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Short title: Estimation of model accuracy in CASP12 

Abstract 

Methods to reliably estimate the quality of 3D models of proteins are essential drivers for the wide 

adoption and serious acceptance of protein structure predictions by life scientists. In this paper, the 

most successful groups in CASP12 describe their latest methods for Estimates of Model Accuracy 

(EMA). We show that pure single model accuracy estimation methods have shown clear progress 

since CASP11; the three top methods (MESHI, ProQ3, SVMQA) all perform better than the top 

method of CASP11 (ProQ2). While the pure single model accuracy estimation methods outperform 

quasi-single (ModFOLD6 variations) and consensus methods (Pcons, ModFOLDclust2, Pcomb-

domain and Wallner) in model selection, they are still not as good as those methods in absolute model 

quality estimation and predictions of local quality. Finally, we show that when using contact based 

model quality measures (CAD, lDDT) the single model quality methods perform relatively better. 

Introduction 

 

Estimates of Model Accuracy (EMA) have been a part of protein structure prediction since its 

infancy. EMA methods are built into virtually all protein 3D modelling methods as the energy 

functions that they optimize. Yet, these energy functions provide relative accuracy estimate, with only 

moderate power in properly ranking models. Further, when one tries to use models from different 

methods, their associated energies are not directly comparable. Thus, accurate posterior quality 

estimation methods are essential for protein structure prediction tools to fulfill their potential as useful 

tools for biologists. 
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Motivated by the intriguing experiment of Novotny et al.1 early model accuracy assessment methods 

focused on distinguishing wrong models (or decoys) from the native structure2,3. Historically, 

knowledge based energy functions were developed to solve this problem and they were used in 

threading methods, as well as to guide protein folding and fragment assembly. Notably, the methods 

by Sippl, which used knowledge based energy function for threading, were quite successful in 

CASP1-34,5. However, in later CASP experiments, pure threading methods were not been able to 

compete with methods that also made use of use evolutionary information from the rapidly growing 

sequence databases. 

 

None of the energy functions that were developed to distinguish native and non-native protein models 

showed any major success in the Quality Assessment (QA) category in CASP. Instead, methods that 

aim to predict the quality of a model starting with ProQ6, have been more successful. One of the 

notable features separating these methods from the earlier knowledge-based energy terms were the 

use of compatibility with predicted structural features, such as secondary structure. These methods are 

nowadays referred to as single model quality assessment methods to distinguish them from methods 

that use clustering (or a consensus) of many models. Since the introduction of ProQ other methods 

based on the same idea have been introduced, including QMEAN7 that has performed comparably 

with ProQ in earlier CASPs.  Initially the single model methods have not been as successful as those 

that take into account structural similarity of models, i.e. consensus based methods8. Since CASP11, 

however, they perform on par or even better than the consensus methods in some of the tasks8. 

 

The first successful attempt of model quality estimation, in the context of CASP, was when the first 

meta-predictor, CAFASP-CONSENSUS, was introduced in CASP49.  CAFASP-CONSENSUS 

combined the results from several servers and provided better models than any of the individual 
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servers.  However, in CASP4 the model quality estimates were carried out manually. From this 

exercise, it was discovered that using simple rules for combining the predictions from several servers 

could outperform all individual servers.  This algorithm simply chose the most frequent fold predicted 

by all servers, i.e. it chose the consensus fold9,10.  

 

Soon after CASP4, the first automatic consensus method, Pcons, was introduced11. This was later 

followed by a simpler (and more robust) method, 3D-Jury12. Later versions of Pcons are very similar 

to 3D-Jury13, the only difference being in the details of the superposition method. In CASP5 it was 

clear that these methods could be used to outperform all individual servers if the results were 

combined. In CASP7 model accuracy estimation became a new category in and of itself for the first 

time 14.  

 

Quasi-single model methods, such as the latest ModFOLD servers15,16 compare a model with models 

generated by a local prediction-pipeline using the consensus approach. These methods, as well as 

Pcomb13 that uses the Pcons consensus approach, combine the consensus score with one or several 

pure single model approaches. The performance of the best quasi-single approaches often match the 

performance of the consensus methods, but with the ability to evaluate a single model at a time given 

that a set of external predictions exist. 

 

In this paper, we will briefly describe each of the EMA methods used by our groups in CASP12. 

Additionally, we will compare the relative performance of the methods, discuss their relative strengths 

and weakness and we will share our insights on what we learned from the experiment this time round. 
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Methods 

A summary of all methods discussed in this paper is presented in Table 1. Below, each group briefly 

presents their methods. 

Elofsson group 

We participated with several accuracy estimation methods in CASP12. Here, we will highlight the 

two methods that performed best; the single model accuracy estimation tool ProQ317 and our 

consensus based method Pcons11. Our other methods included an early version of ProQ3D18 the deep 

learning version of ProQ3. ProQ3_diso is a version of ProQ3 where disordered residues are ignored 

and RSA_SS is a simple quality assessment method that only utilizes predicted secondary structure 

and surface area. For details see the CASP 12 abstracts at 

http://predictioncenter.org/casp12/doc/CASP12_Abstracts.pdf. 

