
Data assimilation in the solar wind: 
challenges and first results 
Article 

Accepted Version 

Lang, M., Browne, P., Van Leeuwen, P. J. and Owens, M. 
ORCID: https://orcid.org/0000-0003-2061-2453 (2017) Data 
assimilation in the solar wind: challenges and first results. 
Space Weather, 15 (11). pp. 1490-1510. ISSN 1542-7390 doi: 
10.1002/2017SW001681 Available at 
https://centaur.reading.ac.uk/72986/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1002/2017SW001681 
To link to this article DOI: http://dx.doi.org/10.1002/2017SW001681 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



Data Assimilation in the Solar Wind: Challenges and

First Results

Matthew Lang
1
,Philip Browne

2,3
,Peter Jan van Leeuwen

2,4
, Mathew Owens

2

Matthew Lang, matthew.lang@lsce.ipsl.fr

1Le Laboratoire des Sciences du Climat et

de l’Environnement, CEA-CNRS-UVSQ,

91191 Gif Sur Yvette, France

2Department of Meteorology, University

of Reading, Reading, Berkshire, UK

3Currently at European Centre for

Medium-Range Weather Forecasts,

Reading, Berkshire, UK

4NCEO, University of Reading, Reading,

Berkshire, UK

This article has been accepted for publication and undergone full peer review but has not been through
the copyediting, typesetting, pagination and proofreading process, which may lead to differences be-
tween this version and the Version of Record. Please cite this article as doi: 10.1002/2017SW001681

c©2017 American Geophysical Union. All Rights Reserved.



Abstract. Data Assimilation (DA) is used extensively in numerical weather

prediction (NWP) to improve forecast skill. Indeed, improvements in fore-

cast skill in NWP models over the past 30 years have directly coincided with

improvements in DA schemes. At present, due to data availability and tech-

nical challenges, DA is underused in space weather applications, particularly

for solar wind prediction. This paper investigates the potential of advanced

DA methods currently used in operational NWP centres to improve solar wind

prediction. To develop the technical capability, as well as quantify the po-

tential benefit, twin experiments are conducted to assess the performance

of the Local Ensemble Transform Kalman Filter (LETKF) in the solar wind

model ENLIL. Boundary conditions are provided by the Wang-Sheeley-Arge

coronal model and synthetic observations of density, temperature and mo-

mentum generated every 4.5hr at 0.6AU . While in-situ spacecraft observa-

tions are unlikely to be routinely available at 0.6AU , these techniques can

be applied to remote sensing of the solar wind, such as with Heliospheric Im-

agers or Interplanetary Scintillation. The LETKF can be seen to improve

the state at the observation location and advect that improvement towards

the Earth, leading to an improvement in forecast skill in near Earth space

for both the observed and unobserved variables. However, sharp gradients

caused by the analysis of a single observation in space resulted in artificial

wave-like structures being advected towards Earth. This paper is the first

attempt to apply DA to solar wind prediction, and provides the first in-depth

analysis of the challenges and potential solutions.
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Keypoints:

• The paper describes the first data assimilation (DA) experiments with

a solar wind model.

• These experiments show that DA can improve forecasts of non-magnetic

variables near the observation, which are advected by the solar wind.

• We discuss challenges and obstacles inherit to DA in the solar wind and

propose potential solutions as directions for future research.

c©2017 American Geophysical Union. All Rights Reserved.



1. Introduction

Variability in the solar magnetic field over minutes, hours and days results in near-

Earth solar-wind conditions which can adversely affect space- and ground-based tech-

nologies [Cannon et al., 2013]. The most extreme “space weather” is driven by Coronal

Mass Ejections (CMEs), large episodic eruptions of plasma and magnetic field from the

Sun that travel through the solar wind, disturbing the Earth’s magnetic field as part of

a geomagnetic storm [Gosling , 1993]. As such, Earth-directed CMEs pose a threat to

electrical and communication systems which have become a huge part of modern-day life,

with an estimated potential economic impact of up to $2 trillion in the first year after

an extreme storm [Board , 2008]. In addition, the radiation hazard of energetic charged

particles associated with the solar wind and by CMEs is a health threat to humans at high

altitude, such as aircrew over the poles and astronauts, both in low-Earth orbit (e.g., on

the International Space Station), but particularly on interplanetary missions, when the

protection of the Earth’s magnetic field is removed [Cannon et al., 2013]. The UK has

responded to the danger of a major space weather event, such as a large CME, by adding

it to the National Risk Register as one of the largest threats to modern society. The UK

Met Office (UKMO) and US Space Weather Prediction Center (SWPC) are working to-

gether to prepare for, and mitigate against, the possible impacts of a large space weather

event. Thus forecasting solar wind conditions in near-Earth space is a high priority.

The state-of-the-art method for forecasting near-Earth solar wind conditions is through

coupled coronal and heliospheric models, with boundary conditions ultimately set by

photospheric magnetic field observations (e.g., see Figure 1). As a complete photospheric
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magnetic field map takes one solar rotation to construct ( 27 days from Earth’s point of

view), this approach enables the quasi steady-state solar wind to be predicted. Time-

dependent phenomenon, such as CMEs, are then incorporated through ad-hoc perturba-

tion of heliospheric boundary conditions. This typically entails a “cone model” which

inserts an over-pressurised density perturbation with the speed, direction and angular

width set by coronagraph observations of the CME in question (for example, see [Parsons

et al., 2011; Xie et al., 2004]). No additional observational constraints are imposed on

the forecast between the top of the solar corona ( 20 solar radii) and near-Earth space

( 215 solar radii). For operational solar wind forecasting, UKMO and SWPC use ENLIL

[Parsons et al., 2011; Odstrcil and Pizzo, 1999; Odstrcil et al., 2004; Odstrcil , 2003], a 3D

magnetohydrodynamic (MHD) model.

In this paper, we investigate the use of an advanced data assimilation method with the

ENLIL model for potential improvement of space-weather forecasting. To the authors’

knowledge, this is the first study to apply data assimilation methods to the solar wind.

We use the EMPIRE [Browne and Wilson, 2015] data assimilation framework. In the

next section the solar wind is described. Then the basic ingredients are described in

succession, a short introduction to data assimilation, the model ENLIL, and the EMPIRE

data-assimilation framework. This is followed by the set up of the data-assimilation

experiments and the results, and a concluding section.

2. The solar wind

The solar wind is a plasma composed primarily of electrons and protons, with a small

contribution from alpha particles and other minor species. It continually flows almost

completely radially away from the top of the Sun’s hot corona [Parker , 1958], generating
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the heliosphere. The mechanism(s) by which the corona is heated, however, are still

debated (e.g., De Moortel and Browning [2015]), as are the precise mechanism(s) by which

the coronal plasma is confined and released [Cranmer , 2008; McComas et al., 2007]. The

solar wind drags the coronal magnetic field outwards generating the heliospheric magnetic

field (HMF [Owens and Forsyth, 2013]), which magnetically couples the Sun and planets,

and modulates the flux of galactic cosmic rays in the inner heliosphere. The solar wind

plasma is accelerated to speeds greater than the characteristic wave speeds (i.e., the local

Alfven and fast magnetosonic wave speeds) within 0.1 AU (where 1AU ≈ 1.50 × 108km

is the astronomical unit, defined as the average distance between the Earth and Sun),

meaning that no information from the solar wind beyond this distance can propagate

back towards the Sun. Typical properties of the solar wind at 1AU are summarised in

table 1.

