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Abstract 8 

Winter precipitation over Central Asia and the western Tibetan Plateau (CAWTP) is mainly 9 

a result of the interaction between the westerly circulation and the high mountains around 10 

the plateau. Empirical Orthogonal Functions (EOFs), Singular Value Decomposition (SVD), 11 

linear regression and composite analysis were used to analyze winter daily precipitation and 12 

other meteorological elements in this region from 1979 to 2013,in order to understand how 13 

interactions between the regional circulation and topography affect the intraseasonal 14 

variability in precipitation. The SVD analysis showed that the winter daily precipitation 15 

variability distribution is characterized by a dipole pattern with opposite signs over the 16 

northern Pamir Plateau and over the Karakoram Himalaya, similar to the second mode of EOF 17 

analysis. This dipole pattern of precipitation anomaly is associated with local anomalies in 18 

both the 700hPa moisture transport and the 500hPa geopotential height and is probably 19 

caused by oscillations in the regional and large-scale circulations, which can influence the 20 

westerly disturbance tracks and water vapor transport. The linear regression showed that the 21 

anomalous mid-tropospheric circulation over CAWTP corresponds to an anti-phase variation 22 
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of the 500 hPa geopotential height anomalies over the southern and northern North Atlantic 23 

10 days earlier (at 95% significance level), that bear a similarity to  the North Atlantic 24 

Oscillation (NAO). The composite analysis revealed that the NAO impacts the downstream 25 

regions including CAWTP by controlling south-north two branches of the middle latitude 26 

westerly circulation around the Eurasian border. During the positive phases of the NAO, the 27 

northern branch of the westerly circulation goes around the northwest Tibetan Plateau, 28 

whereas the southern branch encounters the southwest Tibetan Plateau, which leads to a 29 

reduced precipitation over the northern Pamir Plateau and an increased precipitation over 30 

the Karakoram Himalaya, and vice versa.  31 

KEY WORDS: Topographic precipitation; North Atlantic Oscillation; Westerly circulation; 32 

Statistical analysis; Intraseasonal variability. 33 

 34 

1 Introduction 35 

The geographical region covered by Central Asia and the western Tibetan Plateau (CAWTP, 36 

30–45 N, 60–85 E) has complex terrains and a unique climate. The Turan Depression is 37 

located in the northwest, whereas the high mountains and plateaus (e.g. the Iran Plateau, the 38 

Hindu Kush, the Karakoram Himalaya, the Pamir Plateau and the Tian Shan mountains) are 39 

located from the southwest to the northeast (Fig. 1). The CAWTP region has an arid to semiarid 40 

climate with an annual precipitation less than 400 mm, except for a few of the high mountain 41 

areas. Because of the scarcity of water resources, there is a high risk that global climate change 42 

will threaten both the natural environment and the human population in this region (Ragab & 43 
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Prudhomme 2002, WB et al. 2009). 44 

Despite the complex topography and lack of meteorological stations, satellite remote 45 

sensing data have been used to determine the spatiotemporal distribution of precipitation 46 

over Central Asia (Guo et al. 2015) and the western Tibetan Plateau (Pohl et al. 2015). High-47 

resolution regional climate models have also been used to determine the patterns of 48 

precipitation over CAWTP (Small et al. 1999, Schiemann et al. 2008, Ozturk et al. 2012, 49 

Maussion et al. 2014). 50 

Previous studies have reported the spatiotemporal distribution and regional differences 51 

in precipitation over CAWTP and have found that the major weather system controlling the 52 

winter precipitation over CAWTP is the westerly circulation (Schiemann et al. 2009, Yin et al. 53 

2014). In winter, the westerly circulation transports moisture to Central Asia (Bothe et al. 54 

2012), southwest Asia (Malik et al. 2015) and the western Tibetan Plateau (Curio et al. 2015). 55 

The westerly circulation is disturbed by the high mountains in this region and causes heavy 56 

precipitation and storms over the Pamir Plateau, the Hindu Kush, the Karakoram Himalaya and 57 

the western Himalaya (Lang & Barros 2004, Cannon et al. 2015a, b). Yin et al. (2014) compared 58 

the differences in precipitation climatology between the arid area of Central Asia and the East 59 

