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ABSTRACT  

Non-canonical DNA structures which stall DNA replication can cause errors in genomic DNA. 

Here we investigated how the non-canonical structures formed by sequences in genes 

associated with a number of diseases impacted DNA polymerization by Klenow Fragment of 

DNA polymerase. Replication of DNA sequence forming i-motif from telomere, hypoxia-induced 

transcription factor and an insulin-linked polymorphic region (ILPR) was effectively inhibited. On 

the other hand, replication of mixed-type G-quadruplex from telomere was less inhibited than 

that of anti-parallel-type or parallel-type. Interestingly, the i-motif was a better inhibitor of 

replication than were mixed-type G-quadruplexes or hairpin structures, even though all had 

similar thermodynamic stabilities. These results indicate that both stability and topology of 

structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests 

that i-motif formation may trigger genomic instability by stalling replication of DNA causing 

intractable diseases.  

 

SIGNIFICANCE STATEMENT 

Alterations in non-duplex structures could play roles during DNA replication in the progression of 

cancer and other intractable diseases. These non-canonical structures differ topologically from 

each other. However, the role of these differences in diseases remains unknown. In this study, 

we found that the presence of i-motif structures in the template caused the DNA polymerase to 

stall immediately before these structures. The i-motif structures are more efficient than other 

structures such as G-quadruplexes and hairpins, although their thermodynamic stabilities are 

similar. This inhibition effect of the DNA polymerase was regulated by molecular crowding, which 

mimics conditions in the cell. Therefore, it is possible that the i-motif could impede DNA 

replication or repair and cause genomic instability. 

/body 

INTRODUCTION 

Non-canonical intramolecular structures of nucleic acids, such as a triplex and a quadruplex, are 

stabilized under conditions that mimic the crowded cellular conditions,(1) and have been 

detected in cells.(2, 3) In vitro and in vivo, guanine-quadruplex (G-quadruplex or G4) formation 
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inhibits transcription and translation of template nucleic acids.(4-8)  It is possible that the 

non-canonical structures act as “functional codes”, triggered by different molecular environments, 

which regulate gene expression epigenetically.(6, 7) As sequences capable of forming the 

non-canonical structures are found in telomeres and promoter regions of known oncogenes, 

alterations of the non-canonical structures could play important roles in the progression of 

cancer and in other diseases.(9) 

One of the remarkable features of non-canonical structures of nucleic acids is the diversity of 

topologies. In the case of G4s, antiparallel, mixed, and parallel type structures have been 

characterized (Figs. 1A-C). The sequences complementary to regions capable of G4 formation 

are composed of tandem repeats of cytosine, and these C-rich regions can form a different type 

of tetraplex topology, which is the i-motif.(10, 11) An intramolecular i-motif is formed upon the 

interaction of four C-rich regions. The structure has three loops and two parallel-stranded 

hairpin-like units stabilized by C:C+ base pairs that are vertically intercalated antiparallel to one 

another (Figs. 1D,E). The i-motif structures are categorized into Class I and Class II based on 

the lengths of the loops. C-rich sequences are found in telomeres and in the promoter regions of 

about 40% of human genes.(12, 13) As the i-motif is stabilized by hydrogen bonding between 

cytosine and protonated cytosine (C:C+),(14, 15) acidic conditions stabilize the structure.  As 

the i-motif can mediate transcriptional regulation of B-cell lymphoma 2 (Bcl2) oncogene in 

cells,(16) the environment inside these cells might be favorable to i-motif formation. Interestingly, 

the promoter region of the gene that encodes hypoxia-induced transcription factor, Hif1a, which 

is highly expressed in cancer cells, forms a very stable i-motif structure in vitro.(12, 17) The 

thermodynamic stability of the i-motif structure with Hif1a sequence under slightly acidic 

conditions is comparable to that of G4 formed by the opposite strand.(18) Since G4 formation in 

the template DNA causes breakage of the genomic DNA due to stalling of DNA polymerase 

during replication,(19, 20) the presence of an i-motif on the template DNA may be responsible for 

the mechanism of intractable diseases including cancer. Recently, the stability of G4 in vitro did 

not always depend on the frequency of genomic instability, which may indicate that different 

topologies affect replication. However, the effects of these topological differences, particularly 

the i-motif, remain unknown. 

In this study, we investigated the effect of structures formed in the template strand on the 

replication reaction. Under slightly acidic conditions, i-motif formation decreased the rate of 

replication by Klenow fragment DNA polymerase (KF). Gel electrophoretic analyses revealed 
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that the DNA polymerase stalled immediately before the i-motif forming region, indicating that the 

i-motif is an obstruction to the polymerase.  We compared the inhibition resulting from i-motif 

formation to that resulting from G4 and hairpin formation and found that the level of inhibition was 

determined not only by the stability but also by the topology of non-canonical DNA structures. 

The i-motif, anti-parallel, and parallel G4s repressed replication more effectively than mixed G4 

or hairpins with similar thermodynamic stabilities. These findings suggest that not only G4 but 

also the i-motif can induce genomic instability more than other non-canonical structures, which 

causes intractable diseases. 

 

RESULTS 

DNA replication reaction. In the template DNA the structure-forming sequence was adjacent to 

the region complementary to the primer (SI Appendix, Fig. S1). The 5’ terminus of primer DNA 

was labeled with fluorescein (FAM) in order to enable quantification of product formation. The 

gap between the region of a non-canonical structure and the primer binding region was four 

bases, which is a length selected to ensure that the structure adopted does not interfere with the 

formation of the elongation complex of KF and initial polymerization.(21) This design enabled us 

to discriminate stalled product from unreacted primer and full-length product. The i-motif forming 

sequences used are derived from the human telomeric sequence (C3TA2)4, the promoter region 

of Hif1a gene, a region complementary to a portion of the insulin-linked polymorphic region 

(cILPR), which is a regulatory sequence upstream of the gene encoding insulin, and the 

complementary sequence of an oncogene of Bcl2 (cBcl2). Also tested were G4-forming 

sequences (T2AG3)4, Q6, and ILPR (complementary G-rich sequence of cILPR), and 

hairpin-forming sequences (H1, H2, and H3). Q6 possesses four repeats of the G4 unit linked 

with the loop of the thrombin binding aptamer.(6) The control was a linear sequence not 

expected to form any stable structures. All the sequences are shown in SI Appendix, Table S1. 

Formation of the i-motif and G4 structures which have different topologies were confirmed by 

circular dichroism (CD) analyses at 37 °C in the buffer used for replication assays (SI Appendix, 

Fig. S2, S3).  

 

Replication of DNA containing an i-motif structure.   
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Although inhibition of DNA replication by a G4 formed within a template DNA strand has been 

studied before,(22) there have been no reports on the effects of i-motif structures on DNA 

replication. Therefore, we first examined replication of a template that contained the human 

telomeric sequence (C3TA2)4 forming the i-motif structure. The replication reaction was carried 

out with 1 µM KF and 250 µM dNTPs for 0.5 min at 37 °C, and the progress of the reaction was 

analyzed by quantification of fluorescently labeled products on denaturing polyacrylamide gel 

electrophoresis (PAGE). At pH 7.0, a condition in which (C3TA2)4 does not form the i-motif 

structure, the fluorescently labeled primer was completely converted to a longer product within 

0.5 min (Fig. 2A). By staining of DNA using SYBR Gold dye, we confirmed that the fluorescently 

labeled replication product had the same mobility as the template DNA (SI Appendix, Fig. S4). 

Thus, the replication of the (C3TA2)4-containing template yielded a full-length product. Under 

slightly acidic condition at pH 6.0, replication of the i-motif-forming template was repressed (Fig. 

2B). A band that migrated just above the primer band was observed in the reaction with the 

(C3TA2)4-containing template at pH 6.0 (Fig. 2B). The presence of this band indicates that the 

replication was stalled after primer extension of less than 10 nucleotides (SI Appendix, Fig. S4). 

Such a short band was not observed in the case of the replication of the Linear template (Fig. 

