RΓ̃c
3 (x, y, x′, y′) is the kernel of the third Riesz transform of Γ̃c.

The term (II) is treated very similarly, after using that

νx,y =
cotα(

1 + cot2(α)
[
ϕ′(

√
x2 + y2)

]2
)1/2

 x√
x2 + y2

ϕ(
√

x2 + y2),
y√

x2 + y2
ϕ(

√
x2 + y2),−

1
cotα

 .
To deal with term (III), let

d1(x, y, x′, y′) = |(x − x′, y − y′, cot(α)(
√

x2 + y2 −

√
x′2 + y′2))|,

and let
d2(x, y, x′, y′) = |(x − x′, y − y′, cot(α)(ϕ(

√
x2 + y2)) − ϕ(

√
x′2 + y′2)))|.

Then

D =
(d2

1 + d1d2 + d2
2)(d1 − d2)

d3
1d3

2

.
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The quotients d1/d2 and d2/d1 are continuously differentiable on ([−δ, δ] \ {0})4 and Lipschitz, so it is sufficient to
consider the kernel

〈(x − x′, y − y′, cot(α)(ϕ(
√

x2 + y2) − ϕ(
√

x′2 + y′2))), νx,y〉(d1(x, y, x′, y′) − d2(x, y, x′, y′))
d1(x, y, x′, y′)3 .

The remaining details are again very similar to those of the term (I).

Next we will prove the corresponding theorem for E, the energy space associated with Γ. We denote by Ec the
energy space associated with Γc. Recall that E may be isomorphically identified with H−1/2(Γ). To treat the mapping
properties of KΓ on E we will actually consider (KΓ)∗ on H1/2(Γ). Just as for KΓ, we may use the parametrization of Γ

to consider (KΓ)∗ as an operator on H1/2(Γc), cf. the remarks surrounding (44). We then have the following analogue
of Lemma 4.2.

Lemma 4.4. (KΓ)∗ : H1/2(Γ)→ H1/2(Γ) is similar to (KΓ)∗ : H1/2(Γc)→ H1/2(Γc).

Proof. This is immediate from the fact that the inclusion map I : H1/2(Γ) → H1/2(Γc) is an isomorphism. In other
words, the norms of H1/2(Γ) and H1/2(Γc) are comparable, which is clear from the Gagliardo-Slobodeckij norm
expression (21).

Theorem 4.5. KΓ : E → E and KΓc : Ec → Ec are equivalent in the sense of Definition 2.2. That is,

KΓ ' KΓc .

Proof. The proof of Theorem 4.3 also shows that (KΓ)∗ − (KΓc )∗ is compact as an operator on L2(Γc). We will soon
prove that this difference is also compact as an operator on H1(Γc). By real interpolation [12] it follows that

(KΓ)∗ − (KΓc )∗ : H1/2(Γc)→ H1/2(Γc)

is compact. By Lemma 4.4 it follows that (KΓ)∗ : H1/2(Γ)→ H1/2(Γ) and (KΓc )∗ : H1/2(Γc)→ H1/2(Γc) are equivalent
in the sense of Definition 2.2. This proves the theorem, by duality and the identification of H−1/2(Γ) and E.

As we have done previously for KΓ and (KΓ)∗, we may consider S Γ as an operator on L2(Γc). It is an obviously
bounded operator, using Lemma 2.6. To prove compactness on H1(Γc) we may, by Lemma 2.5, equivalently prove
that

((KΓ)∗ − (KΓc )∗)S Γc : L2(Γc)→ H1(Γc)

is compact. By the Plemelj formula (6) we have that

((KΓ)∗ − (KΓc )∗)S Γc = S Γc (KΓ − KΓc ) − (S Γc − S Γ)KΓ + (KΓ)∗(S Γc − S Γ).

We already know that S Γc (KΓ − KΓc ) : L2(Γc) → H1(Γc) is compact, by the proof of Theorem 4.3 and Lemma 2.5. It
is hence sufficient to prove that (S Γc − S Γ)KΓ and (KΓ)∗(S Γc − S Γ) also are compact terms. They are both similar; we
will treat the first one.

Let ρε be as in Lemma 4.1. Since MρεK
ΓMρε − KΓ is compact on L2(Γc) by Lemma 2.6, it is sufficient to prove

that
(S Γc − S Γ)MρεK

ΓMρε : L2(Γc)→ H1(Γc)

is compact. To accomplish this, we show that (S Γc − S Γ)Mρε is compact. For r ∈ Γc, let τ = τ(r) be a tangent vector
on Γc, smooth in r, except close to the origin where we still assume that τ is bounded above and below in length. We
need to show that ∂τ(S Γc − S Γ)Mρε : L2(Γc)→ L2(Γc) is compact, for any choice of τ. Clearly M1−ρ3ε∂τ(S

Γc − S Γ)Mρε

is compact on L2(Γc) by Lemma 2.6, since its integral kernel is smooth, so it is sufficient to show that the norm of

T = Mρ3ε∂τ(S
Γc − S Γ)Mρε : L2(Γc)→ L2(Γc)

tends to zero as ε→ 0+.

24



For this purpose we may consider T as on operator on L2 (̃Γc), where Γ̃c is the conical surface of the proof of
Theorem 4.3. We consider the same parametrization as in that proof, and we consider the tangential derivative ∂τ =

−∂x. A computation, the interchange of limit and differentiation justified by Lemma 2.8, shows that

T f (x, y, x′, y′) =

lim
η→0+

ρ3ε(csc(α)
√

x2 + y2)
( ∫
|(x′,y′)−(x,y)|>η

K1(x, y, x′, y′)ρε(csc(α)
√

x′2 + y′2) f (x′, y′) csc(α) dx dy

−

∫
|(x′,y′)−(x,y)|>η

K2(x, y, x′, y′)ρε(csc(α)
√

x′2 + y′2) f (x′, y′)

1 + cot2(α)
[
ϕ′(

√
x2 + y2)

]21/2

dx dy
)
,

where

K1(x, y, x′, y′) =

(x − x′) +
cot2(α)x√

x2+y2

( √
x2 + y2 −

√
x′2 + y′2

)
|(x − x′, y − y′, cot(α)(

√
x2 + y2 −

√
x′2 + y′2))|3

,

and

K2(x, y, x′, y′) =

(x − x′) +
cot2(α)x√

x2+y2
ϕ′(

√
x2 + y2)

(
ϕ(

√
x2 + y2) − ϕ(

√
x′2 + y′2)

)
|(x − x′, y − y′, cot(α)(ϕ(

√
x2 + y2)) − ϕ(

√
x′2 + y′2)))|3

.

Analogous arguments to those of the proof of Theorem 4.3 will yield that the integral kernel of T may be decomposed
in the same way as in that proof. That is, we may write the integral kernel as a sum of Riesz kernels multiplied by
functions which are either sufficiently smooth or small at the origin. Once this is done, we may take η→ 0+ using the
maximal Riesz transform estimate of Lemma 2.8, concluding that T is arbitrarily small in norm as ε→ 0+. The same
can then be done for the tangential derivative ∂τ = −∂y, finishing the proof. As the details are quite clear after having
seen Theorem 4.3, but equally lengthy, we choose to not give any further computations.

5. The essential spectrum and Fredholm index on L2

Throughout this section we consider KΓ : L2(Γ)→ L2(Γ) as an operator on L2(Γ) only. The kernel KΓ satisfies the
same type of rotational invariance that we considered earlier,

KΓ(t, θ, t′, θ′) = KΓ(t, θ − θ′, t′, 0).

Hence we let Kγ
n : L2(γ1(t)|γ′(t)| dt)→ L2(γ1(t)|γ′(t)| dt) be the integral operator with kernel

Kγ
n (t, t′) =

1
2π

∫ 2π

0
e−inθKΓ(t, θ, t′, 0) dθ, 0 < t, t′ ≤ 1,

so that

Kγ
n f (t) =

∫ 1

0
Kγ

n (t, t′) f (t′)γ1(t′)|γ′(t′)| dt′. (47)

Just as for the infinite cone in Section 3.1, we then have that

KΓ 'ue

∞⊕
n=−∞

Kγ
n .

Having established that KΓ ' KΓc in Theorem 4.3, we will now investigate the spectrum of

KΓc 'ue

∞⊕
n=−∞

Kγc
n (48)

25



acting on

L2(Γc, dσc) =

∞⊕
n=−∞

L2([0, 1], γ1(t)|γ′(t)| dt).