Asia monsoon region and showed that winter is the rainy season in Central Asia, whereas the 60 

rainy season occurs in summer for East Asia. They further showed that the control 61 

atmospheric circulation over the western area changes between winter and summer. In winter 62 

it is dominated by westerly upper-air flows, bringing moisture from the upstream to the region 63 

while in summer it is dominated by northeasterly winds from the Asian interior, resulting in a 64 
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dry condition. The westerly circulation is not only the major weather system controlling the 65 

winter mean precipitation over CAWTP, but also precipitation interannual variability and trend 66 

in the region (Chen et al. 2011, Yin et al. 2014, Cannon et al. 2015a).   67 

There have been many reports that large-scale atmospheric teleconnections regulate the 68 

mid-latitude westerly circulation variability which in turn may influence interannual 69 

precipitation variation over CAWTP (e.g. Aizen et al. 2001, Syed et al. 2006, Mariotti 2007, 70 

Filippi et al. 2014, Yin et al. 2014, Cannon et al. 2015a, b, Hoell et al. 2015). Although some 71 

evidence has been found that at interannual time scale the El Niño–Southern Oscillation may 72 

be related to the precipitation variation in the cold season over Central and Western Asia 73 

(Mariotti 2007, Hoell et al. 2015), other research has shown a close relationship between the 74 

winter interannual precipitation variation over CAWTP and the North Atlantic Oscillation (NAO) 75 

(Aizen et al. 2001, Syed et al. 2006, 2010, Yadav et al. 2009, Filippi et al. 2014, Yao and Chen 76 

2015). Aizen et al. (2001) analyzed the relationship between mid-latitude precipitation in Asia 77 

and the large-scale circulation of the atmosphere using data from hydro-meteorological 78 

stations. Their results showed more precipitation over the Pamir and Tian Shan mountains 79 

during the positive phases of the NAO. Syed et al. (2006) found a positive precipitation 80 

anomaly over northwestern Asia that is well matched with the positive phase of the NAO. 81 

Syed et al. (2010) presented a regional climate modeling study on both NAO and ENSO and 82 

discussed the influence of westerly disturbances. Filippi et al. (2014) verified that winter 83 

interannual precipitation variation over the Hindu Kush–Karakoram Himalaya region is 84 

affected by the NAO. During the positive phases of the NAO, the Middle East, which is 85 
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upstream of CAWTP, experiences stronger westerly winds and evaporation, which leads to an 86 

enhanced moisture transport and therefore enhanced precipitation over the Hindu Kush. Yao 87 

and Chen (2015) found a significant negative correlation between the yearly precipitation on 88 

mountains of the Syr Darya River Basin and NAO index from 1891 to 2011 but it turned out 89 

non-significant on plains. 90 

Previous studies have mainly considered the interannual variation in winter precipitation 91 

over a specific area and its connection with the NAO and other large-scale circulations (e.g. 92 

Aizen et al. 2001, Syed et al. 2006, Mariotti 2007, Filippi et al. 2014, Yin et al. 2014, Cannon et 93 

al. 2015a, Hoell et al. 2015). However, little attention has been paid to the spatiotemporal 94 

distribution of precipitation variability over CAWTP at the intraseasonal time scale. Therefore 95 

it is important to investigate the spatial and temporal distribution of winter precipitation 96 

variation over CAWTP on this time scale, to analyze its connection with regional and large-97 

scale circulations and to elucidate physical processes involved by using daily precipitation data 98 

and other meteorological parameters. 99 

 100 

2 Data and methods 101 

Daily precipitation data from the Climate Prediction Center (Chen et al. 2008) and daily 102 

meteorological variables of ERA-Interim from the European Centre for Medium-Range 103 

Weather Forecasts (Dee et al. 2011) were used in this study. Sapna Rana (2017) have already 104 

used the CPC Unified Rain gauge data and compared it with 9 other precipitation products 105 

over the central southwest Asia. Their results show that the CPC data can reasonably reflect 106 
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the spatial-temporal distribution of winter precipitation over CAWTP despite some systematic 107 

differences in the time means The used ERA-Interim variables include the daily 700 and 500 108 

hPa geopotential height, meridional and zonal winds, the total column of water vapor (TCWV) 109 

and the mean sea level pressure. The horizontal resolution of all the data is 0.5longitude  110 

0.5 latitude. In consideration of the higher accuracy of the reanalysis data obtained over high 111 

mountain areas after 1979, when satellite data were first applied (Cannon et al. 2015b), we 112 

chose all winters (December-March), consistent with other studies analyzing the relationships 113 

between teleconnection patterns and precipitation in this area (Syed et al. 2006, 2010, Yadav 114 

et al. 2009, Filippi et al. 2014) from 1979 to 2013, a total of 4244 days, as the study period. 115 

The daily average data were obtained from four records with a six-hour interval for each day. 116 

The encounter of westerly wind with high mountains of Tibetan Plateau happened around 117 