  

ProQ3
17 is the latest version of our single model accuracy estimation methods6,19–21. In Table 2 we 

describe the most important developments in the history of ProQ. In addition to using the same 

descriptions of a model as ProQ221 it also uses Rosetta energy functions. All input features are 

combined together to train a linear SVM. The training data set is a subset of CASP9 with 30 models 

per target. We also tested a few developmental methods of ProQ in CASP12, but none of these 

performed significantly better than ProQ3 and they are therefore not discussed here. However, it can 

be noted that we have recently developed an improved version of ProQ3, ProQ3D that uses a deep-

learning approach but identical inputs as ProQ318. The final version was not ready for CASP12 and 

the preliminary version used did not perform better than ProQ3. ProQ3 is available both as source 

code from https://bitbucket.org/ElofssonLab/proq3, and as a web-server at http://proq3.bioinfo.se/. 
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Pcons
11 is used with default setting. This means that the score is calculated by performing a structural 

superposition using the algorithm described by Levitt and Gerstein22 of a model against all other 

models. To avoid bias, comparisons between models from the same method are ignored. After 

superposition, the “S-score” is calculated for each residue in the model23. The average S-score for all 

residues and pairs of models is then used to calculate the final Pcons score. For local predictions, the 

average S-score is converted to a distance as described before13. Pcons is freely available from 

https://github.com/bjornwallner/Pcons/. It should be noted that a number of heuristic optimizations 

have been implemented in Pcons to enable the pairwise comparison of hundreds of proteins in a short 

time 24. 

Keasar Group 

We participated in CASP12 with two EMA methods, MESHI-score (implemented by the 

MESHI_server group) and MESHI-score-con (MESHI_con_server), the latter being a slight variation 

on the former. Below we first present the general scheme, which is used by both methods, and then 

conclude with the variations tried in MESHI-score-con. 

 

While preliminary versions of MESHI-score were used in CASP10 and CASP11, it has reached 

stability only after CASP1125
. The software architecture, however, is modular, extendable by design, 

and under continuous development. Thus, the version that took part in CASP12 was more advanced 

than what was presented earlier25. 

 

The MESHI-score pipeline (Figure 2) starts with a regularization step that includes sidechain 

repacking by SCWRL26,27 and restrained energy minimization (Figure 2 II). This step sharpens the 
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quality signal of structural features by reducing noise, which is due to peculiarities of decoy 

generating methods. Features are extracted from the regularized structures (Figure 2 III) and fed to an 

ensemble of 1000 independently trained predictors (Figure 2 IV). Each predictor outputs (�� , ��), a 

pair of an EMA score and weight (Figure 2 VI). The weighted median of this set of pairs is the final 

MESHI-score (Figure 2 VII). In addition, we also calculate the weighted interdecile range and entropy 

of the pairs set:  

���	
��(�) 	=���
���
���

�
��(��)	
where S is the set of 1000 (�� , ��)pairs and 

�� = � ���
����
���

��(��), � = � ��
����
���

 

  

and 

��(�) = 	1				���				(� − 1) ≤ � < 0.01�			
�ℎ�	����		��(�) = 0 

 

The larger these numbers are the less reliable is the score, as they suggest disagreement between the 

predictors. 

 

The feature set that was used in CASP12 included 82 features (for details see 

https://www.cs.bgu.ac.il/~frankel/TechnicalReports/2015/15-06.pdf) 

These features may be clustered into nine broad categories:   

1. Pairwise energy terms, which represent interactions between atoms, adopted from the literature28–

30. 

2. Compatibility of the decoy secondary structure and solvent accessibility with their PSIPRED31 

prediction. 
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3. Standard bonded energy terms (e.g., a quadratic bond term). 

4. Torsion angle terms (compatibility with Ramachandran plot and rotamer preferences32)  

5. Hydrogen bond terms33 

6. Solvation and atom environment terms that quantify the cooperativity between hydrogen bond 

formation and atom burial. 

7. Radius of gyration and contact terms that quantify the compatibility of decoys with the expected, 

length dependent, ratios between the radii of gyration and numbers of contacts in different 

subsets of protein atoms (e.g., polar and hydrophobic). 

8. Meta-features that quantify the frustration within decoys (native structures tend to be minimally 

frustrated) by considering the distribution of the pairwise and torsion energies within the decoys. 

9. Combinations of the above features, which were developed in previous studies 25. 

  

The predictors (Figure 2 V) are nonlinear functions that get feature vectors as an input and output a 

pair of numbers: an EMA score, and a weight that represents the reliability of the score. The 

parameters of the predictor functions, as well as the subset of features that they use, are learned by 

stochastic optimization. Each predictor is trained to minimize a different objective function and thus 

tends to be more sensitive in a specific GDT_TS subrange. Scores within the predictor’s sensitivity 

region are considered more reliable and thus, have a higher weight. A more detailed description of the 

predictor’s training may be found in Mirzaei et al25.  

 

MESHI-score-con is a variant on the MESHI-score theme, which aims to improve the consistency of 

MESHI-score by a post-processing step that takes into account the similarities between decoys. 

Ideally, after regularization (Figure 2 II) very similar decoys should produce similar feature vectors, 

and thus have similar MESHI-scores. Yet, careful examination of MESHI-score results indicates that 

this is not always the case, and often very similar decoys have quite different scores. MESHI-score-
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con aims to alleviate this problem by improving the agreement between the scores of very similar 

decoys. To this end, we associate the MESHI-score of each decoy with a weight, which is inversely 

proportional to the entropy of the score-weight pairs (Figure 2 VII). We also associate each decoy 

with a neighbors-set that includes very similar (GDT_TS >= 95) neighbors as well as the decoy itself. 

MESHI-score-con is a weighted average of the decoy’s MESHI-score and the average score of its 

neighbor-set. Thus, a low weight decoy (presumably a less reliable one) with higher weight neighbors 

is strongly biased towards the average score of its neighbors. Yet the score of a decoy without 

neighbors is unaffected regardless of its weight. Thus, unlike consensus methods MESHI-score-con 

may pick an exceptionally good decoy.   

