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Abstract
An objective technique for analysing seasonality, in terms of regime, progression and timing of the
wet seasons, is applied in the evaluation of CMIP5 simulations across continental Africa.
Atmosphere-only and coupled integrations capture the gross observed patterns of seasonal
progression and give mean onset/cessation dates within 18 days of the observational dates
for 11 of the 13 regions considered. Accurate representation of seasonality over central-southern
Africa and West Africa (excluding the southern coastline) adds credence for future projected
changes in seasonality here. However, coupled simulations exhibit timing biases over the Horn of
Africa, with the long rains 20 days late on average. Although both sets of simulations detect biannual
rainfall seasonal cycles for East and Central Africa, coupled simulations fail to capture the biannual
regime over the southern West African coastline. This is linked with errors in the Gulf of Guinea sea
surface temperature (SST) and deficient representation of the SST/rainfall relationship.

1. Introduction

The timing and seasonality of precipitation is of criti-
cal importance to the many African stakeholders who
depend upon the seasonal rains for agricultural and
domestic purposes. Failure or delays in these rains
can lead to significant socio-economic impacts (Vizy
et al 2015). Future changes in climate will be felt not
only through changes in mean precipitation, but also
through altered seasonality, which in turn influences
the growing season and crop yields (Vizy et al 2015),
the length of the malaria transmission season (Tanser
et al 2003), the supply of hydroelectric power (Yamba
et al 2011, van Vilet et al 2016) and surface water sup-
plies (de Wit and Stankiewicz 2006). Producing reliable
projections of the impact of climate change in a range
of sectors therefore requires an accurate representa-
tion of seasonality within the climate projections being
utilized.

Seasonality is sensitive to changes in atmo-
spheric circulation patterns (Shongwe et al 2009, Lee

and Wang 2014) and diagnosing and interpreting
such changes requires a robust understanding of the
dynamics and drivers of the seasonal cycle. In order to
use global climate models (GCMs) to investigate the
physical mechanisms driving the seasonal cycle of pre-
cipitation, and assess the reliability of future impact
projections, it is necessary that GCMs are able to rep-
resent the seasonality of African precipitation.

In this study we take a continental scale approach
to the assessment of the seasonality of African pre-
cipitation in the Atmospheric Model Intercomparison
Project (AMIP) and historical experiments as part of
the Coupled Model Intercomparison Project Phase 5
(CMIP5) simulations (Taylor et al 2012). An objective
technique is applied using cumulative rainfall anomaly
tocalculate theonset andcessationofwet seasons (Lieb-
mann et al 2012, Dunning et al 2016). This technique
enables examination of the nature of the seasonal cycle,
in terms of the number of wet seasons experienced per
year (seasonal regime), the patterns of rainfall advance
and retreat, and the timing of the wet seasons.

© 2017 The Author(s). Published by IOP Publishing Ltd
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This paper aims to address three main questions:

• Canmodels realistically represent contrastingannual
and biannual seasonal precipitation regimes across
the continent?

• Howwell is the seasonal progressionof rainfall repre-
sented, including spatial patterns of rainfall advance
and retreat throughout the year?

• How well is the timing of the rainy seasons captured?

Many previous studies examining the representa-
tion of African precipitation in CMIP models have
assessed mean rainfall amount and interannual vari-
ability for fixed seasons (Kumar et al 2014, Lee and
Wang 2014, Mehran et al 2014, Maidment et al 2015).
Those studies that do consider the seasonal cycle of
precipitation either take averages over large areas,
smoothing out much of the variability, and neglect-
ing the seasonal progression of the rains (Dike et al
2015) or use metrics such as seasonality skill score
(Koutroulis et al 2016), sum of squared errors (Yamana
et al 2016), or space-time root-mean-square error
(Flato et al 2013) which primarily focus on long-term
monthly data. The methodological approach used here
enables comparison between models, notwithstanding
timing discrepancies. Additionally, the proven agricul-
tural relevance of this onset/cessationmetric means this
evaluation of climate models is informative for impact
studies (Dunning et al 2016).