700 hPa , which is closely connected with topographic precipitation, and therefore 700 hPa 118 

wind is used to indicate low tropospheric circulation. The 500hPa geopotential height anomaly 119 

can indicate the teleconnections. 120 

To determine the characteristics of the winter intraseasonal precipitation and circulation 121 

variability in CAWTP, the climatological seasonal cycle from December to the next March in 122 

the daily data was removed before the analysis. We averaged the data of the same date of all 123 

the years (1979-2013) and then calculated the 21 day moving mean as the climate mean state. 124 

Thus, the daily values with climatological seasonal cycle removed were obtained by 125 

subtracting the climate mean state from the actual data according to the following formula: 126 

21/)35/)((
10,10 35,1

365)1(
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where n is the number of days from December 1, 1979; k is the number of days from 

128 

December 1 of a specific year; i is the number of years from 1979; j is the day from 10 days 
129 

before to 10 days after a specific day; and Zn* is the value after removing the climatological 
130 

seasonal cycle. 
131 

The EOF analysis was used to decompose winter daily precipitation variability over 
132 

CAWTP to find the spatial patterns as well as their time variation (Bjornsson and Venegas 
133 

1997).  Figure 1 shows the study area with 1581 grid boxes and 4244 day time series at each 

134 

grid box, which is the basis for the EOF analysis. 
135 

Singular value decomposition (SVD) analysis (Wallace et al. 1992) was applied to show 136 

the spatiotemporal relationship between the winter daily precipitation and the regional 137 

circulation variations over CAWTP. This method identifies a pair of covaried spatial patterns, 138 

their temporal variations and the covariance between two variables (Bjornsson and Venegas 139 

1997).  140 

Lead-lag linear regression was applied to study the connection between the 500 hPa 141 

geopotential height variability over CAWTP and the upstream westerly jet variability (Wang 142 

and Zhang 2015). 143 

We also constructed composites of the precipitation distribution in CAWTP during 144 

positive and negative NAO cases respectively, and discussed the relationship between the 145 

NAO and the precipitation variability at the intraseasonal time scale. The NAO index was 146 

defined as the standardized difference in mean sea level pressure between the southern 147 

North Atlantic (25–40N, 50–10W) and the northern North Atlantic (50–65N, 10–50W) 148 



 

8 

 

(Hurrell 1996). After calculating the daily index for every winter from 1979 to 2013, the central 149 

day of a positive (negative) NAO phase event was defined as the day with the relative 150 

maximum (minimum) value of the NAO index in continuous five days and being greater (less) 151 

than 1.5 (-1.5) at the same time. In this way, a total of 85 positive NAO phase cases and 82 152 

negative phase cases were selected for the composites. Here we  did composite analysis 153 

based on cases with strong NAO anomalies in order to see teleconnections between two 154 

regions and significant NAO related remote climatic anomalies over CAWTP. To trace westerly 155 

wind disturbance (WWD) tracks, a wave-tracking approach was applied as documented in 156 

Cannon (2015b) who defined the centers of the disturbances by standardized 500 hPa 157 

geopotential height anomaly and a set of spatial threshold and temporal correlation to 158 

identify the tracks. Here we used the 500hPa geopotential height anomaly of 1 standard 159 

deviation and the spatial extent of 5 degrees as a set of thresholds to identify the location of 160 

centers to count the WWDs. Then the WWD frequency in every grid was calculated.    161 

 
162 

3 Spatial and temporal distribution of winter precipitation over CAWTP and its connection 
163 

with the contemporaneous regional circulation 
164 

3.1 Winter precipitation climatology over CAWTP 
165 

The climate of Central Asia is controlled on an annual basis by westerly winds containing 
166 

little moisture, and it is classified as a typical arid to semiarid region. The rainy season usually 
167 

occurs in winter (from December to March) (Yin et al. 2014) and most of the moisture 
168 

transported by the strong westerly winds is intercepted to condense by the high mountains 
169 

file:///D:/Youdao/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
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of the region during this period (Syed et al. 2006). Figure 2a shows the spatial distribution of 
170 

the winter mean climatological precipitation over Asia from 1979 to 2013. There is more 
171 

precipitation over CAWTP and the main areas of precipitation are distributed on the windward 
172 

slope of the western Tibetan Plateau, in agreement with earlier reports by Schiemann et al. 
173 

(2008) and Yin et al. (2014). There are two core areas of precipitation centered at 70E, 42N 
174 

and 75E, 33N respectively, with the maximum precipitation rate of 8 mm d−1. The winter 
175 

precipitation over CAWTP accounts for more than 50% of the annual precipitation (Fig. 2b). 
176 