2C). These data suggest that the i-motif structure formed at low pH transiently stalled replication 

immediately before the structure. When the experiment was performed on a template containing 

the i-motif forming sequence found in the promoter region of Hif1a gene, which forms a 

particularly stable i-motif structure in vitro(12, 17), the results were more striking.  At pH 7.0, the 

replication of the Hif1a template was efficient (Fig. 2D), but at pH 6.0 virtually no full-length 

product was detected (Fig. 2E).  We did observe a small amount of a shorter product, indicating 

that the replication reaction was inhibited after elongation of less than 10 nucleotides (SI 

Appendix, Fig. S4). It was shown previously that KF stalls immediately before a G4 structure on 

a template.(22) To confirm that the shorter products resulted from stalling of the polymerase 

during progressive replication, we analyzed the replication from FAM-labeled primer S, which 

was 10 bases shorter than the original primer. Reactions using this primer generated the same 

length stalled product as those using the longer primer, indicating that the non-canonical 

structure did not disrupt template loading (SI Appendix, Fig. S5). Thus, during replication of the 

Hif1a template DNA, we confirmed that KF was stalled by the i-motif structure formed within the 

template. We also confirmed replication stall by T7 DNA polymerase which replicates genome of 

T7 phage (SI Appendix, Fig. S6). Therefore, stalling of replication at an i-motif can be considered 

to generally occur. 
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Dependence of replication efficiency on i-motif stability.   

To understand the relationship between the replication efficiency and i-motif stability, a UV 

melting analysis was performed on strands containing only the i-motif-forming region of the 

template sequences (Table 1, SI Appendix, Table S2 and Figs. S7, S8).  At pH 6.0, (C3TA2)4 had 

a melting temperature (Tm) of 31.4 °C and a free energy change at 37 °C (–∆G°37) of -0.70 kcal 

mol-1, whereas the Hif1a sequence had a Tm of 57.3 °C and a –∆G°37 of 3.1 kcal mol-1 (Table 1). 

These data suggest that the stalling effect of KF is related to the magnitude of -∆G°37.  We 

previously showed that transcription by RNA polymerase was halted at a G4 structure in the 

template DNA(6) and that the magnitude of the inhibition depended on the stability of G4. There 

has been no quantitative analysis of the effect of stabilities of non-canonical structures present in 

the template DNA on replication, but a previous study showed that replication was inhibited at a 

G4 and that the inhibition was more efficient in the presence of a G4 binding ligand expected to 

increase the stability of the G4 structure.(5) The data reported here suggest that i-motif can also 

inhibit replication in a stability-dependent manner. 

 

Effect of molecular crowding on the replication of i-motif-forming DNA. 

  To further investigate the replication of i-motif-forming DNA in cell-mimicking conditions, we 

examined replication in more physiologically relevant conditions in the presence of salt and 

crowding reagents using polyethylene glycol (PEG). In the presence of 100 mM KCl and 20 wt% 

PEG200 (average molecular weight is 200) at pH 6.0, the amount of full-length product 

replicated from the template containing the (C3TA2)4 sequence was quite similar to that in the 

absence of PEG200 (SI Appendix, Fig. S9A). Since the higher molecular weight of PEG shows 

more stabilization of i-motif due to the excluded volume effect, (23, 24) the replication might not 

be effectively stalled by the addition of 20 wt% PEG200. In fact, the addition of 20 wt% PEG200 

did not increase thermal stability of (C3TA2)4 i-motif, whose Tm was 28.7°C and –∆G°37 was -1.4 

kcal mol-1 (SI Appendix, Table S2). In the presence of 20 wt% PEG1000 (average molecular 

weight is 1000) at pH 6.0, a short product was detected on PAGE (SI Appendix, Fig. S9B), 

indicating that KF was stalled immediately before the i-motif structure. The stabilizing effect of 

PEG1000 was observed in the melting temperature of (C3TA2)4 (SI Appendix, Fig. S8 and Table 
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S2). The Tm in the presence of 20 wt% PEG1000 was 37.3 °C and the –∆G°37 was 0.1 kcal mol-1. 

In the case of Hif1a sequence, the thermodynamic stability was also not affected in the presence 

of PEG200 (Tm = 51.2 °C and –∆G°37 = 3.1 kcal mol-1) but increased in the presence of PEG1000 

(Tm = 59.7 °C and –∆G°37 = 4.2 kcal mol-1) (SI Appendix, Table S2 and Fig. S8). The Hif1a 

sequence stalled KF immediately before the i-motif structure in the presence of PEG1000, 

although PEG200 did not have an effect (SI Appendix, Figs. S9C,D). Interestingly, stalled 

replication could be observed even at pH 7.0 in the presence of 100 mM KCl and 20 wt% 

PEG1000 (SI Appendix, Fig. S9E). Although the detailed mechanism of stabilization of the i-motif 

structure by PEG1000 is unknown, the higher molecular weight PEG shifts the pKa of N3 in the 

cytosine base.(23, 24) As the i-motif structure is very compact compared to a random coil, a 

more pronounced excluded volume effect of higher molecular weight PEG1000 compared to that 

of PEG200 may contribute to the observed effect of PEG1000 on the replication of an 

i-motif-forming DNA. In summary, our results suggest that the cellular condition crowded with 

biomacromolecules stabilizes the i-motif structure, which facilitates the inhibition of replication. 

 

Replication rate is inversely correlated with stability of i-motif. 

To further analyze the correlation between the thermodynamic stability and replication rate, we 

evaluated the amount of product as a function of time (SI Appendix, Fig. S10). In the reaction 

with the (C3TA2)4 template in the absence of PEG at pH 6.0, stalled product was observed at 

0.16 min (SI Appendix, Fig. S10A). The amount of stalled product was decreased at 0.33 min 

and had almost disappeared by 1 min. On the other hand, full-length product was detected at 

0.33 min, and the conversion to full-length product was complete at 2 min. In the case of the 

replication of Hif1a sequence, stalled product was detected at 0.5 min, and the amount gradually 

decreased with time.  A small amount of full-length product was detected at 1 min and the 

amount increased at longer time points (SI Appendix, Fig. S10B). For both (C3TA2)4 and Hif1a 

templates, the increase in full-length product corresponded to a decrease in amount of the 

stalled product (Fig. 3A). The generation curves of full-length product were analyzed by global 

fitting (SI Appendix, Fig. S11) and rate constants, ks (min-1) for the reaction step of the stall of 

replication including the prior replication to the stalling position and kf (min-1) for the reaction step 

of generating full-length product after resolving the replication stall were calculated. The ks 

values were 4.5 min-1 and 0.38 min-1 at 37 °C and pH 6.0 for the templates containing the 
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(C3TA2)4 sequence and the Hif1a sequence, respectively (Table 1). These results indicate that 

KF took about 12 times longer time to overcome the more stable i-motif formed by the Hif1a 

sequence than to overcome that formed by the (C3TA2)4 sequence. The kf values were 4.5 min-1 

and 6.3 min-1 at 37 °C and pH 6.0 for the templates containing the (C3TA2)4 sequence and the 

Hif1a sequence, respectively (SI Appendix, Table S2), suggesting that the replication stall did not 

occur for the (C3TA2)4 sequence but the stalling step was the rate-determining step in the 

replication of Hif1a sequence. 

Fig. 3B shows a plot of the logarithm of replication rate constant (lnks) versus –∆G°37 for the 

template sequences investigated. The –∆G°37 value for the Linear control template was assumed 

to be 0. This plot includes data on an additional i-motif formed by cILPR. cILPR is a portion of the 

complementary sequence of insulin-linked polymorphic region, which forms a previously 

characterized i-motif.(18) The values of lnks decreased with increasing –∆G°37, and there is a 

good linear correlation. As ∆G° is equal to –RT lnK (R is a gas constant and K is the equilibrium 

constant), ∆G° also can be described as –RT ln(k1/k-1), where k1 is the rate constant of structure 

formation and k-1 is the deformation rate constant. Because the stabilities of DNA structures 

depend on hydrogen bonding and stacking interactions between bases, k1 values for DNAs of 

similar chain lengths are similar, and thus k-1 is a dominant factor in stability.(25) Therefore, the 

linear relationship between lnks and –∆G°37 indicates that the replication rate through an i-motif is 

mainly proportional to the rate of the unfolding of the i-motif structure (k-1). As the temperature 

was constant in our analysis, we infer that lnks is proportional to the activation free energy ∆G‡. 