Lee Group  

We participated in CASP12 with two methods, namely SVMQA and quasi-SVMQA (qSVMQA). 

qSVMQA augments TM-score between GOAL_TS1 and the server model with an appropriate value 

of weight w to the SVMQA score:  

qSVMQA = SVMQA + w *(TM-score between GOAL_TS1 and the server model).  

The value of w was set separately for stage1 models (0.84) and for stage2 models (0.15). We 

determined the optimal value of w using CASP11 single-domain targets. Below, we briefly describe 

SVMQA and highlight its results in the model selection of stage2 targets in CASP12. 

  

SVMQA is a support-vector-machine-based protein single-model global QA method. SVMQA 

predicts the global QA score as the average of the predicted TM-score and GDT_TS score by 

combining two separate predictors, SVMQA_GDT and SVMQA_TM. For SVMQA we used 19 

features (8 potential energy-based terms and 11 consistency-based terms between the predicted and 

actual values of the model) for predicting the QA score (TM-score or GDT_TS score). Among these 
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19 features, 3 features (orientation dependent energy, GOAP angular energy and solvent accessibility 

consistency score) were not used in earlier versions, while the other 16 have been used in existing 

methods. The description of each feature along with the selection of the final set of SVM parameters 

and the final set of features for these two predictors have been published recently34. In short, 

SVMQA_TM uses all of the 19 features to predict TM-score of a given model, whereas 

SVMQA_GDT uses only 15 features to predict the GDT_TS score.  

 

In CASP11, we used our old QA method, RFMQA35. The result of RFMQA on CASP11 targets was 

quite successful but not as good as that of SVMQA on CASP12 targets. Prior to CASP12, we 

benchmarked the performance of SVMQA on CASP11 targets and compared it to that of RFMQA. 

We found that SVMQA significantly outperformed RFMQA in terms of both ranking models and 

selecting a more native-like model. The major updates of SVMQA over RFMQA is as follow: (i) The 

choice of machine learning method was different, an SVM (support vector machine) was used in 

SVMQA while a random forest was used in RFMQA; (ii) we used CASP8-9 domain targets as the 

training dataset for RFMQA, while CASP8-10 domain targets were used in SVMQA; (iii) 19 input 

features were used in SVMQA, whereas, only 9 of these features were used in RFMQA; (iv) The 

objective function to train for RFMQA was TMloss (difference between the TM-score of the selected 

model and the best TM-score), while that for SVMQA was the correlation coefficient between the 

actual ranking and the predicted ranking; and (v) SVMQA used two separate predictors for TM-score 

and GDT_TS score, while RFMQA used only a predictor for TM-score. 
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McGuffin Group 

We participated in CASP12 with three new quasi-single model method variants, ModFOLD6, 

ModFOLD6_cor and ModFOLD6_rank (Figure 1), and one older clustering method, 

ModFOLDclust2. 

 

ModFOLD6 

The ModFOLD6 server16 is the latest version of our freely available public resource for the accuracy 

estimation of 3D models of proteins15,38,39. The ModFOLD6 server combines a pure-single and quasi-

single model strategy for improving accuracy of local and global model accuracy estimates. Our 

initial motivation in the development of ModFOLD6 was to increase the accuracy of local/per-residue 

assessments for single models16. 

 

For the local/per-residue error estimates, each model was considered individually using two new pure-

single model methods, the Contact Distance Agreement (CDA) and the Secondary Structure 

Agreement (SSA) scores16, as well as the best pure single method in earlier CASPs, ProQ221,40. 

Additionally, three alternative quasi-single model methods were used to score models including: the 

newly developed Disorder B-factor Agreement (DBA), the ModFOLD5_single (MF5s) and the 

ModFOLDclustQ_single scores (MFcQs)16 - each of which made use of a set of 130 reference 3D 

models that were generated using the latest version of the IntFOLD-TS41,42 pipeline from the IntFOLD 

server43,44. The component per-residue scores from each of the 6 alternative scoring methods, 

mentioned above, were combined into a single score for each residue using an Artificial Neural 

Network, which was trained to learn the local S-score23 as the target function16 (i.e. the same target 

function as ProQ2, described below and in Table 2 was used, but with d0 set to 3.9). 
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For global scoring, in the ModFOLD6 variant we simply took the mean local score for each model 

(i.e. the sum of the per-residues scores divided by the target sequence length). However in our internal 

benchmarks, using CASP118 and CAMEO45 data prior to CASP12, we realized that simply taking the 

mean per-residue score from ModFOLD6 alone was not optimal and performance differed depending 

on the intended use case, i.e. selecting the best models or accurately reproducing the model-target 

similarity scores. Therefore we also exhaustively explored all linear combinations of each of the 

alternative global scores, in order to find the optimal mean score (OMS) for each major use case16. 

 

ModFOLD6_cor 

The aim of developing the ModFOLD_cor global score variant was to optimize the correlations of 

predicted and observed global scores. In other words, the predicted global accuracy estimation scores 

produced by the method should have close to linear correlations with the observed global accuracy 

estimation scores. The OMS for the ModFOLD6_cor global score was found as: 

ModFOLDclustQ_single_global + DBA_global + ModFOLD6_global)/3 

 where the _global suffix indicates that the mean local score was taken for the scoring method 

indicated above.  