The distribution of water vapor flux integrated vertically from 950 hPa to 300 hPa (Fig. 2c) 
177 

suggests that the moisture transport convergence over CAWTP is mainly controlled by mid-
178 

tropospheric westerly winds, rather than by lower-tropospheric (below 950 hPa) circulations 
179 

(not shown). The distribution of WWD frequency (Fig. 2d) shows that more WWDs occur in 
180 

the Karakoram Himalaya, coincident with the local precipitation maximum there shown in Fig. 
181 

2a. This is consistent with Cannon et al. (2015a, b) who reported that heavy precipitation 
182 

occurs when the WWD encountered mountains of the Himalaya. The climatology of 
183 

precipitation over CAWTP is quite different from that over the monsoon areas. The annual 
184 

precipitation over CAWTP is much lower than that over Asian monsoon regions and mainly 
185 

occurs in winter, when the mountains block and lift the strong mid-latitude westerly 
186 

circulation (e.g., Yin et al 2014, Cannon et al. 2015a, b).  
187 

 
188 

3.2  Intraseasonal variability in winter daily precipitation and circulation over CAWTP 
189 

It is possible that the strength and position of westerly circulation determine the forced 
190 
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upward motion, frequency of WWDs and the distribution of precipitation on the intraseasonal 
191 

time scale. The winter daily precipitation was decomposed by EOF analysis after the 
192 

climatological seasonal cycle was removed and the first two modes are shown in Fig. 3a and 
193 

3b. The first mode shows the same sign allover CAWTP with explained variance of 24.4% and 
194 

the second mode shows a seesaw pattern between northern Pamir Plateau and the 
195 

Karakoram Himalaya with explained variance of 15.6%. These EOF modes suggest the 
196 

existence of the intraseasonal variability of winter precipitation over CAWTP. Then we 
197 

composited the 500 hPa zonal wind (U component) during the dominant periods according to 
198 

the time series of the first mode and the second mode as Fig. 3c and Fig. 3d, which indicated 
199 

close connection between regional circulation and precipitation. Therefore, the relationship 
200 

between the regional circulation and precipitation in the study area is explored in the 
201 

following. 
202 

The seasonal cycle removed daily precipitation and 700hPa moisture flux fields for 35 
203 

winters during 1979–2013 were used for the SVD analysis to determine the simultaneous 
204 

relationship between the precipitation and circulation variability over CAWTP. The first SVD 
205 

mode shows a dipole pattern of precipitation variability with a positive anomaly over the 
206 

Karakoram Himalaya (center located at 33N, 78E, Fig.4a) and a negative anomaly over the 
207 

northern Pamir Plateau (center located at 40N, 68E), bearing a very similar structure as 
208 

shown for the second mode of EOF analysis (Fig. 3b). Accompanied with this pattern of 
209 

precipitation variability is a southerly wind anomaly over the Karakoram Himalaya and a 
210 

northwesterly wind anomaly (southwesterly wind weakened) over the northern Pamir 
211 
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Plateau(not shown) and anomalous lower tropospheric moisture transport (Fig. 4b). This 
212 

pattern of precipitation anomaly is closely related to the forced lifting of the westerly 
213 

airstream on the windward side of the mountains. The explained variance reaches 55.12% and 
214 

the correlation coefficient between the time coefficients of two fields is 0.65 for the first SVD 
215 

mode, suggesting the importance of orographic forcing in modulating the regional 
216 

precipitation at the intraseasonal time scale. 
217 

We also did the SVD analysis with the seasonal cycle removed daily precipitation and 500 
218 

hPa geopotential height fields over CAWTP. The explained variance and correlation coefficient 
219 

corresponding for the first SVD mode are 60.5% and 0.64, respectively (Fig. 4c and d). Figs. 4c 
220 

and 4d illustrate that a negative center over the southeast of CAWTP in the field of 500 hPa 
221 

geopotential height anomaly is associated with a precipitation anomaly pattern with the 
222 

wetter southeast and the drier northwest. Hence, the distribution of winter precipitation 
223 

anomaly in the study area at the intraseasonal time scale is the result of topography-affected 
224 

regional atmospheric circulation variability. In the following, a lead-lag linear regression was 
225 

used to further reveal the relationship between the regional and large-scale circulation 
226 

variations and the regional precipitation change. 
227 

 
228 

4 Correlation of 500hPa geopotential height over CAWTP with the preceding atmospheric 
229 

circulation over the North Atlantic Ocean and Eurasia 
230 

The preceding atmospheric circulation over the Atlantic Ocean and Eurasian region may 
231 

influence the regional circulation over CAWTP, leading to the regional precipitation anomaly 
232 
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via teleconnection. The time series of the 500 hPa geopotential height analyzed by SVD was 
233 

normalized and then the normalized time series with an absolute value greater than 1.5 and 
234 

higher than the neighboring 4 other days was chosen for further analysis (a total of 200 time 
235 

series mixed with both positive and negative values). A linear regression was applied between 
236 

the chosen 200 time series and the antecedent 500 hPa geopotential height field over the 
237 