Let ρ ∈ C∞c ([0, 1/2)) be a non-negative cut off function such that ρ(t) = 1 for 0 ≤ t ≤ 1/4, and 0 ≤ ρ(t) ≤ 1 for all t.
Then KΓc − MρKΓc Mρ is compact, and

MρKΓc Mρ 'ue

∞⊕
n=−∞

MρKγc
n Mρ. (49)

Equations (48) and (49) imply that Kγc − MρKγc
n Mρ is compact, for every n. Since γc is a straight line segment for

0 ≤ t ≤ 1/2 we consider MρKΓc Mρ and MρKγc
n Mρ to be operators

MρKΓc Mρ : L2([0, 1/2] × [0, 2π], sin(α)t dt dθ)→ L2([0, 1/2] × [0, 2π], sin(α)t dt dθ)

and
MρKγc

n Mρ : L2([0, 1/2], sin(α)t dt)→ L2([0, 1/2], sin(α)t dt).

This preserves equivalence in the sense of Definition 2.2.
Let U : L2([0, 1/2], sin(α)t dt)→ L2([0, 1/2], dt) be the unitary operator defined by

U f (t) =
√

t sinα f (t), 0 ≤ t ≤ 1/2.

Observe that Kγc
n (t, t′) = Kα

n (t, t′) for 0 < t, t′ ≤ 1/2, where Kα
n is the kernel associated with the infinite straight cone,

defined in Section 3.1. By the homogeneity property (29), we have for g ∈ L2([0, 1/2], dt) that

UMρKγc
n MρU−1g(t) = sin(α)ρ(t)

∫ 1/2

0

√
t/t′Kα

n (t/t′, 1)ρ(t′)g(t′)
dt′

t′
.

The operator Jαn = UMρKγc
n MρU−1 is hence a Hardy kernel operator on L2([0, 1/2], dt) with kernel

jαn (t) = sin(α)
√

tKα
n (t, 1),

multiplied from the left and the right by the cut-off function ρ. Hence, once we show that the Mellin transform of the
kernel jαn is sufficiently well-behaved, it follows that the operator Jαn is a pseudodifferential operator of Mellin type.
There is a well-established symbolic calculus for such Mellin operators, developed in [17, 35, 36], which we will use
to compute the spectrum of Kγc

n .
For −∞ < α < β < ∞ and a number m we follow the notation of [17, 35] and denote by Om

α,β the space of functions
g(ζ), holomorphic in the strip {ζ = η+ iξ : α < η < β, ξ ∈ R} and such that for every α < c < d < β and non-negative
integer l it holds that

sup
ζ=η+iξ

c<η<d, ξ∈R

∣∣∣∣∣∣∣(1 + |ξ|)l−m
(

d
dζ

)l

Mg(ζ)

∣∣∣∣∣∣∣ < ∞.
Lemma 5.1. The Mellin transform of jα0 belongs to O−1

−1/2,5/2, M jα0 ∈ O
−1
−1/2,5/2. For n , 0, it holds that M jαn ∈

O−1
−|n|+1/2,|n|+3/2.

Proof. First note that the function w(t) = log
∣∣∣ 1+t

1−t

∣∣∣ has the explicit Mellin transform

Mw(ζ) =
π

ζ
tan

(
πζ

2

)
, −1 < <e ζ < 1.

By this formula,Mw ∈ O−1
0,1. For fixed c and d, 0 < c < d < 1, we let

Cl = sup
ζ=η+iξ

c<η<d, ξ∈R

∣∣∣∣∣∣∣(1 + |ξ|)l+1
(

d
dζ

)l

Mw(ζ)

∣∣∣∣∣∣∣ .
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Let τ be any smooth compactly supported function in (0,∞). Let T (ξ) be the Fourier transform of τ(ex),

T (ξ) =

∫ ∞

−∞

eixξτ(ex) dx.

Note that for every l ≥ 0 there is a constant Dl < ∞ such that |T (ξ)| ≤ Dl(1+ |ξ|)−l−1, since τ(ex) is a smooth compactly
supported function on R. For ζ = η + iξ, c < η < d, we have by the change of variable r = ex and the usual Fourier
convolution theorem that

M(wτ)(ζ) =

∫ ∞

−∞

eixξexηw(ex)τ(ex) dx =
1

2π

∫ ∞

−∞

Mw(η + i(ξ − x))T (x) dx.

Using the definitions of Cl and Dl and the fact that T and
(

d
dζ

)l
Mw(η + i·) belong to L1(R), we find for every l ≥ 1

that ∣∣∣∣∣∣∣
(

d
dζ

)l

M(wτ)(ζ)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫ ∞

−∞

( d
dζ

)l

Mw

 (η + i(ξ − x))T (x) dx.

∣∣∣∣∣∣∣
≤

∫
|ξ−x|≥ |ξ|2

+

∫
|x|≥ |ξ|2


∣∣∣∣∣∣∣
( d

dζ

)l

Mw

 (η + i(ξ − x))T (x)

∣∣∣∣∣∣∣ dx

. 2l(Cl + Dl)(1 + |ξ|)−l−1.

The same inequality follows also for l = 0, by integrating the obtained inequality for l = 1. It immediately follows
thatM(wτ) ∈ O−1

0,1. However, since τ(r)rη is also compactly supported smooth function on (0, 1), for any η ∈ R, we
actually conclude thatM(wτ) ∈ O−1

α,β for any −∞ < α < β < ∞.
Now fix n , 0 and a smooth function τ1, compactly supported in (1/2, 3/2) and such that τ1(t) = 1 for t ∈

[−3/4, 5/4]. By Lemma 3.1 there is a smooth function G(t) on (1/2, 3/2) such that

d(t) := jαn (t) − w(t)G(t)τ1(t)

is a function in C∞((0,∞)). It is also clear from the easy part of the proof, which appears in the Appendix, that the
statement of Lemma 3.1 could have been sharpened somewhat: for every l ≥ 0 it holds that(

t
d
dt

)l

d(t) = O(t|n|+3/2), t → ∞,
(
t

d
dt

)l

d(t) = O(t|n|−1/2), t → 0.

By [17, Lemma 1.2] it follows thatMd ∈ Om
−|n|+1/2,|n|+3/2 for every integer m. By combining this with the conclusion of

the previous paragraph, letting τ = Gτ1, we see thatM jαn ∈ O
−1
−|n|+1/2,|n|+3/2. Similarly, taking into account the different

asymptotics for n = 0,M jα0 ∈ O
−1
−1/2,5/2.

Remark 5.2. The proof shows that for no α < β and ε > 0 does it hold that M jαn ∈ O
−1−ε
α,β . Hence jαn only barely

satisfies the smoothness hypothesis required in [17, 35]. This is unlike the applications to layer potentials for domains
with corners in 2D [35, 40], where the Mellin transforms of the corresponding Hardy kernels belong to Om

0,1 for every
m.

Having verified thatM jαn ∈ O
−1
0,1 for every n, we may now apply the symbolic calculus. We refer to [40, pp. 472–

473] for a summary of the theory. We will not recount any of the details here, but only mention that each Mellin pseu-
dodifferential operator A is associated with its symbol Smbl1/2 A, which can be interpreted as a continuous function
on the boundary of the compact rectangle R1/2 (see Lemma 5.3) The operator A : L2([0, 1/2], dt) → L2([0, 1/2], dt)
is Fredholm if and only if Smbl1/2 A has no zero on ∂R1/2. In this case, the Fredholm index of A is given by the change
in argument of Smbl1/2 A as ∂R1/2 is traversed clockwise. As Jαn is a Hardy kernel operator, multiplied from the left
and the right by a smooth cut off function, the symbolic calculus yields the following.
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Lemma 5.3. For every z ∈ C and n ∈ Z, the operator Jαn − z : L2([0, 1/2], dt) → L2([0, 1/2], dt) is a Mellin
pseudodifferential operator with symbol Smbl1/2

(
Jαn − z

)
given by

t = 0 −z t = 1/2
1/2 + i∞

−z

1/2 − i∞
t = 1/2−zt = 0

1/2 + i∞

M jαn (1/2 + iξ) − z

1/2 − i∞

R1/2

Hence, the essential spectrum of Jαn is given by the closed curve

σess(Jαn ) = {M jαn (1/2 + iξ) : −∞ ≤ ξ ≤ ∞},

where it is understood thatM jαn (1/2 ± i∞) = 0. For z < σess(Jαn ), Jαn − z is Fredholm with index given by the winding
number of z with respect to the curve σess(Jαn ),

index(Jαn − z) = W(z, σess(Jαn )).

