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ABSTRACT

This study investigates the impact of CO2 on the amplitude, frequency, and mechanisms of Atlantic me-

ridional overturning circulation (AMOC) variability in millennial simulations of the HadCM3 coupled cli-

mate model. Multichannel singular spectrum analysis (MSSA) and empirical orthogonal functions (EOFs)

are applied to the AMOC at four quasi-equilibrium CO2 forcings. The amount of variance explained by the

first and second eigenmodes appears to be small (i.e., 11.19%); however, the results indicate that bothAMOC

strength and variability weaken at higher CO2 concentrations. This accompanies an apparent shift from a

predominant 100–125-yr cycle at 350 ppm to 160 yr at 1400 ppm. Changes in amplitude are shown to feed back

onto the atmosphere. Variability may be linked to salinity-driven density changes in the Greenland–Iceland–

Norwegian Seas, fueled by advection of anomalies predominantly from the Arctic and Caribbean regions. A

positive density anomaly accompanies a decrease in stratification and an increase in convection and Ekman

pumping, generating a strong phase of theAMOC (and vice versa). Arctic anomalies may be generated via an

internal ocean mode that may be key in driving variability and are shown to weaken at higher CO2, possibly

driving the overall reduction in amplitude. Tropical anomalies may play a secondary role in modulating

variability and are thought to bemore influential at higher CO2, possibly due to an increased residence time in

the subtropical gyre and/or increased surface runoff driven by simulated dieback of the Amazon rain forest.

These results indicate that CO2 may not only weaken AMOC strength but also alter the mechanisms that

drive variability, both of which have implications for climate change on multicentury time scales.

1. Introduction

The Atlantic meridional overturning circulation

(AMOC) is an important system of ocean currents that

transport significant quantities of heat across the North

Atlantic. It has important implications for Northern

Hemisphere climate, with the potential to influence

surface air temperatures (SATs), sea surface tempera-

tures (SSTs), and precipitation (e.g., Vellinga and Wu

2004; Knight 2005; Frankcombe and Dijkstra 2010;

Delworth and Mann 2000).

Both observational (Clark et al. 2002) and modeling

studies (Swingedouw et al. 2014) have shown the poten-

tial for the AMOC to fluctuate on strength on a range of

time scales. In the absence of long observational datasets

(Wunsch and Heimbach 2006), climate models are used

in order to understand longer time scales of variability

(e.g., von Storch et al. 2000). Simulations forced with

current and preindustrial concentrations have yielded a

range of spectral time scales from decadal to centennial

depending on the model used (see Swingedouw et al.

2014). A number of mechanisms have been attributed to

driving this variability.Models such as IPSL (Msadek and

Frankignoul 2009), CCSM (Danabasoglu 2008;

Danabasoglu et al. 2012), and ECHAM5 (Timmermann
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et al. 1998; Zhu and Jungclaus 2008) indicate a two-way

coupling between the atmosphere and ocean. Studies

using the GFDL model (Delworth et al. 1993; Delworth

and Greatbatch 2000; Delworth et al. 1997) and

ECHAM5–MPI-OM (Jungclaus et al. 2005) concluded

that fluctuations are oceanic in origin but forced by the

atmosphere. External forcing events such as volcanic

eruptions (Otterå et al. 2010; Zanchettin et al. 2012; Iwi

et al. 2012; Stenchikov et al. 2009) and salinity anomalies

induced by El Niño (Mignot and Frankignoul 2005;

Schmittner et al. 2000) have also been suggested.

The potential for theAMOC to influence regional and

global climate has prompted a range of modeling studies

investigating how it may respond to anthropogenic cli-

mate change. These have commonly focused on the

impact of CO2 on overall AMOC strength, with a

number of studies showing that higher concentrations

will weaken the AMOC, albeit to varying degrees

(Gregory et al. 2005). This has primarily been linked to a

reduction in surface density in sinking regions, via sur-

face heat loss and/or a change in the freshwater flux (e.g.,

Gregory et al. 2005; Swingedouw et al. 2007; Thorpe

et al. 2001; Dixon et al. 1999; Mikolajewicz and Voss

2000; Bakker et al. 2016b). In contrast, there has been

less focus on the possible effects of CO2 on the ampli-

tude and frequency of AMOC variability.

This study will investigate how CO2 concentration

impacts low-frequency variability of the AMOC in the

HadCM3 coupled climate model. Although there are

clear limitations to using one model, it does allow

thorough investigation of the potential mechanisms

that would not be possible with a multimodel study.

Despite a number of drawbacks (see section 2),

HadCM3 has been shown to simulate theAMOC, ocean

heat transport and aspects of the freshwater ocean–

atmosphere cycle accurately compared to observations

(Gordon et al. 2000; Pardaens et al. 2003). Furthermore

the resolution of the model permits millennial-scale

simulations in order to study low-frequency variability.

Previous studies with HadCM3 have highlighted

the relationship between density anomalies in the

Greenland–Iceland–Norwegian (GIN) Seas and AMOC

variability. Variations in density have commonly been

linked to salinity anomalies, which are advected into the

region primarily from the Arctic and/or Caribbean re-

gions. Vellinga and Wu (2004, hereafter VW04)

identified a coupled ocean–atmospheremechanism in the

tropics, with periods of strong AMOC driving an in-

creased equatorial SST gradient, a northward shift in the

position of the ITCZ, and an increase in precipitation

north of the equator. This generates a fresh anomaly that

is advected north into the region of downwelling

initiating a reversal in AMOC strength and vice versa.

This observation follows earlier work by Manabe and

Stouffer (1997), who showed via a hosing experiment that

the AMOC was sensitive to subtropical freshening.

Menary et al. (2012) showed that thismechanismwas also

present in the Kiel Climate model and highlighted proxy

records that give a comparable periodicity of between 50

and 150yr as evidence for the mechanism.

Hawkins and Sutton (2007, hereafter HS07) used 3D

empirical orthogonal functions (EOFs) to highlight the

importance of the Arctic, which releases salinity

anomalies into the GIN Seas, increasing convection and

possibly driving an increase in AMOC strength. The

formation of these anomalies was hypothesized to be a

result of an internal ocean mode controlled by salinity

gradients between the Arctic and the GIN Seas, with

southward advection in Arctic surface waters compen-

sated by deep northward advection of an opposing

anomaly from the GIN Seas.

Jackson and Vellinga (2013, hereafter JV13) con-

cluded that both the mechanisms of VW04 and HS07

might be present, with the Arctic playing a more pre-

dominant role and the Caribbean region modulating

variability when it is present. In contrast to HS07, they

deduced that Arctic anomaly formation is a coupled

atmosphere–ocean feedback, responding to stochastic

sea level pressure (SLP) variations. This ageostrophi-

cally alters the geostrophic balance in the Beaufort

Gyre, driving upwelling and advection of salinity into

the GIN Seas. A perturbed physics ensemble that al-

tered surface fluxes and winds showed that the back-

ground climate might also be important in determining

both the frequency and amplitude of variability.