Atlantic Ocean–Eurasian region from lead 16 days to the lag 3 day of the chosen days 
238 

respectively and results are shown in figure 5. There is a positive geopotential height anomaly 
239 

over the Azores (center located at 30W and 40N) and a negative anomaly over Iceland 
240 

(center located at 10W and 60N) from day −10 to day −8 (10 to 8 days before the regional 
241 

circulation phase, the same below) (Fig. 5a, 5b). These patterns of the anomalous circulation 
242 

show a similarity to the positive phase of the NAO (Hurrell 1996). On day −6, the original 
243 

negative geopotential height anomaly over Iceland moves to the east and a significant positive 
244 

anomaly occurs over the Eurasian border and northern Asia and meanwhile a negative 
245 

anomaly over CAWTP develops (Fig. 5c). With time advance, the magnitude of the anomaly 
246 

over the Atlantic Ocean decrease, whereas the strength of the anomalies over the Eurasian 
247 

border and over CAWTP enhance on day −4 (Fig. 5d). On day −2 and 0, significant negative 
248 

geopotential height anomalies occur over CAWTP (Fig. 5e, 5f), similar to the results of the SVD 
249 

analysis. It is therefore possible that the regional circulation has been affected by the 
250 

preceding large-scale circulation variability related to NAO. 
251 

The time evolution of the 500hPa geopotential height anomaly over the North Atlantic 
252 

was analyzed by lead-lag linear regression and correlation. Areas A (20–40 W, 30–40 N), B 
253 
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(0–20 W, 54–64 N), C (44–64 E, 54–64 N) and D (60–80 E, 30–40 N) in Fig. 5 were chosen 
254 

to calculate the average geopotential height anomaly and the correlation coefficient in 
255 

different lead days. The four domains are recognized in consideration of both covering the 
256 

centers of 500hPa geopotential height anomaly and the significant at 95% level in Fig. 5. 
257 

Otherwise, the numbers  of the grids of the four domains should be the same so they are 
258 

comparable. Table 1 lists regression coefficients and correlation coefficients of regionally-
259 

averaged 500 hPa geopotential heights on different lag days for these four areas and the time 
260 

coefficients of the first mode of 500 hPa geopotential height field over CAWTP in the above 
261 

SVD analysis. From days −15 to −9 (the negative number means the days before the day for 
262 

the regional SVD analysis) there is a positive anomaly over area A, a significant increasingly 
263 

negative anomaly over area B, and no significant anomaly over area C. From days −8 to −4, 
264 

the anomaly over area A decreases and the anomaly over area B increases to a maximum 
265 

value. A significant positive anomaly appears over area C on day −5 and increases rapidly 
266 

afterwards. From days −3 to 0 there is no significant anomaly over area A, the anomaly over 
267 

area B decreases, and the anomaly over areas C and D increases to maximum values. From 
268 

days +1 to +3 there is no significant anomaly over area B and the anomaly over areas C and D 
269 

decreases. Figure 5 and Table 1 show time evolutions of geopotential height anomaly in 
270 

various regions before the maximum height anomaly over CAWTP and suggest that NAO-like 
271 

circulation anomaly over the North Atlantic is a precursor for the intraseasonal variation of 
272 

precipitation over CAWTP. The lead-lag correlation coefficients between NAO index and time 
273 

series of first SVD mode in these chosen days were calculated and they are given in Table 1. 
274 
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These correlation coefficients  indicate large correlations when NAO leads the regional 
275 

geopotential height by about 10 days. 
276 

Although we found a close connection between the 500 hPa geopotential height over 
277 

CAWTP and geopotential height over the North Atlantic about 10-8 days before by linear 
278 

regression and correlation, further analysis was required to elucidate the mechanism for the 
279 

relationship between the north–south precipitation seesaw over CAWTP during both positive 
280 

and negative NAO phases respectively. In the following, composite analysis was therefore 
281 

used to further investigate how the different NAO phases influenced the regional circulation 
282 

and precipitation over CAWTP. 
283 

 
284 

5 Influence of the NAO on spatial and temporal distribution of winter precipitation over 
285 

CAWTP 
286 

Based on our definition of NAO events, the 500 hPa geopotential height, the 700 hPa wind 
287 

flow field were combined to assess the influence of the NAO on the circulation over remote 
288 