The ∆G‡ of the unfolding of a DNA duplex (∆G‡
off) has a linear correlation with the stability of the 

DNA duplex (–∆G°),(26) and the activation free energy of dissociation of a DNA duplex depends 

on the sequence (GC content) and length.(27, 28) Therefore, to unwind structured DNAs, the 

polymerase must decrease the ∆G‡
off or rely on spontaneous dissociation of the structured DNA. 

It is possible that reduced enzyme processivity due to low pH and PEG may be the factor in the 

replication stall. Low pH and PEG do affect enzyme processivity because the ks of Linear 

template at pH 7.0 in the absence of salt and PEG was 18 min-1, which was about 5-fold larger 

than that at pH 6.0 (SI Appendix, Figs. S10, S11, and Table S2). However, the slope of the lnks vs 

–∆G°37 plot of i-motifs, which indicates the magnitude of ∆G‡ for the unwinding process of i-motif 

by KF, showed similar values at pH 6.0 in the absence of salt and PEG (-0.83), in the presence of 

100 mM KCl without PEG (-0.73), and pH 7.0 in the presence of 100 mM KCl and 20 wt% 

PEG1000 (-0.55) (SI Appendix, Figs. S12-S14) (discussion of PEG200 in the next section). The 
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similar value obtained for the slope indicated that the unwinding of i-motif was dominated by the 

same mechanism, not by enzyme properties, in various conditions. Thus, the increased stalling 

at the i-motif was due to folding of the i-motif and not reduced enzyme processivity at low pH 

or in PEG.  

 

Effect of topology of structured DNAs on the replication reaction. 

We next analyzed the replication of template DNAs having sequences that can form different 

structural topologies. First, we investigated the replication of a template DNA containing a hairpin 

structure. The sequences contained stems of four (H1), nine (H2), and twelve (H3) base pairs, 

and all had a four-nucleotide loop characterized previously.(6) The –∆G°37 values obtained from 

UV melting experiments in 40 mM MES (pH 6.0) and 8 mM MgCl2 were 2.2, 4.0, and 8.3 kcal 

mol-1 for H1, H2, and H3, respectively (Table 1, SI Appendix, Table S2, and Fig. S7). Thus, each 

of these hairpins is more stable than the i-motif structure adopted by (C3TA2)4, which has a –

∆G°37 of -0.70 kcal mol-1. Interestingly, KF did not stall on any of the hairpin-containing templates 

(SI Appendix, Fig. S10). 

We also analyzed replication of templates that contained regions able to form G4 in different KCl 

concentrations. For the template containing (T2AG3)4 in the presence of 30 mM KCl at 37 °C and 

pH 6.0, stalled product was observed at 0.16 min (Figs. 3C, and SI Appendix, S10I) and the 

full-length product increased correspondingly. UV melting showed that the –∆G°37 value of 

(T2AG3)4 was 3.0 kcal mol-1 in the presence of 30 mM KCl (Table 1 and SI Appendix, Fig. S7). 

We also confirmed that the stalled product was due to a replication block at the G4 structure (SI 

Appendix, Fig. S5D). Interestingly, although Hif1a, H2, and (T2AG3)4 in 30 mM KCl showed 

similar stabilities (Table 1), the ks values differed, indicating that the replication stall depended on 

not only the stability, but also topology. 

The plot of lnks versus –∆G°37 for hairpin DNAs and (T2AG3)4 at 1, 10, 30, and 50 mM KCl were 

linear as shown in the case of i-motif templates (Fig. 3B). The slope of the lnks versus –∆G°37 is 

-0.048 for hairpin structures and was -0.28 for (T2AG3)4, which is different from that of -0.83 for 

the i-motif, indicating that the activation free energy (∆G°37
‡) required to unwind the i-motif 

structures was about 17-fold or 3-fold higher than that required to unwind hairpin or (T2AG3)4 G4, 

which forms a mixed structure (SI Appendix, Fig. S2). The data for the template containing the 
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G4 ILPR which forms parallel structure(29) and Q6 sequences at 1 mM KCl which forms 

anti-parallel structure also showed a different stability tendency and ks value (Table 1). Those 

plots did not fall on the line with data for (T2AG3)4-containing templates. This suggests that the 

topology of G4 affects the efficiency of unwinding. Interestingly, the data for the ILPR and Q6 

template showed a correlation with data on i-motifs, suggesting that the i-motif is a strong block 

for replication as well as parallel/anti-parallel G4s.   

To investigate the effect of i-motif topology on replication, we tested the Class II i-motif cBcl2 

sequence (Fig. 1E) that is found in the promoter region of the Bcl2 oncogene. In this case, we 

observed two major bands shorter than the full-length product (SI Appendix, Fig. S15A). The 

Bcl2 sequence can adopt i-motif structures of different conformations and the sequence can also 

form a hairpin structure, due to the presence of six cytosine tracts.  If multiple conformers are 

present more than one stalled product might be observed. Moreover, there were unexpected 

smeared bands above the full-length product band. Since a nascent DNA product from the 

replication of triplet repeat such as (CGG)n and (CAG)n, which forms hairpin-like structure, 

potentially causes longer product than the template,(30) the transient hairpin structure of the 

nascent DNA product from cBcl2 template might increase the size of product. Therefore, we 

calculated the rate of full-length product formation including the smeared bands. As a result, the 

lnks value was -0.18, and –∆G°37 value was 3.0 kcal mol-1 (SI Appendix, Figs. S15B,C). On the 

lnks vs. –∆G°37 plot, the cBcl2 i-motif conformed to the linear correlation of Class I i-motifs (Fig. 

3B), which indicates that the topology of i-motif does not influence the replication stall. Based on 

these experiments, we conclude that the Class II i-motifs with longer loops and Class I motifs are 

unwound by a similar mechanism. 

The topology and stability of non-canonical structures are also affected by the crowding condition. 

Experiments were also performed in the presence of 20 wt% PEG200 (Figs. 3D, SI Appendix, 

Fig. S12). In the case of the i-motif, the slope of lnks vs -∆G°37 was -0.12 (Fig. S16), whose 

magnitude was about six-fold smaller than that in the absence of PEG200 (-0.74) (SI Appendix, 

Fig. S14B). Thus, the stalling effect of i-motif decreased in 20 wt% PEG200 compared to 

conditions without PEG200. Our recent study suggested that ethylene glycol binds to the duplex 

and disrupts the hydrogen network around Watson-Crick base pairing.(31) All stabilities of the 

i-motif in the presence of 20 wt% PEG200 decreased compared to stabilities in corresponding 

conditions without PEG200. Therefore, PEG200 might uniquely interact with the base pairs of 

the i-motif and decrease stability, thereby increasing replication efficiency. On the other hand, in 
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the presence of 20 wt% PEG200 and 30 mM KCl induced the transformation of (T2AG3)4 from a 

mixed to a parallel topology (SI Appendix, Fig. S3).(32) Replication was effectively repressed 

and showed a similar slope of the lnks vs -∆G°37 plot (-0.87) to that of the i-motif observed in the 

absence of PEG200 (-0.83) (SI Appendix, Figs. S16, S14A). Thus, this transformation may 

inhibit replication more efficiently as observed in the case of ILPR. In the presence of PEG1000, 

the replication of i-motifs was effectively repressed (Fig. 3D). The slope of lnks vs -∆G°37 was 

-0.56, which was close to that observed in the absence of PEG200 (-0.83) (SI Appendix, Figs. 