Since M jαn (1/2 + iξ) = sin(α)M[Kα
n (·, 1)](1 + iξ), the curve in Lemma 5.3 is the same curve that appears in

Theorem 3.2,
σess(Jαn ) = {M jαn (1/2 + iξ) : −∞ ≤ ξ ≤ ∞} = Πn.

We need one more lemma.

Lemma 5.4. It holds that
‖Jαn ‖L2([0,1/2],dt)→L2([0,1/2],dt) .

1
|n| + 1

.

Proof. Let Kα
n : L2([0,∞), sin(α) tdt)→ L2([0,∞), sin(α) tdt) be the operator defined in Section 3.1 and recall that we

showed that ‖Kn‖ . (1 + |n|)−1 in the proof of Theorem 3.2. By definition Jαn 'ue MρKγc
n Mρ. Then clearly

‖Jαn ‖ = ‖MρKγc
n Mρ‖ ≤ ‖K

γα
n ‖ .

1
|n| + 1

,

which is what we wanted to prove.

We can now piece together all of our results to obtain the main theorem of this section.

Theorem 5.5. Let Γ be a closed surface of revolution with a conical point of opening angle 2α, obtained by revolving
a C5-curve γ. For n ∈ Z, denote by Πn the closed curve

Πn = {sin(α)M[Kα
n (·, 1)](1 + iξ) : −∞ ≤ ξ ≤ ∞}

=

Pn
iξ(cosα)Ṗn

iξ(− cosα) − Pn
iξ(− cosα)Ṗn

iξ(cosα)

Pn
iξ(− cosα)Ṗn

iξ(cosα) + Pn
iξ(cosα)Ṗn

iξ(− cosα)
: −∞ ≤ ξ ≤ ∞

 ,
with orientation given by the ξ-variable. Then the operator KΓ : L2(Γ, dσ)→ L2(Γ, dσ) has essential spectrum

σess(KΓ, L2) =

∞⋃
n=−∞

Πn. (50)

28



If z < σess(KΓ, L2), then KΓ − z has Fredholm index

index(KΓ − z) =

∞∑
n=−∞

W(z,Πn) = W(z,Π0) + 2
∞∑

n=1

W(z,Πn)

where W(z,Πn) ≤ 0 denotes the winding number of z with respect to Πn and the right-hand side is always a finite sum.
In particular, every point z lying inside one of the curves Πn belongs to the spectrum σ(KΓ, L2).

Whenever z is not a real number, it holds that dim ker(KΓ − z) = 0, so that

index(KΓ − z) = − codim ran KΓ, z ∈ C \ R.

In particular, if index(KΓ − z) = 0 (so that z lies outside every curve Πn), then either KΓ − z is invertible or z = x is
real and an eigenvalue of KΓ.

Remark 5.6. Figure 2 illustrates the set
⋃∞

n=−∞ Πn. Note that for each z it holds that W(z,Π0) is 0 or −1 and for n , 0
that W(z,Πn) is 0, −1, or −2. Strictly speaking we never prove this statement.

Remark 5.7. We could define a notion of more general surfaces Γ with a finite number of axially symmetric conical
points. Theorem 5.5 extends effortlessly to such surfaces, each conical point contributing a set of the type (50) to the
essential spectrum. The index formula then extends additively with the corners. We refrain from giving an explicit
statement, to avoid introducing further notation.

Proof. By Theorem 4.3,

KΓ '

∞⊕
n=−∞

Jαn .

By Lemma 5.4, there is a finite number m, depending only on z, such that Jαn − z is invertible for |n| > m. Hence, by
Lemma 5.3, there are two possibilities. Either z ∈

⋃
|n|≤m Πn, and in this case z ∈ σess(KΓ, L2), or KΓ − z is Fredholm

with index

index(KΓ − z) =
∑
|n|≤m

W(z,Πn) =

∞∑
n=−∞

W(z,Πn).

The explicit formula for Πn was proven in Theorem 3.6.
Recall next that KΓ : E → E is a self-adjoint operator. Hence, unless z = x is real, KΓ − z : E → E is always

invertible. Since L2(Γ) ⊂ E it follows that z cannot be an eigenvalue for KΓ : L2(Γ) → L2(Γ) unless z is real. In
particular, KΓ − z is invertible if z is non-real and index(KΓ − z) = 0. It also follows that W(z,Πn) ≤ 0 for every z < Πn

and n. If z = x is real and K − x is not invertible, then clearly it must be an eigenvalue if index(KΓ − z) = 0.

6. The essential spectrum on E

Recall that we characterized the spectrum of KΓα : E → E in Theorem 3.8, when Γα is an infinite straight cone.
To begin this section we will show that the essential spectrum remains the same if we localize KΓα to the origin.
Informally speaking, we will show that the singularities of KΓα at the origin and at infinity contribute equally to the
essential spectrum.

Lemma 6.1. For f ∈ L2(Γα), let V f (t, θ) = 1
t3 f

(
1
t ,−θ

)
. Then V extends to a unitary involution

V : E → E.

Furthermore, V commutes with KΓα ,
VKΓα = KΓαV.
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Proof. It is clear that V has dense range in E, so we only need to verify that it is an isometry. Note that U f (t, θ) =
1
t2 f

(
1
t ,−θ

)
is a unitary map of L2(Γα) such that U = U∗. A computation relying on the homogeneity and symmetry of

S Γα shows that

US Γα f (t) =
1
t2

∫ 2π

0

∫ ∞

0
S Γα

(
1
t
,−θ, t′, θ′

)
f (t′, θ′)t′ dt′ sin(α) dθ′

=
1
t2

∫ 2π

0

∫ ∞

0
S Γα

(
1
t
,−θ,

1
s′
,−θ′

)
V f (s′, θ′) ds′ sin(α) dθ′

=
1
t

∫ 2π

0

∫ ∞

0
S Γα

(
t, θ, s′, θ′

)
V f (s′)s′ ds′ sin(α) dθ′

=
1
t

S ΓαV f (t).

Hence
〈 f , g〉E = 〈US Γα f ,Ug〉L2(Γα) = 〈S ΓαV f ,Vg〉L2(Γα) = 〈V f ,Vg〉E.

For r, r′ ∈ Γα we have that
〈r′ − r, νr〉 = cos(α) sin(α)t′(1 − cos(θ′ − θ)),

and thus also that
〈r − r′, νr′〉 = cos(α) sin(α)t(1 − cos(θ′ − θ))

It follows that
KΓα (t, θ, t′, θ′) =

t′

t
(KΓα )∗(t, θ, t′, θ′),

cf. Lemma 3.1. Hence a computation similar to the above one yields that

VKΓα f (t) =
1
t3

∫ 2π

0

∫ ∞

0
KΓα

(
1
t
,−θ,

1
s′
,−θ′

)
V f (s′, θ′) ds′ sin(α) dθ′

=

∫ 2π

0

∫ ∞

0

1
t

(KΓα )∗
(
t, θ, s′, θ′

)
s′V f (s′)s′ ds′ sin(α) dθ′

= KΓαV f (t).

The localization result we are after is the following.

Lemma 6.2. Let ρ ∈ C∞c ([0, 1/2)) be a smooth compactly supported function such that ρ(t) = 1 for t ∈ [0, 1/4], and
denote by Mρ : E → E the operator of multiplication by ρ in (t, θ)-coordinates. Then

σea(MρKΓα Mρ,E) =

∞⋃
n=−∞

Σn,

where Σn are the same intervals as in Theorem 3.8.

Proof. Let ρ1 = ρ, let ρ2(t) = ρ1(1/t), 0 < t < ∞, and let ρ3 = 1 − ρ1 − ρ2. Then

KΓα =

3∑
j,k=1

Mρ j K
Γα Mρk .