 

ModFOLD6_rank 

The aim of developing the ModFOLD6_rank global score variant was to optimise for the selection of 

the best models namely the top ranked models (top 1) should be closer to the highest accuracy, 

regardless of the relationship between the absolute values of predicted and observed scores. The OMS 

for the ModFOLD6_rank global score was found as: 

ModFOLDclustQ_single_global + ProQ2_global + CDA_global + DBA_global + 

SSA_global + ModFOLD6_global)/6.  
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Note that the local scores submitted for each of the three ModFOLD6 variants were identical and it 

was only the global scores (and therefore the ranking of models), which differed between the three 

ModFOLD6 variants. All three of the ModFOLD6 variants are freely available at: 

http://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD6_form.html 

 

ModFOLDclust2  

The ModFOLDclust2 method46 is a leading automatic clustering based approach for both local and 

global 3D model accuracy estimation assessment47,48. The ModFOLDclust2 server tested during 

CASP12 was identical to that tested during the CASP9, CASP10 & CASP11 experiments. The local 

and global scores have been previously described46 and are unchanged since CASP9. . Thus, the 

ModFOLDclust2 method serves as a useful gold standard/benchmark against which progress may be 

measured in the development of single model methods. ModFOLDclust2 can be run as an option via 

the older ModFOLD3 server 

(http://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD_form_3_0.html). The ModFOLDclust2 

software is also available to download as a standalone program 

(http://www.reading.ac.uk/bioinf/downloads/). 

 

Wallner group 

We participated with three EMA methods; ProQ221, Pcomb-domain, and Wallner. 

 

ProQ2 is a single model accuracy estimation program based on a linear kernel support vector 

machine trained on a set of structural descriptors of a model. ProQ2 is trained to predict the local S-

score23: 
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��(&�) = 1

(1 + (&�&0
)2) 

where di is the local distance deviation for residue i in the optimal superposition that maximize sum of 

S over the whole protein, and d0 is a distance threshold put to 3.0 here. The global score is the sum of 

local Si divided by the target length yielding a score in the range [0,1]. Local S-scores, Si, were 

converted to local distance deviation using the formula:  

&�(��) = &0 ∗ )( 1�� − 1) 
ProQ2 has participated in CASP since CASP10. Before CASP11 we implemented ProQ2 as a scoring 

function in Rosetta40, enabling scoring and integration in any Rosetta protocol. ProQ2 was top-ranked 

in both CASP10 and CASP11. This inspired the development of novel methods including SVMQA, 

MESHI-score and ProQ3. ProQ2 is also included in several hybrid methods used here. Therefore it 

could be claimed that ProQ is laying the foundation for the improvement in model quality assessment 

apparent in CASP12. ProQ2 is also included in the top-ranked structure prediction methods 

BAKERROSETTA-SERVER49 and the IntFOLD4 server for TS prediction50. 

 

Wallner method in this CASP is what was called Pcomb in earlier CASPs13,51. It combines ProQ2 and 

Pcons using the following linear combination for global prediction20: 

Pcomb=0.2*ProQ2+0.8*Pcons  

For local prediction the same formula was used to calculate weighted local S-scores, which then were 

converted to distances using the di(Si) formula, described above. 

 

Pcomb-domain method is a new domain-based version of Pcomb. Traditionally, consensus methods, 

including Pcons11 (https://github.com/bjornwallner/pcons), have always used rigid-body superposition 

for the full-length models, thereby selecting models that overall have the highest consensus, ignoring 

the fact that smaller domains from other models could have higher consensus over that region. To try 
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to overcome this problem we developed a domain-based version of Pcons, which uses an initial 

domain definition. The domain-based Pcons scores were combined with local predicted scores from 

ProQ2. Two different methods were used to predict the domain boundaries of the target sequences, 

the first used the domain definitions from the Robetta server and the second was based on spectral 

analysis of the top ranking server models according to the regular Pcomb method. The results from 

these two methods were manually evaluated to decide the final domain boundaries. In addition, the 

Pcons and ProQ2 scores were weighted in a slightly different way compared the regular Pcomb 

method; following a parameter optimization based on targets released in the last two editions of CASP 

the relative weight for ProQ2 was increased to 0.3 resulting in this formula:  

Pcomb-domain=0.3*ProQ2-domain+0.7*Pcons-domain 

Furthermore, d0 was increased from 3.0Å to 5.0Å as it showed improved model selection on CASP11, 

results not shown. Increasing d0 shifts the sensitivity to lower quality (higher RMSD) residues, which 

is an advantage in CASP. As for both ProQ2 and Pcons all predictions are performed in the S-score 

space, global scores are sum of local scores, and the local S scores are transformed to distances in the 

final step, using the di(Si) formula above. 

 

Results 

A detailed analysis of CASP12 EMA methods is provided in the accompanying EMA assessment 

paper52. In this section, we refer to the results provided in this paper pertaining to our methods and 

also perform an additional analysis based on the correlation between different scores for different 

types of methods. 
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Global accuracy estimations in CASP12 

Here, we describe our analysis of our global accuracy estimation methods described in Table 1. As 

shown in the EMA assessment paper52 three single model accuracy estimation methods (ProQ3, 

SVMQA and MESHI) are ranked highest for identifying the best model with the average error (i.e., 

difference between the GDT_TS of the selected model and the best GDT_TS) around 5 GDT_TS 

units. The individual ranking of these methods depends on the evaluation criteria and according to the 

assessment paper52 the difference between the top methods is not significant. The best consensus and 

quasi-single methods are only marginally worse than the pure single methods using these criteria. 

However, this is a significant progress in single model method performance since last CASP. 

Distinguishing good models from bad 

From Figure 5 of the accompanying paper52 it is clear that the best approaches at detecting the top 

ranked models according to GDT_TS use consensus or quasi-single methods and combine them with 

single model approaches. The top three methods (Wallner, Pcomb-domain and ModFOLD6_rank) are 

using the single model method ProQ2 as part of their scoring. Wallner and Pcomb-domain scores are 

weighted sums of ProQ2 and Pcons scores, while ModFOLD6_rank uses ProQ2 together with many 

other scores. While such methods are statistically better52, the much simpler pure consensus methods 

Pcons and ModFOLDclust2 are not far behind ranked 6th and 9th when using S-score and even better 

than ModFOLD6 when using lDDT.  