The ambient solar wind has two distinct components, typically referred to as the “fast”

(∼ 750kms−1) and the “slow” solar wind (∼ 400kms−1), although their differences are

not limited to only their speed (and extend to their formation mechanism at the Sun, for

example). Fast solar wind flows outwards along “open” magnetic field lines associated with

coronal holes [Hassler et al., 1999], which are largely confined to the polar regions at times

around sunspot minimum. The slow solar wind emanates from, or regions close to, closed

coronal loops, which are confined to equatorial regions at sunspot minimum. During solar

maximum, the coronal magnetic field is far more dynamic, with a much weaker dipole

component. Consequently, the slow solar wind is observed at a much greater range of

solar latitudes.
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In-situ spacecraft observations of the solar wind provide direct measurements of the

solar wind plasma and HMF, which is directly rebateable to state vectors of the ENLIL

simulation. However, only sparse spatial coverage of the global heliosphere is possible.

Temporally, there has been near-complete data coverage in near-Earth space since 1996.

Close to the L1 Lagrangian point between the Sun and the Earth (at heliocentric distance

of ∼ 0.99AU), ACE [Stone et al., 1998] and Wind [Gloeckler et al., 1995] spacecraft have

provided measurements since 1996, with the DSCOVR mission [Leslie and Cole, 2016;

Burt and Smith, 2012] taking over as the standard observatory in June 2015. Away from

near-Earth space, the two STEREO spacecraft [Kaiser et al., 2008; Davis et al., 2009]

observe the solar wind from the elliptic plane, drifting 22◦ further ahead and behind the

Earth each year, and the HELIOS spacecraft [Jackson, 1985a, b] which explored the inner

heliosphere to 0.29AU . This data is all freely available online (e.g. at

https://nssdc.gsfc.nasa.gov/space/ ).

From the available data it is difficult to forecast the near-Earth solar wind directly.

Photospheric extrapolation enables a quasi-synoptic estimate of the near-Sun solar wind

conditions, but it is highly indirect and therefore subject to large uncertainties. The sparse

in situ observations are more reliable, but sample only a small region of space; the L1 point

is too close to Earth to provide a useful forecast lead time, and there are only extremely

infrequently ”upwind” monitors on the Earth-Sun line (e.g., the HELIOS spacecraft for

very short intervals during the late 1970s and early 1980s). Heliospheric Imager (HI) type

instruments, such as those on board STEREO [Eyles et al., 2009], and Interplanetary

Scintillation (IPS) measurements [Manoharan and Ananthakrishnan, 1990] enable greater

spatial sampling solar wind for limited properties (primarily density, but also solar wind
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speed). Interpretation of these observations requires deconvolution of geometrical and

path-integrated effects, thus there is large uncertainty in, e.g., solar wind speed, at a given

point in the heliosphere. This is where data assimilation can be of assistance because it

incorporates a full dynamical model of the solar wind, to some extent interpolating the

observations to obtain a more complete picture, and allows for observational and model

uncertainty. Thus it provides a natural starting point for prediction. Here, we explore how

these observations can be brought together. We use a solar wind model (ENLIL) initiated

using the near-Sun solar wind conditions from photospheric magnetic field observations,

and assimilate solar wind conditions at a single point, located 0.6 AU along the Sun-

Earth line. In the remainder of the study, we consider these solar wind observations to

be synthetic in-situ spacecraft observations, but they could equally represent HI or IPS

observations.

3. Short introduction to Data Assimilation

Data assimilation combines prior information of a system encoded in a numerical model

with new observational information to obtain a better description of the evolution of

that system, including uncertainty estimates. The information in each component is

represented by a probability density function (pdf). Data assimilation is based on Bayes

Theorem, which tells us that the prior pdf of the model has to be multiplied with the pdf

of the observations to obtain the posterior pdf of the model given the observations:

p(x|y) =
p(y|x)

p(y)
p(x) (1)

in which x denotes the model, and y the observations, and the functions p(..) denote the

different pdfs, distinguished by their arguments. The model x can be the state of the
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model at a specific time or a model trajectory over a certain time window. Similarly, the

observations y can denote observations at a specific time, or over a set of observations

over a certain time window. If x is the model state at a specific time and y only contains

observations at or before that time, it is referred to as filtering, while smoothing refers to

the situation that y contains observations that occur at a later timestep than x, and x

can be a state or a trajectory over time. If x and y refer to different times the Bayesian

framework needs the joint pdf of the state, x, and the state at the time of the observation

to bring the observation information to the state, x, at the time of interest. Details can

be found in the literature and at the end of this section.

The state of the model is described by a state vector x ∈ RNx , which contains the values

of the quantities of interest at all gridpoints, where Nx is the dimension of the state. For

ENLIL, the state vector contains the three components of the magnetic field vector, the

three components of the solar wind plasma momentum vector, the plasma temperature,

the plasma density and the cloud and polarity tracers, at each grid point of the model.

The evolution of the model is described by the model equation

xi+1 = fi (xi) + ηi (2)

where xi is state vector at timestep i, fi represents the pure model that incorporates

our understanding of the physics of the system, and ηi is an Nx-dimensional stochastic

term that represents the error in the model equations, resulting from discretisation errors,

missing physics and inaccurate boundary conditions. In the case of solar wind forecasting,

the inaccurate boundary conditions are expected to be the largest single factor. In data

assimilation the statistics of the model errors is assumed to be known, e.g., Gaussian with

zero mean and prescribed error covariance. This, of course, is an idealisation, and esti-
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mating these statistics is becoming an active field of research in e.g., weather prediction,

where, traditionally, these model errors have been ignored for computational reasons.

In the geosciences we never know the initial state vector, and in data assimilation it is

typically assumed to be a random perturbation from the true state:

xb = xt
0 + ξ0 (3)

where xb ∈ RNx is the initial state, xt
0 ∈ RNx is a discretisation of the true state at time

0, and ξ0 ∈ RNx represents the random error in the initial state. Since the truth is not

known the initial condition is either based on a previous forecast or is carefully generated

using all physical knowledge at hand.

The observations are measurements of the true system, but contain measurement er-

rors. They also contain errors arising from the fact that model and observations tend to

represent reality differently, e.g. they have different spatial resolution. Quantifying these

so-called representation errors is again an active area of research, see e.g. Hodyss and

Nichols [2015] and van Leeuwen [2015]. The relation between observations and state of

the system is written as:

yi = Hi(x
t
i ) + εi (4)

where Hi : RNx → RNy , the observation operator, maps the state into observation space

and Ny is the dimension of the observations. The observation error, containing both

instrument and representation error is given by εi, the statistics of which we assume to

be known.

Data assimilation can be used for state estimation, as described above, but it is also

used for parameter estimation, see e.g. [Smith et al., 2009; Evensen et al., 1998] and
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has recently being applied to the estimation of non-linear parameterisations [Lang et al.,

2016]. In this paper, however, we shall focus upon state estimation.

It is important to realise that there is a fundamental problem in data assimilation for the

geosciences that has to do with the size of the problems involved. Suppose we want to store

the prior pdf of a 100-dimensional system, which is a relatively small system. Since that

pdf can have any shape we would have to rely on histogram representations. Assume we

use 10 frequency bins for each variable, then we need to store of the order of 10100 numbers.

Our present-day supercomputers can store a lot of numbers, but this is completely out of

the question. By comparison, the number of atoms in the observable universe is estimated

to be of the order of 1080, so the data-assimilation problem is larger than the observable

universe! =This estimate is very conservative, the dimension of the state vector for the

low-resolution ENLIL simulations performed in this study is 3, 888, 000. This means that

one has to make approximations to the full bayesian solution, and a large part of data-

assimilation research is focussed on finding the best approximation for specific problems.