If ( j, k) is any of the indices (1, 3), (3, 1), or (3, 3), then Mρ j K
Γα Mρk has a weakly singular kernel and it follows from

Lemma 2.6 and (10) that it is a compact operator. To treat the remaining non-diagonal terms we use the operator V to
move neighborhoods of ∞ to the origin, so that we may apply (10). Note that V Mρ1 = Mρ2 V , V Mρ3 = Mρ3 V and that
the adjoint of V with respect to the L2(Γα)-pairing is given by

V∗ f (t) =
1
t

f
(

1
t
,−θ

)
.
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By (10), Mρ1 KΓα Mρ2 : E → E is compact if and only if

Mρ1 KΓα Mρ2 V = Mρ1 KΓαV Mρ1 : H−1/2(Γα)→ H−1/2(Γα)

is compact. It is easy to check that the L2(Γα)-adjoint of this latter operator defines a bounded operator

Mρ1 V∗(KΓα )∗Mρ1 : L2(Γα)→ H1/2(Γα)

As in the proof of Lemma 2.6, it follows that Mρ1 KΓα Mρ2 : E → E is compact. Since

Mρ1 KΓα Mρ2 V = V Mρ2 KΓα Mρ1

it also follows that Mρ2 KΓα Mρ1 : E → E is compact. Similarly,

Mρ2 KΓα Mρ3 V = V Mρ1 KΓα Mρ3

so we see that Mρ2 KΓα Mρ3 is compact. In the same way we conclude that Mρ3 KΓα Mρ2 is compact.
In total, we have shown that

KΓα = Mρ1 KΓα Mρ1 + Mρ2 KΓα Mρ2+ compact.

Note that Mρ1 KΓα Mρ1 and Mρ2 KΓα Mρ2 are orthogonal (in the sense that their composition is 0) and unitarily equivalent,

V Mρ1 KΓα Mρ1 V−1 = Mρ2 KΓα Mρ2 .

To conclude using these two facts we apply Weyl’s criterion to the self-adjoint operator KΓα : E → E. Let

λ ∈ σea(Mρ1 KΓα Mρ1 + Mρ2 KΓα Mρ2 ,E) = σess(KΓα ,E),

and let ( fn) ⊂ E be a corresponding singular sequence. Let ρ4 be a smooth function such that ρ4(t) = 1 on the support
of ρ1, ρ4(t) = 0 on the support of ρ2. Then either (Mρ4 fn) is a singular sequence for Mρ1 KΓα Mρ1 or (M1−ρ4 fn) is a
singular sequence for Mρ2 KΓα Mρ2 . In either case, we find that

λ ∈ σea(Mρ1 KΓα Mρ1 ,E) = σea(Mρ2 KΓα Mρ2 ,E).

Conversely, if λ ∈ σea(Mρ1 KΓα Mρ1 ,E) with singular sequence ( fn), then Mρ1 fn is a singular sequence for the sum
Mρ1 KΓα Mρ1 + Mρ2 KΓα Mρ2 . Hence

σea(Mρ1 KΓα Mρ1 ,E) = σess(KΓα ,E) =

∞⋃
n=−∞

Σn,

by Theorem 3.8.

Combined with Theorem 4.5 this allows us to prove the main theorem of this section.

Theorem 6.3. Let Γ be a closed surface of revolution with a conical point of opening angle 2α, obtained by revolving
a C5-curve γ. For n ∈ Z, denote by Σn the closed interval

Σn =

Pn
iξ−1/2(cosα)Ṗn

iξ−1/2(− cosα) − Pn
iξ−1/2(− cosα)Ṗn

iξ−1/2(cosα)

Pn
iξ−1/2(− cosα)Ṗn

iξ−1/2(cosα) + Pn
iξ−1/2(cosα)Ṗn

iξ−1/2(− cosα)
: −∞ ≤ ξ ≤ ∞

 .
Then the self-adjoint operator KΓ : E → E, where E is the energy space of Γ, has essential spectrum

σess(KΓ,E) =

∞⋃
n=−∞

Σn. (51)

Hence, the spectrum of KΓ consists of this interval and a sequence of real eigenvalues {λk} with no limit point outside
of it,

σ(KΓ,E) = {λk} ∪ σess(KΓ,E).
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Remark 6.4. Again, this theorem extends to surfaces Γ with a finite number of axially symmetric conical points, each
conical point contributing an interval of the type (51) to the essential spectrum.

Proof. Let ρ be as in Lemma 6.2. In the notation of Theorem 4.5 we already know that

σess(KΓ,E) = σess(KΓc ,Ec) = σea(KΓc ,Ec) = σea(MρKΓc Mρ,Ec).

For an element f (t, θ) ∈ Ec supported in [0, 1/2] × [0, 2π] we have by (10) that

‖ f ‖Ec ' ‖ f ‖H−1/2(Γc) = ‖ f ‖H−1/2(Γα) ' ‖ f ‖E(Γα).

In other words, the energy norms on Γc and Γα are comparable for such elements. If (gn) ⊂ E(Γα) is a singular
sequence for MρKΓα Mρ it is clear that (Mρgn) also is a singular sequence. The same statement is also true with Γc in
place of Γα. Combined with Lemma 6.2 it follows that

σess(KΓ,E) = σea(MρKΓc Mρ,Ec) = σea(MρKΓα Mρ,E(Γα)) =

∞⋃
n=−∞

Σn.

7. Numerical experiments

This section is organized as follows: Section 7.1 introduces an indicator function κind
n which highlights the spectral

properties of Kγ
n . The function κind

n is based on a generalization of the polarizability ω j j in (13) and bears some
resemblance to the function α] of [24, Eq. (4.8)]. Section 7.2 reviews an efficient strategy for the numerical solution
of integral equations of the type (

Kγ
n − z

)
ρn(t) = gn(t), (52)

needed to compute ω j j and κind
n to high precision in the numerical examples of Section 7.3.

7.1. Polarizability and the indicator function
Let Γ be a closed surface of revolution with a conical point of opening angle 2α, obtained by revolving a C5-curve

γ, as described in Section 4. By rotational invariance, following Section 3.3, the energy space on Γ has the orthogonal
decomposition

E =

∞⊕
n=−∞

En,

where the norm on En is given by
‖ fn‖En = 〈S γ

n fn, fn〉L2([0,1],γ1(t)|γ′(t)| dt).

The double layer potential KΓ : E → E acts diagonally in this decomposition,

KΓ 'ue

∞⊕
n=−∞

Kγ
n .

The operators Kγ
n : En → En were defined in Section 5 (but their action was considered on a different space), and

the operators S γ
n are defined analogously (cf. Section 3.2). Hence, to numerically study the spectrum of KΓ, we may

consider the modal operators Kγ
n separately. To accomplish this, we will now follow the symmetrization scheme of

[28, Section 5].
Since S Γ : L2(Γ)→ L2(Γ) is a positive operator, the same is true of

S γ
n : L2([0, 1], γ1(t)|γ′(t)| dt)→ L2([0, 1], γ1(t)|γ′(t)| dt).

By definition, the square root of S γ
n extends to a unitary operator

(S γ
n)1/2 =

√
S γ

n : En → L2([0, 1], γ1(t)|γ′(t)| dt).

32



We denote its inverse by (S γ
n)−1/2. Let E∗n be the dual space of En, with respect to the L2-pairing. It is straightforward

to verify that E∗n ⊂ L2([0, 1], γ1(t)|γ′(t)| dt). Then, by duality,
√

S γ
n is also unitary as an operator√

S γ
n : L2([0, 1], γ1(t)|γ′(t)| dt)→ E∗n.

Let Aγ
n : L2([0, 1], γ1(t)|γ′(t)| dt)→ L2([0, 1], γ1(t)|γ′(t)| dt) be the self-adjoint operator

Aγ
n = (S γ

n)1/2Kγ
n (S γ

n)−1/2,

unitarily equivalent to Kγ
n . Since Aγ

n is self-adjoint, it is by the spectral theorem associated with a spectral resolution
dEn, obviously equivalent to the spectral resolution of Kγ

n . Suppose that u ∈ En and v ∈ E∗n are real-valued. Both S γ
n

that Kγ
n map real-valued distributions to real-valued distributions, since their kernels are real (see the Appendix). It

follows that the measure

d〈En(S γ
n)1/2u, (S γ

n)−1/2v〉 = d〈En(·)(S γ
n)1/2u, (S γ

n)−1/2v〉L2([0,1],γ1(t)|γ′(t)| dt)

is real.
For z = x + iy, y , 0, we now let

κn(u, v, z) = =m 〈(Kγ
n − z)−1u, v〉L2([0,1],γ1(t)|γ′(t)| dt). (53)

Since the spectral measure dEn is supported on [−1, 1] by (8), we have that

κn(u, v, z) = =m
∫ 1

−1

d〈En(s)(S γ
n)1/2u, (S γ

n)−1/2v〉
s − z

= y
∫ 1

−1

d〈En(s)(S γ
n)1/2u, (S γ

n)−1/2v〉
(s − x)2 + y2 . (54)

The imaginary part of the polarizability ω33(z) in the r3-direction (see Section 2.2) can in the current notation be
expressed as

=mω33(z) = κ0((ge3 )0, (he3 )0, z).