Ranking of models 

The ability of methods to rank the top models for each target was evaluated using the per target 

correlation, i.e. the correlation of estimated and observed accuracy for each target.  In Figure 3, the 

distribution of per target correlation for the all methods studied here (see Table 1) and the three 

different model accuracy estimation measures (lDDT, CAD and GDT_TS) are shown. The 

distributions are sorted by the median. It can be seen that the individual rankings of the methods are 
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quite different depending on the accuracy measure is used. When using GDT_TS53, consensus and 

quasi-single based methods clearly outperform the single model accuracy estimation methods. In 

contrast when using CAD54 or lDDT55 the best correlation is obtained with ProQ3 and all the top 

methods are single model accuracy estimations. A similar difference in ranking can be seen in the 

AUC analysis on the CASP homepage (http://predictioncenter.org/casp12/qa_aucmcc.cgi). Here, 

ProQ3 is ranked 20th when using GDT_TS but 7th when using CAD. In contrast Pcons is ranked 4th 

using GDT_TS and 12th using CAD. Interestingly, it can be seen that the “pure” consensus methods 

(Pcons, MODFOLDClust2) show only a modest per target correlation with CAD or lDDT (Figure 3). 

Comparison of global accuracy estimation predictions 

How similar are the model accuracy estimation scores produced by the different methods? To answer 

this we calculated the correlation between predicted accuracy estimates from all methods (Figure 4). 

The methods were then clustered using Weighted Pair Group Method Centroid (WPGMC) with the 

median correlation as linkage. It can be seen that all methods (except qSVMQA) that use some sort of 

consensus (quasi-single or consensus) are clustered. Within this group the separation is primarily not 

between quasi-single methods and consensus methods, but rather between the methods that primarily 

use consensus and those that combine the consensus score with ProQ2 (Pcomb-domain, 

ModFOLD6_rank, Wallner, and ModFOLD6). ModFOLD6_cor is more similar to the pure consensus 

methods (Pcons and ModFOLDclust2) than the other combined methods as it does not use ProQ2 

global scores directly in its classification. Since the combined methods include single methods they 

are also more similar to all the single methods than the pure consensus methods. 

 

Single model accuracy estimation methods show the largest performance diversity. SVMQA is the 

least similar to the others, being more similar to the consensus methods than to any other single model 

accuracy estimation method. The other three methods are more correlated, with the newer methods 
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ProQ3 and MESHI showing the highest correlation. It can also be noted that in general ProQ2 is the 

outlier, showing the lowest correlation with the consensus methods.  

 

When comparing the three different quality measurements (GDT_TS, CAD and lDDT) it can be seen 

that they do not correlate with each other better than the consensus methods with GDT_TS, see Figure 

4. The correlation between the quality measures CAD and GDT_TS is 0.88; while the correlation of 

the predicted values from the consensus methods to GDT_TS is 0.92 or higher. While some of the 

problems might origin from domain division, as mentioned in the Wallner sections, it is clear that the 

accuracy of model quality estimation is getting close to a point where they challenge the notion of 

measuring the quality of a model given a known native structure. 

 

Local accuracy estimation in CASP12 

In terms of estimation of local accuracy, the best performance is obtained by the pure consensus 

methods followed by quasi-single model approaches52. In Figure 5, a heat map of the correlation 

between all local predictions by the methods discussed in this paper is shown. Unfortunately, of the 

single predictors evaluated here only ProQ2 and ProQ3 produce local predictions, nevertheless the 

trend is similar as for the global methods. All the consensus and quasi-single methods provide very 

similar accuracy estimates, while the two single model methods are outliers. It is clear from this 

analysis that the consensus methods correlate better with S-score (cc~0.85) than with lDDT (cc~0.77). 

As the consensus methods are based on superposition algorithms, similar to those used when 

calculating the S-score, this might not come as a surprise.  Interestingly both ProQ2 and ProQ3 

correlate better with lDDT (cc~0.71) than with S-score (cc~0.65). It can also be noted that ProQ3 

correlates better than ProQ2 with both lDDT and S-score. This highlights the improvements achieved 

in single model quality estimates since CASP11. 
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Discussion 

For the first time single model quality estimators can challenge the consensus based methods when it 

comes to ranking of targets. However, the consensus based estimators are still superior when it comes 

to local quality estimation, at least when using the CASP defined criteria. Below we will continue the 

CASP style of presentations by summarizing what each group learned during CASP12.  

What the Elofsson group learned 

An interesting trend in CASP12 is that ProQ3 is better than our consensus method, Pcons, at picking 

up the best model, see EMA assessment paper52. In earlier CASPs this was not the case and until 

CASP10 it was clear that consensus based methods were superior even in this aspect. We do believe 

that the main reason for this is that single model accuracy estimation methods have improved in the 

last few years. 

 

However, consensus-based methods such as Pcons are still superior at separating correct and incorrect 

models52. Interestingly, when using CAD, ProQ3 performs slightly better than Pcons even on this 

measure, see Figure 3, indicating that some part of the superior performance of consensus methods 

might be due to multi-domain properties of the targets or the choice of target function. 