Studies that examine the onset and cessation of
rainfall in climate models, taking into account the sea-
sonal progression of rains, have previously focused on
specific regions such as East Africa (McHugh 2005,
Yang et al 2015a), Southern Africa (Dedekind et al
2016) and the Sahara (Liu et al 2002). The continen-
tal approach taken here complements these regional
studies, providing insight into the links between timing
biases in different regions and the links with large-
scale progression of the wet season across regions.
Several of the previous studies into seasonality have
used regional climate models, such as the CORDEX
regional models (West Africa: Mounkaila et al 2015,
SouthernAfrica: Shongwe et al2015,EastAfrica: Endris
et al 2013). While these models are valuable in pro-
viding regional detail, they are driven at their lateral
boundaries by GCMs, and therefore understanding the
seasonality in GCMs remains of key importance. Fur-
thermore, some impact projections use GCMs, and few
conduct thorough assessments of the representation
of precipitation seasonality, potentially using models
with significant deficiencies in seasonality representa-
tion (Yamba et al 2011, Hamududu and Killingtveit
2012, Caminade et al 2014, van Vilet et al 2016). The
United Nations Development Programme (UNDP)
Climate Change Country Profiles contain multi-model
mean projections of annual and seasonal temperature
and precipitation for a range of developing coun-
tries and were designed to facilitate climate change
assessment with minimal computational expense

(McSweeney et al 2010), and are currently utilised in
both agricultural (Adhikari et al 2015) and ecological
(Laloë et al 2014) sectors. However, the same set of
15 GCMs are used for all countries, and hence multi-
model mean projections in the locally-defined seasonal
means may be inaccurate if the models used contain
seasonal cycle timing biases.

This study presents, for the first time, a continent-
wide evaluation of climate model representation of
African rainfall seasonality. It aims to better charac-
terise the representation of the seasonal cycle in terms
of regime, progression and timing, in order to provide
more detail on model deficiencies and their causes,
and to facilitate better application of such models for
climate change impact assessments.

2. Methods and data

In order to assess rainfall seasonality in terms of sea-
sonal regime (annual or biannual), progression and
timing, we apply the method of Dunning et al (2016)
which extends the methodology of Liebmann et al
(2012). Firstly, at each grid point the ratio between
the amplitude of the first and second harmonics
is computed to determine whether an annual (one
wet season/year) or biannual (two wet seasons/year)
regime dominates. Secondly, the period of the year
when the wet season occurs is determined by identi-
fying the minima and maxima in the climatological
cumulative daily mean rainfall anomaly, to account
for seasons that span multiple calendar years. Dun-
ning et al (2016) introduces a method for doing this
for biannual regimes, accompanying the method for
annual regimes in Liebmann et al (2012). Following
the identification of the climatological seasons, onset
and cessation dates are calculated for each season and
year individually by identifying the minima and max-
ima in the daily cumulative rainfall anomaly over that
season. The climatological cumulative daily mean rain-
fall anomaly and daily cumulative rainfall anomaly are
computed independently for each climate model and
dataset. Onset and cessation dates are not calculated
for the first or last years of each dataset. The approach
was found to be applicable for datasets with con-
trasting rainfall biases, producing contemporaneous
onset/cessation dates (Dunning et al 2016), and thus
can be applied to model simulations without the need
for bias correction. The method also permits seasons
to span different time periods thus enabling the exam-
ination of timing differences and comparison of wet
seasons that do not coincide exactly across models and
observations. By comparison with agricultural onset
methods proposed by Marteau et al (2009), Issa Lélé
and Lamb (2010), and Yamada et al (2013), Dunning
et al (2016) demonstrate the relevance of this method
to agricultural stakeholders.