This is because ge3 and he3 are independent of θ, Γ parametrized by (42), so that

ge3 (t, θ) =
1
√

2π
(ge3 )0(t), he3 (t, θ) =

1
√

2π
(he3 )0(t), θ ∈ [0, 2π], 0 ≤ t ≤ 1. (55)

In the r1-direction, ge1 and he1 have non-zero Fourier coefficients for n = ±1, and

ge1 (t, θ) =
1
√

2π

(
(ge1 )−1(t)e−inθ + (ge1 )1(t)einθ

)
, he1 (t, θ) =

1
√

2π

(
(he1 )−1(t)e−inθ + (he1 )1(t)einθ

)
, (56)

for θ ∈ [0, 2π], 0 ≤ t ≤ 1. By symmetry it follows that

=mω11(z) = 2κ1((ge1 )1, (he1 )1, z),

and a similar formula holds for ω22(z). Hence, (54) shows that there indeed is a spectral measure µ j, j = 1, 2, 3, such
that ω j j(z) can be represented as the Cauchy integral of µ j, as claimed in (14).

We can draw several conclusions from the representation (54) of κn as a Poisson integral. If

dµu,v(s) = d〈Ea(s)(S γ
n)1/2u, (S γ

n)−1/2v〉

has absolutely continuous support around the point x, then almost surely

lim
y→0−

κn(u, v, x + iy) = −πµ′u,v(x) = −π lim
h→0

µu,v(x − h, x + h)
2h

, 0.

For any x, it holds that
lim

y→0−
yκn(u, v, x + iy) = πµu,v({x}).
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In particular, if µu,v({x}) , 0, i.e. if x is an En-eigenvalue of Kγ
n excited by u and v, then |κn(u, v, x + iy)| ' 1/y as

y→ 0−. On the other hand, if x lies outside the support of µu,v entirely, then |κn(u, v, x + iy)| ' y as y→ 0−. In fact, if
x lies outside the spectrum of Kγ

n , then |κn(u, v, x + iy)|/y is uniformly bounded in y < 0 and real-valued u ∈ En, v ∈ E∗n
of norm less or equal to 1. In general, it is not clear how to recover the singular continuous spectrum from κn.

We introduce the indicator function

κind
n (u, v, x + iy) =

κ∆
n (u, v, x + iy) + 1

2
,

where
κ∆

n (u, v, x + iy) = log10 |κn(u, v, x + iy)| − log10 |κn(u, v, x + 10iy)|.

Our numerical experiments rely on the following properties, evident from the preceding discussion.

• If x belongs to the absolutely continuous support of µu,v, then almost surely, we have that

lim
y→0−

κind
n (u, v, x + iy) =

1
2
.

• If µu,v({x}) , 0, then
lim

y→0−
κind

n (u, v, x + iy) = 1.

• If x lies outside the support of µu,v, then

lim
y→0−

κind
n (u, v, x + iy) = 0.

We finish this discussion by describing how u and v are chosen, for a given x ∈ R, in the framework of our numerical
method presented in Section 7.2. To each level of discretization d we associate a finite-dimensional space Fd ⊂ E∗n of
piecewise polynomial functions. The spaces Fd increase as d gets finer, and their union is dense in E∗n. Note that even
when the discretization is rough, our numerical method still computes (Kγ

n − z)−1u(t) to a very high accuracy for every
t , 0. The level of discretization only limits the choice of functions u.

For a given x, we choose a small number y0 < 0, and let u = ŭ and v = v̆ be the maximizers of the supremum

sup
u,v∈Fd,

‖u‖L2 =‖v‖L2 =1

κn(u, v, x + iy0) < ∞. (57)

Before continuing, a subtle remark is required: we know from Theorem 5.5 that it often happens that

sup
‖u‖L2 =‖v‖L2 =1

κn(u, v, x + iy0) = ∞.

already for y0 < 0. In particular, (57) may become arbitrarily large as d gets finer. However, the L2-, En-, and E∗n-norms
are all equivalent on Fd, since it is a finite-dimensional space. Therefore, (57) is certainly finite for a given d, since

sup
‖u‖En =‖v‖E∗n =1

κn(u, v, x + iy0) = ‖(Kγ
n − x − iy0)−1‖ < ∞, y0 < 0.

Based on the equivalence of these norms, we will soon see that it is sound to maximize (57) in the L2-norm. In fact,
since the En- and E∗n-norms are more expensive to compute and also difficult to apply to the numerical maximization
of (57), cf. [24, Section 4], it turns out that our numerical approach yields much better results when we maximize
(57) in the L2-norm. The functions u = ŭ and v = v̆ are best interpreted as moderately aggressive test functions for
which we are guaranteed that κn(ŭ, v̆, x + iy0) > 0 is relatively large.

By the spectral theorem, there is a unitary operator V that carries Aγ
n onto a multiplication operator Mϕ on L2(X, ν),

for some positive measure ν, Aγ
n = V−1MϕV. For subsets F ⊂ [−1, 1] we then have that

µu,v(F) =

∫
ϕ−1(F)

V(S γ
n)1/2uV(S γ

n)−1/2v dν.
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Suppose first that x is an eigenvalue of Kγ
n , i.e. ν(ϕ−1({x})) , 0, and that it is isolated. Suppose that d is so fine

that some eigenvector of Aγ
n, to the eigenvalue x, is not orthogonal to either (S γ

n)1/2Fd or (S γ
n)−1/2Fd. For any δ > 0,

the Poisson integral at x of χ{|s−x|>δ}µu,v tends to zero as y → 0, uniformly in vectors u ∈ En, v ∈ E∗n of norm 1. Here
χ denotes the characteristic function of the indicated set. In view of (54) and the equivalence of all norms on Fd, it
follows that if y0 is sufficiently small then it must be that the maximizers ŭ and v̆ of (57) satisfy that V(S γ

n)1/2ŭ(γ) , 0
and V(S γ

n)−1/2v̆(γ) , 0 for some γ ∈ ϕ−1({x}). Hence

lim
y→0−

κind
n (ŭ, v̆, x + iy) = 1,

as soon as y0 < 0 is sufficiently small and the discretization d is sufficiently fine.
Our conclusion for the non-discrete spectrum appears to be a little less satisfying without further a priori knowl-

edge about the spectral measures of Kγ
n . Let δ > 0, and suppose that Kγ

n has absolutely continuous spectrum in the
interval (x − δ, x + δ). Then the same argument yields, if y0 < 0 is sufficiently small and d sufficiently fine, that
V(S γ

n)1/2ŭ and V(S γ
n)−1/2v̆ could not be identically zero in ϕ−1((x − δ, x + δ)) with respect to ν-measure. Hence there

are points x′ ∈ (x − δ, x + δ) for which

lim
y→0−

κind
n (ŭ, v̆, x′ + iy) =

1
2
.

We do expect that the spectral resolution of Kγ
n is actually well behaved, allowing for stronger conclusions. In particu-

lar, we believe that Kγ
n never has a singularly continuous spectrum. However, a rigorous study of the spectral measures

is beyond the scope of this article.

7.2. Numerical method
We rely on high-order panel-based Nyström discretization [25] to solve (52). The resolution requirements for the

layer density ρn(t) may lead to a giant linear system that we never form explicitly, but instead solve using a technique
called recursively compressed inverse preconditioning (RCIP) [27]. A homotopy method [22, Section 6.3] to capture
limits y→ 0− is another key ingredient in the numerical scheme.

RCIP-accelerated Nyström schemes have previously been used to solve Fredholm integral equations of the second
kind related to the Neumann–Poincaré operator on Lipschitz surfaces [22, 24, 28] and electromagnetic resonances
in axially symmetric domains with sharp edges [26]. It would bring us too far from the scope of this article to
give a complete account of these schemes. We refer instead to the original papers [22, 25, 26, 28] and to the com-
pendium [23]. Below follows a short summary, compiled from [26, 28], giving special attention to differences in the
present implementation from that of [26].