S16, S14C). Therefore, a specific molecular environment with various conditions of molecular 

crowding regulates the processivity of KF along a template DNA based on the activation free 

energy for unwinding by changing the stability and the topology of the DNA structure formed. 

 

DISCUSSION  

In this study, we found a linear correlation between the logarithm of the replication rate constant 

(lnks) and the stability (–∆G°37) of particular structural topologies of non-canonical structures in 

the template DNA, indicating that the rate limiting step of structure unwinding by KF is 

determined by both stability and topology of the structure formed within the DNA template. We 

reported previously that the processivity of T7 RNA polymerase in the transcription reaction was 

influenced by both hairpin and G4 structures formed within the template DNAs.(6) The rates of 

transcription reaction were correlated with the stabilities of the structures, and the lack of 

relationship with topology may indicate that the unwinding mechanisms of RNA polymerase and 

KF are different.(33) Some G4-specific helicases show topological specificity. For example, the 

telomere protein TPP1 more efficiently unwinds antiparallel G4 structures like Q6 than it does 

parallel G4.(34) In contrast, RNA helicase RHAU preferentially binds to parallel G4 structures 

like that of ILPR.(35) These results imply that the processivity of DNA polymerase requires the 

assistance of different types of helicases able to unwind various topologies. 

KF has an ability to unwind hairpin structures, presumably through an unzipping mechanism, 

which is essentially the reverse of the folding process. Based on the nearest neighbor model, 

stability of a duplex region of a hairpin is determined by the sequence and number of stacked 

base pairs.(36, 37) Terminal base pairs “breathe” and are easily dissociated.(38) Therefore, KF 

may induce unzipping of a hairpin in a mechanism that does not depend on the overall free 

energy of the hairpin structure (Fig. 4A). In the case of i-motif, the structural topology 
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encountered by the polymerase is quite different from those in hairpin and mixed G4 structures, 

and the loop structure of the i-motif likely presents a steric obstruction to unwinding of C:C+ base 

pairs (Fig. 4B).  Furthermore, in the i-motif structure, two parallel strand C:C+ base pairs 

mutually intercalate with each other and form the tetraplex. In this conformation, the base pair 

next to the terminal base pair belongs to the other parallel strand. Therefore, the consecutive 

unzipping from the terminal base pairs by breathing should be repressed due to the stacking by 

the intercalated base pairs from the other parallel strand. Replication through an i-motif-forming 

region may require the complete unfolding of the structure, leading to our observations. This 

might be a reason why G4 showed different enzyme processivities. In the case of mixed G4, 

although the stability of a terminal quartet is presumably higher than that of a terminal base pair 

of a duplex, once the terminal quartet is unzipped by breathing, the stability of the overall 

structure is decreased and KF can proceed (Fig. 4C). As for other G4 topologies, the breathing 

of the terminal quartet might be repressed, because metastable intermediates formed due to 

strand slippage via triplex formation occur during unfolding (Fig. 4D).(39) Data on the ILPR and 

Q6 G4s fall on the line of lnks vs –∆G°37 data on i-motif-forming sequences. This suggests that it 

is also possible that metastable intermediates in the unfolding reaction might prolong 

dissociation of the i-motif. 

In cells, helicases assist DNA polymerase in replication of structured DNAs. A variety of 

helicases that unwind G4 have been identified, and defects in helicases that unwind these 

structures are associated with genetic diseases.(40) This phenomenon implies that the 

topological properties of structures formed in DNA templates are important. A recent study 

showed that the anti-parallel G4 on the leading strand with Tm values even less than 

physiological temperature could cause genomic instability.(41) This phenomenon implies that the 

replication stall due to the topology of non-canonical structures is also influenced by helicase 

polarity. Helicases that unwind i-motif structures have not yet been identified. However, i-motif 

binding proteins such as hnRNPA1 and hnRNPLL induce unwinding of i-motif structures.(42-44) 

It has also been suggested that negative supercoiling induced by RNA polymerases promote 

i-motif formation in cells.(45) Our data suggest that i-motif formation can block replication, and 

this in turn may result in genomic instability. Genomic instability is associated with cancer 

development and also with chronic diseases such as diabetes.(46, 47) It is possible that 

mutation in or dysregulation of expression of i-motif binding proteins or the acidic pH of the 

cancer cell environment may promote or lead to stabilization of i-motif formation. Moreover, there 
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exists a lower number of the free water in tumor cells than normal cells,(48) which might be due 

to highly crowded condition and extremely stabilize i-motif formation.  

In conclusion, template DNA that forms an i-motif especially decreased the processivity of DNA 

polymerase through a mechanism likely due to the unique topology of base pairs that stabilize 

the i-motif. Unwinding of i-motif structure by processive activity of KF had an about 3-fold higher 

activation free energy barrier (∆G°37
‡) than that for unwinding of mixed G4s. The stalling was 

correlated with stability of the i-motif structure and was regulated by crowding molecule size. 

Therefore, it is possible that the i-motif may cause genomic instability in cancer cells. Our novel 

physicochemical approach can be applied to the screening of the ligands capable of inducing 

formation of specific topologies that stall replication. Development of topology-specific binders 

may enable site-specific control of genomic instability and expression of genes triggered by the 

non-canonical structures targeted. 

 

Materials and Methods 

Detailed information of the materials and methods used in this study are provided in SI Materials 

and Methods. 
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 Table 1. Thermodynamic and kinetic parameters of the structured sequence region 

on each template DNA at pH 6.0 

  

 

 

 

 

 

 

a All experiments were performed in 40 mM MES (pH 6.0) and 8 mM MgCl2 without both KCl and PEG 

except for the case of (T2AG3)4. Oligonucleotides corresponding to the structured region of indicated 

templates were evaluated at 10 µM strand concentration. 

b Experiments for (T2AG3)4 were performed in 40 mM MES (pH 6.0), 8 mM MgCl2, and 30 mM KCl. 

  

  

DNA topology Sequence Tm  

(°C) 

–∆G°37  

(kcal mol-1) 

ks 

(min-1) 

i-motif (C3TA2)4 31.4± 0.1 -0.70 ± 0.01 4.5 ± 0.1 

 Hif1a 57.3 ± 0.1 3.1 ± 0.2 0.39 ± 0.11 

Hairpin H2 75.8 ± 2.2 4.0 ± 0.2 3.7 ± 0.1 

Mixed G4b (T2AG3)4 62.8 ± 0.5 3.0 ± 0.2 2.6 ± 0.3 

Parallel G4 ILPR 58.1 ± 0.2 2.1 ± 0.3 0.54 ± 0.4 

Anti-parallel G4 Q6 71.1 ± 0.3 4.5 ± 0.1 0.08 ± 0.03 
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Figures 

 

Figure 1. Schematic illustrations of topologies of (A) antiparallel G4, (B) mixed G4, (C) parallel 

G4, (D) Class I i-motif and (E) Class II i-motif having longer loops than Class I. 

 

 

Figure 2. Representative PAGE analyses of replication reactions with (A) (C3TA2)4 template DNA 

at pH 7.0, (B) (C3TA2)4 template DNA at pH 6.0, (C) linear template DNA at pH 6.0, (D) Hif1a 

template DNA at pH 7.0 and (E) Hif1a template DNA at pH 6.0. The images were captured using 

a fluorescent imager, thus only DNA containing the fluorescent label is visualized. Images of the 

same gels stained to visualize all DNA are shown in Fig. S2.  Reactions were carried out with 1 
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μM KF, 1 µM DNAs and 250 μM dNTPs in 40 mM MES buffer (pH 7.0 or 6.0) for 2 min at 37 °C. 

The asterisk indicates the position of major stalled product. The values at the bottom of the gel 

image are the percentages of full-length product. 