This has resulted in a number of different data assimilation methods, and the following

gives a very brief overview of what is currently used in the geosciences. More detailed

information can be found in recent text books like Nakamura and Potthast [2015], Reich

and Cotter [2015], and van Leeuwen et al. [2015].

3.1. Variational methods

While variational methods are not used in this paper, for reasons discussed below, it is

useful to give an overview of the approach.
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In variational methods one tries to find the mode of the posterior pdf, so the most

probable state of the model given the observations. The mode is defined as

x̂ = argmaxx p(x|y). (5)

Writing p(x|y) = exp[−J (x)], this amounts to minimising the cost function J , which

is done by setting the gradient of that function to zero and deriving the Euler-Lagrange

equations, and solving these with an efficient gradient descent algorithm, such as conjugate

gradient. This involves generating the tangent-linear model and its transpose, the adjoint,

of the nonlinear model code, which can be a formidable task.

As an example, when we assume Gaussian errors statistics with zero means and covari-

ances; Rk for observational errors, B for initial condition errors, and Qi for model errors

we find this cost function:

J (XNt) =
1

2

(
x0 − xb

)T
B−1

(
x0 − xb

)
+

1

2

d∑
k=1

[
(Hk(xik)− yk)

T R−1
k (Hk(xik)− yk)

]
+

1

2

N−1∑
i=0

[
(xi+1 − f (xi))

T Q−1
i (xi+1 − f (xi))

]
. (6)

where XNt = (x0, . . .xNt)
T is the vector of the states at all timesteps, Nt, and ik denotes

the time steps that we have observations in the time window. Minimising this cost function

is the so-called Weak Constraint 4DVar problem; 4D because it contains space and time,

and weak-constraint because it allows for errors in the model equations. When these are

ignored, the last term is absent and we obtain Strong Constraint 4DVar.

For numerical weather prediction, and also for space weather applications, the covari-

ance matrices involved are huge, e.g. 1018 for weather prediction, so they cannot be

stored explicitly, and are coded as operators working on input vectors. Furthermore,

for these very high dimensional optimisation problems, preconditioning is essential. For
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strong-constraint 4DVar the matrix B is often used, and it is still unclear what the best

preconditioning is for the weak-constraint 4DVar.

3.2. Ensemble Kalman Filters

While variational methods are very powerful they have a few major drawbacks. The

first one is that coding up the tangent linear and adjoint of the nonlinear forward model is

a serious exercise, and for a complex model like ENLIL, this could easily take up a person

year or more. Furthermore, when the problem is highly nonlinear the posterior pdf can

have multiple modes, and finding the global mode is not trivial. Finally, when the initial

state errors are not Gaussian standard optimisation methods cannot be applied and very

little experience is available in the community.

An alternative are sequential methods, that forecast the initial state, xb, and its uncer-

tainty to the first observation timestep, i0, using the numerical model. Bayes Theorem

is used to update the pdf, and a new forecast is made to the next observation. The ma-

jority of sequential methods are based upon the Kalman Filter [Kalman, 1960; Kalman

and Bucy , 1961]. Kalman Filter-based methods search for the minimal variance state,

so the mean of the posterior pdf. They assume that all pdfs are Gaussian, so only the

mean and the covariance are needed to describe all pdfs involved. The main advantage

of the approach is that a sequential method is typically simpler to implement and does

not require the computation of the adjoint of the forward model. The Kalman Filter

also explicitly evolves the forecast state covariance matrix, Pf , through the assimilation

window. However, this requirement also renders the Kalman Filter impractical for use in

high dimensional systems, as it may not be possible to explicitly store the forecast state

error covariance matrix, let alone evolve it forward in time using the numerical model.
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To solve this issue, the pdf is represented by a number of samples or ensemble members,

and these are propagated to observation times using the full nonlinear model equations.

At the observation time, the Kalman filter equations for updating mean and covariance are

used to define the posterior pdf, using the ensemble members to provide prior estimates

for them. By using the fact that the number of ensemble members is typically much

smaller than the system dimension, very efficient updating schemes have been developed.

This has resulted in a large class of so-called Ensemble Kalman Filters (EnKFs), a set of

Monte-Carlo based sequential DA methods.

There are two main issues that hinder application in high-dimensional geophysical sys-

tems. Firstly, due to the small ensemble size M , typically in the range 10 − 500, which

is much smaller than the system dimension, Nx, the ensemble covariance matrix has rank

M − 1, which is much smaller than full rank. It spans only the directions of the ensem-

ble perturbations from the ensemble mean, and hence the covariance is estimated from

below. To compensate for this under estimation (and typically also to compensate for an

under-representation of the model errors), covariance inflation is applied. There are sev-

eral ways to do this, and the most widely used method is simply multiplying the ensemble

covariances by a factor 1 + ρ > 1, as follows:

P̃f
infl = (1 + ρ) P̃f (7)

in which Pf is the forecast ensemble at the observation time and P̃f
infl represents the in-

flated forecast error covariance matrix. This multiplication has the effect of increasing the

spread in the forecast ensemble to better represent the true errors in the model. However,

the uncertainty is only increased in the directions already covered by the ensemble. Other

c©2017 American Geophysical Union. All Rights Reserved.



methods for covariance inflation have been developed, see e.g. [Anderson, 2007] for an

overview.

The second issue is that the covariances are estimated directly from a rather small

ensemble, so especially small covariances are prone to sampling noise. Since covariances

are expected to be small between distant grid points, so-called covariance localisation

can be applied, in which the sample covariance is multiplied, via a Schur product, with

a localisation matrix that tapers off quickly with gridpoint distance [Houtekamer and

Mitchell , 2001]. This procedure ensures that the spurious correlations between points are

reduced and hence unrealistic covariances do not affect the analysis of the state. Another

advantage of localisation is that it makes the ensemble covariance matrix more diagonal,

resulting in a localised ensemble covariance matrix that is, typically, of higher rank.

However, as mentioned before, the ensemble covariance is never calculated explicitly

as it would not fit in memory leading to a different localisation strategy called obser-

vation localisation. In this method each grid point is treated separately by selecting a

localisation radius and only observations within that radius are allowed to update this

gridpoint. Within the localisation radius the observation covariance matrix is multiplied

with a factor increasing with the distance of the observation to the gridpoint, so that

observations further away have a larger error, and hence have less effect on the update

of that gridpoint. This ensures a smooth spatial update. It is important to realise that

inflation and localisation are essential ingredients in Ensemble Kalman Filtering.

In this study, we shall use the LETKF, as developed by [Hunt et al., 2007], which uses

observation localisation. The LETKF is one of the most efficient and accurate methods

currently used in operational weather prediction centres, such as the Japanese Meteoro-
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logical Agency (JMA) [Miyoshi et al., 2010] and the National Center for Environmental

Prediction (NCEP) [Szunyogh et al., 2008]. Appendix A contains a description of the

full LETKF algorithm, showing how the whole algorithm works very efficiently in the

low-dimensional ensemble space.

3.3. Other data assimilation algorithms

Recent years have seen a surge of other Monte-Carlo-based methods for geophysical

problems, mainly particle filters. Their main advantage over the methods discussed above

is that they are fully nonlinear. However, until recently these methods were thought to

be too inefficient to be useful in high-dimensional systems. But by exploring either the

proposal density freedom or localisation, efficient algorithms have been developed that are

very promising for high-dimensional geophysical problems (see recent overviews in Reich

and Cotter [2015] and van Leeuwen et al. [2015]).

Another active area of research is in hybrid methods, where different data-assimilation

methods are combined, exploiting the strengths of each. Examples are ensemble smoothers

like 4DEnsVar, in which an ensemble of model runs is used to generate space-time covari-

ances that alleviate the need for tangent linear and adjoint models in a 4DVar algorithm.