7.2.1. Main features of RCIP-acceleration
In the Nyström discretization of an integral equation, the integral operator is approximated by numerical quadra-

ture and the resulting semi-discrete equation is enforced at the quadrature nodes, leading to a linear system for the
unknown layer density at the nodes. The idea behind RCIP-acceleration is to transform the integral equation into a
preconditioned form where the layer density has better regularity and can be resolved with fewer nodes. In the present
context, the operator in (52) is split into two parts,

Kγ
n = Kγ?

n + Kγ◦
n ,

where Kγ?
n describes the kernel interaction close to the origin and Kγ◦

n is a compact operator. The change of variables

ρn(t) =
(
I − 1

z Kγ?
n

)−1
ρ̃n(t)

lead to the right preconditioned equation(
Kγ◦

n

(
I − 1

z Kγ?
n

)−1
− z

)
ρ̃n(t) = gn(t). (58)

The functions ρ̃n(t) and gn(t) in (58) share the same regularity and they, along with Kγ◦
n , are discretized on a coarse

uniform mesh of panels on γ, as in standard Nyström discretization. The resulting grid d is assumed to resolve these
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quantities so that their values at arbitrary points on γ can be recovered by piecewise interpolation with polynomials
of no higher degree than that of the underlying quadrature. The local resolvent

(
I − 1

z Kγ?
n

)−1
, on the other hand, is

discretized on a mesh of panels that is almost infinitely dyadically refined towards the origin. The corresponding grid
dfin is assumed to resolve ρn(t). Then dfin is coarsened via a recursive procedure where, in each step, the two smallest
panels on the fine mesh are merged and the part of the local resolvent that needs those panels for resolution is locally
projected. Upon completion, this process results in a compressed discrete local resolvent on d. The computational
cost for the compression grows linearly with the number of refinement levels. However, by the proof of Theorem 4.3
it is, for a given grid d, justified to replace γ with a line segment in a very small neighborhood of the origin. Then
Kγ

n (t, t′)t′ dt′ becomes scale invariant close to the origin, see (29), and therefore compression on the finer levels can be
carried out using Newton-accelerated fixed-point iteration [22, Section 6.2]. The entire compression is then performed
in sublinear time and the memory requirements are modest.

It is a very important feature of the RCIP compression scheme that solving the discrete version of (58) does not lead
to any loss of information whatsoever, compared to solving the discrete version of (52) entirely on dfin, provided that
the assumptions on resolution mentioned in the preceding paragraph are met. When the discrete version of (58) has
been solved for ρ̃n(t) on d, the original density ρn(t) can easily be reconstructed on dfin given that certain information
about the compression has been saved [23, Section 9]. In applications ρn(t) is often not needed, as it may be possible
to compute quantities of interest directly from ρ̃n(t) and the compressed local resolvent.

7.2.2. Details particular to the present implementation
There are several possible ways to compute the Fourier coefficients Kγ

n (t, t′). We rely solely on the explicit for-
mula (A.1) from the Appendix. The associated Legendre functions are evaluated as outlined in [26, Section 5], with
some minor improvements to the Matlab code.

Numerical experiments strongly suggest that the general asymptotic behavior of the density ρn(t) in (52) close to
the conical point, and with z = x + i0± in the absolutely continuous spectrum, is

ρ(t)n ∝ |γ(t)|−1.5 (
cos(ξ(x) log |γ(t)|) ± i sin(ξ(x) log |γ(t)|)

)
, t → 0.

Here ξ(x) is a left inverse of the function Fn(ξ) in Theorem 3.8. Since Fn(ξ), by the proof of Lemma 5.1, behaves
like 1/|ξ|, |ξ| → ∞, and has no zero other than at ±∞, we have that |ξ| ' 1/|x|. This means that the number of nodes
on each panel on the fine mesh, in the framework of dyadic mesh refinement, must increase as 1/|x| in order for dfin
to resolve ρn(t) as x → 0 in the absolutely continuous spectrum. This stands in stark contrast to the situation of a
sharp edge [26] or a corner in 2D [24], where the need for resolution of the corresponding density only appears to
grow on the order of − log |x|. To cope with this need for high resolution we use 32-point composite Gauss–Legendre
quadrature as the underlying quadrature in the Nyström scheme, and place up to 1024 nodes on each panel of the fine
mesh. This way, we can accurately resolve ρn(t) for |x| as small as 0.001.

As a final remark, our scheme does not directly compute the action of the operator Kγ
n in (52). Instead we do a

change of variables and work with the transformed kernel

K̃γ
n (t, t′) = tKγ

n (t, t′)(t′)−1.

Nyström discretization of the transformed equation then resembles a norm-preserving discretization on L1 in the
terminology of [5], and RCIP-acceleration is still applicable. We have observed slightly better stability using the
transformed equation, in line with the discussion in [7]. In particular, for n = 0 the transform avoids the formation of
a false near-resonance at the rightmost point of σess(KΓ, L2), a point which in general is not part of the E0-spectrum
of Kγ

0 , see Theorems 5.5 and 6.3.
Let U f (t) = t f (t) and denote by Ẽn, n ∈ N, the Hilbert space defined by the requirement that U : En → Ẽn be

unitary, cf. Section 3.3. We consider K̃γ
n as an operator on Ẽn, and then

K̃γ
n = UKγ

n U−1,

With the unitary U in hand, it is now straightforward to implement the minor modifications to the framework of
Section 7.1, needed to directly consider the indicator function for the transformed operator. We leave the precise
details to the reader.
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7.3. Numerical results

Our Nyström scheme for (52), needed for computing (13) and (53), is implemented in Matlab and executed on a
workstation equipped with an Intel Core i7-3930K CPU and 64 GB of memory. In all numerical experiments γ is the
curve

γ(t) = sin
(
π

2
t
)

(sin((1 − t)α), cos((1 − t)α)) , t ∈ [0, 1],

generating a surface Γ with a conical point of opening angle 2α, 0 < α < π, α , π/2.
The excluded case α = π/2 corresponds to a sphere. For the sphere KΓ : E → E has the eigenvalues xi = 1/(2i−1),

i = 1, 2, . . ., but the spectral measure µ of the polarizability only has a single atom, at x = 1/3. Note that the sphere
has the same polarizability in all directions, and hence the spectral measure is independent of direction. We say that
x = 1/3 is a bright plasmon, while the remaining eigenvalues of KΓ are dark plasmons.

Consider now the polarizability in the r3-direction for α < π/2, e = e3 = (0, 0, 1). When α shrinks the non-discrete
support of µ3 becomes wider and the bright plasmon moves to the right until it disappears into the non-discrete support
at the angle 2α ≈ 0.91895945. We choose 2α = 5π/18 < 0.91895945 for our experiments in Sections 7.3.1 and 7.3.2,
since in this case we may test our results for µ3 against (17) without involving any bright plasmons. In Section 7.3.3
we consider the reflex angle 2α = 31π/18. The surfaces Γ, for these two opening angles, are illustrated in Figure 1.

7.3.1. Limit polarizability
We first compute ω−33(x) and use (15) and (17) as indirect error estimates. The results are shown in Figure 4(a,b).

Equation (17), discretized with adaptive 16-point composite quadrature and a total of 3136 nodes, holds with an
estimated relative accuracy of 5 · 10−16. The absolute error in (15), called charge error in Figure 4(b), depends on x
and varies from no measurable error to an error on the order of 10−12.
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Figure 4: (a,b): Limit polarizability in the r3-direction for 2α = 5π/18. The right image displays the imaginary part, with a logarithmic scale on
the vertical axis. (c,d): Limit polarizability in the r1-direction, featuring 6 bright plasmons.

The underlying data used to produce Figure 4(a,b) shows that =mω−33(x) = −πµ′3(x) is non-zero to the left of
x ≈ 0.861463506648456. Note that this corresponds to the right endpoint of the interval Σ0 from Theorems 3.8 and
6.3, F0(0) ≈ 0.861463506648456, and provides yet another piece of indirect evidence that our numerical scheme
is accurate. See Figure 5(a) for an illustration of F0(ξ). =mω−33(x) appears to have zeroes in x ≈ 0.258175 and

37



Table 1: Positions and amplitudes of the bright plasmons in the r1-direction.

i xi ≈ uivi ≈

1 0.1935609900496035 -0.0187559469606535
2 0.1818566189413259 -0.0382018970029643
3 0.1727245662280549 -0.048328578377405
4 0.1658366392086451 -0.047191751961888
5 0.1610557751155232 -0.035638113206132
6 0.1584765425577683 -0.014176894941617

x ≈ 0.210575. To the left of x = 0.18 it is not possible to determine whether =mω−33(x) is non-zero, since the
numerical results there are of the same order as the numerical error.