For calculation of onset and cessation dates,
daily precipitation data is required. Forty-six models
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were chosen from the CMIP5 generation of models
(Taylor et al 2012), based on the availability of daily
precipitation for an AMIP simulation (which applies
observed sea surface temperature (SST) and sea ice
and realistic radiative forcings) or CMIP5 histori-
cal simulation (which includes a fully coupled ocean
and is driven by historical radiative forcings) from
the British Atmospheric Data Centre (BADC). 28
AMIP simulations were used over 1979–2008 and 39
CMIP historical simulations were used over 1979–
2005 (some variations in dates; supplementary table S1,
available at stacks.iop.org/ERL/12/114001/mmedia).
Models, name of institute and horizontal resolution
are listed in table S1. Only the first ensemble mem-
bers (r1i1p1) are considered since differences across
ensemble members were found to be minimal, and
much smaller than the inter-model differences.

To allow construction of multi-model means, the
data were re-gridded using bilinear interpolation to the
GPCP 1DD 1◦ × 1◦ grid. For some models this is a large
increase in resolution; results were compared using a
2◦ × 2◦ grid for the CMIP historical simulations and
found to be unchanged. Following re-gridding, onset
and cessation dates were calculated. For the individual
model results in the supplementary information, the
method is applied at native resolution (table S1).

In order to compare rainfall over the southern West
African coastline and SSTs over the Gulf of Guinea
(section 4), monthly SST data was obtained for 37
of the 39 historical simulations from BADC. Monthly
HadISST observed SST and monthly AMIP forcing SST
data were obtained at 1◦ × 1◦ horizontal resolution.

A reference dataset was required for compar-
ison, to facilitate the assessment of the ability of
CMIP5 model simulations to represent seasonality
over Africa. Inaccuracies in ERA-Interim reanaly-
sis precipitation data have been identified (Hill
et al 2016, Dunning et al 2016) and thus reanaly-
sis data was not used. To account for uncertainties
in some datasets (Maidment et al 2014) five differ-
ent satellite based precipitation datasets available at
daily resolution were exploited (table S2): the African
Rainfall Climatology version 2 (ARCv2) precipita-
tion dataset (Novella and Thiaw, 2013), the Climate
Hazards Group InfraRed Precipitation with Stations
(CHIRPS) dataset (Funk et al 2015), the Global Pre-
cipitation Climatology Project 1 Degree Daily (GPCP
1DD) product (Huffman et al 2001), the TAMSAT
(Tropical Applications of Meteorology using SATellite
data and ground-based observations) African Rain-
fall Climatology and Timeseries (TARCATv2) dataset
(Maidment et al 2014, Tarnavsky et al 2014, Maidment
et al2017) and the Tropical Rainfall MeasuringMission
(TRMM) Multisatellite Precipitation Analysis (TMPA)
3B42 research derived daily product (Huffman et al
2007). Temporal coverage and horizontal resolution
are shown in table S2. They were all re-gridded to the
1◦ × 1◦ GPCP 1DD grid for all analysis (including
supplementary information).

For analysis of timing, Africa was divided into a
number of regions (figure S1). These were chosen to
primarily exhibit an annual or biannual regime and
contain broadly similar onset and cessation dates. The
area north of 15◦N was not included in the analysis
due to the dry climate. The GPCP annual/biannual
categorisation was used as a basis for the region
mask; model simulation grid-points were considered
as belonging to a region if they fell within the correct
geographical area and had the correct annual/biannual
categorisation. Hence figure S1 shows the maxi-
mum possible extent of the regions; for some models
fewer points were included if they had an incorrect
categorisation.