Although the amplitude, frequency, mechanisms, and

impacts of AMOC variability have been well researched,

there has been less focus on how these may be altered at

higher CO2 concentrations. A number of previous studies

that have investigated time-dependent dynamic systems

such as the AMOC have focused on the framework in-

troduced in the Stommel box model (Stommel 1961),

which indicates that a decline in the strength of the sys-

tem, such as that induced by higher CO2, would increase

instability, pushing the system closer to a point of collapse

(i.e., a bifurcation point) and so increase variability

(Tziperman 1997; Tziperman et al. 1994; Wiesenfeld and

Mcnamara 1986; Ditlevsen and Johnsen 2010; Rahmstorf

1995; Monahan 2002). However, results fromMacMartin

et al. (2016) were not consistent with this hypothesis.

They investigated the impact of CO2 on the AMOC at a

range of latitudes in two simulations of GFDL-ESM2M.

They showed that at 4 3 CO2 a decrease in AMOC

strength was accompanied by a decrease in midlatitude

variability, with the region of greatest variability shifted

to a limited area at higher latitudes. This was linked to a
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change in ocean dynamics, with an increase in stratifica-

tion possibly reflecting a weaker and shallower mean

overturning at low latitudes.

In this study we aim to answer two key questions:

1) Does CO2 impact the amplitude/frequency of AMOC

variability? 2) What mechanisms are responsible for

these changes? Section 2 outlines the model and

methods and section 3 gives an overview of the clima-

tology and impact of CO2 on AMOC strength. Section 4

investigates spatial and time series variability, and sec-

tion 5 discusses the climatic implications of variability.

Section 6 examines the possible mechanisms before a

discussion and summary is presented in section 7.

2. Methods

a. Model

The Hadley Centre Climate Model, version 3

(HadCM3), is a coupled Earth system model consisting

of 3D dynamical atmosphere and ocean components

(Valdes et al. 2017). The atmospheric component has a

horizontal resolution of 3.758 3 2.58 with 19 vertical

levels. The ocean has a horizontal resolution of 1.258 3
1.258 with 20 vertical levels that have a finer resolution

toward the surface. The ocean uses a ‘‘rigid lid’’ ap-

proach so volume remains constant, with runoff from

the land converted to salinity flux where river outflow

points reach the ocean. The mixed layer model in the

ocean is that of Kraus and Turner (1967) with vertical

mixing of tracers using a simplified version of the Large

et al. (1994) scheme, which is discussed in detail in

Gordon et al. (2000). Horizontal mixing of tracers (e.g.,

salinity) via eddies uses the Gent and McWilliams

(1990) isopycnal parameterization with isopycnal mix-

ing using the Redi (1982) scheme implemented by the

method of Griffies et al. (1998). HadCM3 does not use

flux adjustment, which can impact deep-water formation

and influence the AMOC (Marotzke and Stone 1995).

The drawbacks of the model include issues related to

ocean resolution that affects some significant channels

including the North Atlantic overflows (Roberts et al.

1996). The Canadian Archipelago, including the Hudson

and Davis Straits, is closed and there is zero barotropic

flow through the Bering Strait and so no net volume

transport. This is in disagreement with observations that

indicate that freshwater import into the Arctic via the

Bering Strait is significant (Cattle andCresswell 2000). To

compensate for this, all freshwater export from theArctic

is via the Atlantic sector into the Nordic seas. This may

have implications for the AMOC as the Bering Strait

region has been shown tomoderateAMOC strength (Hu

and Meehl 2005). The Denmark Strait and Greenland–

Scotland ridge have been deepened in order to produce a

mean outflow that matches observations (Gordon et al.

2000). Other problems include a weakness in the wind

stress in theNorthAtlantic storm track, which potentially

impacts gyre strength (Gordon et al. 2000). Furthermore,

peak flow of the AMOC in HadCM3 is at approximately

800m (see Fig. 4), shallower than the 1000m observed by

RAPID–MOCHA (Smeed et al. 2015). The cause of this

is likely to be surplus surface salinity in the North At-

lantic, driven by an excess in net evaporation in the topics

and subtropics and to a lesser extent insufficient sub-

tropical runoff (Pardaens et al. 2003). Consequently the

Atlantic is too stratified and stable, reducing the depth of

maximum overturning. This has also been shown to be

the case in othermodels, includingGFDLCM2.1, NCAR

CCSM3, and the MPI models (Roberts et al. 2013;

Msadek et al. 2013).

The results presented here are from 2000-yr quasi-

equilibrium simulations at four CO2 concentrations; 350,

700, 1050, and 1400ppm. We will refer to these experi-

ments as 1x, 2x, 3x, and 4x, respectively. All analysis is

conducted on the final 1000yr of each simulation, a time

period that is suitable for examining low-frequency var-

iability. It also permits a 1000-yr spinup in order for the

ocean to reach a relative state of equilibrium as indicated

by the volume averaged upper ocean temperatures (not

shown). The full time series of the AMOC index (i.e.,

mean AMOC strength between 408 and 508N at 800m;

see section 4b) for each experiment are shown in Fig. 1,

showing that the AMOC has reached a relative state of

equilibrium in each simulation after 1000yr. To remove a

small climate drift the AMOC streamfunction and cli-

mate variables have been detrended by subtracting a liner

least squares fit prior to analysis.

b. Statistics

1) SINGULAR SPECTRUM ANALYSIS

To analyze variability of theAMOCwehave employed

singular spectrum analysis (SSA) and its multivariate

counterpart (MSSA). This is a nonparametric technique

used to decompose a time series into a range of period-

icities and noise in order to extract a signal of interest and

more clearly understand the dynamical nature of the

system being studied. The MSSA technique can be used

to analyze gridded datasets. The methodologies and ap-

plications of SSA and MSSA are outlined in Vautard

et al. (1992), Elsner and Tsonis (1996), and, more re-

cently, Golyandina and Zhigljavsky (2013), with a thor-

ough mathematical overview for the application to

climatic time series in Ghil et al. (2002). Numerous

studies have applied SSA and MSSA to climatological

data (e.g., Ghil et al. 2002; Plaut et al. 1995; Moron et al.

1998), including the AMOC (Alvarez-Garcia et al. 2008;
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Huang et al. 2012). The SSA and MSSA in this paper

have utilized the R package ‘‘Rssa,’’ which is extensively

outlined in Golyandina and Korobeynikov (2014) and

Golyandina et al. (2015).

The SSA algorithm consists of two basic stages, de-

composition and reconstruction. First a covariance ma-

trix is generated from the time series with a specified

window length representing the number of lags M. Con-

sequently the covariance matrix is of dimensionsM3M.

MSSA differs from SSA in the way this trajectory matrix

is constructed (see Golyandina et al. 2015). The matrix

undergoes singular value decomposition (SVD) to pro-

duce corresponding eigenvectors and eigenvalues. The

projection of the original time series onto theEOFs yields

the principal components (PCs), with the first PCs (PC1s)

representing the largest amount of variance. These PCs

can be ‘‘reconstructed’’ and put back on the scale of the

original time series by projecting back onto the corre-

sponding eigenvectors. Combination of all the individual

reconstructed PCs would generate the original time se-

ries; however, partial reconstruction permits the identi-

fication of potential oscillatory components and the

removal of noise.