We will not discuss these developments here but refer to recent papers like Fairbarn et al.

[2014], Goodliff et al. [2017] and Amezcua et al. [2017] and references therein.

4. The ENLIL heliospheric solar wind model

The dynamics of the solar wind differ from the typical dynamics of the atmosphere,

as the solar wind is strongly driven by the conditions at the top of the corona (i.e., the

inner boundary condition to the ENLIL model), whereas typical atmospheric systems are
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highly chaotic, so very sensitive to small perturbations. This has direct consequences for

the data assimilation, as we will see later.

Over time and length scales greater than the electron and ion gyromotions, which are

many orders of magnitude below typical solar wind model resolutions, the large scale

behaviour of the solar wind plasma can be well respresented as a magnetised fluid, the

magnetohydrodynamic (MHD) approximation. Under such conditions, the fluid has neg-

ligible resistivity and so can be treated as a perfect conductor. This means that, through

Lenz’s law, the motion of the plasma and the magnetic field is “frozen” together; as long

as resistivity remains negligible, the magnetic field within the plasma of the solar wind

will move with the velocity of the plasma e.g., Kivelson and Russell [1995]. Ideal MHD,

the simplest approximation of MHD, therefore reduces to the continuity equation, the

Cauchy momentum equation, Ampère’s Law and a temperature evolution equation. Thus

ideal MHD explicitly represents the conservation of mass, momentum, total energy and

induction of the magnetic field, as well as the effects of the magnetic field via magnetic

field pressure and tension of magnetic field lines [Odstrcil , 2004] (the force exerted by the

curvature in a magnetic field line as it tries to “straighten” out).

The ENLIL model is a 3D numerical model that is used operationally at the UK Met

Office and NOAA’s Space Weather Prediction Centre in combination with coronal models

and magnetospheric models, as described in figure 1. It is based upon the ideal mag-

netohydrodynamics (MHD) equations, with two additional continuity equations for the

‘Cloud Tracer’, a passive tracer that traces the material from a cone-model CME, and

the ‘Polarity Tracer’, a passive tracer for the polarity of the HMF (see Odstrcil and Pizzo

[1999] for more details). The latter is required as the HMF is treated as a unipolar field
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at run time, in order to avoid the HMF numerically diffusing away close to the polarity

inversion (i.e., the heliospheric current sheet). It is then returned to its bipolar state

post-run. Numerical calculations are performed in a spherical coordinate system on a do-

main decomposition approach to divide the 3D computational domain into smaller radial

slabs for processing on parallel systems, via MPI (Message Passing Interface)[Gropp et al.,

1996]. Each processor then solves the MHD equations on the respective radial slabs and

boundary data for each slab is exchanged via MPI calls.

The inner boundary of the ENLIL model is specified at ∼ 0.1AU , outside the point

at which the solar wind becomes supersonic. Thus there is no sunward propagation

of information through the inner boundary, simplifying the numerical computation. To

specify the inner boundary conditions, the Wang-Sheeley-Arge (WSA) model [Wang and

Sheeley Jr , 1992; Arge and Pizzo, 2000], a semi-empirical model of the corona, is typically

used. The WSA model takes observations of photospheric magnetic field as input and

extrapolates the field through the corona, typically to a source surface of around 2.5 solar

radii, using the potential-field source-surface approximation. The solar wind velocity,

proton density and temperature can be derived using empirical relationships to the coronal

magnetic field, assuming a constant mass flux (see Lopez [1987] and Riley et al. [2015] for

more details). These properties are radially mapped to 0.1AU (ENLIL’s inner boundary).

All of these structures are rotating, with an azimuthal velocity equal to the Sun’s rotation

speed along the inner boundary to create the inner boundary values for all time steps in

the time domain.
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5. The EMPIRE data assimilation system

To perform the data assimilation experiments efficiently, the EMPIRE data assimilation

system [Browne and Wilson, 2015] is used. EMPIRE contains data assimilation codes that

link to the model via a small number of MPI commands [Gropp et al., 1996], see Figure

2 for a visualisation of this. The data assimilation methods in EMPIRE include some

of the most advanced ensemble-based data assimilation methods such as the LETKF

(which shall be used in this paper), the Bootstrap Particle Filter, the Equivalent Weights

Particle Filter, the Implicit Equal Weights Particle Filter and 4DEnVar. The codes have

been optimised to run in parallel, via MPI commands, such that large ensembles can be

processed efficiently and effectively. At observation time, the model passes a state vector

to EMPIRE which performs the data assimilation independent of the model, and then

passes the analysed state vector back to the model and waits until the next observation

timestep.

There are other data assimilation libraries available such as the Data Assimilation Re-

search Testbed (DART) [Anderson et al., 2009] and Parallel Data Assimilation Framework

(PDAF) [Nerger et al., 2005]. While these data-assimilation systems are highly optimised

their main strength is that they are focussed on academic users. This means that min-

imal coding is needed to couple any numerical model to these systems, exploring the

fact that most ensemble-based data-assimilation methods are not dependent on how the

model works. Furthermore, once coupled it is extremely easy to switch data-assimilation

method, allowing fast comparisons and a fast way to choose the best method for the prob-

lem at hand. Additionally, EMPIRE and PDAF have the additional advantage that it is

not necessary for the model to write to disk every assimilation step, due to the efficient
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use of MPI and/or subroutine calls, meaning more efficient computations. Moreover, all

these systems are community code with active user support.

As the DA codes are completely general, it is necessary to specify the observation

timesteps, the observation operator, the error covariance matrices and distances between

two points in the state vector (for the LETKF) only. This makes the implementation

of EMPIRE into the numerical model relatively simple in comparison to DART, which

require the model code to be adjusted to a higher degree than the simple MPI command

required for the implementation of EMPIRE [Browne and Wilson, 2015].

6. Numerical experiments

Since this paper describes initial tests of a data-assimilation experiment we perform the

experiments in a controlled way. We start by recognising that we have some uncertainty

in the model state. With this uncertainty we are able to generate an ensemble which

represents our prior pdf. Then, using the same technique as we use to generate each

ensemble member, we generate one further model state which we refer to as the truth

state. We use our numerical model to propagate this truth state to get a complete truth

trajectory. We then take artificial observations from a fixed point in space from this truth

trajectory. These ‘observations’ are perturbed by measurement noise to mimic a real

data assimilation experiment. The goal is to closely represent the posterior pdf, which

represents the best estimate including an uncertainty estimate of the truth run, using the

limited information from the observations and uncertain prior information on initial and

boundary conditions. The ensemble generated is evolved using the numerical model in

two seperate runs, one with data assimilation performed and one without it to evaluate
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the performance of the data assimilation scheme used. This set up is called an identical

twin experiment, and it is the first test for any data-assimilation system.

6.1. Experimental setup

Twin experiments have been performed using the LETKF to assimilate observations of

the true state generated from an unknown initial condition.

The state vector for the solar wind field is defined as a vector of the density, temperature,

momentum (radial, latitudinal and longitudinal components), the magnetic field (radial,

latitudinal and longitudinal components) and cloud and polarity tracers at each point in

the ENLIL domain. Writing this mathematically:

x =
(
ρT ,TT , (ρvr)

T , (ρvθ)
T , (ρvφ)T ,Br

T ,Bθ
T ,Bφ

T ,ρc
T ,ρp

T
)T

(8)

where the bold-font denotes the relevant variable at all radial, latitudinal and longitudinal

point in the model’s domain.