 

Figure 3. Kinetics of replication of DNA templates containing non-canonical structures. (A) 

Ratios of stalled (dotted lines) and full-length (solid lines) to total product of (C3TA2)4 (blue), Hif1a 

(red), and linear (green) templates as a function of time. (B) Plot of -∆G°37 values versus the 

logarithms of rate constants (ks) for reactions to dissolve the stall from reaction start along 

i-motif-forming templates (blue), G4-forming templates (red), and linear template (green). Data 

on G4 ILPR template was excluded from fitting of the G4 data. (C) Ratios of stalled and 

full-length to total products of (T2AG3)4 replication in the presence of 1 mM KCl (blue) and 30 mM 

KCl (red) and of linear (green) replication in the absence of KCl as a function of time. (D) Ratios 

of full-length product to total product of Hif1a in the presence of 100 mM KCl and 20 wt% 

PEG200 (blue) and in the presence of 100 mM KCl and 20 wt% PEG1000 (red). All the reactions 
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were carried in 40 mM MES (pH 6.0), 8 mM MgCl2, 1 μM KF, 1 µM DNAs, and 250 μM dNTPs at 

37 °C. 

 

Figure 4. Proposed mechanism of unwinding of structured DNAs in templates containing various 

structures. (A) The terminal base pair of a hairpin is relatively unstable. Thus, polymerase can 

induce unzipping one base pair at a time to proceed through a hairpin. (B) In the i-motif structure, 

the loop region can be a block for polymerase, and the base pair has a different topology from 

the first, which likely stalls the polymerase. (C) Replication of mixed G4 structure presents an 

obstacle as the terminal quartet is more stable than the terminal base pair of a hairpin. Once the 

terminal G-quartet is unzipped, the stability of G4 is significantly reduced and replication 

proceeds rapidly. (D) Parallel/anti-parallel G4s have a different unfolding pathway, which 

repressed the terminal breathing and enzyme processivity as well as the i-motif. 
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Materials and Methods 

 

Materials. dNTPs were purchased from Takara Bio.  Other reagents were purchased 

from Wako Pure Chemicals and used without further purification.   

 

Oligonucleotides. HPLC-purified FAM-labeled primer and template DNAs were 

purchased from Japan Bio Service. All DNA sequences used in this study for replication 

assays are listed in Table 1. 

 

Enzyme. The gene encoding Klenow Fragment was amplified from E.coli JM109 

genome DNA by PCR carried out with PrimeSTAR DNA polymerase (Takara Bio) and 

primers (5’-GGGACCATATGGTGATTTCTTATGACAACTACG-3’ and 

5’-GGGAGAATTCTTAGTGCGCCTGATCCCAG-3’) purchased from Eurofin Genomics. 

The cloned DNA fragments were digested with NdeI and EcoRI, and cloned into 

pMal-p5x vector (New England Bio Labs). E.coli EG2523 (New England Bio Labs) was 

transformed with the constructed vector. The cells were cultured in LB medium to an 

A600 of around 0.5, followed by addition of isopropyl β-D-1-thiogalactopyranoside and 

further culture. The cultured cells were harvested and lysed. The soluble fraction was 

loaded on the column packed with amylose resin (New England BioLabs). After 

treatment with the Factor Xa protease, KF was purified over a Hitrap Heparin column 

followed by purification through Hiload Superdex 200 (GE Healthcare). The 

concentration was determined by UV absorbance at 280 nm using the molar extinction 

coefficient of 58,790. 

DNA polymerase gp5 from T7 phage conjugated with E. coli thioredoxin was purchased 

from New England BioLabs. The helicase gp4 was overexpressed from the E. coli 
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BL21(DE3) pLysS strain (Merck) carrying the expression plasmid encoding the 

C-terminus his-tagged gp4 cloned from T7 DNA. The recombinant gp4 was purified 

through Histrap HP, Hitrap Heparin, and Hiload Superdex 200 columns.  

 

Replication assay. Primer and template DNA were annealed in the buffer used in the 

replication reaction: 40 mM MES (pH 6.0), 8 mM MgCl2, 1 μM KF, 1 μM DNA, and 250 

μM dNTPs. KCl and PEG200 or PEG1000 were added as indicated. After preparation of 

the solution, the mixtures were incubated at 37 °C. The reaction was stopped by 

addition of the solution containing EDTA and formamide. Products were separated by 

on 12% polyacrylamide gels containing 8 M urea at 70 °C for 1 hour at 200 V in TBE 

buffer. The gel images were captured using a Fujifilm FLA-5100 fluorescent imager 

before and after staining with SYBR Gold (ThermoFisher Scientific). The intensities of 

bands were analyzed by NIH ImageJ software. The amount of full-length product (P) 

was quantified by calculating the ratio of intensity of full-length product band to intensity 

of all bands. The kinetic model was applied to the two-step sequential model;  

𝑃0
𝑘𝑠
→𝑃𝑆

𝑘𝑓
→ 𝑃𝐹 

where P0 is the starting state of reaction, Ps is the state immediately after dissolving the 

stall by non-canonical structure is removed, Pf is the state after finishing replication fully, 

ks (min-1) is the rate constant of dissolving the stall from reaction start by KF, and kf 

(min-1) is the rate constant of full-length product after dissolving replication stall. Rate 

constants were evaluated by global fit using Dynafit (Biokin) and linear correlations 

were analyzed by KaleidaGraph (Synergy Software). All experiments were carried out in 

three independent experiments at least. 

 

Circular dichroism measurements. For CD measurements, 10 µM oligonucleotide 

was dissolved in buffer used in the replication assay without dNTPs. Samples were 
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heated at 95 °C for 3 min and then cooled to 20 °C at the rate of 1.0 °C/min. The CD 

spectra were collected using a JASCO J-1500 at 37 °C. We assigned the structures 

from CD spectra from the typical characteristics (i-motif: a positive peak at 290 nm, 

anti-parallel G4: a positive peak at 295 nm, parallel G4: a positive peak at 265 nm, 

mixed: a spectra like mixture of anti-parallel and parallel G4). 

 

UV melting assay. For melting analyses, 10 µM oligonucleotide with the sequence of a 

structure forming region within the template (Table 1) was dissolved in buffer used in the 

replication assay without dNTPs. The melting analyses were carried out on the 

Shimadzu UV-1800 equipped with a temperature control system. Samples were cooled 

from 90 °C to 0 °C at the rate of 1.0 °C/min and then temperature was increased from 

0 °C to 90 °C at the rate of 0.5 °C/min. The UV melting curves were normalized and 

analyzed by curve fitting by KaleidaGraph (Synergy Software) to determine 

thermodynamic parameters based on two-state model thermodynamics as described 

previously.(1) For i-motif sequences, we analyzed the change in absorbance at 295 nm 

based on a two-state model. Because the absorbance change at 295 nm showed the 

formation and dissociation of C:C+ base parings, we considered the thermodynamic 

core stability of C:C+ base pairs as the thermodynamic stability of the whole structure of 

i-motif.(2) All experiments were carried out in three independent experiments at least. 

 

Reference 

1. Takahashi S & Sugimoto N (2013) Effect of pressure on the stability of G-quadruplex 

DNA: thermodynamics under crowding conditions. Angew. Chem. Int. Ed. 

52(51):13774-13778. 