An important consideration in SSA and MSSA is the

window lengthM. Ghil et al. (2002) state that the size of

M is a compromise: a large M allows more information

to be extracted from the original time series; however, it

will permit fewer repetitions, which consequently re-

duces statistical confidence. Other studies state that M

should be approximately divisible by the time scale of a

potential oscillation in the data (Golyandina 2010;

Golyandina et al. 2001). In this study, we tested AMOC

variability for a range of window lengths ranging from

100 to 300 yr. The results were similar for each value of

M indicating stability in our results; the values used are

outlined in sections 5a and 5b. All climate variables used

in this study have been decomposed using the MSSA

technique with a window length that corresponds to the

appropriate CO2 concentration.

2) SIGNIFICANCE

To calculate the statistical significance of the anoma-

lies and correlations we have used the moving block

bootstrap technique (Wilks 1997) with 95% confidence

limits calculated using the bootstrap percentile method

(see Hall 1988). If the bootstrap confidence interval

passes through zero the anomaly/correlation is also

deemed insignificant. Power spectra have been gener-

ated using discrete Fourier transform to reveal period-

icities and their relative strengths. We have tested the

significance of these peaks against the 95% confidence

level determined by a red noise spectrum of a first-order

autoregressive (AR1) process.

3. Impact of CO2

a. Climatology

The impact of CO2 on a range of climate variables is

shown in Fig. 2. SATs and SSTs are amplified across the

region, the former predominantly at high latitudes and

over land and the latter to the north of Scandinavia and

east of the United States. There is a complex pattern of

precipitation change, with a northward shift and/or

weakening of the ITCZ driving a decrease across much

of the tropics and an increase at high latitudes. This

pattern of temperature and precipitation changes results

in an increase in salinity across the tropics and a de-

crease at the poles. There is a dramatic decrease in sea

ice, with almost complete disappearance at 4 3 CO2

across much of the Arctic. Many of the climate impacts

simulated by HadCM3 are consistent with those from

other climate models, as shown in the CMIP5 experi-

ments (e.g., Knutti and Sedlacek 2013) and the IPCC

Fifth Assessment Report (AR5; Flato et al. 2013).

The mixed layer climatology gives a guide as to the

key location of deep-water formation. The GIN Seas

FIG. 1. Time series of the AMOC index for the full 2000-yr simu-

lation at (top)–(bottom) 1x, 2x, 3x, and 4x. The AMOC index is de-

fined as themeanannual strengthof theAMOCbetween408 and508N
at 800m. The final 1000 yr of each simulation are used in this study.
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region shows the greatest depth of overturning extend-

ing to mean depths of 247m off the coast of Scandinavia.

In contrast to other models (such as CCSM), HadCM3

exhibits shallow overturning depths in the Labrador Sea.

There is a reduction in the depth of the mixed layer in

the GIN Seas of up to 87m at 4 3 CO2.

Mean depth profiles for salinity, temperature, and

density for the GIN Seas (see Table 1; Fig. 11a) are

shown in Fig. 3. For reference these are shown with

the NODC Levitus observational dataset spanning

1900–92. Within the model, cooler, fresher, and less

dense surface waters overlie warmer, saltier, and

denser subsurface waters. Ocean velocity maps (not

shown) show that this stratification is likely to be a

result of a warmer northeastward flow of water via the

North Atlantic Current (NAC), which sits below

colder fresher water transported southward by the

East Greenland Current (EGC). CO2 alters these

profiles by increasing temperature and density

throughout the water column. Salinity decreases at the

surface and increases in the subsurface, the former

possibly reflecting the modeled increase in pre-

cipitation in the high northern latitudes and the latter

reflecting saltier Atlantic inflow at higher CO2. Fur-

thermore the water column is more stratified, in-

dicated by greater contrast between surface and

subsurface temperature and salinity.

FIG. 2. Mean climatologies for (a) 1x and anomalies at (b) 2x, (c) 3x, and (d) 4x for (left)–(right) precipitation, SAT, salinity, the mixed

layer depth, sea ice, and SST. Only anomalies that are considered 95% confident are shown (see section 2).

TABLE 1. Latitudes and longitudes for the regions used in

this study.

Region Lat Lon

GIN Seas 60.6258–79.3758N 158W–108E
Arctic 84.3758–89.3758N 178.758E–1808
EGC 65.6258–80.6258N 258–158W
Caribbean 10.6258–30.6258N 908–508W
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b. AMOC strength

The mean Atlantic AMOC streamfunction for 1x and

the anomalies due to increasing CO2 are shown in Fig. 4.

At 1x, the upper North Atlantic Deep Water (NADW)

cell reaches a peak of 16.6 Sv (1 Sv[ 106m3 s21) at 358N
at a depth of 800m. The mean strength compares well to

the 16.9 Sv observed by theRAPID–MOCHA (between

April 2004 and October 2015 at 26.58N) but is too

shallow compared to observations (Smeed et al. 2015).

There is a reduction in AMOC strength across this cell

of up to 5.0 Sv (30.2%) at 2x, 4.95 Sv (29.8%) at 3x, and

5.6 Sv (34%) at 4x, in addition to a potential shallowing

in the NADW cell. There is also a decrease in the

strength of the northward moving Antarctic Bottom

Water (AABW) cell and surface waters (08–308S and

308N) of up to 3.8 Sv.

The decline in AMOC strength has been commonly

linked to changes in surface heat loss and/or the fresh-

water flux that reduces density in downwelling regions.

(e.g., Gregory et al. 2005; Swingedouw et al. 2007;

Thorpe et al. 2001; Dixon et al. 1999; Mikolajewicz and

Voss 2000). Figure 3 shows the reduction in density in

the GIN Seas at higher CO2. Thorpe et al. (2001) and

Thorpe (2005) have previously investigated CO2-induced

weakening of the AMOC in HadCM3. They concluded

that bothCO2-inducedwarming and a decrease in salinity

at high latitudes drive this change, with the former

playing a more prominent role accounting for approxi-

mately 60% of weakening.

It is also important to highlight the increase in

stratification in the GIN Seas at higher CO2 (Fig. 3),

which would consequently decrease convection and

may weaken overturning. This is highlighted by the

Brunt–Väisälä (or buoyancy) frequency for the top

FIG. 3. Mean depth profiles for potential temperature (solid; 8C),
salinity (dashed), and density (kgm22; dotted) in theGINSeas (see

Table 1) for the different simulations. The NODC Levitus obser-

vational dataset is included for reference, showing mean values

spanning 1900–92 (data provided by theNOAA/OAR/ESRLPSD,

Boulder, Colorado, from their website at http://www.esrl.noaa.gov/

psd/). The GIN Seas region in the Levitus data is defined as

60.6258–79.3758N, 13.758W–11.258E.

FIG. 4. (a) Mean AMOC streamfunction (Sv) at 1x for the final

1000 yr of the simulation and the anomalies at (b) 2x, (c) 3x, and

(d) 4x. Only anomalies that are considered 95% confident are

shown (see section 2).
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660m at 1x and the anomalies due to increasing CO2

(Fig. 5), which give an indication of the stability of

the water column and possible levels of convection.