ENLIL is run with an inner boundary of 0.1AU and outer boundary of 1.1AU in a

spherical grid with 144 radial points equally spread throughout the domain; 30 latitudinal

points spread equally between 30◦ − 150◦ latitude (with 0◦ defined as the north pole of

the Sun) and 90 longitudinal points spread equally between −90◦ and 90◦ with 0◦ defined

as the line between the Sun and Earth. The time domain is 5 days with time steps every

320 seconds (plus an additional spin-up time of ∼ 5.93days).

6.1.1. Assimilation parameters

Boundary conditions for ENLIL were generated at 20 solar radii (≈ 0.1AU) from outputs

of the WSA model for a magnetogram from 01/04/2013. To generate the truth run, the

ENLIL model was spun-up for 5.12×105s (1600 timesteps or ≈ 5.93 days) in order for the
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inner boundary conditions to advect the solar wind structures through the whole model

domain. These spun-up boundary conditions are then used as initial conditions for the

data assimilation experiments. By spinning up the boundary conditions in this manner,

as opposed to prescribing a set of initial conditions (from a long run, for example), we

avoid initialisation shocks occurring in the domain that may contaminate our results. The

truth run started after spin up and lasted for 5 days, using 1350 model time steps.

Observations of the true state were taken every 50 timesteps (approximately every 3

hours). The observations were taken of density, temperature and the momentum variables

with an observation error covariance given by the diagonal matrix, R ∈ R5×5, where the

variances along the diagonal are shown in Table 2. The variances are approximately

1− 10% of typical variable values at the observation location. In the experiments shown

here, observations are taken at a single point (to represent a spacecraft, or properties

at a single point in space determined from HI or IPS observations) in the ecliptic plane

between the Earth and Sun. Observations are taken in the middle of the ENLIL domain,

at approximately 0.6AU . This was not done near the Earth (at 0.99AU), as would be

most realistic at the present, as this is close to ENLIL’s outer-boundary and hence it

could be not seen how the LETKF affected the state downwind. It is worth noting at

this point, that after launch in 2019, ESA’s Solar Orbiter and NASA’s Solar Probe Plus

will be taking observations of the solar wind at a radius of approximately 0.3AU . While

such observations will not be routinely available for forecasting, they will enable both more

direct testing of the DA schemes and calibration of the near-Sun HI and IPS observations.

Two ensemble runs were used, a model-only ensemble run without data assimilation,

and an ensemble run where we use the LETKF. The model-only ensemble run represents
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the propagation of the prior pdf in time. By studying how the LETKF ensemble deviates

from that pdf evolution we can infer the impact of the data assimilation.

Our initial attempt at creating an ensemble was by adding random perturbations to

the inner boundary condition generated from a diagonal initial error covariance matrix

to an initial state generated using the WSA model boundary condition but found this to

be ineffective [Lang , 2016]. The spread ensemble was too small, and simply increasing

the magnitude of this diagonal covariance matrix, causing the ENLIL model to become

numerically unstable. Ideally, a covariance matrix that has proper correlations between

all model variables should be used, but generating such a matrix is rather complicated

and needs very long model runs. In NWP, the specification of such a covariance matrix

can form a substantial part of the scientific effort to improve the state estimation.

Instead, here we use an ensemble of 48 members generated from snapshots of a long

model run. Boundary conditions were drawn from 48 random WSA model outputs from

the year 2015 (so they are independent from the true state). The random selection of

the boundary conditions is done in order to ensure a wide variety of the Sun’s behaviour,

both in terms of phasing of structures with solar rotation and changes in the patterns of

the solar wind (e.g.slow/fast wind). Like the truth run, each ensemble member was spun

up for 1600 time steps to avoid initialisation shocks. This effectively swept out the model

interior from the snapshots of the long model run, and left us with internally balanced

initial model states consistent with the boundary conditions.

Once the initial ensemble was specified from the boundary conditions, as described as

above, the model-only ensemble was generated by propagating the 48 ensemble members

through time to the end of the assimilation window of 5 days with 1350 timesteps, with
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no data assimilation. Using the same initial ensemble as the model-only ensemble, the

LETKF was used to perform data assimilation experiments.

As mentioned previously in the data assimilation methods section, a localisation func-

tion must be specified. In order to avoid upwind information propagation from the obser-

vation location back towards the Sun, an asymmetric radial distance-based localisation

function has been specified. Downwind of the observation location a truncated Gaussian

function centred on the observation location was used with localisation radius of 0.01 AU .

Upwind of the observation the localisation function is set to 0. Here this localisation

function multiplies the observation error covariance matrix, R−1. That is to say, the

localisation function only allows points within a radius of ∼ 0.04 AU downwind of the

observation to be updated and no points upwind of the observation to be influenced by

the observation.

The experiments shown in this paper were run on 1176 processors on ARCHER

[http://www.archer.ac.uk/ , 2017], the UK national supercomputing facility. Each pro-

cessor has all variables at all latitudes and longitudes in the computational domain with 8

radial points, the first and last radial values shared with the previous and next processor

via MPI, respectively.

6.2. Diagnostics

In the following sections, for visualisation purposes, the variables are multiplied by

a factor of r2, the distance to the sun squared, to compensate for the r2 decrease in

density, momentum and magnetic variables away from the Sun. This allows us to easily

see structures in the state propagating further into the domain.
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Results are analysed over the ecliptic plane (i.e. the plane containing the Earth and the

Sun) only. Results from the LETKF are sampled every 10 timesteps. The radial points,

r = 2, 10, . . . , 138, are sampled every 8 gridcells (every ∼ 0.0056AU), the latitudinal

coordinate is taken at only θ = 90◦, and longitudinal coordinates, φ = −40◦,−30◦, . . . , 40◦,

are sampled every 10◦ around the Earth-Sun line.

The absolute error is also calculated at the observation point for the model-only ensem-

ble and LETKF analysis ensemble mean. This absolute error, or RMSE, in the ensemble

at the observation point is calculated by:

|xtr,φ − xr,φ| (9)

where xtr,φ is the true state for a single variable at the point (r, φ) in the spatial domain,

xr,φ = 1
M

∑M
m=1

[
xmr,φ
]

is the ensemble mean for either the LETKF or model-only ensemble

at a single point (r, φ) and xmr,φ is the mth ensemble member at (r, φ).

The ensemble spread at each coordinate is also generated by calculating the standard

deviation of the respective ensemble at each radial and longitudinal point, which is given

by: √√√√ 1

M − 1

M∑
m=1

[(
xmr,φ − xr,φ

)2]
. (10)

The differences between the absolute errors for the LETKF and model-only ensemble

are also calculated, at each point in the ecliptic plane sampled (for each (r, φ) point in

equation (9)), as

|xtr,φ − xstor,φ| − |x
t
r,φ − xar,φ| (11)

where xstor,φ represents the model-only ensemble mean and xar,φ represents the LETKF en-

semble mean for a single variable at ENLIL coordinate (r, φ) on the ecliptic plane. There-
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fore, positive values (red regions on polar plots) indicate an improved LETKF ensemble

and negative values (blue regions on polar plots) indicates a poorer LETKF ensemble

when compared to the model-only ensemble, so compared to no assimilation.