2. Mergny J L & Lacroix L (1998) Kinetics and thermodynamics of i-DNA formation: 

phosphodiester versus modified oligodeoxynucleotides. 26(21):4797-803. 
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Table S1. DNA sequences used in this study 

 DNA sequence 

FAM labeled primer 

5'-FAM-GGGATGATACTAGTGCTTCGGCTTAATACGACTCACTATAG

GG-3' 

(C3TA2)4 template 

5'-CCCTAACCCTAACCCTAACCCTAACGGCCCCTATAGTGAGTCGT

ATTAAGCCGAAGCACTAGTATCATCCC-3' 

(T2AG3)4 template 

5'-TTAGGGTTAGGGTTAGGGTTAGGGCGGCCCCTATAGTGAGTCG

TATTAAGCCGAAGCACTAGTATCATCCC-3' 

Hif1a template 

5'-CGCGCTCCCGCCCCCTCTCCCCTCCCCGCGCCCCCTATAGTG

AGTCGTATTAAGCCGAAGCACTAGTATCATCCC-3’ 

Q6 template 

5'-GGGGTTGGGGTGTGGGGTTGGGGAGGACACGGTGACCCCCT

ATAGTGAGTCGTATTAAGCCGAAGCACTAGTATCATCCC-3’ 

cILPR template 

5’-CCCCACACCCCTGTCCCCACACCCCCGGCCCCTATAGTGAGTC

GTATTAAGCCGAAGCACTAGTATCATCCC-3' 

ILPR template 

5’-GGGGTGTGGGGACAGGGGTGTGGGGCGGCCCCTATAGTGAG

TCGTATTAAGCCGAAGCACTAGTATCATCCC-3’ 

H3 template  

5'-GCCGTCCAACTATCGGACTTCGGTCCGATAGTTGGCCCCTATAG

TGAGTCGTATTAAGCCGAAGCACTAGTATCATCCC-3’ 

H2 template 

5'-GCCGTTTCGTAGTCTATCGGACTTCGGTCCGATAGCCCCTATAG

TGAGTCGTATTAAGCCGAAGCACTAGTATCATCCC-3’ 

H1 template 

5'-GCCGTTTCGTAGTATTTCTATCCGGACTTCGGTCCCCCCTATAG

TGAGTCGTATTAAGCCGAAGCACTAGTATCATCCC-3’ 

Linear template 
5'-GATTGATGTGATTGATTTGATTGATGTGATTGACCCTATAGTGA

GTCGTATTAAGCCGAAGCACTAGTATCATCCC-3' 

(C3TA2)4 5’-CCCTAACCCTAACCCTAACCCTAA-3’ 
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(T2AG3)4 5'-TTAGGGTTAGGGTTAGGGTTAGGG-3’ 

Hif1a 5’-CGCGCTCCCGCCCCCTCTCCCCTCCCCGCGC-3’ 

Q6 5’-GGGGTTGGGGTGTGGGGTTGGGG-3’ 

cILPR 5'-CCCCACACCCCTGTCCCCACACCCC-3’ 

ILPR 5'-GGGGTGTGGGGACAGGGGTGTGGGG-3’ 

H3 5'-CCAACTATCGGACTTCGGTCCGATAGTTGG-3’ 

H2 5'-CTATCGGACTTCGGTCCGATAG-3’ 

H1 5'-GGACTTCGGTCC-3’ 
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Table S2. Thermodynamic and kinetic parameters of the structured sequence region 

on each template DNA 

DNA 

Sequence 

Condition Tm  

(°C) 

–∆G°37  

(kcal mol-1) 

ks 

(min-1) 

kf 

(min-1) 

(C3TA2)4 0 mM KCl and 0% PEG at pH 6.0 31.4 ± 0.1 -0.70 ± 0.01 4.5 ± 0.1 4.5 ± 0.1 

 100 mM KCl and 0% PEG at pH 6.0 30.6 ± 0.1 -0.90 ± 0.03 3.6 ± 0.1 3.6 ± 0.1 

 100 mM KCl and 20% PEG200 at pH 

6.0 

28.7 ± 0.1 -1.4 ± 0.1 2.8 ± 0.2 4.1 ± 0.9 

 100 mM KCl and 20% PEG1000 at pH 

6.0 

37.3 ± 0.2 0.04 ± 0.03 1.2 ± 0.3 5.4 ± 1.8 

cILPR 0 mM KCl and 0% PEG at pH 6.0 44.7 ± 0.1 1.3 ± 0.1 0.83 ± 0.14 11 ± 2.7 

 100 mM KCl and 0% PEG at pH 6.0 45.4 ± 0.3 1.3 ± 0.1 0.78 ± 0.02 6.7 ± 2.0 

 100 mM KCl and 20% PEG200 at pH 

6.0 

44.2 ± 0.1 1.0 ± 0.1 2.1 ± 0.4 9.0 ± 5.2 

 100 mM KCl and 20% PEG1000 at pH 

6.0 

50.6 ± 0.2 2.0 ± 0.1 0.44 ± 0.02 7.0 ± 0.2 

Hif1a 0 mM KCl and 0% PEG at pH 6.0 57.3 ± 0.1 3.1 ± 0.2 0.39 ± 0.11 6.3 ± 2.0 

 100 mM KCl and 0% PEG at pH 6.0 54.9 ± 0.2 3.1 ± 0.1 0.072 ± 

0.010 

1.0 ± 0.1 

 100 mM KCl and 20% PEG200 at pH 

6.0 

51.2 ± 0.1 3.1 ± 0.1 0.47 ± 0.03 15.2 ± 

9.8 

 100 mM KCl and 20% PEG1000 at pH 

6.0 

59.7 ± 0.2 4.2 ± 0.1 0.048 ± 

0.009 

0.86 ± 

0.13 

 100 mM KCl and 20% PEG1000 at pH 

7.0 

43.5 ± 0.1 0.8 ± 0.1 2.3 ± 0.8 4.0 ± 0.9 

cBcl2 0 mM KCl and 0% PEG at pH 6.0 51.8 ± 0.1 3.0 ± 0.1 0.13 ± 0.02 1.9 ± 0.6 

 100 mM KCl and 0% PEG at pH 6.0 51.2 ± 0.3 2.4 ± 0.2 0.55 ± 0.03 6.0 ± 2.0 

 100 mM KCl and 20% PEG200 at pH 

6.0 

50.8 ± 0.1 2.3 ± 0.3 2.1 ± 0.4 9.0 ± 5.3 



 31 

 

  

 100 mM KCl and 20% PEG1000 at pH 

6.0 

56.1 ± 0.1 3.8 ± 0.2 0.51 ± 0.12 1.8 ± 0.6 

H1 0 mM KCl and 0% PEG at pH 6.0 55.8 ± 0.2 2.2 ± 0.1 4.4 ± 0.3 4.4 ± 0.3  

H2 0 mM KCl and 0% PEG at pH 6.0 75.8 ± 2.2 4.0 ± 0.2 3.7 ± 0.1 3.7 ± 0.1  

H3 0 mM KCl and 0% PEG at pH 6.0 77.4 ± 0.1 8.3 ± 0.8 2.6 ± 0.4 2.6 ± 0.4 

(T2AG3)4 1 mM KCl and 0% PEG at pH 6.0 41.5 ± 0.9 0.34 ± 0.07 3.9 ± 0.2 3.9 ± 0.2 

 10 mM KCl and 0% PEG at pH 6.0 55.5 ± 0.2 1.7 ± 0.1 3.5 ± 0.1 3.5 ± 0.1 

 30 mM KCl and 0% PEG at pH 6.0 62.8 ± 0.5 3.0 ± 0.2 2.6 ± 0.3 3.5 ± 0.4 

 50 mM KCl and 0% PEG at pH 6.0 64.7 ± 0.4 3.3 ± 0.1 1.1 ± 0.4 4.0 ± 1.1 

 1 mM KCl and 20% PEG200 at pH 6.0 58.1 ± 0.2 2.2 ± 0.1 0.48 ± 0.13 7.1 ± 3.2 

 30 mM KCl and 20% PEG200 at pH 

6.0 

74.1 ± 1.0 4.0 ± 0.3 0.064 ± 

0.002 

1.0 ± 0.1 

ILPR ILPR 58.1 ± 0.2 2.1 ± 0.3 0.54 ± 0.4 2.7 ± 1.7 

Q6 Q6 71.1 ± 0.3 4.5 ± 0.1 0.08 ± 0.03 1.2 ± 0.1 

Linear 0 mM KCl and 0% PEG at pH 6.0 n.d. n.d. 3.5 ± 0.4 6.7 ± 2.2 

 100 mM KCl and 0% PEG at pH 6.0 n.d. n.d. 1.4 ± 0.1 1.4 ± 0.1 

 100 mM KCl and 20% PEG200 at pH 

6.0 

n.d. n.d. 3.3 ± 0.1 3.3 ± 0.1 

 100 mM KCl and 20% PEG1000 at pH 

6.0 

n.d. n.d. 1.5 ± 0.2 2.1 ± 0.4 

 0 mM KCl and 0% PEG at pH 7.0 n.d. n.d. 18 ± 2.4 18 ± 2.4 

 100 mM KCl and 20% PEG1000 at pH 

6.0 

n.d. n.d. 3.6 ± 0.4 5.1 ± 0.8 
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Figure S1.  Schematic illustration of DNA replication assay. A FAM-labeled primer 