Large values indicate a greater density gradient, more

stable conditions, and a reduced rate of convection.

At 1x the lowest values and so a region of weaker

stability is found around the GIN Seas region with

values increasing at higher CO2 specifically in the

center of the region, indicating greater stability and

thus reduced convection. This may act to reduce cross-

isopycnal flow and drive the apparent reduction in

AMOC strength.

4. The variability of the AMOC

a. Spatial variability

To understand the spatiotemporal patterns of

AMOC variance, we have applied MSSA (see section

2b) to the AMOC streamfunction for the region 308S–
908N. This procedure was originally outlined in Plaut

and Vautard (1994) and subsequently used in Huang

et al. (2012). The AMOC streamfunction was first de-

composed using MSSA with a range of M values from

100 to 300 yr (see section 2), with similar results pro-

duced. At 1x, 2x, and 3x values, the first and second

eigenmodes bear the resemblance of a sine and cosine

pair with a similar period that is out of phase (i.e., a

phase quadrature relationship) and represent an os-

cillation on the order of approximately 110–125 yr. We

chose an M value of 115 yr for 1x and 125 yr for 2x and

3x. At 4x the oscillation for the first and second is on

the order of 150–160 yr and we chose an M value of

160 yr. These values for M were also chosen based on

the initial spectral analysis of the AMOC index (as

shown in Fig. 7 and discussed in section 4b).

The leading two eigenmodes are used to reconstruct the

AMOC streamfunction. Together they account for

11.19% (6.86% and 6.69%), 7.69% (5.36% and 4.99%),

5.51% (3.84% and 3.8%), and 3.88% (2.8% and 2.3%) of

the total variance for 1x, 2x, 3x, and 4x respectively. Al-

though these values appear to be small, at 1x they are

similar to those presented in previous studies that have

derived oscillating MSSA modes for the AMOC (Huang

et al. 2012) and for SST variability of the world oceans

(Moron et al. 1998). The similarity of the first and second

modes and 2D graphs of the eigenvectors (not shown)

indicate a degenerate pair at all concentrations albeit

more weakly at higher CO2 concentrations. There is also a

relatively coherent degenerate pair oscillation for a com-

bination of eigenmodes between 5 and 9 depending on the

concentration of CO2. This is at a higher frequency and

may indicate a weaker oscillation of between 15 and 20yr,

possibly the frequency identified in the study of Dong and

Sutton (2005). These eigenmodes will be investigated in a

future study. We have applied this MSSA method and

these values ofM to all climate variables used in this study.

To identify the key areas of variance, EOF analysis is

applied to the MSSA AMOC streamfunction. The

values of the EOFs and corresponding PCs are arbitrary,

so we have regressed the MSSA time series onto the

normalized PCs in order to put them on the same scale

and allow comparison. The first and second EOFs and

their corresponding scaled PCs are shown in Fig. 6. At 4x

the EOFs are based on the final 800 yr of the model run

as the magnitude was anomalously large in the first 200

years. The PCs show approximately nine oscillations at

FIG. 5. Brunt–Väisälä (or buoyancy) frequency in theGINSeas for the top 666m at (a) 1x and anomalies due to increasing CO2 at (b) 2x,

(c) 3x, and (d) 4x. High values indicate a more stable water column and thus reduced convection. Only anomalies that are considered 95%

confident are shown (see section 2).
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1x, 2x, and 3x, equivalent to 111-yr cycles, and possibly

five oscillations at 4x, equivalent to 160 yr.

At 1x, the first EOF explains 87.2% of the variance of

theMSSAdata, which decreases to 30.8%at 4x. The first

EOF maps for all CO2 concentrations are characterized

by a singular deep overturning cell southward of 608N
that corresponds to basinwide variability of the AMOC.

This peaks between 408 and 508N at a depth of 800–

1000m for all CO2 concentrations. The northward

boundary of the cell is limited by the location of the sill

on the southern border of the GIN Seas. North of this

there appears to be two cells of different sign at 1x that

may correspond to a north–south shift in variability

within the GIN Seas and Arctic. The second EOF ex-

plains 3.2% of the variance of the AMOC at 1x in-

creasing to 19.5% at 4x. This EOF is more complicated,

showing positive and negative anomalies that may re-

flect variability in both the NADW and AABW cells.

At higher concentrations of CO2 the depth, southward

extent, and strength of variance in the main cell de-

creases, accompanied by a reduction north of 608N. The

region of greatest variance remains at approximately

408–508Nand 800-m depth for all simulations, in contrast

to MacMartin et al. (2016), who identified a northward

shift in variance at 4 3 CO2. The PC1 and PC2 time

series indicate a decline in the clarity of oscillations

and a possible shift toward lower frequency. At 1x and

2x AMOC amplitude and frequency is relatively co-

herent; however, at 3x there is a decline in amplitude

between 375 and 800 yr and at 4x both frequency and

amplitude appear relatively intermittent. This would

indicate that higher concentrations of CO2 influence not

only AMOC strength and depth of overturning, but also

the amplitude, frequency, and coherence of variability.

b. Time series variability

Tomeasure temporal variability, it is common to define

an AMOC index [meridional overturning index (MOI)]

at a latitude and depth where variability is greatest. Using

the first EOFs as a guide, MOIs are calculated as the

mean strength of the AMOC between 408 and 508N at a

depth of 800m for all CO2 concentrations. The MOI was

decomposed using SSA (see section 2), using the same

values for M (section 4a). As before, the procedure was

tested with a range of window lengths and the results

remained stable. Initial decomposition shows that the first

FIG. 6. (a) (left) First and (right) second EOFs of the reconstructed two leading eigenmodes (amount of variance outlined in text) of the

MSSA decomposed AMOC streamfunction, and the amount of variance they explain. (b) The corresponding PC1 and PC2 with theMOI

(mean strength of theAMOCbetween 408 and 508Nat 800m) and the SSA decomposedMOI (SSAMOI) reconstructed from the first and

second eigenmodes as outlined in the text. The correlation between PC1 and the SSA MOI is given at the bottom of each panel; (top)–

(bottom) 1x, 2x, 3x, and 4x, respectively.
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eigentriple accounts for greater than 99% of the variance

and corresponds to the overall trend of the time series.

This trend does not contain oscillatory components and

represents variability on longer time scales than those of

interest in this study. To isolate higher-frequency vari-

ability, the overall trend is reconstructed and extracted

and the resultant time series decomposed for a second

time. The EOFs, eigenvalues, and 2D graphs of the ei-

genvectors (not shown) can be used to identify eigen-

vectors that may constitute an approximate sine wave

with similar frequencies and a phase shift (see

Golyandina and Korobeynikov 2014). The first and sec-

ond eigenvectors are extracted and reconstructed for all

CO2 concentrations and are shown with the original

MOIs and the first and second PCs in Fig. 6. Together

they account for 39.53% (21.18% and 18.35%), 31.02%

(16.81%and 14.21%), 26.09% (14.33%and 11.76%), and

17.56% (9.15% and 8.41%) of the total variance for 1x,

2x, 3x, and 4x respectively. The correlation values be-

tween the MOI and PC1 are strong for each simulation,

indicating that the MOI successfully represents variabil-

ity within the overall AMOC streamfunction.