Figure 1 illustrates the application of the Dunning
et al (2016) method over the Horn of Africa and the
Sahel (region map: figure S1/4(b)). Average rainfall
rate in each of the four/two seasons is calculated for
the long term climatology (all available years; coupled:
1980–2004, atmosphere-only: 1980–2007, observa-
tions: 1982–2013) for standard meteorological seasons
(Horn of Africa: short rains October–December, long
rains March–May; Sahel: wet season July–September,
dry season October–June; hashed bars) and when the
seasons are determined dynamically for each model
and year (solid bars) using the method of Dunning
et al (2016) which allows seasons to shift in space and
time from year to year and across different models.
Rainy seasons are differentiated more clearly from the
dry seasons when the seasons are determined dynami-
cally, as the method accounts for interannual variability
in seasonal timing and model timing biases. This
better seasonal distinction is obtained for all regions
(figures S2–S3) with wet/dry season difference in aver-
age rainfall rate 33% larger when seasons are defined
dynamically (annual regions). This demonstrates the
advantageof examining seasonality using amethod that
objectively identifies wet seasons in models, and would
enable the analysis of future changes in seasonality,
whileaccounting forerrors in themeanstate.Thesocio-
economic importance of the East African long rains,
necessitates extensive climate model analysis of this sea-
son, where use of a method that better distinguishes the
long rains (as seen in figure 1(a)) would facilitate more
meaningful model analysis and inter-model compari-
son (Lyon and DeWitt 2012, Tierney et al 2015). Due
to prior assessment (Flato et al 2013, Kumar et al 2014,
Koutroulis et al 2016) the magnitude of the seasonal
cycle is not explicitly examined here, however, simi-
lar average rainfall rates (figures 1 and S2–3) indicates
agreement in seasonal cycle amplitude across observa-
tions, atmosphere-only, and coupled simulations for
all regions.

3. Results

First the representation of annual and biannual sea-
sonal regimes in the model simulations is examined.
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Figure 1. Average rainfall rate (mm day−1) during the wet/dry seasons over the Horn of Africa (a) and the Sahel (b) when defined
using meteorological seasons (dashed bars) and dynamically varying seasons (Dunning et al 2016, solid). The same set of simulations
was used for both meteorological and dynamically varying seasons. See figure S1 for a map of the regions.

Figure 2. The mean ratio of the amplitude of the harmonic at two cycles/year to the amplitude of the harmonic at one cycle/year for
(a) observations, (b) atmosphere-only (AMIP) and (c) coupled (CMIP historical) simulations. The dotted line shows where the ratio
is equal to 1.0.

The multi-model mean ratio of the second harmonic
to first harmonic for observations, atmosphere-only
simulations and coupled simulations are shown in
figures 2(a)–(c) (individual model plots; figures S4-S7).
A ratio greater than 1.0 indicates a biannual regime,
whereas a ratio of less than 1.0 indicates an annual
regime.

In Africa the biannual regime covers three zones:
the Horn of Africa (Camberlin et al 2009, Yang et al
2015b), a zonal equatorial strip from Equatorial Guinea
to Uganda (Diem et al 2014) and a small region on
the south West Africa coastline (hereafter referred
to as SWAC) (Sultan and Janicot 2003, Herrmann
and Mohr 2011) (figure 2(a)). The atmosphere-only
simulations capture the biannual regime over these
regions (figure 2(b)), and while the area experiencing
a biannual regime is larger than in the observations,
there is good agreement between figures 2(a) and
(b). While the coupled simulations capture the bian-
nual regime for the Horn of Africa and the equatorial
strip, the biannual regime over SWAC is not repre-
sented (figure 2(c)). The lack of such a season over

Nigeria in HadGEM2-ES has also been identified by
Dike et al (2015), but causes were not attributed.
In both experiments an annual regime is found over
southern Africa, West Africa and the Sahel, as in the
observations.

Secondly, the representation of the spatial patterns
of seasonal progression of precipitation is examined.
Figure 3 shows the multi-model mean onset and ces-
sation dates for both annual and biannual regimes.
The patterns in observations (figures 3(a),(d),(g) and
(j)) are in agreement with those in Liebmann et al
(2012) and Dunning et al (2016). The broadly merid-
ional progression of onset and cessation dates across
West Africa and the Sahel is represented by both multi-
model means, with northward progression of onset in
the boreal spring following on smoothly from the onset
of the first/long rains (figures 3(a)–(c)), and south-
ward progression of cessation in the boreal autumn
preceding the end of the second/short rains (figures
3(d)–(f)). The later onset over northwest Senegal and
surrounding areas in comparison with other points of
the same latitude (Marteau et al 2009) is also apparent