6.3. Results

To demonstrate the effectiveness and potential of the LETKF in assimilating solar

wind observations, the density, radial momentum and radial magnetic field are plotted

at the observation location in Figure 3. Figure 3 shows the model-only ensemble and

its mean, in red shades, and the LETKF analysis ensemble, in blue shades, compared to

the truth in black, at the observation point, for each variable observed. It can be seen

from figure 3 that, for the majority of timesteps, the LETKF analysis state performs

much better, for the density and radial momentum variables, at the observation location

than the model-only ensemble when an observation is processed by the data assimilation

scheme. At each observation timestep, it can be seen that the LETKF trajectory is pulled

towards the true state from the model-only ensemble. This results in reduced absolute

errors in the LETKF ensemble when compared to the model-only ensemble. However,

this improvement in the LETKF is quickly advected away from the observation location,

as can be seen both in the ensemble mean but also in each ensemble member. This is

to be expected as the model-only ensemble immediately replaces the updated ensemble

in the time steps after assimilation due to the strong radial flow. Here, one of the major

differences with atmospheric weather data-assimilation can be seen.

Observations of the radial magnetic field component are not currently used in the as-

similation, to avoid violation of the ∇ ·B = 0 condition. This is the reason why the pure

and LETKF ensembles are almost identical.
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Figure 4 shows the absolute error and ensemble spread for the pure and LETKF ensem-

bles. The absolute errors for the pure and LETKF ensemble are shown by the blue and

red lines, and the pure and LETKF ensemble spread is shown in dark blue and dark red,

respectively. It is encouraging to see that the absolute error and the ensemble spread are

of the same order of magnitude, showing that the ensemble is able to represent the uncer-

tainty in the estimates well. The absolute error is more variable, but that is to be expected

as it is a single realisation of an error, while the ensemble spread is a statistical estimate.

The nature of the assimilation updates on the spread and absolute error is consistent with

the behaviour of the ensemble members shown in figure 3. Again, due to the strong solar

wind any model state update is advected away quickly from this gridpoint, leading to the

strong variations in absolute error and spread. The LETKF ensemble spread is reduced

to approximately the same value at each analysis timestep, and so does the absolute error,

although less consistently. This is to be expected as the prior and the observation error

variances have similar value just before each update step.

Figure 4 shows interesting behaviour of the LETKF at some time instances when the

absolute error becomes larger at an assimilation step. This is consistent with the behaviour

of the ensemble mean in figure 3. The ensemble spread is always decreasing. The latter

is consistent with what a Kalman-filter like update should do, the posterior covariance is

always smaller than the prior covariance. For the RMSE we have to realise three things.

Firstly, it is a random realisation of the error, so it can go up. Secondly, and perhaps

more importantly, the updates are not univariate, but all variables are updated at the

same time. It is well possible that a smaller RMSE for one variable is compensated by a

larger absolute error in another, so that the total variance (defined e.g. as the trace of the
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posterior absolute error matrix) is still decreasing. However, this is not what we expect

given that we observe all variables at the same time. Thirdly, it might be related to the

fact that we do not update the magnetic field. This leads to slightly inconsistent updates,

pushing the system out of balance. The model will react by an adjustment process that

is typically wavelike. This will not be visible well at the observation location due to the

strong solar wind, but might be visible downwind. This seems to be the case, as discussed

later.

Figure 5 shows the evolution of the difference of the absolute errors over the spatial

domain, as calculated through equation (11). Red areas indicate that the LETKF has

reduced the absolute error, while blue areas mean the opposite. The left column shows

the density, the middle column the radial momentum, and the last column the radial

magnetic field. The rows denote time instances 260 timesteps apart, starting from 60

timesteps into the assimilation run. This frequency is chosen to show the quality of the

forecast produced by the LETKF ensemble 10, 20, . . . timesteps after the observation. All

fields show positive impact of the LETKF, being advected towards Earth with the solar

wind. In the density and radial momentum fields, we see a wavelike update instead of the

expected steady update. It is clear that the model is adjusting itself from the assimilation

updates by producing a wavelike feature which partly negates the positive impact of the

assimilation. The impact on the radial magnetic field seems to be steady until a feature

appears after about 1100 time steps.

To investigate this further we produce Hovmoller plots along the radial direction for

the three variables in figure 6. These confirm the wavelike disturbance in the density

and radial momentum fields. The waves are not completely regular but have an average

c©2017 American Geophysical Union. All Rights Reserved.



period of about 500 time steps, corresponding to 1.85 days, with a wavelength of about

60 grid points, which corresponds to 0.45 AU . These features are likely to be the result of

increased total pressure (the plasma density is increased without a compensating decrease

in the magnetic field). Interestingly, this is equivalent to the current method for simulating

CMEs within ENLIL, i.e. the insertion of an over-pressured density perturbation at the

inner boundary.

7. Data assimilation challenges for space weather models

A major challenge facing the implementation of variational methods in space weather

models is the requirement for a tangent linear and adjoint version of the full nonlinear

model. The adjoint is an extremely useful tool once developed [Errico, 1997], however, it

requires many man-years to code and test, especially for complex models like ENLIL. For

less complex MHD models however, it may be possible to code an adjoint for use in solar

wind forecasting. One of the main advantages of ensemble-based methods is their ease of

implementation on a new problem.

Additionally, variational methods require that a background error covariance matrix

is provided for each assimilation window. In other words, the uncertainty regarding the

initial condition supplied for use in the data assimilation scheme. This matrix is generated

by computing the errors of decades worth of forecasts and reanalysis data, something that

is not available to us in the space weather field. For sequentially based methods like the

ensemble Kalman filters, this matrix only has to be provided at the start of the data-

assimilation effort, but is propagated by the ensemble from then on.

Similarly, as variational methods rely on linearisations, the data-assimilation window

cannot be too long to avoid the build up of strong nonlinearities. In numerical weather
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prediction a typical window length is 6 to 12 hours, and it is unclear how long the window

can be for space weather applications. It will depend on the spatial resolution of the

model, as higher resolution typically means stronger nonlinearities with shorter growth

time scales, but also on how close we are to the true solution, so how wide the covariances

are. Numerical weather prediction at the global scale is quite accurate due to the enormous

amount of relatively accurate observations in each 6 hour window, presently close to 107

observations. This means that the initial guess over the assimilation will be quite accurate

too, so that although the full system is very nonlinear, we are so close to the true solution

that linearisations work well. Space weather seems to be a long way away from this

situation. (This doesn’t mean that variational methods should be abandoned at this

stage as one can run an ensemble of variational methods to explore the posterior pdf,

similar to an ensemble smoother. This is a technique also used in weather prediction.)

Ensemble Kalman filters such as the one explored in this paper do rely on a Gaussian

assumption of the prior pdf, and on the likelihood. These will be violated, but, interest-

ingly enough, ensemble Kalman filters have been found to be quite robust to non-Gaussian

situations. Although not completely understood, this might be related to the fact that

another way to derive the Kalman filter, and to some extent the ensemble Kalman Filters,

is to assume that the best estimate is a linear combination of the prior best estimate and

the observations. That is often true to first order.

Ensemble Kalman Filters need localisation. The localisation scheme used in these ex-

periments was a relatively simple asymmetric distance-based localisation on the R matrix

with a localisation radius of 0.01AU . This localisation radius may not be an accurate

length-scale and different variables may require different localisation radii (i.e. spurious

c©2017 American Geophysical Union. All Rights Reserved.



correlations may need to be removed between radial momentum and longitudinal mag-

netic field, for example). Additionally, this distance-based localisation scheme is perhaps

not ideal for the solar wind simulations, as the variables are highly correlated along the

magnetic field lines, but weakly correlated perpendicular to them, due to the ”freezing

in” of the plasma and magnetic field. Therefore, an anisotropic localisation scheme that

follows the magnetic field lines in the domain may be more realistic and allow for bet-

ter assimilation of the observations. Alternatively, if the magnetic field lines cannot be

accurately ascertained from the model, then an anisotropic localisation scheme may be

more suitable that follows an Archimedean spiral radially outwards from the Sun in the

steady flow. When a CME is present the localisation area should probably be closer to an

expanding arc. More research is required to adequately analyse appropriate localisation

methods for the solar wind.