Power spectra for the original and the decomposed

MOI time series are shown in Fig. 7. Spectral peaks are

consistent for both MOIs, although variability at higher

frequencies has been removed for the SSA MOI spec-

trum. The peaks are significant at 1x, 2x, and 3x, but at 4x

the peak is only just discernible against the 95% confi-

dence interval of red noise. At 1x, the key time scale of

variability is on the order of 100–125 yr, in agreement

with the studies of VW04, JV13, and Menary et al.

(2012). With increasing CO2 there is a decrease in the

power of this variability and an apparent shift to lower

frequency at 4x. Spectral peaks are on the order of 112,

125, and 165 yr for 2x, 3x, and 4x respectively. This re-

iterates what is shown by the EOF analysis; higher

concentrations of CO2 act to weaken and possibly de-

crease the frequency of AMOC variability.

These results show the potential for CO2 to influence

the variability of the AMOC, a similar conclusion to that

found by MacMartin et al. (2016) with the GFDLmodel.

There are, however, disparities in the results between the

twomodels, namely thatMacMartin et al. (2016) focused

on a decadal 15–20-yr oscillation and showed that the

amplitude of variability remained consistent yet shifted

northward from 258–508 to 608N at 4x. We do not see this

northward shift and see a decline in the amplitude of

variability and a possible change in frequency. However,

both studies challenge the theory of the Stommel (1961)

box model, which stipulates that a weaker and thus less

stable AMOC should exhibit greater variability.

5. Feedback of variability on climate

To understand how the AMOC feeds back on cli-

mate, Fig. 8 shows composite anomaly maps for a

number of variables during periods of maximum

AMOC (AMax) compared to their mean state. Periods

of AMax are defined as the years where PC1 (Fig. 6) for

each CO2 concentration is more than one standard

deviation above the mean. A 10-yr running mean has

been applied to the climate variables followed by de-

composition and reconstruction via MSSA. Composite

maps showing AMOCminimum (AMin) are not shown

but broadly show the opposite pattern.

AMax coincides with a broad increase in SSTs north

of the equator compared to the mean, peaking at ap-

proximately 0.88C at 1x and 0.38C at 4x. Anomalously

warm temperatures are focused within and to the north

of the GIN Seas, ranging from 0.68 to 0.88C at 1x. In the

Arctic and to the south of the equator, AMax coincides

with a decrease in SSTs on the order of 0.18–0.48C,

FIG. 7. Power spectra for (left) the original MOI and (right) the SSA decomposed MOI reconstructed from the

eigenmodes outlined in the text for the four CO2 concentrations. The dashed lines represent the 95% confidence

interval calculated from the original corresponding MOI.
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although at 1x and 2x there are positive SATs anomalies

in the Arctic. Beyond this, anomalies in SATs and SSTs

broadly correlate, with positive SATs spread across

much of the central North Atlantic with cooling south of

the equator at 1x and to a lesser extent at 4x. At 1xNorth

Atlantic warming is on the order of 0.38–0.58C, peaking
in the northern GIN Seas region at 1.78C. Despite the

impact of AMax on SAT and SST, there is a negligible

impact on sea ice concentrations (not shown).

Periods of AMax are associated with a significant

northward shift in the position of the ITCZ over the

Atlantic at 1x, increasing (decreasing) precipitation

north (south) of the equator. This shift was first observed

in HadCM3 by VW04, who linked it to the generation of

salinity anomalies in the tropics (see section 6b). There

is also a weak trend for an increase in precipitation

across much of the North Atlantic extending into the

GIN Seas. The northward shift in the position of the

FIG. 8. (left)–(right) Composite climate anomaly maps during periods of AMax averaged over periods where the PC1 of the AMOC

streamfunction is one standard deviation above the mean for (top)–(bottom) 1x, 2x, 3x, and 4x.
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ITCZ is significantly weakened at higher CO2 concen-

trations, specifically at 2x.

The anomalously warm SSTs and SATs at AMax are

likely to drive the dipole pattern observed in SLP

anomalies that display a strong area of low pressure

north of the equator and high pressure to the south. The

strongest low pressure anomaly is on the order of 42Pa

located within and to the south of the GIN Seas. This

low pressure anomaly is also present at 2x but it di-

minishes in strength and expands into the high northern

latitudes at 3x and 4x.

6. Impact of CO2 onmechanisms driving variability

a. Convection in the GIN Seas

The degree of stratification and convection in the

GIN Seas region is likely to play a key role in driving

AMOC variability. As shown in Fig. 5, there is a re-

duction in the Brunt–Väisälä frequency in the GIN

Seas with increasing CO2 indicating weaker convec-

tion and so a reduced overall AMOC. We can also

investigate the degree of convection between periods

of AMax and AMin. Figure 9 shows the average depth

profiles in the GIN Seas for temperature, salinity, and

density anomalies during AMax and AMin, and

Fig. 10 shows the wind stress curl regressed onto the

MOI and salinity. At AMax, surface temperature

anomalies are warmer, below which to approximately

500m there is a small increase at 1x and a cooling at 2x,

3x, and 4x, before an increase between 500 and

2000m. Salinity and density show a large positive

anomaly to approximately 300m and remain positive

to approximately 2000m. When comparing the first

1000m of these anomaly profiles to the mean state of

FIG. 9. Depth profiles for the GIN Seas showing anomalies in (left) potential temperature, (center) salinity, and (right) density during

periods of AMax (solid) and AMin (dashed) for increasing concentrations of CO2. A 10-yr running mean and MSSA has been applied to

the climate variables.

FIG. 10. The regression coefficients for the regression of wind stress curl (Nm23) with the (top)MOI and (bottom) salinity in theGINSeas,

for (a) 1x, (b) 2x, (c) 3x, and (d) 4x. Only anomalies that are considered 95% confident are shown (see section 2).
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the GIN Seas in Fig. 3, the pattern of anomalies during

AMax is broadly opposite to the mean water profiles,

indicating a less stratified water column at AMax. The

opposite effect is seen at AMin.

This reduction in stratification acts to enhance

convection at AMax as shown by an increase in wind

stress curl in the GIN Seas (Fig. 10), particularly at 1x.

The increase in temperature and salinity and conse-

quent negative SLP anomaly (Fig. 8) acts to drive

anticyclonic winds, which, in addition to the Coriolis

force, drives a divergence in the Ekman layer and

upward Ekman pumping, reducing stratification and

subsequently increasing convection. Rather than the

initial driving force, this process may be a positive

feedback cycle that responds to an initial increase in

the AMOC strength and acts to further enhance

convection and strengthen the AMOC.