4



Environ. Res. Lett. 12 (2017) 114001

Figure 3. Seasonal progression of onset/cessation of wet seasons in observations (a), (d), (g) and (j), atmosphere-only (AMIP)
(b), (e), (h) and (k) and coupled (CMIP) simulations (c), (f), (i) and (l). Onset/cessation in annual regime regions is plotted
with onset/cessation in biannual regions to demonstrate continuous progression across annual/biannual boundaries (denoted
by dashed black lines). (a)–(c) Northward progression of onset in boreal spring from first/long rains into West African
Monsoon (WAM). (d)–(f) Southward progression of cessation in boreal autumn from the WAM into end of second/short rains.
(g)–(i) Southward progression of onset in boreal autumn, from second/short rains into the annual rains over southern Africa. (j)–(l)
Northward progression of cessation in boreal spring from the end of the annual rains over southern Africa into first/long rains. Grey
indicates regions not considered for these plots.

infigures 3(a)–(c).Christensen et al (2013) foundmod-
els fail to capture central features of the West African
Monsoon, yetwefind realistic representationof the sea-
sonal progression over West Africa. Over central and
southern Africa, onset commences in the north-west
and south-east, following the onset of the second/short
rains; a pattern seen in observations, and both multi-
model means. Figures 3(j)–(l) all exhibit the radial
spreading of cessation, commencing on the Mozam-
bique/Zimbabwe/South Africa border, leading into the
cessation of the first/long rains. The main difference
is found over the south west tip of South Africa; the

winter rainfall regime experienced here (as opposed
to the summer regime experienced in the majority of
the country) (Weldon and Reason 2014, Engelbrecht
et al 2015) covers a larger area in the coupled simu-
lations (figures 3(i) and (l)) than in atmosphere-only
simulations and observations (figures 3(g), (h), (j) and
(k)). Dedekind et al (2016) also found discrepancies
over southern Africa where the summer rainfall peak
was two months early in CCAM (AMIP). Correspond-
ingly, individual models (figures S8–23) demonstrate
seasonal progression in agreement with that found in
the observations.
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Figure 4. Mean onset (open circles) and cessation (filled squares) for selected regions (see (b)). Multi-model mean for observations,
atmosphere-only (AMIP) and coupled (CMIP) simulations are plotted with the errorbars indicating standard deviation over individual
model means for each region. Shaded bars indicate the period of the wet season. For SWAC the mean annual regime onset/cessation
in coupled simulations is plotted, along with mean onset/cessation for MIROC4h and BCC-CSM1-1-M (coupled simulations), the
only coupled simulations to capture a biannual regime here.

The third aspect of seasonality examined was sea-
sonal timing (figure 4), full results for all models and
regions (figure S1) are in figures S24–S26. The multi-
model mean onset and cessation dates for five of the
regions (figure 4(a)) show the models generally simu-
late the wet season at the correct time of year. Notable
differences include early onset over the Sahel (23 ± 15
days on average for atmosphere-only, 25 ± 18 days for
coupled simulations, where the error relates to stan-
dard deviation across models), longer short rains over
the Horn of Africa (cessation ∼16 ± 11 days later) and
later long rains (onset/cessation ∼19 ± 13 days late for
coupledsimulations)over the sameregion.The latebias
of the long rains in coupled simulations, with cessation
in early June (on average) may explain some of the dry
bias previously found in the long rains over East Africa
in CMIP5 models (Yang et al 2015a). The overestima-
tion of the short rains, typically found in such models
(Yang et al 2015a), is replicated here in the combina-
tion of longer season length, of 14 ± 14 days longer
for AMIP and 25 ± 15 days longer for CMIP historical
simulations (figure 4(a)), and similar average rainfall
per day (figure 1(a)).

Most coupled simulations do not capture the bian-
nual regime over SWAC (figure 2(c)), hence the mean
onset and cessation dates for the annual regime over
this region are shown in figure 4(a), while the sea-
son over SWAC is longer than is found over the west
Sahel, it is shorter than atmosphere-only and obser-
vations for SWAC, with onset occurring during the
first rains, and cessation occurring during the second
rains. Biannual onset and cessation dates for one of
the two coupled simulations that simulate a biannual

regime here (MIROC4h and BCC-CSM1-1-M) show
good agreement with observations, but the onset dates
are late in BCC-CSM1-1-M.