Figure 4(c,d) depicts ω−11(x). Six bright plasmons are visible. Their locations xi and amplitudes uivi are given
in Table 1. Equation (17) holds with an estimated relative accuracy of 3 · 10−16. The numerically visible support
of =mω−11(x) = −πµ′1(x) is (0.018216722, 0.15813952053635). The right endpoint again corresponds to the right
endpoint of the interval Σ1, F1(±3.8202309) ≈ 0.158139520536354. See Figure 5(b) for an illustration of F1(ξ).
The left endpoint corresponds to the local minimum of F1(ξ) at ξ = 0, F1(0) ≈ 0.018216721972542. Recall from
Section 3.2 that, on the infinite straight cone, F1(ξ) is an eigenvalue of Kα

1 to the generalized eigenvector t−iξ−3/2.
Hence, for the infinite straight cone there is a kind of singularity in the spectrum at F1(0): as x → F1(0)+ there are
generalized eigenvectors with ξ → 0, but as x < F1(0) all generalized eigenvectors to x have large ξ and therefore
exhibit wild oscillations. It seems likely that a similar phenomenon is responsible for the drastic change in =mω−11(x)
at x = F1(0).
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Figure 5: (a,b,c): Depictions of F0(ξ), F1(ξ), F2(ξ) for 2α = 5π/18 and −15 ≤ ξ ≤ 15.

7.3.2. The spectrum via the indicator function
To locate the spectrum of Kγ

n : En → En, we want to compute the limit limy→0− κ
ind
n (ŭ, v̆, x + iy) of the indicator

function, as described in Section 7.1. Finite precision arithmetic constrains how small y can be before losing singular
features of the spectrum such as eigenvalues. The experiments in this section are carried out with y0 = −10−70 and
three different values of y: y = −10−5, y = −10−7, y = −10−11.

Figure 6(a) shows the indicator function for mode n = 0. The only eigenvalue present is at x = 1, which is an
eigenvalue of KΓ for every closed Lipschitz surface Γ [43, Lemma 3.1]. Figure 6(b) shows the absolute deviation of
the indicator function from the step function

round(4κind
0 (ŭ, v̆, x + iy))/4.

The indicator function is very close to 1/2 on the interval (0, 0.861463506648456), which agrees with the interval Σ0
of Theorem 6.3. Note that κind

0 (ŭ, v̆, 1 + iy) = 1 to almost 13 digits for y = −10−11.
Figure 6(c) shows κ0(ŭ, v̆, x+iy), supported by 1156 data points for each y. The appearance suggests that κ0(ŭ, v̆, x+

iy) is uniformly bounded in x, y, and y0. If a spectral measure of Kγ
0 had any singular parts in [−1, 1), either a point mass

38



0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Indicator function

 

 

y = −10−11

0 0.2 0.4 0.6 0.8 1

10
−15

10
−10

10
−5

10
0

x

Deviation from step function

 

 

y = −10−5

y = −10−7

y = −10−11

0 0.2 0.4 0.6 0.8 1

10
−5

10
0

10
5

x
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Figure 6: (a): The indicator function κind
0 (ŭ, v̆, x + iy) for 2α = 5π/18, y0 = −10−70, and y ∈ {−10−5,−10−7,−10−11}. Special values are marked

with darker dots. (b): The absolute deviation from the corresponding step function. (c): κ0(ŭ, v̆, x + iy).
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Figure 7: (a,b): The indicator function κ1(ŭ, v̆, x + iy) for 2α = 5π/18. (c,d): κ2(ŭ, v̆, x + iy).

or a singular continuous part, there would certainly be a y0, an x, and functions ŭ and v̆ such that limy→0− κ0(ŭ, v̆, x +

iy) = ∞. There are no signs of any overlooked singular points.
Finally, we remark that κind

0 (ŭ, v̆, F0(0) + iy) has converged to 1/4 with more than 3 digits at y = −10−11, see
Figure 6(a,b). This suggests that µ′ŭ,v̆ has a singularity in the right endpoint of its support, a phenomenon that was
analytically demonstrated for certain 2D-domains with corners in [24, Section 6.2].

Figure 7(a,b) shows the indicator function for mode n = 1. The interval of continuous spectrum coincides with
Σ1. In addition there are 6 bright plasmons. Figure 7(c,d) shows mode n = 2. The interval coincides with Σ2, and
in this case there are 10 dark plasmons. In view of (55) and (56), the modes |n| ≥ 2 never contribute to the spectral
measures of the polarizability tensor. Therefore, the spectrum of Kγ

n : En → En, |n| ≥ 2, is always dark. Note also that
the computed eigenvalues for n = 1 and n = 2 are embedded in the continuous spectrum of Kγ

0 and therefore in the
continuous spectrum of KΓ.
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7.3.3. Results for a reflex angle
We now carry out experiments for the reflex opening angle 2α = 31π/18 and mode n = 0. The results are shown

in Figure 8. The non-discrete spectrum of Kγ
0 : E0 → E0 is as predicted by Theorem 6.3. However, in contrast to the

previous sections, the reflex angle also exhibits a discrete spectrum consisting of an infinite sequence of eigenvalues
converging to 0. All of these eigenvalues, except x = 1, are bright plasmons. Hence this geometry features an infinite
number of bright plasmons.

−1 −0.5 0 0.5 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

 

 

ℜe{ω−

33(x)}
ℑm{ω−

33(x)}

−1 −0.5 0 0.5 1

10
−15

10
−10

10
−5

10
0

x

 

 

ℑm{ω−

33(x)}
charge error

−1 −0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Indicator function

 

 

y = −10−11

−1 −0.5 0 0.5 1

10
−15

10
−10

10
−5

10
0

x

Deviation from step function

 

 

y = −10−5

y = −10−7

y = −10−11

Figure 8: Opening angle 2α = 31π/18. (a,b): Limit polarizability in the r3-direction. (c,d): The indicator function κind
0 (ŭ, v̆, x + iy). 275 eigenvalues

are drawn.

AppendixA. Explicit kernel formulas

As in Section 4, let Γ be a closed surface of revolution with a conical point of opening angle 2α, obtained by
revolving a C5-curve γ. We parametrize Γ as before,

r(t, θ) = (γ1(t) cos θ, γ1(t) sin θ, γ2(t)), θ ∈ [0, 2π], 0 ≤ t ≤ 1,

In this Section we provide explicit formulas for the kernels Kα
n , Kγ

n and S γ
n , defined in Sections 3.1, 5, and 7.1,

respectively. We use the first of these formulas to give the missing proof of Lemma 3.1.
The formulas we are after can be read from [53, Section 5.3]. We refer also to [25], where several typos of [53]

are corrected. We have that
S γ

n(t, t′) =
1√

2π3γ1(t)γ1(t′)
Qn−1/2(χ),

and for n ≥ 0 that

Kγ
n (t, t′) =

1√
2π3γ1(t)γ1(t′)

[
γ′2(t)

2γ1(t)|γ′(t)|
(
Qn−1/2(χ) + Rn(χ)

)
− |γ(t) − γ(t′)|KΓ(t, 0, t′, 0)Rn(χ)

]
, (A.1)

where

χ = 1 +
|γ(t) − γ(t′)|2

2γ1(t)γ1(t′)
,
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and
Rn(χ) =

2n − 1
χ + 1

(
χQn−1/2(χ) −Qn−3/2(χ)

)
.

To evaluate Kγ
n for the negative indices n < 0, just note that Kγ

n (t, t′) = Kγ
−n(t, t′). In these formulas, Qn−1/2 is an

associated Legendre function of the second kind of half-integer degree,

Qn−1/2(χ) =

∫ π

−π

cos(nθ) dθ√
8(χ − cos(θ))

.

By for example [37, p. 153], Qn−1/2 has for |χ| > 1 the series development

Qn−1/2(χ) =
√
π

Γ(n + 1/2)
Γ(n + 1)

2−n−1/2χ−n−1/2F(n/2 + 3/4, n/2 + 1/4, n + 1, 1/χ2), |χ| > 1,

where Γ denotes the usual gamma function and F is the hypergeometric function

F(a, b, c,w) =

∞∑
k=0

(a)k(b)k

(c)k

wk

k!
.