At higher concentrations of CO2 there is smaller

contrast in temperature, density, and salinity between

AMax and AMin, particularly in the top 1000m. As a

result the water column is more stratified during

AMax, which, as shown in Fig. 5, weakens convection

at higher CO2. There is also a possible shift in con-

vection to a region just north of Iceland at 2x and 3x,

an impact also shown in Fig. 5. This lessened con-

vection may reflect a weaker overall AMOC at higher

CO2, which in turn reduces the impact on SSTs and

SATs at AMax and consequently the increase in Ek-

man pumping, which is required to drive enhanced

variability.

b. Impact of regional salinity anomalies

Although Ekman pumping may enhance convection

in the GIN Seas that subsequently drives a period of

AMax, temperature- and salinity-driven density changes

are likely to initiate the shift between AMax and AMin.

As highlighted by Thorpe et al. (2001), the mean

strength of the AMOC is primarily influenced by

temperature-driven density changes. However, previous

studies have commonly focused on salinity anomalies as

the key driver of variability (Jungclaus et al. 2005;

Delworth et al. 1997) including within HadCM3

(Hawkins and Sutton 2008; JV13; VW04; Pardaens et al.

2003; Menary et al. 2012).

Figure 11 shows the no-lag correlation of MSSA sa-

linity averaged over the top 666m with the MOI. At 1x

there is strong correlation in the North Atlantic and the

GIN Seas and a strong negative correlation in the Arctic

and the southwestern North Atlantic basin. At in-

creasing CO2, this general pattern remains, with strong

negative correlation in the tropics and Arctic, yet there

is a weakening in the positive correlation in and around

FIG. 11. Correlation (no lag) of MSSA decomposed salinity anomalies with the MOI, for

(a) 1x, (b) 2x, (c) 3x, and (d) 4x. In (a) the boxes outline the GIN Seas, Caribbean, EGC, and

Arctic regions that are used in the lagged correlation analysis. Only anomalies that are

considered 95% confident are shown (see section 2).
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theGIN Seas. This is also highlighted in the lower panels

in Fig. 10, which shows a positive relationship between

Ekman pumping and salinity in the GIN Seas at 1x; this

weakens at higher CO2with an apparent southward shift

to a region just north of Iceland. This section will in-

vestigate the changing roles of salinity anomalies at

higher CO2.

As discussed, the studies of VW04, HS07, and JV13

concluded that salinity anomalies are created and ad-

vected primarily from the Arctic and Caribbean regions

via the EGC and NAC respectively and are the primary

method by which salinity anomalies are created in the

GIN Seas. JV13 showed via a salinity budget analysis that

regional processes such as sea ice fluctuations and surface

processes play only a small role. A number of previous

studies have highlighted the potential for Southern

Ocean processes to impact AMOC variability. Bakker

et al. (2016a) showed that fluctuations in the discharge

from the Antarctic ice sheets in response to subsurface

ocean temperatures influenced centennial-scale climate

variability. Studies have also linked AMOC variability to

circumpolar wind stress (Toggweiler and Samuels 1993)

and to Weddell Sea processes driven by sea ice fluctua-

tions and deep ocean convection (Martin et al. 2013; Park

and Latif 2008; Latif et al. 2013). We performed a lagged

correlation analysis of Southern Ocean salinity with the

MOI (not shown) but did not find any significant corre-

lations; therefore we will focus predominantly on the

Caribbean, Arctic, and GIN Seas region in this study.

Figure 12 shows the lagged correlations of salinity

with the MOI for the GIN Seas, EGC, Caribbean, and

Arctic (Table 1 and Fig. 11). Positive anomalies in the

GIN Seas andEGCoccur at approximately zero lag (i.e.,

at AMax), and salinity in the Caribbean region peaks at

approximately 30–53 yr prior to AMax and in the Arctic

between 37 and 50 yr (Table 2). Regional correlation

shows consistent oscillatory patterns, with time periods

between peaks of 110 and 130 yr, a comparable time

scale of variability to the MOI (Fig. 7). The strength of

correlations weakens at higher CO2 specifically for the

Arctic; however, the Caribbean remains relatively con-

sistent throughout.

To determine the time scale of salinity fluctuations, an

EOF analysis was applied to the MSSA decomposed

salinity in the different regions and the leading PCs

extracted and regressed onto salinity. Figure 13 shows

the MOI time series and the first PCs for the Arctic and

Caribbean regions. Here the PCs have been lagged with

the year where salinity in the region reaches a peak prior

to AMax as shown in Fig. 12 and Table 2. The corre-

sponding spectral analysis for each region is shown in

Fig. 14. Salinity fluctuations within the Arctic have a

greater magnitude than in the Caribbean and show

strong correlation with the MOI at 1x and 2x that de-

clines at higher CO2 particularly at 4x. At 3x, the decline

in the extent of variability beyond 400 yr is accompanied

by a reduction in variance within the Arctic. The power

spectra for Arctic salinity show strong similarities with

both the GIN Seas and the overall MOI spectra (Fig. 7),

indicating that this region has a strong relationship with

the overall time scale of AMOC variability. In contrast,

the strength of variability within the Caribbean region

remains relatively consistent and shows a small increase

at 4x. The power spectrum shows a significant peak at

FIG. 12. Lagged correlations of MSSA decomposed salinity

anomalies with the MOI for regions identified in Table 1 and

Fig. 11a, for (top)–(bottom) 1x, 2x, 3x, and 4x. Thick dashed lines

highlight 95% confidence for all time series (see section 2). Salinity

anomalies lead the MOI for negative lags.

TABLE 2. The lag values (yr) for the generation of positiveArctic

and Caribbean salinity anomalies prior to AMax. They have been

identified from the lead–lag analysis shown in Fig. 12. They have

been applied to the PCs for Arctic and Caribbean anomalies in

Fig. 13.

Simulation Arctic lag (yr) Caribbean lag (yr)

1x 37 43

2x 45 30

3x 48 38

4x 50 53
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approximately 160 yr at 4x, consistent with the MOI

spectra. Variability at lower CO2 concentrations shows

peaks that are compatible with the MOI but are small in

comparison to the Arctic.

The PC and spectral patterns may indicate that the

Arctic is key in setting the amplitude and time scale of

variability while the Caribbean plays a secondary role,

an idea similarly put forward by JV13. At higher con-

centrations of CO2, weaker variability in Arctic salinity

may drive a reduction in the overall amplitude of

AMOC fluctuations. In contrast, variability of salinity in

the Caribbean remains consistent and may increase,

indicating that this region is comparatively more im-

portant for driving variability at higher CO2.

1) ARCTIC ANOMALIES

To understand more clearly the development of sa-

linity anomalies in the Arctic, Fig. 15 shows the lagged

correlation of Arctic salinity with the MOI prior to and

following AMax. At 260 yr during periods of AMin, an

isolated positive anomaly develops in the Beaufort Gyre

in the center of the basin. This anomaly strengthens to a

peak at lag 240 yr (as shown in Fig. 12) before being

advected out of the gyre as shown in lag 220 yr. At this

time, a negative anomaly develops north of Siberia that

intensifies and spreads across the Beaufort Gyre at lag

zero and 120 yr during periods of AMax. This negative

anomaly is advected out of the basin at lag 140 yr and

may contribute in pushing the AMOC into a negative

phase. At this time, a positive anomaly develops off the

Siberian coast that intensifies at lag 160yr and restarts

the cycle. JV13 showed a similar pattern of Arctic salinity

anomalies across the Beaufort Gyre in HadCM3. This

cyclical generation of anomalies is present but weakens at

higher concentrations of CO2, concurrent with that

shown by the EOF, spectral, and lead–lag analysis.