The magnetic field has the strong physical constraint, ∇ · B = 0, which needs to be

conserved by the data assimilation analysis. For ENLIL, this is difficult to enforce at

run time as the model solves for unipolar magnetic field, to minimise numerical diffusion

effects. In ENLIL, ∇·B = 0 is assumed at the previous timestep and then evolved forward

in time such that ∇ ·B remains zero at the next timestep. However, if ∇ ·B 6= 0 at the

previous timestep, as a result of the data assimilation breaking the balance present in the

system, then ENLIL will not enforce ∇·B = 0. This will introduce numerical instabilities

that may cause the model to become unstable and/or unphysical at future timesteps.

This has been verified by experiments performed in Lang (2016) [Lang , 2016].

To get around this issue the B field is removed from the state vector such that the

magnetic field is not updated by the data assimilation scheme. This can be used even
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when using observations of the magnetic field because the LETKF will use the ensemble-

based correlations between the magnetic field and the other state variables to update

those. Information of the magnetic field is then passed on from the updated variables to

the magnetic field itself through the ENLIL model evolution, in a manner similar to how

CMEs are introduced into the ENLIL model. For a MHD code that enforces ∇ · B = 0

at each timestep (e.g., by solving for the vector potential of the magnetic field), the data-

assimilation does not have to ensure that condition, but we can call the model routine to

enforce it immediately after the data-assimilation step.

Another area that needs attention is the large range of the variable values between a

quiet phase and when a CME is present. When the observations suddenly indicate that

a CME is present, a huge change to the model state is enforced by the data assimilation.

This change can easily push the model out of balance, resulting in numerical instabilities

and potential model instability. Similar problems are encountered in weather prediction,

for instance when clouds are detected in observations, but the model doesn’t have clouds

at those gridpoints. A cloud represents a completely different themodynamic state of

the system, so a large change in several model variables, and this is still an outstanding

problem in numerical weather prediction. A potential solution is to use a smoother, so

a method that updates the present state using observations from the future, allowing for

a smoother transition. A difficulty is space weather is that the sparsity of observations

might preclude this solution.

In the experiments performed in Lang (2016) [Lang , 2016], all ensemble members tended

to collapse on one model evolution, and the LETKF became ineffective. This was due

to the use of the same boundary conditions at the inner boundary, forcing the model
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evolutions to become similar quickly due to the highly driven nature of the solar wind.

This was especially problematic when a CME was detected in the observations as none of

the ensemble members contained a CME. This means that it is vital that different time

varying boundary conditions are used in order for ensemble-based methods to work. Again

much work is needed to gain experience in what the best way is to solve this problem.

Each of these varying boundary conditions has to be a potential realistic realisation of

the real boundary condition, which suggests, for instance, that at least a few ensemble

members should have a CME at the inner boundary at varying degrees of maturity.

This initial study has assumed that there is no model error present in the ENLIL

model, which is obviously a poor assumption. These model errors typically fall under

two main categories: systematic model errors and stochastic model error. Systematic

model errors can be comprised of errors in the model and biases that are constant over

the assimilation window. Any known biases/systematic errors present in the prior model

should be removed before the data assimilation is performed, and if they are not known

but assumed to be present, they should be estimated. One possible method of diagnosing

and removing functional model errors was proposed by [Lang et al., 2016], which use

differences between a data assimilation run and a pure model run as a proxy for the

model error present. Several methods have been proposed to estimate model biases, such

as [Dee, 2005] and [Tremolet , 2006] amongst many others. To incorporate stochastic

model uncertainty, it is necessary to generate a stochastic model error covariance matrix,

Q, that contains the relevant MHD balances to perturb the ensemble with a model error

term at every time step and improve the quality of the assimilation. It is unclear what

this matrix should look like, but it is important to realise that it should not contain

c©2017 American Geophysical Union. All Rights Reserved.



the statistics of the missing physics per se, but its influence on the resolved scales. One

possible method of doing this would be to start from an initial guess and learn from the

data-assimilation experiments what the best formulation is, perhaps exploring techniques

from machine learning. The first guess might come from a scaled down version, both in

length scale and in amplitude, of a covariance matrix generated from samples of a long

model run.

8. Conclusions

This is the first study to incorporate advanced data assimilation methods into solar

wind models, building upon the work started in Lang (2016) [Lang , 2016], and these

experiments show that the LETKF is a useful tool that has potential for estimating the

solar wind. It can be seen that the LETKF can improve upon the model-only ensemble at

the observation point and those improvements are advected radially outwards. However,

due to the solar wind being a highly-driven system dominated by the dynamics of the Sun,

the improvements made by the LETKF at the observation are confined to the magnetic

flux tube on which the observation is located.

The density and radial momentum variables were very responsive at the observation

point to the data assimilation analysis, moving close to the truth and returning to the

background state as this improvement is advected away. However, the sharp gradient

caused by this improvement is causing numerical wave-like patterns to form. Further

research is required to determine the most effective solution.

The magnetic field vector, however, is not very responsive and does not appear to

respond to the changes in the density, temperature and momentum variables. Whilst

there are improvements in the magnetic field variables as a result of using the LETKF
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(especially in the latitudinal and longitudinal directions, not shown here), it is not be

possible to directly assimilate magnetic field observations while enforcing the ∇ · B =

0 criterion, either by one of the two methods suggested Appendix B, or by rigorously

enforcing ∇ ·B = 0 at each timestep in the numerical model.

Whilst there are many challenges that still need to be overcome in solar wind data

assimilation, these experiments show that data assimilation has great potential for the

improvement of solar wind forecasting.
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Appendix

Appendix A: Local Ensemble Transform Kalman Filter

The Local Ensemble Transform Kalman Filter (LETKF) was developed by [Hunt et al.,

2007], based upon the Local Ensemble Kalman Filter (LEKF) developed by [Ott et al.,

2004]. In the LETKF observation localisation is performed. The principle behind the

LETKF is to perform the analysis at the grid-points in parallel, updating the state at each

grid-point using only observations contained within a local region of that grid-point. The

LETKF is an extension of the Ensemble Transform Kalman Filter (ETKF) [Bishop et al.,

2001; Majumdar et al., 2002], that transforms the EnKF algorithm into the (typically)

lower dimensional ensemble space, allowing more efficient computations.

The LETKF transforms the problem in state space to ensemble space as follows. At

each observation time a perturbation matrix is generated for the state, which is defined

as:

X =
(
x(1) − x, . . . ,x(M) − x

)
(A1)

and in addition to this, an ensemble of model observations is generated, such that:

Y =
(
y(1) − y, . . . ,y(M) − y

)
. (A2)

where y(m) = H
(
x(m)

)
and y = 1

M

∑M
m=1

[
Hk(x

(m))
]
.

In the LETKF, localisation is performed on the observation error covariance matrix,

R, therefore limiting the observations that affect the state in the analysis. This is done

by applying a ‘forgetting factor’ [Nerger et al., 2012], υ, to R for each observation, such

that the observations further away from the analysis gridpoint get less weight than those

closer to the analysis gridpoint. For example, υ could be defined by a distance-based
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Gaussian function between the analysis gridpoint and the observation gridpoint. The

localised observation error covariance matrix shall be denoted by R̃, where

R̃ =
1

υ
R. (A3)

A matrix C ∈ RM×Ny is defined such that:

C = Y
T
R̃−1 (A4)

which is used to calculate the matrix, T ∈ RM×M :

T =

(
M − 1

1 + ρ
I + CY

)−1

(A5)

where ρ > 0 is the multiplicative covariance inflation factor. Typical values range from

0.01, up to 10 in extreme cases.