hybridized to a template is extended by KF. A region with the potential to form a 

non-canonical structure is located at four bases from the primer binding site. Product 

formation was quantified by measuring the fluorescence intensity of bands on 

denaturing PAGE.  
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Figure S2.  CD spectra of 10 µM oligonucleotides in the absence of PEG (A) (C3TA2)4 

in the absence of KCl (blue) and presence of 100 mM KCl (light blue), (B) Hif1a in the 

absence of KCl (blue) and presence of 100 mM KCl (light blue), (C) cILPR in the 

absence of KCl (blue) and presence of 100 mM KCl (light blue), (D) (T2AG3)4 in the 

presence of 1 mM KCl, (E) (T2AG3)4 in the presence of 10 mM KCl, (F) (T2AG3)4 in the 

presence of 30 mM KCl, (G) (T2AG3)4 in the presence of 50 mM KCl, (H) Q6 in the 

presence of 1 mM KCl, and (I) ILPR in the absence of KCl. Oligonucleotide sequences 

are shown in Table 1. All solutions were buffered with 40 mM MES (pH 6.0) and 

contained 8 mM MgCl2 in the absence of PEG. 
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θ
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Figure S3.  CD spectra of 10 µM oligonucleotides in the presence of PEG (A) (C3TA2)4 

(B) Hif1a, (C) cILPR, (D) (T2AG3)4 in the presence of both 1 mM KCl and 20 wt% 

PEG200, and (E) (T2AG3)4 in the presence of both 30 mM KCl and 20 wt% PEG200. 

The data obtained in the presence of 20 wt% PEG200 at pH 6.0, 20 wt% PEG1000 at 

pH 6.0, and 20 wt% PEG1000 at pH 7.0 are indicated in blue, light blue, and orange, 

respectively. Oligonucleotide sequences are shown in Table 1. All solutions were 

buffered with 40 mM MES (pH 6.0 or 7.0) and contained 100 mM KCl and 8 mM MgCl2.  
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Figure S4.  Images of gels shown in Fig. 2 stained with SYBR Gold reagent. PAGE 

analyses of replication reactions with (A) (C3TA2)4 template DNA at pH 7.0, (B) (C3TA2)4 

template DNA at pH 6.0, (C) linear template DNA at pH 6.0, (D) Hif1a template DNA at 

pH 7.0 and (E) Hif1a template DNA at pH 6.0. In these images fluorescently labeled 

primer and products and unlabeled template strand are visible. Left-most lanes are 

10-bp DNA ladders. In lanes of 0 min samples, upper bands correspond to the template 

DNA and lower bands to the FAM-labeled primer. At 0.5 min, the full-length product 

overlaps with the template DNA, and stalled product is observed just above the primer. 
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Figure S5.  Effect of length of the primer on replication reactions with (A) (C3TA2)4 

template DNA, (B) cILPR template DNA, (C) Hif1a template DNA, and (D) (T2AG3)4 

template DNA . Lane 1: FAM labeled primer; Lane 2: FAM-labeled primer S; Lane 3: 

after 0.5 min reaction in the presence of FAM labeled primer; Lane 4: after 0.5 min 

reaction in the presence of FAM labeled primer S. The asterisk on the right of each gel 

image indicates the migrated position of major stalled products. All the reactions were 

carried in 40 mM MES (pH 6.0), 8 mM MgCl2, 30 mM KCl, 1 µM KF, 1 µM DNA template 

and primer, and 250 µM dNTPs at 37 °C. 
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Figure S6.  PAGE images of the replication by T7 DNA polymerase of (A) Linear 

template DNA without gp4, (B) Linear template DNA with gp4, (C) Hif1a template DNA 

without gp4 and (D) Hif1a template DNA with gp4. Degradation is due to the 

exonuclease activity of T7 DNAP system. Since T7 DNA polymerase requires gp4 DNA 

helicase for the processive replication of a duplex, the replication was performed in the 

presence and absence of gp4. In the case of Hif1a, the stalling of replication was 

comparable to that by KF, and amount of the stalled product was not influenced by the 

presence of gp4. These results indicate that DNA polymerases from different organisms 

were stalled by the i-motif. All the reactions were carried in 40 mM MES (pH 6.0), 8 mM 
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MgCl2, 1 µM T7 DNA polymerase conjugated to E. coli thioredoxin, 0 or 6 µM gp4, 1 µM 

DNA template and primer, and 250 µM dNTPs at 37 °C.   
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Figure S7.  UV melting curves measured at 295 nm at pH 6.0 in the absence of PEG 

for 10 µM oligonucleotides (A) (C3TA2)4 in the absence of KCl, (B) Hif1a in the absence 

of KCl, (C) cILPR in the absence of KCl, (D) (C3TA2)4 with 100 mM KCl, (E) Hif1a with 

100 mM KCl, (F) cILPR with 100 mM KCl, (G) (T2AG3)4 in the presence of 1 mM KCl, (H) 

(T2AG3)4 in the presence of 10 mM KCl, (I) (T2AG3)4 in the presence of 30 mM KCl, (J) 

(T2AG3)4 in the presence of 50 mM KCl, (K) Q6 in the presence of 1 mM KCl, (L) ILPR in 

the absence of KCl, (M) H1 in the absence of KCl, (N) H2 in the absence of KCl, and (O) 

H3 in the absence of KCl. Oligonucleotide sequences are shown in Table 1. All solutions 

were buffered with 40 mM MES (pH 6.0) and 8 mM MgCl2.  

  



 43 

  (A)     (B) 

    

 (C)      (D)  

     

(E)      (F) 

  

 (G)      (H) 

   



 44 

(I)       

 

 

Figure S8.  UV melting curves measured at 295 nm in the crowding conditions for 10 

µM oligonucleotides (A) (C3TA2)4 with 100 mM KCl and 20 wt% PEG200 at pH 6.0, (B) 

(C3TA2)4 with 100 mM KCl and 20 wt% PEG1000 at pH 6.0, (C) Hif1a with 100 mM KCl 

and 20 wt% PEG200 at pH 6.0, (D) Hif1a with 100 mM KCl and 20 wt% PEG1000 at pH 

6.0, (E) Hif1a with 100 mM KCl and 20 wt% PEG1000 at pH 7.0, (F) cILPR with 100 mM 

KCl and 20 wt% PEG200 at pH 6.0, (G) cILPR with 100 mM KCl and 20 wt% PEG1000 

at pH 6.0, (H) (T2AG3)4 in the presence of both 1 mM KCl and 20 wt% PEG200 at pH 6.0, 

and (I) (T2AG3)4 in the presence of both 30 mM KCl and 20 wt% PEG200 at pH 6.0. 