There remains uncertainty as to how salinity anoma-

lies are generated in the Arctic and consequently how

this mechanism may weaken at higher CO2. A salinity

budget analysis may help to identify the role of different

inputs and how they are influenced at higher CO2;

however, we do not have the correct diagnostics to carry

out this type of analysis. JV13 performed such an anal-

ysis on a preindustrial simulation of HadCM3, con-

cluding that both sea ice processes and surface flow play

only a minor role in the generation of Arctic anomalies.

We cannot state that this is the case at higher concen-

trations of CO2; however, we do see only trivial fluctu-

ations in sea ice cover between AMax and AMin and

almost zero ice cover at 4 3 CO2, which may indicate

that sea ice plays only a small role.

JV13 linked the formation of these Arctic anomalies

to stochastic variations in SLP that alter the geostrophic

balance in the Beaufort gyre. A period of high (low) sea

level pressure drives an increase (decrease) in anticy-

clonic wind stress, strengthening (weakening) the gyre

and resulting in downwelling (upwelling) and freshening

(salinification) in the center of the basin and upwelling

(downwelling) and salinification (freshening) at the

coasts. We correlated MSSA SLP with the MOI (not

shown); however, correlations were weak with no con-

sistent pattern in the results to agree with this hypoth-

esis, specifically at 2x and 3x where the pattern of salinity

anomalies remain strong.

The study of HS07 stipulated that fluctuations in the

AMOC might act as a lagged positive feedback on

generating salinity anomalies in the Arctic. They high-

lighted an opposing pattern of salinity anomalies seen at

depth in the Arctic basin that may be generated by deep

advection of an opposing water mass from theGIN Seas.

This migrates to shallower depth following advection of

the surface anomaly. A lead–lag correlation analysis of

the MOI with Arctic salinity at a range of depths is

shown in Fig. 16. It indicates a relatively clear out-of-

phase relationship between anomalies at depth relative

to those at the surface. At 13CO2, a positive (negative)

anomaly at 5m (300m) follow approximately 40 yr

(30 yr) later from those at depth. This oscillatory nature

is coherent at 1x, 2x, and 3x but weakens at 4x. This

weakening is consistent with the idea that this is a pos-

itive feedback and a direct consequence of weaker

overall variability; that is, weaker variability is due to

weaker oscillations in GIN Seas salinity, which in turn

FIG. 13. The MOI (black) and PC1 for salinity anomalies from

the Arctic (blue) and Caribbean (red), for (top)–(bottom) 1x, 2x,

3x, and 4x. The PCs have been lagged with values identified in the

lead–lag analysis in Fig. 12 and shown in Table 2.
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drives weaker northward advection of anomalies into

the Arctic and thus inhibits the formation of surface

anomalies that are then advected south and required to

maintain variability. It remains uncertain, however,

what the overall driver is that weakens this mechanism.

It may be a response to an overall reduction in strength

of the AMOC; however, further experiments are re-

quired in order to test this hypothesis.

2) CARIBBEAN ANOMALIES

The study of VW04 previously linked the generation

of negative (positive) anomalies in the Caribbean to the

northward (southward) shift of the ITCZ and an in-

crease (decrease) in precipitation north of the equator

during AMax (AMin). The resulting anomaly is ad-

vected north and pushes the AMOC into an opposing

phase. This northward shift in the ITCZ is apparent in

the precipitation anomalies in Fig. 8, but it is less pro-

nounced at higher concentrations of CO2. Despite this,

evidence in Figs. 11–14 indicates that variability in Ca-

ribbean salinity remains consistent and may even in-

crease in amplitude at 4x.

A possible driver of this may be linked to the residence

time of salinity anomalies in the Caribbean region. VW04

concluded froma tracer experiment that salinity anomalies

advected from the Caribbean had a long residence time in

the subtropical gyre, with subduction to subsurface waters

prior to northward advection into the GIN Seas. Higher

concentrations of CO2 may influence this process in two

ways; first the weaker AMOC may slow the rate of

northward advection. Second, increased salinity in the

subtropical gyre at higher CO2 is accompanied by an in-

crease in stratification, which may reduce the rate of ver-

tical mixing, a similar impact to that observed in the

perturbed physics ensemble of JV13. Consequently the

residence time in the subtropical gyre is increased and,

because of relatively high evaporation, the salinity anom-

alies are intensified. This may not only produce the com-

paratively large anomalies at higher CO2, but also the

increased advection time may result in the apparent shift

toward lower frequencies (Fig. 14).

In addition to this, Caribbean salinity anomalies may

also be influenced by changes in surface runoff rate at

higher concentrations of CO2. Figure 17 shows the sur-

face runoff anomaly during periods of AMax for the

different simulations. There is a greater impact at higher

concentrations of CO2, where there is a positive anom-

aly toward the north of the continent and a negative

anomaly in the central regions. This general pattern at

3x and 4x reflects the change in precipitation rates over

FIG. 14. Power spectra of the PC1 of the MSSA decomposed salinity anomalies averaged over the top 666m, in

different ocean regions. These regions are identified in Table 1 and Fig. 11a. Note the change in scale for theArctic.

The dashed lines represent the 95% confidence interval where all spectra are considered significant.
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this region at AMax as shown in Fig. 8. However, at

these higher CO2 concentrations there is an increase in

the proportion of this precipitation that is converted to

runoff simulated by themodel (Fig. 17b). Thismay reflect

shifting vegetation dynamics across the Amazon region

(Fig. 17a), with a change from predominantly broadleaf

and C4 grasses at 1 3 CO2 to bare soil at higher CO2

concentrations. This dieback of theAmazon rain forest in

HadCM3 is a feedback that has been investigated in a

number of previous studies (Betts et al. 2004; Cox et al.

2000; Boulton et al. 2013) and reflects a ‘‘tipping point’’ at

which drying out and increasing temperatures overcome

CO2 fertilization and inhibit vegetation growth. Removal

of vegetation alters the partitioning of water, reducing

evapotranspiration and increasing infiltration driving a

positive surface runoff anomaly. The river routing

scheme (Gordon et al. 2000) channels this surface runoff

instantaneously into the ocean via river outflow points.

The key river catchment in this region is the Amazon

River, with an outflow point located in northeastern

Brazil at approximately the region of strongest negative

correlation in Fig. 11. The increase in runoff rate at this

point may help to drive the fluctuations in Caribbean

salinity that influence AMOC variability at higher CO2,

despite the reduced impact on the ITCZ.