Mean onset and cessation dates were computed
for each simulation for 13 regions with an annual
regime (see figure S1) and the Horn of Africa, and
compared with mean observational onset and cessa-
tion dates. For atmosphere-only simulations the mean
difference from observations for onset ranged between
−18 ± 14 days to +6± 10 days (negative values denote
early onset, positive is late),with theonset over theSahel
exhibiting largerdifferencesof−23±15days.Cessation
dates exhibited smaller mean differences, with differ-
ences ranging between −5 ± 10 days to 8 ± 15 days
for the different regions. For coupled simulations the
mean difference from observations for onset ranged
from −15 ± 10 days to +3 ± 13 days, with larger dif-
ferences over the Sahel (−25 ± 18 days) and over the
west coast of southern Africa. The discrepancy over this
southern region is likely to be related to overestimation
of the area that experiences a winter rainfall regime
shown in figure 3, and exclusion of dry areas associ-
ated with the Namibian Desert (Liebmann et al 2012,
Engelbrecht et al 2015). For cessation, differences from
the observations are of similar magnitude, with differ-
ences ranging from −12 ± 10 days to +15 ± 11 days,
with the west coast of southern Africa again an outlier,
showing a much higher value. Individual results for
each model and region are included in the supplemen-
tary information.

Overall, figures 2–4 (and figures S4–S23) indicate
that the model simulations realistically capture the sea-
sonal progression of the rainy seasons over Africa.
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However, coupled simulations overestimate the areal
extent of the winter rainfall regime in South Africa,
leading to large timing errors over South Africa (40–
50 days on average, region 15 in figures S24–S25)
and importantly fail to capture the biannual regime
over SWAC. The potential for detrimental impacts
of the intervening dry season on agricultural yields
(Odekunle, 2007) coupled with high population den-
sity (Global Urban-Rural Mapping Project (GRUMP)
2000), and changing nature of the seasonality (Chineke
et al 2010), motivated further exploration of this
misrepresentation (section 4).

4. Simulation of the Little Dry Season in
southern coastal West Africa

The biannual regime over SWAC comprises four sea-
sons; a dry season from November–March, the first wet
seasonfromApril–Juneand thesecondwet season from
mid–September–October. These two wet seasons are
separated by a break in the monsoon rains during July–
August, known as the ‘August Break’ (Chineke et al
2010) or ‘Little Dry Season’ (LDS) (Odekunle 2010).
The LDS can be a useful period for weeding and spray-
ing of crops; when the LDS is too early, long or intense,
yields canbe reduced (Adejuwonand Odekunle, 2006).
Both the mean annual cycle of precipitation in observa-
tions (blue line) and atmosphere-only (red line), over
the LDS region (figure 5(b)), show the biannual sea-
sonal cycle. However, figure 5(b) confirms that coupled
simulations (green line) do not capture the correct
seasonal cycle.

The misrepresentation of the Little Dry Season is
related to the southward Intertropical Convergence
Zone (ITCZ) bias in coupled simulations (Richter
and Xie 2008, Roehrig et al 2013, Toniazzo and
Woolnough 2014, Monerie et al 2017). This bias has
been connected with the presence of warm Atlantic
SST biases in the Gulf of Guinea (Vizy and Cook
2001, Cook and Vizy 2006, Roehrig et al 2013), via
influences on the meridional temperature gradient.
Furthermore, the strength of the West African Mon-
soon is sensitive to SSTs in the equatorial cold tongue
(Patricola et al 2012), such that sporadic warming in
this region resulting from Atlantic Niños (Nnamchi
et al 2015) weakens the monsoon circulation and mon-
soon rains are confined to the Guinea Coast (Chang
et al 2008). Hence, the failure of the coupled simula-
tions to reproduce the eastern equatorial cold tongue
in boreal summer (Richter and Xie 2008, Patricola et al
2012) may be associated with the restricted northward
progression of the ITCZ. More locally, the reduction in
rainfall during the LDS is accompanied by cool SSTs in
the northern Gulf of Guinea, in particular, between
8
◦
W–2

◦
E, and 3

◦
N to the West African coastline

(figure 5(a), pink box), resulting from ocean upwelling
(Odekunle and Eludoyin 2008) (figure 5). Adejuwon
and Odekunle (2006) proposed that the LDS was a

consequence of these local cooler SSTs leading to the
inter-tropical discontinuity travelling further inland,
while Odekunle and Eludoyin (2008) suggested that
cool SSTs increased static stability over this region,
inhibiting convection.