Oligonucleotide sequences are shown in Table 1. All solutions were buffered with 40 

mM MES (pH 6.0 or 7.0) and 8 mM MgCl2.  
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Figure S9.  Effect of crowding condition on the replication. The reactions were 

sampled at 0 and 0.5 min in the case of pH 6.0 and at 0 and 0.33 min at pH 7.0, and run 

on denaturing PAGE. The gel images were recorded without staining, therefore 

fluorescently labeled primer and products are visualized. The fraction of replication 

completion was shown under the each gel image. (A) (C3TA2)4 template with 20 wt% 

PEG200 at pH 6.0, (B) (C3TA2)4 template with 20 wt% PEG1000 at pH 6.0, (C) Hif1a 

template with 20 wt% PEG200 at pH 6.0, (D) Hif1a template with 20 wt% PEG1000 at 

pH 6.0, and (E) Hif1a template with 20 wt PEG1000 pH 7.0. The asterisk on the right of 

each gel image indicates the migrated position of major stalled products. Reactions 

were carried out with 1 μM KF, 1 µM DNAs, and 25 μM dNTPs in the solution containing 

40 mM MES (pH 6.0 or pH 7.0) and 8 mM MgCl2 with 100 mM KCl at 37 °C. 
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Figure S10. PAGE images of time courses of replication of (A) (C3TA2)4 template in the 

absence of KCl at pH 6.0, (B) Hif1a template in the absence of KCl at pH 6.0, (C) cLIPR 

template in the absence of KCl at pH 6.0, (D) (C3TA2)4 template in 100 mM KCl at pH 6.0, 

(E) Hif1a template in 100 mM KCl at pH 6.0, (F) cLIPR template in 100 mM KCl at pH 6.0, 

(G) (T2AG3)4 template in 1 mM KCl at pH 6.0, (H) (T2AG3)4 template in 10 mM KCl at pH 

6.0, (I) (T2AG3)4 template in 30 mM KCl at pH 6.0, (J) (T2AG3)4 template in 50 mM KCl at 

pH 6.0, (K) Q6 template in 1 mM KCl at pH 6.0, (L) ILPR template in the absence of KCl 

at pH 6.0, (M) H1 in the absence of KCl at pH 6.0, (N) H2 in the absence of KCl at pH 6.0 

(O) H3 in the absence of KCl at pH 6.0, (P) Linear in the absence of KCl at pH 6.0 (Q) 

Linear in 100 mM KCl at pH 6.0, and (R) Linear in 0 mM KCl at pH 7.0. All the reactions 

were carried in 40 mM MES (pH 6.0 or 7.0), 8 mM MgCl2, 1 μM KF, 1 µM DNAs, and 250 

μM dNTPs at 37 °C. 
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Figure S11. Analyses of full-length product formation in reactions in the absence of 

PEG with (A) (C3TA2)4 template in the absence of KCl at pH 6.0, (B) Hif1a template in 

the absence of KCl at pH 6.0, (C) cLIPR template in the absence of KCl at pH 6.0, (D) 

(C3TA2)4 template in 100 mM KCl at pH 6.0, (E) Hif1a template in 100 mM KCl at pH 6.0, 

(F) cLIPR template in 100 mM KCl at pH 6.0, (G) (T2AG3)4 template in 1 mM KCl at pH 

6.0, (H) (T2AG3)4 template in 10 mM KCl at pH 6.0, (I) (T2AG3)4 template in 30 mM KCl 

at pH 6.0, (J) (T2AG3)4 template in 50 mM KCl at pH 6.0, (K) Q6 template in 1 mM KCl at 

pH 6.0, (L) ILPR template in the absence of KCl at pH 6.0, (M) H1 in the absence of KCl 

at pH 6.0, (N) H2 in the absence of KCl at pH 6.0, (O) H3 in the absence of KCl at pH 

(A) (D)(B) (C)

(K) (L)
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6.0, (P) Linear in the absence of KCl at pH 6.0, (Q) Linear in 100 mM KCl at pH 6.0, and 

(R) Linear in 0 mM KCl at pH 7.0. All solutions also contained 40 mM MES (pH 6.0) and 

8 mM MgCl2. All reactions were carried out in the presence of 1 µM KF and 1 µM DNAs 

at 37 °C. 
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Figure S12. PAGE images of replication time courses in crowding conditions. (A) 

(C3TA2)4 template in 20 wt% PEG200 at pH 6.0, (B) (C3TA2)4 template in 20 wt% 

PEG1000 at pH 6.0, (C) Hif1a template in 20 wt% PEG200 at pH 6.0, (D) Hif1a template 

in 20 wt% PEG1000 at pH 6.0, (E) Hif1a template in 20 wt% PEG1000 at pH 7.0, (F) 

cLIPR template in 20 wt% PEG200 at pH 6.0, (G) cLIPR template in 20 wt% PEG1000 

at pH 6.0, (H) (T2AG3)4 template in 1 mM KCl and 20 wt% PEG200 at pH 6.0, (I) 

(T2AG3)4 template in 30 mM KCl and 20 wt% PEG200 at pH 6.0, (J) Linear template in 

20 wt% PEG200 at pH 6.0, (K) Linear template in 20 wt% PEG1000 at pH 6.0, and (L) 

Linear template in 20 wt% PEG1000 at pH 7.0. All the reactions were carried in 40 mM 

MES (pH 6.0 or 7.0), 8 mM MgCl2, 100 mM KCl, 1 μM KF, 1 µM DNAs, and 250 μM 

dNTPs at 37 °C. 
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Figure S13. Analyses of full-length product formation in reactions in the presence of 

PEG with (A) (C3TA2)4 template in 20 wt% PEG200 at pH 6.0, (B) (C3TA2)4 template in 

20 wt% PEG1000 at pH 6.0, (C) Hif1a template in 20wt% PEG200 at pH 6.0, (D) Hif1a 

template in 20 wt% PEG1000 at pH 6.0, (E) Hif1a template in 20 wt% PEG1000 at pH 

7.0, (F) cLIPR template in 20 wt% PEG200 at pH 6.0, (G) cLIPR template in 20 wt% 

PEG1000 at pH 6.0, (H) (T2AG3)4 template in 1 mM KCl and 20 wt% PEG200 at pH 6.0, 

(I) (T2AG3)4 template in 30 mM KCl and 20 wt% PEG200 at pH 6.0, (J) Linear template 

in 20 wt% PEG200 at pH 6.0, (K) Linear template in 20 wt% PEG1000 at pH 6.0, and (L) 

Linear template in 20 wt% PEG1000 at pH 7.0. All solutions also contained 40 mM MES 

(pH 6.0 or 7.0), 8 mM MgCl2, 100 mM KCl, and 20 wt% of PEG200 or PEG1000. All 

reactions were carried out in the presence of 1 µM KF and 1 µM DNAs at 37 °C. 
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Figure S14. lnks and -∆G°37 plot for replication of i-motif-forming DNA at pH 6.0 (A) in 

the absence of KCl and PEG at pH 6.0, (B) in the presence of and 100 mM KCl at pH 

6.0, and (C) in the presence of 20 wt% PEG1000 and 100 mM KCl at pH 6.0 (blue) and 

7.0 (red). All the reactions were carried out with 40 mM MES (pH 6.0 or 7.0), 8 mM 

MgCl2, 1 µM KF, and 250 µM dNTPs, together with the designated KCl and PEG 

conditions. 
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Figure S15.  Effect of i-motif topology on replication. (A) PAGE images of products of 

replication of cBcl2 template DNA. The asterisk indicates the major stall products. All 

the reactions were carried out in 40 mM MES (pH 6.0), 8 mM MgCl2, 1 µM KF, 1 µM 

DNA template and primer, and 250 µM dNTPs at 37 °C. (B) UV melting curves 

measured at 295 nm at pH 6.0 for cBcl2. The concentration of DNAs was 10 µM. The 

solution was buffered with 40 mM MES (pH 6.0) and 8 mM MgCl2. (C) Analyses of 

full-length product formation based on experiment shown in (A).   
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Figure S16. Plot for the logarithms of rate constants for reactions versus -∆G°37 values 

to produce full-length replication product from i-motif-forming templates (blue: in the 

presence of 20 wt% PEG200, light blue: in the presence of 20 wt% PEG1000), 

G4-forming templates (red), and Linear template (green). The blue and light-blue lines 

indicate the linear correlation between lnks and -∆G°37 of i-motif-forming sequences in 

the presence of 20 wt% PEG200 and 20 wt% PEG1000, respectively. The red line 

indicates the linear correlation between lnks and -∆G°37 of (T2AG3)4 G4. In the presence 

of 20 wt% PEG1000, the addition of 100 mM KCl is required to avoid KF denaturation. 

In that condition, the stability of (T2AG3)4 was too high to determine. All the reactions 

were performed with 40 mM MES (pH 6.0), 8 mM MgCl2, 100 mM KCl, 20 wt% PEG200, 

1 µM KF, and 250 µM dNTPs.   
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