This potential mechanism indicates that in addition

to tropical atmosphere–ocean feedbacks, AMOC

variability may also be influenced by terrestrial–ocean

feedbacks brought about by atmospheric changes (i.e.,

precipitation). This mechanism is strengthened at

higher CO2 due to Amazon dieback, which may act to

counter the weaker role of the Arctic in driving

AMOC variability. The potential for Amazon runoff

to impact salinity and consequently the AMOC was

also identified by Latif et al. (2000), albeit caused by

changes in precipitation rather than vegetation. We

are aware that Amazon dieback is an artifact of the

model that reflects regional trends in climate change,

specifically precipitation, that vary between GCMs

(Schaller et al. 2011). HadCM3 is therefore an extreme

case, with other GCMs more consistently simulating a

drier seasonal environment that remains forested

(Malhi et al. 2009). However, the potential feedbacks

of the land surface may have implications for pre-

dicting variability in climate models under increasing

CO2, a factor that has been largely overlooked. Fur-

thermore, it highlights a teleconnection between rel-

atively localized terrestrial land surface cover and

ocean variability that subsequently impacts climate

across the North Atlantic region.

FIG. 15. Lagged correlations of MSSA decomposed Arctic salinity averaged over the top 666mwith theMOI. Years before a change in

the MOI are shown above, for (top)–(bottom) 1x, 2x, 3x, and 4x. Only correlations that are considered 95% confident are shown (see

section 2).
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7. Summary and discussion

This study has used the HadCM3 coupled climate

model run for millennial time scales to investigate

the strength and variability of the AMOC at four

quasi-equilibrium CO2 concentrations; 350, 700,

1050, and 1400 ppm (experiments 1x, 2x, 3x, and 4x,

respectively). The AMOC streamfunction and an

assigned AMOC index (MOI) have been decom-

posed and reconstructed with multivariate singular

spectrum analysis (MSSA) and analyzed with EOFs

in order to remove noise and isolate variability. The

key findings are the following:

d AMOC strength is shown to decrease at higher con-

centrations of CO2 with a reduction of 30.2% at 2x,

29.8% at 3x, and 34% at 4x. This is likely to be driven

by a reduction in density in the Greenland–Iceland–

Norwegian (GIN) Seas, an increase in stratification and

so reduced convection that inhibits overturning.
d Only a small proportion of variability is explained by

the first and second eigenmodes of the MSSA-

analyzed AMOC streamfunctions (i.e., 11.19% at 1x).

This is increased for the SSA of the MOI (i.e., 39.53%

at 1x).
d Analysis indicates that low-frequency variability of

the AMOC is also weakened at higher CO2. Signifi-

cant frequencies are on the order of 100–125 yr for 1x,

2x, and 3x, which increases to 160 yr at 4x, with a

consecutive decrease in power with increasing CO2.
d The decline in the extent of AMOC strength and

variability has consequent impacts on climate during

periods of maximum and minimum AMOC.
d AMOC variability is likely to be driven primarily by

salinity-driven density changes in the GIN Seas, with

anomalies advected into the region predominantly

from the Arctic and Caribbean regions.
d A positive salinity anomaly acts to increase density,

which reduces stratification and consequently increases

convection; this then acts to increase downwelling and

consequently AMOC strength, increasing SSTs and

SATs and decreasing SLP, which enhances Ekman

pumping; and this in turn acts as a positive feedback,

further enhancing convection and AMOC strength.
d In HadCM3, salinity anomalies advected from the

Arctic may be key in driving variability, with the

Caribbean playing a secondary role.
d Higher concentrations of CO2 are associated with a

weakening in the amplitude and coherence of Arctic

salinity, which in turn may be responsible for reducing

the amplitude of AMOC variability. In contrast,

Caribbean fluctuations remain consistent and may

increase, indicating that this region may play a more

predominant role at higher CO2.
d Arctic salinity anomalies may be generated by deep

northward transport from the GIN Seas as indicated

by a contrasting pattern of salinity anomalies seen at

depth in the Beaufort Gyre. This seesaw, depth-

varying motion of anomalies may act as a positive

feedback to reduce variability at higher CO2 (i.e.,

decreased variability results in weaker northward

advection, weaker anomaly generation, and conse-

quently weaker variability). This may be a response to

the overall reduced strength of the AMOC; however,

further study incorporating a salinity budget and/or

tracer analysis is required to test this hypothesis.
d Tropical salinity anomalies may be formed by a shift in

the position of the ITCZ at 1x as identified in the study

of VW04. However, at higher CO2 an increase in the

residence time and/or change in surface runoff may

play an important role inmaintaining the amplitude of

anomalies. The former may be a response to a weaker

overall AMOC and an increase in stratification, which

increases the residence time of anomalies in the

evaporative subtropical gyre. The latter may be linked

to a CO2-induced vegetation dieback in the Amazon

FIG. 16. Lagged correlations of the MOI with MSSA decom-

posed Arctic salinity anomalies at a range of depths for (top)–

(bottom) 1x, 2x, 3x, and 4x. Thick dashed lines highlight 95%

confidence for all time series (see section 2). Salinity anomalies

lead the MOI for negative lags
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region, which increases surface runoff as a proportion

of precipitation. These drivers may contribute in

maintaining the generation of tropical salinity anom-

alies that helps drive AMOC variability despite

weaker Arctic fluctuations.

The modeled reduction in amplitude of variability that

accompanies a weaker overall AMOC that we see in this

study is in contradiction to theoretical analysis of time-

dependent systems, which predict an increase in vari-

ability as a system weakens and becomes more unstable

(e.g., Tziperman 1997). This was first highlighted in the

study of MacMartin et al. (2016) using the GFDL model

and we show that this is also the case with HadCM3.

The results here highlight that AMOC variability is

driven by a combination of mechanisms in HadCM3:

a possible internal ocean mode in the Arctic region

and a coupled atmosphere–ocean mode in the Carib-

bean region. Higher concentrations of CO2 act to alter

these mechanisms, weakening both the Arctic and

Caribbean modes and possibly driving a shift to an

atmosphere–terrestrial–ocean feedback in the tropics.

This is a single-model study and some of the mecha-

nisms presented here and how they may be influenced by

FIG. 17. Land surface cover and runoff in the Amazon region for (top)–(bottom) 1x, 2x, 3x,

and 4x. (a) Land surface cover, (b) the proportion (%) of runoff relative to precipitation for

each grid box (%), and (c) composite runoff anomaly maps (mmday21) calculated during

periods of AMax averaged over periods when the PC1 of the AMOC streamfunction is one

standard deviation above the mean. Only anomalies that are considered 95% confident are

shown (see section 2).
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CO2 are likely to be highly dependent on the model used.

Inaccuracies in the simulated overflow channels and issues

pertaining to resolution may have implications for the

AMOC. These subsequently lead to the modeled AMOC

being too shallow compared to observations, which may

have implications for the time scale and the mechanisms

that drive variability. Despite this, it is important and in-

teresting to understand how variability in models may re-

spond to climate forcing.Applying themethods outlined in

this paper would elucidate how variability in other models

responds to climate change. Understanding model in-

ternal variability is crucial in order to differentiate impacts

that are thought to be anthropogenically forced (i.e., a

CO2-induced weakening) relative to those that are a

‘‘natural’’ response of the modeled system. This may help

us improve our ability to more accurately predict the

AMOC and thus model decadal–centennial climate.
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