The correct representation of the LDS in
atmosphere-only simulations with prescribed SSTs and
incorrect representation in fully coupled simulations
(figure 5(b)), combined with previous research (Ade-
juwon and Odekunle 2006, Odekunle and Eludoyin
2008), suggests an SST driver for the LDS. Thus the
relationship between SSTs in the northern Gulf of
Guinea region (8

◦
W–2

◦
E, and 3

◦
N to the West African

coastline; pink box in figure 5(a)), and LDS rainfall is
explored to determine if this could explain the misrep-
resentation (figure 5). Observational datasets were used
to determine the mean period of the LDS (2 July–17
September), and the region influenced by this regime
(SWAC; blue dots in figure 5(a)). Linear regression was
used to examine the relationship between LDS rainfall
and July–August–September (JAS) SST (figure 5(c)).
Observations and atmosphere-only simulations exhibit
the expected relationship with colder SST anomaly
years resulting in lower LDS rainfall, yet coupled sim-
ulations fail to represent this association (figure 5(c)).
In addition, none of the coupled simulations realisti-
cally represent the SST seasonal cycle over the region of
interest identified by Adejuwon and Odekunle (2006),
the minima are in September rather than August, and
the amplitude of the SST seasonal cycle is only ∼55%
of that in HadISST, at 2.3 K compared with 4.3 K in
HadISST and 4.1 K in AMIP.

The coupled historical simulations for MIROC4h
and BCC-CSM1-1-M contain an LDS at a few coastal
grid-points, evident in most ensemble members, and
also exhibit SST anomalies in the lowest 10% for July
and August, compared with all coupled simulations
(brown/pale pink dashed line, figure 5(d)).

These findings are consistent with the lack of a
LDS in coupled simulations being related to unrealis-
tic representation of the SST seasonal cycle, and an
incorrect interannual relationship between SST and
rainfall. The seasonal cycle of SST is an important
driver of seasonality in rainfall, with previous stud-
ies identifying a significant influence of the decline in
equatorial SST from April to July on the development
of the monsoon (Okumura and Xie 2004) and a delay
in the phase of the Atlantic SST seasonal cycle result-
ing in an increase in late rainy season precipitation
(Monerie et al 2017). It may be inferred therefore that
models that represent SST seasonality well are more
likely than others to capture the seasonality of rain-
fall accurately. However, a good representation of SST
is not the only factor in determining models’ ability
to capture rainfall. When analyzing the Atlantic ITCZ
structure, Siongco et al (2015) found that model hor-
izontal resolution had a large influence on the marine
ITCZ. MIROC4h and BCC-CSM1-1-M have higher
spatial resolution than many of the other models used

7
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Figure 5. Rainfall and SST links over SWAC and neighbouring ocean. (a) Location of the region that experiences the Little Dry Season
(LDS; blue dots) and the SST region of interest (pink box). (b) Mean annual cycle of rainfall in observations, atmosphere-only and
coupled simulations over the LDS region (blue dots in (a)). (c) Slope of the linear regression between interannual variations in LDS
rainfall (rainfall during 2 July–17 September) and July–August–September SST. Filled symbols indicate statistical significance of the
slope at the 95% significance level (crosses for AMIP). (d) Seasonal cycle of SST in HadISST, AMIP and coupled simulations, with the
black dotted line indicating the coupled multi-model mean.