 

One issue at CASP is that the definition of the target function for local prediction used in CASP might 

not be ideal. The goal is to predict the error in distance for a particular residue. However, this is 

dependent on the superposition used, which can be problematic for multi-domain targets. It could 

therefore be useful in future CASPs to consider changing the target function to one of the non-

superposition based quality evaluations, such as CAD or lDDT. The stated goal in CASP12 is to 

predict the distance after superposition and for this consensus methods are better. However, the 
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performance of ProQ3 is getting closer to the performance of the consensus methods when using 

lDDT for model quality estimation, see Figure 3 and 5. 

What the Keasar group learned 

The major rationale behind the design of MESHI-score pipeline (Figure 2) is to keep the feature set 

painlessly extendable. To this end we employed an ensemble-learning scheme, in which the feature 

selection is part of the training of each predictor (i.e. ensemble member). This way each feature has a 

“fair chance” to be included in some of the predictors and provide its unique contribution to the 

overall score. Overfitting at the single predictor level is avoided by restricting the number of selected 

features. Combining the set of predictor scores to form the single ensemble score (MESHI-score) does 

not require any adjustable parameters and thus, does not introduce overfitting at the ensemble level. In 

this experiment we put to test the modularity of our ensemble learning approach. Indeed, in this 

experiment we were able to get better results than before, simply by adding more features to the same 

machinery, with neither considerable computational burden nor overfitting. This encourages us to 

work on the development and adoption of more informative features. 

 

In CASP12 we also tested MESHI-score-con for the first time, and its performance was a bit superior 

to that of MESHI-score. We take this as a proof of concept and wish to extend it in two directions: 

have a data-driven less restricted definition of the neighbors set, and apply the same idea also to 

decoys of high score. High scores to two dissimilar decoys must imply that at least one of them (often 

both) is wrong. 
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What the Lee group learned 

According to the CASP12 assessment, SVMQA is one of the best methods for selecting good quality 

models from a set of given decoys in terms of GDT-LOSS. The newly implemented features (five 

potential energy-based terms and consistency-based terms34) a systematic benchmarking approach on 

the selection of the final set of features, the optimization of machine learning parameters on a 

balanced training and testing dataset, and the usage of two separate predictors made SVMQA to 

perform significantly better than our old method used in CASP11 (RFMQA) when benchmarked on 

CASP11 targets. Additionally, SVMQA made valuable contribution to our tertiary structure 

prediction server (GOAL) and human predictors (LEE and LEEab) of CASP12 in terms of model 

selection. In terms of the model selection, SVMQA performed well. However, in term of assigning 

proper absolute global accuracy value to a model it didn’t perform as desired52. We believe that one 

way to improve on estimating the absolute score of a given model is to consider other types of 

objective functions to train separately for absolute global accuracy, which is one of the goals that we 

should work on for the next CASP. 

What the McGuffin group learned 

The ModFOLD6 series of methods (ModFOLD6, ModFOLD6_rank and ModFOLD6_cor) perform 

particularly well in terms of assigning absolute global accuracy values. As expected the 

ModFOLD6_cor variant is the best of these as it was optimized for this task. The ModFOLD6 series 

of methods also perform competitively with clustering approaches for differentiating between good 

and bad models; the ModFOLD6_rank method being the best of these, which is only outperformed by 

two clustering groups (Wallner and Pcomb-domain). Furthermore, as we anticipated, the 

ModFOLD6_rank variant is better at selecting the top models than the ModFOLD6 and 

ModFOLD6_cor variants, however it is outperformed by the latest pure-single model methods. 
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Overall, in terms of global scores, the ModFOLD6 variants rank within the top three methods for 

nearly every global benchmark according to lDDT and CAD scores, as well as ranking within the top 

10 according to other scores. 

 

It is gratifying to see progress in CASP12 from many groups in both pure-single and quasi-single 

model approaches to estimate model accuracy. However, it is also clear there is still room for 

improvement of our methods. For instance, we are outperformed in terms of model selection by the 

newer pure single model methods. Further integration of methods is probably needed. Different 

methods are clearly better suited for different aspects of model accuracy estimation, therefore all 

approaches to the problem are still important to pursue. Perhaps the most difficult problem faced by 

all groups is how to optimize a global score for all aspects of model accuracy estimation, as there 

seems to be no one-size-fits-all solution presently. One potential solution to this might be to use a 

deep learning approach that outputs multiple scores depending on the intended use case. A global 

score for ranking models on a per-target basis, irrespective of the observed model-target similarity 

scores, is clearly very useful, if it can consistently select the better models. On the other hand a global 

score that can produce a near 1:1 mapping between predicted and observed scores, that is consistent 

across all targets, will allow us to assign accurate confidence scores to individual models (which is 

arguably more useful to an experimentalist than a top ranked, but nevertheless poor quality, model). 

Of course, as model accuracy estimation methods continue to improve and approach perfect 

optimization for each use case, eventually the scores may converge on a single answer. 

What the Wallner group learned 

Wallner and Pcomb-domain were the two best methods for differentiating between good and bad 

models (see assessment paper52). We were disappointed with the performance of Pcomb-domain, 

since in our benchmarks before CASP it performed significantly better than Wallner.  However, the 
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true advantage of Pcomb-domain can only be seen if the assessment is based on domains or on using 

superposition independent evaluation measures like lDDT55 and CAD-score54,55. We calculated the 

per-residue correlation of local predicted S-scores transformed using S-score formula (see above) 

based on either full-length target or target domains, see Figure 6. For full-length assessment, methods 

based on global structural superposition (Wallner, Pcons, and ModFOLDclust2) for single domains 

are indeed superior. Also the performance based on multi-domain targets seems to be better for these 

methods (Figure 6a). However, the reason for this seemingly good performance for multi-domain 

targets is an artifact of the full-length assessment on multi-domain proteins that will only superimpose 

on one domain, if the domain-domain orientation is wrong. This superposition will assign high quality 

scores to the residues from one domain (usually the larger), and relatively low quality scores to the 

residues from the other domain. This effect accentuates the performance for prediction methods using 

global superposition, which will also predict high quality scores for one domain and low scores for the 

others. If instead performance is measured using the official CASP domain definitions, this artifact 

can be avoided, and then Pcomb-domain performs better for multi-domain targets, and better than 

other methods when it uses a correct domain prediction (Figure 6b). Unfortunately, correct domain 

prediction was only achieved for 6 out of 21 multi-domain targets. Still, it pinpoints that there should 

be clear room for improving Pcomb-domain by improving the domain prediction algorithm. 