The weighting matrix W ∈ RM×M and mean weighting vector w ∈ RM are computed

as:

w = TC(y − y) (A6)

W = ((M − 1)T)
1
2 . (A7)

An ensemble of weight vectors Wa(M) is created by adding wa to the columns of Wa,

such that the weight vector for the mth ensemble member is given by:

wa(m) = w + Wm (A8)

where Wm is the mth column of W.

Then the mth analysis ensemble member is given by:

xa(m) = x + Xwa(m). (A9)

Appendix B: Ensuring ∇ · B = 0
c©2017 American Geophysical Union. All Rights Reserved.



In this appendix several methods are presented and discussed that enforce ∇ ·B = 0 in

each updated ensemble member.

1. Enforce ∇ ·B = 0 after the LETKF analysis via a projection method.

Via the Helmholtz decomposition [Arfken et al., 2011], any field can be written as the

sum of the curl of another field A and the gradient of a scalar field, ϕ. Therefore, B can

be written as:

B = ∇×A +∇ϕ (B1)

Taking the divergence of equation (B1), it can be seen that:

∇ ·B = ∇ · ∇ϕ = ∇2ϕ (B2)

This is non-zero if ∇ϕ is nonzero. Therefore, in order to preserve the ∇ · B condition,

∇ϕ, must be subtracted from the DA analysis of the magnetic field variables.

To do this, it is necessary to calculate ∇ ·B and then solve the Poisson equation

∇2ϕ = ∇ ·B (B3)

for ϕ.

The issue with this is that the Poisson equation is an elliptic equation that typically has

to be solved iteratively, which can be expensive to compute for high-dimensional systems.

2. Encode ∇ ·B = 0 into the Kalman filter update equations via the covariances.

For the second method, we starts by looking at the ETKF update equation for the mag-

netic field component of the state vector, which is given by:

B
a(M)
i = B

f(M)
i +

N∑
m=1

[(
B

f(m)
i −B

f(M)
i

)
W

B(m)
i

]
(B4)
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where B
f(M)
i and B

a(M)
i are the forecast and analysis magnetic field ensemble, each with

M ensemble members, at timestep i; and W
B(m)
i are the weights generated, for the mth

ensemble member of the magnetic field variable, by the ETKF methodology.

By taking the divergence of the analysis state, we obtain the following equation:

∇ ·Ba(M)
i = ∇ ·Bf(M)

i +
M∑
m=1

[(
∇ ·Bf(m)

i −∇ ·Bf(M)
)
W

B(m)
i

]
= 0. (B5)

Using ∇ ·Bf(m)
i = 0 for each ensemble member from the prior model, and that the prior

mean is also divergence-free because the mean is a linear operator, implying ∇·Bf(M) = 0,

it can be seen that ∇·Ba(M)
i = 0 for the ETKF. Therefore, the ETKF satisfies the balance

equation, as required.

Unfortunately, when we localise the ETKF for the LETKF, W
B(m)
i will become dependent

upon the space domain and hence the divergence of a term within the sum of equation

(B4) becomes:

∇ ·
((

B
f(m)
i −B

f(m)
i

)
W

B(m)
i

)
=
(
∇ ·Bf(m)

i −∇ ·Bf(m)
i

)
W

B(m)
i

+
(
B

f(m)
i −B

f(M)
i

)
∇ ·WB(m)

i (B6)

which implies

∇ ·Ba(M)
i =

M∑
m=1

(
B

f(m)
i −B

f(M)
i

)
∇ ·WB(m)

i (B7)

To ensure that this equation is equal to zero, it is required that ∇ ·WB(m)
i = 0 for all

ensemble members. This is of similar complexity to solving ∇·Ba(m)
i = 0 directly for each

ensemble member, so it appears little has been gained from this.

3. Solve a variational problem for each ensemble member.

Another potential solution is to realise that the ETKF update equation for each ensemble

member can be found as the solution to a variational problem. The ∇ · Ba(m)
i = 0
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condition can be enforced via a Lagrange multiplier in that variational problem. We will

not elaborate on that solution here.
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Proton number density 6.6× 10−6m−3

Electron number density 7.1× 10−6m−3

Alpha particle number density 2.5× 10−7m−3

Flow speed (nearly radial) 4.5× 105ms−1

Proton temperature 1.2× 105K

Electron temperature 1.4× 105K

Magnetic field (induction) 7× 10−9T

Typical time for solar wind to flow from Corona to 1AU 4 days= 3.5× 105s

Table 1: Observed properties of the Solar Wind near the Orbit of the Earth (1AU). Source:
Kivelson and Russell [1995]
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Variable observed Standard deviation of observations

Density 10−20kgm−3

Temperature 10−12K

Radial momentum 10−15kgm−2s−1

Latitudinal momentum 10−17kgm−2s−1

Longitudinal momentum 10−17kgm−2s−1

Table 2: Table showing the standard deviations of the errors in the observations taken of the
solar wind
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DA method used LETKF

No. of ensemble members 48

Length of spin-up 1600 timesteps (equiv. 5.93 days)

No. of timesteps after spin-up 1350 (equiv. 5 days)

State vector
(
ρT ,TT , (ρvr)

T , (ρvθ)
T , (ρvφ)T ,Br

T ,Bθ
T ,Bφ

T
)T

Observations taken All variables in state vector except magnetic field variables at spatial
coordinate (r, φ) = (74, 0◦).

Frequency of observations Every 50 timesteps (equiv. every 250 minutes)

Initial error covariance Specified by long-run ensemble snapshots

Observation error covariance See Table 2

Model error covariance 0

Localisation radius 0.01AU

Inflation factor 0

Table 3: Table showing set-up for the data assimilation experiments
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Figure 1: The current state-of-the-art approach to operational numerical space-weather forecast-
ing. The top row shows the coupled “chain” of MHD models from the solar photosphere to
terrestrial thermosphere, all ultimately initiated using photospheric magnetic field observations.
The bottom row shows current ad-hoc solutions to key missing elements to this chain, namely the
time-dependent coronal structures which are incorporated through “cone-model” representation
of CMEs, and energetic particles in the heliosphere and magnetosphere, incorporated through
stand-alone kinetic codes. Adapted from Owens et al. [2014]
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Figure 2: Schematic of the EMPIRE data assimilation framework.
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Figure 3: State at observation point, (r, φ) = (74, 0◦) for the different variables of the state vector
for the LETKF and model-only ensemble run. The black line indicates the true state, the light
and dark blue lines show the LETKF ensemble members and their mean respectively, and the
light and dark red lines show the model-only ensemble members and their mean.
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Figure 4: Absolute errors and ensemble spread at the observation point, (r, φ) = (74, 0◦) for the
different variables of the state vector for the LETKF and stochastic ensemble run. The light and
dark blue lines indicate the LETKF ensemble absolute error and ensemble spread respectively,
and the light, and dark red lines indicate the model-only ensemble absolute error and ensemble
spread respectively.
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Figure 5: Polar plots of the difference between the absolute error in the LETKF analysis and
model-only ensemble. Lower absolute errors in the LETKF analysis are denoted by positive
values (the red regions) and greater absolute errors in the LETKF analysis are denoted by
negative values (the blue regions).
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Figure 6: Hovmoller plots showing the difference between the absolute errors of the LETKF
analysis and the pure ensemble for varying radial coordinates along the Earth-Sun line. Positive
values (red) indicate that the LETKF has a lower absolute error and negative values (blue)
indicate that the model-only ensemble performs better.
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