and better representation of the SST seasonal cycle,
with lower SST anomalies in JAS. Yet, it would be
over-simplistic to argue that resolution and accurate
representation of SST alone determine models’ ability
to capture the LDS at a few grid points. Monerie et
al (2017) noted that the influence of SST varies across
climate models, which may explain why some mod-
els with similar SST seasonal cycle and resolution (e.g.
EC-Earth) do not contain an LDS. Of the 18 models
analysed by Cook and Vizy (2006) only four correctly
captured the relationship between Gulf of Guinea SST
anomalies and West African Monsoon precipitation
anomalies; hence even with the correct SST the coupled

simulations may not produce a LDS due to inaccu-
rate representation of the variability. Furthermore, the
monsoon acts to cool SST (Okumura and Xie 2004,
Hagos and Cook 2009), hence correct representation
of SST seasonality is both a cause of and response
to the accuracy of precipitation seasonality. The pre-
ceding discussion thus highlights two likely causes of
model bias in the representation of the West African
Monsoon and provokes a number of additional ques-
tions. Further detailed analysis of such mechanisms is
merited, along with other LDS drivers, including the
deflection of south-westerly winds to westerly winds
(Olaniran 1989), which could be addressed through
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idealized model integrations and further analysis of
observations.

5. Conclusions

The representation of precipitation seasonality in
atmosphere-only and coupled historical CMIP5 cli-
mate model simulations has been evaluated across
Africa using observations and an objective methodol-
ogy for quantifying seasonal characteristics (Liebmann
et al2012, Dunning et al2016). Using this methodolog-
ical approach demonstrates the presence of a biannual
regime over regions with timing biases, where the use of
standard meteorological seasons may suppress the per-
ceived seasonal cycle, and thus can be used to compare
model simulations, notwithstanding timing biases.

Overall, the CMIP5 simulations capture the gross
seasonal cycle of African precipitation on a continen-
tal scale. The patterns of seasonal progression of the
rainy season are well-represented, and the atmosphere-
only simulations realistically simulate biannual rainfall
regimes for the Horn of Africa, Equatorial Africa
and a region on the southern West Africa coast-
line (SWAC). Patterns of seasonal progression over
southern Africa are the consequence of interactions
between the ITCZ, the South Atlantic Anticyclone,
mid latitude westerlies and the Angola Low, where
the tropical–extratropical cloud bands that bring sum-
mer rainfall across southern Africa form (Reason
et al 2006). The large-scale similarity in spatial rain-
fall progression patterns over Southern Africa across
observations, atmosphere-only and coupled integra-
tions suggest that the models capture these interactions
which lead to the non-zonal patterns observed in this
region (Reason et al2006, Shongwe et al2009, Shongwe
et al2015). Seasonal timing inatmosphere-only simula-
tions demonstrates good agreement with observations
(most mean onset/cessation dates agree within 18 days)
although both sets of simulations exhibit an early onset
of the wet season over the Sahel (∼25 days early). Addi-
tionally, coupled simulations exhibit timing biases over
the Horn of Africa (long rains ∼20 days late).

Although the seasonal cycle is generally represented
well in atmosphere-only model runs, in regions influ-
enced by annually changing SST, SST biases in coupled
simulations lead to errors in rainfall patterns. The
incorrect annual seasonal regime found over SWAC
(biannual in observations) has been linked to an unre-
alistic seasonal cycle of SST and erroneous SST/rainfall
relationships in this region. Additional work is merited
to further elucidate exact mechanisms that deter-
mine the realistic representation of certain features
and improve physical mechanisms represented by cou-
pled simulations. Climate model projections should be
treated with caution, and projections of future agricul-
tureproduction in this regionare likely tobeunrealistic,
due to the significant impact of the LDS on crop yields
(Adejuwon and Odekunle 2006).

In conclusion, on a continental scale, the resem-
blance of spatial progression patterns thus adds
credence to GCM future projections (Tierney et al
2015). However, in regions where the rainfall seasonal
cycle is not well captured, caution should be exer-
cised when interpreting climate change projections for
impact assessment. The information in figures S24–26
on timing biases for individual models can be used
to inform future studies on suitable model selection,
reducing the inclusion of models with timing biases.
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