Conclusions 

It is our belief that the most important insight from the QA groups in CASP12 is the progress in single 

model accuracy estimations. Three new methods, SVMQA, MESHI and ProQ3, are all better than the 

best single model method in CASP11 (ProQ2).  These methods are also better at selecting the top-

ranked model compared to consensus-based methods. However, quasi-single model method and 

consensus methods are still superior when it comes to distinguishing correct and incorrect models as 

well as for local predictions. In those targets that have a wide spread of quality there is a clear 
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distinction between the correlations of single and consensus methods with the later performing better. 

These are typically subunit of protein complexes, for which templates are available. Here, estimating 

the accuracy of a single model might not make sense without taking the entire complex into account.  

In CASP12 this is most dramatic for target T0865, where correlations for consensus-based methods 

are high and correlations for all single model methods are negative. By comparing the predictions to 

each other it is seen that all consensus and quasi-single methods actually are very similar, while there 

is larger variation between the single methods, hence combining them may provide additional value in 

the future.  

 

During this evaluation we noted issues for multi-domain targets where the individual domains are 

correct but not their relative arrangement. Here, the GDT_TS score (and any superposition based 

score) is based on the superposition of the largest domain. This causes problems when the evaluation 

is not domain based. For model quality estimations the problem is most notable when evaluating local 

quality assessments. It could therefore be useful, in future CASPs, to use CAD54 or lDDT55 to evaluate 

the quality of a model without using domain division. We do also notice that single model estimation 

methods perform better when assessed with CAD or lDDT see Figure 3 and 5.  
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Figure Legends 

Figure 1: Flowchart outlining the principal stages of the ModFOLD6 server prediction pipeline. The 

initial input data are the target sequence and a single 3D model. The output data are the local/per-

residue scores from the ModFOLD6 NN and the global score variants - ModFOLD6, 

ModFOLD6_rank and ModFOLD6_cor. The ModFOLD6 pipeline is dependent on the following 

methods PSIPRED31, DISOPRED36 and MetaPSICOV37. 

 

Figure 2: The MESHI-score pipeline starts with a regularization step that includes side-chain 

repacking by SCWRL26,27 and restrained energy minimization. Features are extracted from the 

regularized structures and fed to an ensemble of independently trained predictors. Each predictor 

outputs a pair of values: an EMA score and weight, and the weighted median of this set of pairs is the 

final MESHI-score.  

 

Figure 3: Boxplots of per target correlation for the methods presented in this paper for GDT_TS, 

CAD, and lDDT, (a)-(c) global evaluations, (d)-(e) local evaluations. To avoid bias from bad models 

only models with Z>0 are included in the global analysis. For local correlation CAD values were not 

available so only the distances, turned into S-scores, and lDDT values are compared. Single-model 

methods are colored blue, quasi green, clustering light grey and combination models dark grey. Using 

GDT_TS the clustering-based methods are slightly better than the single-model predictors, while this 

is not the case using the alternative measures CAD and lDDT. Clustering methods benefit from 

having low quality models in the pool while the single model methods appear better at ranking higher 

quality models. For both local measures the single-model evaluation methods have lower correlation 

than the superposition based ones, but the difference in correlation is smaller when using lDDT. 
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Figure 4: Pairwise correlations between predicted global accuracy scores from different methods and 

actual accuracy scores according to three measures. The methods are clustered hierarchically using 

WPGMC algorithm with the median correlation as similarity measure. Methods are colored as 

follows. Dark grey - pure consensus methods, light grey - combined single/consensus methods, green 

- quasi-single methods and blue pure single methods. It can be noted that (i) both quasi, pure and 

combined consensus methods are very similar (cc>0.94), while the single model quality methods are 

more different (cc<0.90 between the groups). ProQ2 is the real outlier having a cc<0.82 to most 

methods. Interestingly ProQ2 and ProQ3 are less similar to each other than any pair of consensus 

based methods. It can also be noted that the combined methods are more similar to the single-model 

methods than the pure consensus methods (Pcons, ModFOLDClust2).  

 

Figure 5: Pairwise correlation between local predicted S-scores calculated from the predicted distance 

using S-score formula (see above) with d0=5 and local lDDT values (unfortunately local CAD scores 

were not available). Only methods that predicted local quality are included. As the ModFOLD6 

methods only differ in their global scores and provide identical local estimates they were all 

represented by the ModFOLD6 method. Methods are colored as follows. Dark grey - pure consensus 

methods, light grey - combined single/consensus methods, green - quasi-single methods and blue pure 

single methods.  