downstream areas. The time evolutions of composited 500hPa geopotential height anomaly 
289 

and 700 hPa streamlines at different lags for the positive and negative NAO phase cases are 
290 

illustrated in Fig. 6. In positive NAO phases, the NAO pattern is clearly shown on the 0 day (the 
291 

peak day of NAO index) with the strong negative 500 hPa geopotential height anomaly over 
292 

the Iceland and the positive one over the Azores. As time advances, the positive anomaly 
293 

extends eastward to the Eurasian border. In the following days, NAO pattern is weakening and 
294 

the east positive anomaly is further extended eastward and is finally separated from the 
295 
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positive anomaly over the Azores. The eastward extension of positive anomaly over the 
296 

Eurasian border is associated with the intensification of the negative anomaly over the CAWTP 
297 

(Fig. 6c). The time evolutions of the 700 hPa wind streamlines associated with geopotential 
298 

height anomaly evolutions offer another view. Associated with positive NAO at day 0 is a single 
299 

strong westerly jet over the North Atlantic and two branches of strong westerly wind, whose 
300 

axes locate on 55N and 30N along the Eurasian border, resulted from the positive 500 hPa 
301 

geopotential height anomaly over the Eurasian border (Fig. 6a). Over the Eurasian border, the 
302 

north branch westerly wind forms a ridge while the south one forms a trough. They both 
303 

extend eastward in a similar way as the positive 500 hPa geopotential height anomaly. The 
304 

north branch westerly wind goes around the north CAWTP while the south branch encounters 
305 

the Karakoram Himalaya. The Figs. 6d, 6e and 6f show time evolutions of composited 500hPa 
306 

geopotential height anomaly and 700 hPa streamlines at different days for the negative NAO 
307 

phases. Time evolutions of geopotential height anomaly show similar evolutions as those 
308 

during the positive NAO phase cases, but with a change in sign of the anomalies. Associated 
309 

with the negative NAO phases, the north branch of westerly wind encounters the north 
310 

CAWTP while the south branch goes around the Krakoram-Himalaya at day 10. 
311 

The time averaged 700 hPa moisture flux anomaly and WWD frequency anomaly from 
312 

day 5 to day 10 after the peak of NAO phases intuitively show the regulation of regional 
313 

circulation by the NAO. During the positive NAO phases, northeasterly moisture flux 
314 

anomalies (decreased southwesterly moisture flux) occur over the Central Asia and northern 
315 

Pamir Plateau, whereas southerly moisture flux anomalies accompanied with higher 
316 
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frequency of WWD occur over the Karakoram Himalaya (Fig. 7a). During the negative NAO 
317 

phases, southwesterly moisture flux anomalies occur over the Central Asia and northern 
318 

Pamir Plateau, whereas northeasterly moisture flux anomalies accompanied with lower 
319 

frequency of WWD occur over the Karakoram Himalaya (Fig. 7b). The composites of 
320 

precipitation anomalies of positive and negative NAO phases, as shown in Fig. 7c and 7d, are 
321 

well matched with the regional circulation and moisture flux anomalies. There is less 
322 

precipitation over the north east of Iran, Turkmanistan, Tajikistan and Kyrgyzstan (center at  
323 

75E, 34N) and more precipitation over the Karakoram Himalaya (center at  70E, 42N) 
324 

during positive NAO phases and vice versa. For the south part, the WWD seems to be more 
325 

important while the moisture flux takes control of the north part. Compared with the daily 
326 

average winter precipitation (Fig. 2a), the precipitation anomaly at the intraseasonal time 
327 

scale reaches 10% of the climatological mean. The precipitation composites during the 
328 

different NAO phases are similar to the results of the SVD analyses. The two analyses both 
329 

demonstrate the teleconnection between the NAO over the North Atlantic and the regional 
330 

circulation and precipitation variability over CAWTP. 
331 

 
332 

6 Discussion and conclusions 
333 

The climate is characterized by dominant westerly circulation and scarce precipitation 
334 

over CAWTP. The lowlands of this area are almost rainless due to the lack of moisture and 
335 

upward motion. By contrast, heavy rains occur on the high mountain areas as a result of the 
336 

uplifting of the westerly winds by the high topography.  
337 
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There have been much published research on precipitation and its interannual variability 
338 

over the Karakoram Himalaya (Syed et al. 2006, 2010, Filippi et al. 2014, Cannon et al. 2015a, 
339 

b). For example, Cannon et al. (2015a, b) stressed the importance of the westerly disturbance. 
340 

Less research has focused on precipitation over the northern Pamir Plateau and mainly 
341 

focuses on interannual variations (e.g., Chen et al. 2011). Filippi et al. (2014) and Syed et al. 
342 