Here (a)k denotes the Pochhammer symbol (40). We also note here that the associated Legendre function of the first
kind, Pn

λ(z), may be defined through the formula

Pn
λ(z) =

1
Γ(1 − n)

(
1 + z
1 − z

)n/2

F(−λ, λ + 1, 1 − n,
1 − z

2
), |1 − z| < 2.

We now supply the proof of Lemma 3.1.

Lemma 3.1. For all t > 0 it holds that Kα
n (1, t) = tKα

n (t, 1). There is a constant C > 0, depending only on α, such that

|Kα
0 (t, 1)| ≤

C
t3 , t ≥

3
2
, |Kα

n (t, 1)| ≤
C

t|n|+2 , t ≥
3
2
, n , 0, (A.2)

and such that
|Kα

0 (t, 1)| ≤ C, t ≤
1
2
, |Kα

n (t, 1)| ≤ Ct|n|−1, t ≤
1
2
, n , 0. (A.3)

At t = 1, Kα
n (t, 1) has a logarithmic singularity: there is an analytic function G(t) on [1/2, 3/2] such that Kα

n (t, 1) −
log |1 − t|G(t) is analytic on [1/2, 3/2].

Furthermore, for every β, −1 < β < 2, the functions bn(t) = tβKα
n (t, 1) satisfy

‖bn‖L1(dt/t) .
1
n
. (A.4)

Proof. Due to symmetry, we only have to consider the case n ≥ 0. Equation (A.1) is valid also on the infinite cone
Γα, yielding that

Kα
n (t, 1) =

1
(2π)3/2 tanα sinα

(2nχ + 1)Qn−1/2(χ) − (2n − 1)Qn−3/2(χ)
t3/2(χ + 1)

, (A.5)

where

χ = χ(t) = 1 +
(t − 1)2

2 sin2(α)t
.

When t = 1 we instead have that Kα
n (1, t) = tKα

n (t, 1). We denote the coefficients of Qn−1/2 by qn,k,

Qn−1/2(χ) =
√
π

Γ(n + 1/2)
Γ(n + 1)

2−n−1/2χ−n−1/2F(n/2 + 3/4, n/2 + 1/4, n + 1, 1/χ2)

=: χ−n−1/2
∞∑

k=0

qn,kχ
−2k, |χ| > 1.
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By Stirling’s formula, they satisfy, for n, k ≥ 1, that

4qn,k =
√
π

Γ(n + 1/2)
Γ(n + 1)

2−n+3/2 (n/2 + 3/4)k(n/2 + 1/4)k

(n + 1)kk!
=

1
√

n + k
√

k

(n/2 + k)n+2k

(n + k)n+kkk

(
1 + O

(
1
n

+
1
k

))
.

We will also consider the coefficients bn,k, defined by the equality

Qn−3/2(χ) − χQn−1/2(χ) = χ−n+1/2
∞∑

k=0

bn,kχ
−2k.

From the formula for qn,k, we deduce that

8bn,k =
1

√
n + k

√
k

(n/2 + k)n+2k

(n + k)n+kkk

(
n

n + k
+ O

(
1
n

+
1
k

))
.

Consider the function

H(x, y) =
(x/2 + y)x+2y

(x + y)x+yyy , x, y > 0.

Then

∂xH(x, y) = H(x, y) log
x + 2y

2x + 2y
≤ 0, ∂yH(x, y) = H(x, y) log

(x + 2y)2

4y(x + y)
≥ 0,

so that H(n, k) is decreasing in n and increasing in k. Since limy→∞ H(x, y) = 1 for every x > 0, it follows in particular
that H(n, k) ≤ 1 for all n, k ≥ 1.

We consider first the case in which t ≥ 1 + ε or t ≤ 1 − ε. The number ε > 0 will be chosen later depending only
on α. When k ≤ n we have, since H(n, ·) is increasing, that

qn,k .
H(n, n)

k
.

(
27
32

)n

.

When k ≥ n we instead note that
qn,k .

1
n
.

In total, we obtain that

nQn−1/2(χ) . χ−n−1/2
∞∑

k=0

χ−2k =
χ−n−1/2

1 − χ−2 .

Since χ ' t for t ≥ 1 + ε and χ ' t−1 for t ≤ 1 + ε, the estimates (A.2) and (A.3) now follow from (A.5).
To prove (A.4) we have to work harder. Note first that∫ ∞

1+ε

tβ
∣∣∣Kα

n (t, 1)
∣∣∣ dt .

1
n
,

∫ 1−ε

0
tβ

∣∣∣Kα
n (t, 1)

∣∣∣ dt .
1
n

by (A.2) and (A.3). Hence we are left to consider
∫ 1+ε

1−ε |K
α
n (t, 1)| dt. We let n be fixed in our argument, but all implied

constants will be independent of n. As before, for those k such that k ≤ n it holds that

max{qn,k, bn,k} .
H(n, n)

k
=

(
27
32

)n 1
k
.

When 2 j−1n ≤ k ≤ 2 jn for some j ≥ 1 we similarly have that

qn,k .
H(n, 2 jn)

k
=


(

1
2 + 2 j

)1+2·2 j

(
1 + 2 j)1+2 j (

2 j)2 j


n

1
k
.

(
1 −

1
2 j+2

)n 1
k
,
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where the last inequality follows from the fact that

(1/2 + x)1+2x

(1 + x)1+xxx = 1 −
1
2x

+ O
(

1
x2

)
, x→ ∞.

For bn,k we have the better estimate

bn,k .
H(n, 2 jn)n

k2 .

(
1 −

1
2 j+2

)n n
k2 .

Recall that χ(t) = 1 +
(t−1)2

2 sin2(α)t
, so that 1/χ(t)2 ≤ 1 − (t−1)2

2 sin2 α
, when |t − 1| < ε and ε is sufficiently small (depending

on α). Suppose that ε2 < 2 sin2 α. Then note that∫ 1+ε

1−ε

(
1 −

(t − 1)2

2 sin2 α

)k

dt =
sinα
√

2

∫ 1

1− ε2

2 sin2 α

sk

√
1 − s

ds .
∫ 1

0

sk

√
1 − s

ds =
√
π

Γ(k + 1)
Γ(k + 3/2)

'
1
√

k
.

Hence, ∫ 1+ε

1−ε
χ(t)n−1/2

2 jn∑
k=2 j−1n

qn,kχ(t)−2k dt .
(
1 −

1
2 j+2

)n 2 jn∑
k=2 j−1n

1
k3/2 .

(
1 −

1
2 j+2

)n 1
2 j/2
√

n
.

and ∫ 1+ε

1−ε
χ(t)n−1/2

2 jn∑
k=2 j−1n

bn,kχ(t)−2k dt .
(
1 −

1
2 j+2

)n

n
2 jn∑

k=2 j−1n

1
k5/2 .

(
1 −

1
2 j+2

)n 1
23 j/2

√
n
.

Therefore, ∫ 1+ε

1−ε
Qn−1/2(χ(t)) dt .

1
√

n

∞∑
j=1

(
1 −

1
2 j+2

)n 1
2 j/2

.
1
√

n

∫ ∞

1

(
1 −

1
2x+2

)n

2−x/2 dx .
1
√

n

∫ 1

0

yn√
1 − y

dy '
1
n
,

and

n
∫ 1+ε

1−ε

∣∣∣Qn−3/2(χ(t)) − χ(t)Qn−1/2(χ(t))
∣∣∣ dt .

√
n
∞∑
j=1

(
1 −

1
2 j+2

)n 1
23 j/2

.
√

n
∫ ∞

1

(
1 −

1
2x+2

)n

2−3x/2 dx .
√

n
∫ 1

0
yn

√
1 − y dy =

√
π

2

√
nΓ(n + 1)

Γ(n + 5/2)
'

1
n
.

In view of (A.5), we have proven (A.4).
It only remains to show that Kα

n (t, 1) has a logarithmic singularity at t = 1. But this follows from the standard fact
that the same is true of Qn−1/2(χ(t)). For example, when χ ' 1, Qn−1/2(χ) has the following series expansion [30],

Qn−1/2(χ) =

(
1
2

(log(1 + χ) − log(1 − χ)) − ψ(n + 1/2)
)

F
(
−n + 1/2, n + 1/2, 1,

1 − χ
2

)
+

∞∑
k=0

(−n + 1/2)k(n + 1/2)kψ(k + 1)
k!2

(
1 − χ

2

)k

,

∣∣∣∣∣1 − χ2

∣∣∣∣∣ < 1,

where ψ denotes the digamma function.
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