 

Figure 6: Per residue correlation of local predicted S-scores transformed using S-score formula with 

d0=5; based on full-length targets (A) and target domains (B) for selected methods and targets divided 

into multi and single domain targets. For full-length assessment methods based on superposition are 

superior. However, Pcomb-domain performs better than other methods when (and only when) it gets 

the domain prediction correct.  
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Flowchart outlining the principal stages of the ModFOLD6 server prediction pipeline. The initial input data are 
the target sequence and a single 3D model. The output data are the local/per-residue scores from the 
ModFOLD6 NN and the global score variants - ModFOLD6, ModFOLD6_rank and ModFOLD6_cor. The 

ModFOLD6 pipeline is dependent on the following methods PSIPRED, DISOPRED and MetaPSICOV.  
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Figure 2. The MESHI-score pipeline starts with a regularization step that includes sidechain repacking by 
SCWRL37,38 and restrained energy minimization. Features are extracted from the regularized structures 

and fed to an ensemble of independently trained predictors. Each predictor outputs a pair of values: an EMA 

score and weight, and the weighted median of this set of pairs is the final MESHI-score.  
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Figure 3. Boxplots of per target correlation for the methods presented in this paper for GDT_TS, CAD, and 
lDDT, (a)-(c) global evaluations, (d)-(e) local evaluations. To avoid bias from bad models only models with 
Z>0 are included in the global analysis. Single methods (blue), quasi (green), clustering (light grey) and 
combination models (dark grey). It is clear that using GDT_TS the consensus based methods are slightly 
better than the single-model predictors, while this is not the case using alternative measures. Clustering 
methods benefit a lot from having low quality models in the pool while the single model methods appear 
better at ranking higher quality models. For local correlation CAD values were not available so only the 

distances, turned into S-scores, and lDDT values are compared. Here, for both measures the single 

evaluation methods are less good than the superposition based ones, but the difference is smaller when 
using lDDT.  
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Figure 4.  Pairwise correlations between predicted global accuracy scores from different methods and actual 
accuracy scores according to three measures. The methods are clustered hierarchically using WPGMC 

algorithm with the median correlation as similarity measure. Methods are colored as follows. Dark grey - 

pure consensus methods, light grey - combined single/consensus methods, green - quasi-single methods 
and blue pure single methods. It can be noted that (i) both quasi, pure and combined consensus methods 

are very similar (cc>0.94), while the single model quality methods are more different (cc<0.90 between the 
groups). ProQ2 is the real outlier only having a cc>0.82 to ProQ3 and the consensus methods that uses 
ProQ2 as a part of their score. In fact ProQ2 and ProQ3 are less similar to each other than any pair of 

consensus based methods. It can also be noted that the combined methods are more similar to the single-
model methods than the pure consensus methods (Pcons, ModFOLDClust2).  
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Figure 5. Pairwise correlation between local predicted S-scores calculated from the predicted distance using 
S-score formula (see above) with d0=5 and local lDDT values (unfortunately local CAD scores were not 

available). Only methods that predicted local quality are included. As the ModFOLD6 methods only differ in 

their global scores and provide identical local estimates they were all represented by the ModFOLD6 method. 
Methods are colored as follows. Dark grey - pure consensus methods, light grey - combined 
single/consensus methods, green - quasi-single methods and blue pure single methods.  
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Figure 6. Per residue correlation of local predicted S-scores transformed using S-score formula with d0=5; 
based on full-length targets (A) and target domains (B) for selected methods and targets divided into multi 

and single domain targets. For full-length assessment methods based on superposition are superior. 
However, Pcomb_domain performs better than other methods when (and only when) it gets the domain 

prediction correct.  
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Table 1. Summary of the best performing QA methods in CASP12 and comments about their 

strength and weaknesses. Methods basically identical have been merged 

 

Methods Type Comment about Global 

performance 

Comment about Local 

Performance 

MESHI
32
  Single Top model selection  N/A 

MESHI_con
32
  Single* Top model selection  N/A 

ProQ2
21
 Single Good model selection  Acceptable local scores 

ProQ3
17
 Single Top model selection  Good local scores 

SVMQA
34
 Single Top model selection  N/A 

ModFOLD616 Quasi-single Balanced performance 

 

Good assignment of local scores 

ModFOLD6_rank16 Quasi-single Acceptable model selection Identical to ModFOLD6 

ModFOLD6_cor
16
 Quasi-single Best absolute but suboptimal 

model selection  

Identical to ModFOLD6 

qSVMQA
34
 Quasi-single Assignment of the absolute 

score is not accurate. 

N/A 

ModFOLDclust2
46
 Clustering Good assignment of absolute 

global scores but suboptimal 

model selection 

Top assignment of local scores 

Pcons11 Clustering Good assignment of absolute 

global scores 

Top assignment of local scores 

Pcomb-domain13 Combined Good assignment of absolute 

global scores, requires good 

domain prediction 

Top assignment of local scores 

Wallner  Combined Good assignment of absolute 

global scores 

Top assignment of local scores 

*
 = MESHI_con is not pure single methods but requires multiple models to average the predictions 
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Table 2. Description of the evolution of ProQ methods used in CASP and their 

relative performance. 

Method Major Novelty Correlation 

global/local 

ProQ
6 First method trained to predict “quality” of 

a model. Using a combination of structural 

descriptions and agreement with predicted 

secondary structure. 

0.71A/- 

ProQres
20 Predicting local qualities - global quality is 

sum of local quality. 

-/0.56B 

ProQ2
21 Global agreement with predicted RSA and 

SS plus profile weighting. Uses a linear 

kernel SVM. 

0.80/0.71B  

0.84/0.72C 

ProQ3
17
 Added rosetta energies to the inputs. 0.87/0.74

C
 

ProQ3D
18 Linear kernel SVM is replaced by a two-

layer perceptron. 

0.91/0.77C 

A
 from original ProQ publication 

6
 

B
 from ProQ2 publication 

21
  

C
 on CASP11 dataset trained on CASP9 and CASP10 
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