(2006) found that the interannual variation in precipitation is connected to the NAO, but they 
343 

did not discuss the intraseasonal precipitation variations and the contemporaneous opposite 
344 

variations over the northern Pamir Plateau and over the Karakoram Himalaya.  
345 

This study focused on the intraseasonal variation in winter daily precipitation over CAWTP. 
346 

The EOF, SVD, lead-lag linear regression and composite analyses showed that a seesaw pattern 
347 

of winter intraseasonal precipitation anomaly between the Karakoram Himalaya and the 
348 

northern Pamir Plateau is connected with the intraseasonal oscillation of the NAO. The main 
349 

physical processes for the seasaw pattern of precipitation variability are the trough–ridge 
350 

phase of the two westerly jets rather than the westerly strength at the intraseasonal scale. 
351 

Multi-method analyses gave similar results, confirming that the NAO is able to influence the 
352 

intraseasonal precipitation variability in winter over CAWTP. 
353 

The seesaw pattern of winter intraseasonal precipitation anomaly was found between 
354 

the southeastern CAWTP (centered in the Karakoram Himalaya) and the northwestern CAWTP 
355 

(centered in the northern Pamir Plateau) by the SVD analysis and this pattern of precipitation 
356 

was closely connected to the regional 700 hPa circulation. When there was a northeasterly 
357 

moisture flux anomaly (southwesterly moisture flux weakened) over the northwestern CAWTP 
358 
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and a southwesterly moisture flux anomaly (southwesterly moisture flux strengthened) over 
359 

the southwestern CAWTP at 700 hPa, a negative precipitation anomaly occurred over the 
360 

northern Pamir Plateau and a positive anomaly over the Karakoram Himalaya. Accompanied 
361 

by the seesaw precipitation pattern, a negative 500 hPa geopotential height anomaly over 
362 

CAWTP (center located in the central Tibetan Plateau) was also observed, and vice versa. 
363 

The mechanism for the seesaw precipitation anomaly over CAWTP may be related to the 
364 

NAO-like circulation at the intraseasonal time scale. The results of both the regression and 
365 

composite analyses showed that the seesaw precipitation pattern was closely connected with 
366 

the precursor NAO-like circulation anomalies over the North Atlantic. During the positive NAO 
367 

phases, the southern branch of the 700 hPa westerly winds formed a ridge over the North 
368 

Atlantic and combined with the northern branch which formed a trough. The two branches 
369 

separated around Eurasian border. The southern branch then formed a trough over the Middle 
370 

East, which increased the transport of moisture and the strength of the westerly winds over 
371 

the Karakoram Himalaya. By contrast, the northern branch formed a ridge and went around 
372 

the northwestern Tibetan Plateau, which decreased southwesterly winds, the southwesterly 
373 

moisture transport, and therefore precipitation over the Central Asia and northern Pamir 
374 

Plateau. The large scale wind stream pattern can modify the regional circulation. Meanwhile 
375 

during positive NAO, more WWD occurred over the Karakoram Himalaya since south branch 
376 

of westerly encounters the Himalaya, which finally increased the precipitation over Karakoram 
377 

Himalaya. This pattern was reversed during the negative NAO phases. The main physical 
378 

processes involved and discussed above for the influence of the NAO on the winter 
379 
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precipitation variability at the intraseasonal time scale over CAWTP are illustrated in 
380 

schematic diagrams of Fig. 8. 
381 
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Table 1 Correlation coefficients of regionally-averaged 500 hPa geopotential heights on 476 

different lead-lag days for four regions indicated in Fig. 5 with the time coefficients of the 477 

first mode of 500 hPa geopotential height field over CAWTP in the SVD analysis mentioned in 478 

the text, and the correlation coefficients between NAO index and the time series. A negative 479 

lag means that the regionally-averaged height value over the four regions leads the height 480 

anomaly over CAWTP in the SVD analysis.    481 

Lag day Area A Area B Area C Area D NAOI 

-16 0.13 -0.14 -0.06 -0.15* 0.19** 

-15 0.16* -0.22** -0.01 -0.20** 0.22** 

-14 0.17* -0.23** 0.02 -0.24** 0.24** 

-13 0.15* -0.24** 0.04 -0.26** 0.24** 

-12 0.14 -0.30** 0.07 -0.29** 0.23** 

-11 0.13 -0.33** 0.11 -0.30** 0.21** 

-10 0.15* -0.30** 0.11 -0.32** 0.20** 

-9 0.17* -0.32** 0.11 -0.35** 0.20** 

-8 0.14 -0.36** 0.10 -0.38** 0.21** 

-7 0.13 -0.44** 0.11 -0.41** 0.20** 

-6 0.17* -0.48** 0.16 -0.44** 0.16* 

-5 0.20** -0.46** 0.26** -0.47** 0.12 

-4 0.17* -0.46** 0.39** -0.51** 0.08 

-3 0.14 -0.40** 0.54** -0.59** 0.05 

-2 0.14 -0.34** 0.67** -0.68** 0.04 

-1 0.16* -0.23** 0.70** -0.75** 0.04 

0 0.15* -0.17* 0.67** -0.67** 0.00 

1 0.12 -0.16* 0.59** -0.57** -0.08 

2 0.08 -0.06 0.48** -0.47** -0.14 

3 0.05 -0.03 0.44** -0.39** -0.14 

*Significant at the 95% level        **Significant at the 99% level 
482 

  
483 
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 484 

Fig. 1. Topography (color shaded areas, in meters) and national boundaries (thin gray lines) of 485 

Central Asia, the western Tibetan Plateau (outlined by the black box) and surrounding areas. 486 

HK and KH indicate Hindu Kush and Karakoram Himalaya, respectively. 487 
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 488 

Fig. 2. (a) Average precipitation (0.1 mm d−1), (b) percentage of annual precipitation falling in 489 

winter (%), (c) water vapor flux integrated vertically for 950–300 hPa (kg m−1 s−1) and (d) 490 

westerly wind disturbances frequency (percentage per day) in the CAWTP and surrounding 491 

areas in winter (December-March) for 1979–2013. The brown lines indicate the topographic 492 

contour of 1500 m and the red boxes represent the CAWTP region.  493 
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 494 

Fig. 3. First mode (a) and second mode (b) of the EOF analysis of daily precipitation field for 495 

winters during 1979-2013. The composited 500 hPa zonal wind (U component) of the 496 

dominant periods of the First mode (c) and second mode (d). The brown lines represent the 497 

topographic contour of 1500 m. 498 

  499 
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 500 

 501 

Fig. 4. First mode of the SVD analysis between seasonal cycle removed daily precipitation field 502 

(a) and 700 hPa daily moisture flux field (b) for winters during 1979-2013. Panels (c) and (d) 503 

are the same as (a) and (b), respectively, but for precipitation field (c) and 500 hPa 504 

geopotential height field (d). The black lines represent the topographic contour of 1500 m. 505 

  506 
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 507 

Fig. 5. Regressed 500hPa geopotential height anomaly fields for days (a) −10, (b) −8, (c) −6, (d) 508 

−4, (e) −2 and (f) 0 with the chosen 200time coefficients of the first mode of 500 hPa 509 

geopotential height field over CAWTP in the SVD analysis. The negative value indicates the 510 

number of days before the day of SVD analysis. The contours represent the regression 511 

coefficients and the gray shading represents the areas that were significant at the 95% level. 512 

The brown lines represent the 1500 m topographic height and the black boxes represent the 513 

four geopotential height anomaly centers. 514 

 515 
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 516 

Fig. 6. The 500 hPa geopotential height anomaly (in potential meters) and 700 hPa wind 517 

stream line averaged on the peak day (day 0), day 5 and lag day 10, composited for 85 positive 518 

NAO events (a, b and c) and for 82 negative NAO events (d, e and f). The brown lines represent 519 

the 1500 m isoheight. The dots represent the grid points where the 500 hPa geopotential 520 

height anomaly were significant at the 95% significance level. 521 

  522 
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 523 

Fig. 7. The 700 hPa moisture flux anomaly (g s-1hPa-1cm-1, vectors) averaged from +5 day (5 524 

days after the peak day) to the +10 day and WWD frequency anomaly (percentage per day, 525 

shaded), composited for 85 positive NAO events (a) and for 82 negative NAO events (b). Panels 526 

(c) and (d) are the same as panels (a) and (b), respectively, but for precipitation anomaly (in0.1 527 

mm d−1).The brown lines represent the 1500 m isoheight and the red boxes represent the 528 

CAWTP region. 529 
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 530 

Fig. 8. Schematic diagrams showing how positive (a) and negative (b) NAO events influence 531 

the precipitation over the CAWTP region. The red and blue ellipses are the areas of the 500 532 

hPa positive and negative geopotential height anomalies. The blue lines represent the 533 

southern and northern branches of the 700 hPa westerly circulation. The black arrows 534 

represent the 700 hPa wind anomaly. The brown and gray dotted line represent troughs and 535 

ridges. The green and yellow areas represent the positive and negative precipitation 536 

anomalies. 537 


