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Abstract

Constructing efficient and accurate parameterizations of sub-grid scale
processes is a central area of interest in the numerical modelling of geo-
physical fluids. Using a modified version of the two-level Lorenz ’96 model,
we present here a proof of concept of a scale-adaptive parameterization
constructed using statistical mechanical arguments. By a suitable use of
the Ruelle response theory and of the Mori-Zwanzig projection method,
it is possible to derive explicitly a parameterization for the fast variables
that translates into deterministic, stochastic and non-markovian contribu-
tions to the equations of motion of the variables of interest. We show that
our approach is computationally parsimonious, has great flexibility, as it
is explicitly scale-adaptive, and we prove that it is competitive compared
to empirical ad-hoc approaches. While the parameterization proposed
here is universal and can be easily analytically adapted to changes in the
parameters’ values by a simple rescaling procedure, the parameterization
constructed with the ad-hoc approach needs to be recomputed each time
the parameters of the systems are changed. The price of the higher flex-
ibility of the method proposed here is having a lower accuracy in each
individual case.

Keywords: Parameterization; Multiscale systems; Stochastic Dynamics;
Memory; Noise; Response theory; Mori-Zwanzig theory; Chaos; Scale-adaptivity;
Prediction
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1 Introduction

The climate is a forced and dissipative system featuring variability on a vast
range of spatial and temporal scales. This results essentially from the fact that a)
the climate system is composed by subdomains having different characteristic
time scales; and b) the dynamics inside each subdomain and the couplings
between them are strongly nonlinear. As a result, even the most sophisticated
and computationally expensive numerical climate models are far from being able
to represent explicitly just a relatively small fraction of the whole dynamical
range of the geophysical fluids (Ghil and Childress, 1987; Peixoto and Oort,
1993; Lucarini et al., 2014). Therefore, it is crucial to develop approximate -
yet accurate and efficient - dynamical/statistical representations - the so-called
parameterizations - of the effects of unresolved scales on the scales the model
is able to explicitly describe (Palmer and Williams, 2008; Franzke et al., 2015;
Berner et al., 2016). Lacking proper parameterizations reduces substantially
model’s skills in terms of short-to-medium range weather prediction, and on
climatic time scales, in terms of average properties, variability, and climate
response to forcings (see e.g. Holton, 2004; McGuffie and Henderson-Sellers,
2005; Palmer and Hagedorn, 2006; Plant and Yano, 2016).

A fundamental problem in the construction of parameterizations is that they
are typically tuned for being accurate for a specific configuration of a model in
terms of numerical resolution, and the operation of re-tuning needed when a
new model version at higher resolution is available can be extremely tedious
and costly. The need of achieving scale-adaptive parameterizations has been
recently emphasized in the scientific literature, see e.g. Arakawa et al. (2011);
Park (2014); Sakradzija et al. (2016). Additionally, parameterizations are typi-
cally tested against specific observables of interest and tuned in order to better
represent those observables, but it is not always clear whether optimizing the
skill for such observables might come at the price of reducing the skill on other
climatic properties that might prove crucial for, e.g., modulating the climatic
response to forcings.

A somewhat peculiar point of view is provided by the so-called superparam-
eterizations, mostly used to represent convection (Majda, 2007; Li et al., 2012).
The idea is to have lower dimensionality (and so computationally much cheaper)
models run in parallel with the main code for resolving at high resolution the
dynamics inside each atmospheric column.

For long time, parameterizations were aimed at describing the mean effects
of small, fast scales on slower ones, but recently it has become apparent that it
is crucial to widen their formulation in order be able to include in some way the
effect of fluctuations. The pursuit of stochastic parameterizations for weather
and climate models has then become an extremely active area of research, see
e.g. the recent contributions by Palmer and Williams (2008); Franzke et al.
(2015); Berner et al. (2016) and the now classical collection of results in Imkeller
and von Storch (2001). The construction of stochastic parameterizations in
geophysical fluid dynamical models is also usually approached using a pragmatic
method: one tries to construct empirical functions able to represent well the
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effect of mean state and of the fluctuations of the unresolved variables, see e.g.
the illustrative examples of Orrell (2003) and Wilks (2005).

Mathematical arguments do indeed support the idea of going towards stochas-
tic parameterizations. The homogenization method shows that the effect of the
fast scales on the slow scales can be represented, in the limit of infinite time scale
separation, as the sum of two extra terms in the equation of motions of the slow
variables, precisely a deterministic (mean field) and a white-noise stochastic
(fluctuations) component (Pavliotis and Stuart, 2008). This point of view has
led to an important set of results by Majda and collaborators on the possibility
of constructing explicitly reduced order models for geophysical fluid dynamical
systems (see, e.g., Majda et al. (1999, 2001, 2003); Franzke et al. (2005)).

A different point of view focuses, instead, on constructing effective dynam-
ics comprising deterministic as well as stochastic terms purely from data. The
idea proposed by Kravtsov et al. (2005) has been to extend the multilevel linear
regressive method, which is suitable for linear problems, to the nonlinear case,
allowing for dealing with the possibility of representing quadratic nonlinearities
in the evolution equations, which are in fact typical of (geophysical) fluid dynam-
ical processes. The method allows for constructing an optimal representation
of the deterministic, linear and nonlinear, dynamics as well as of the stochastic
forcing, so that its correlation properties are suitably recovered without making
any assumption on the existence of time scale separation between resolved and
neglected variables.

The Mori-Zwanzig theory (Zwanzig, 1960, 1961; Mori et al., 1974) provides
an - unfortunately implicit - expression for the effect of the small, fast scales
on the scales of interest. One finds that, once the hypothesis of infinite time
scale separation is relaxed, the parameterization requires in fact three terms, a
deterministic correction, a stochastic term, and a memory, non-markovian term.
In the limit of infinite time scale separation, the memory term drops off and the
stochastic terms becomes indeed white noise, in agreement with what predicted
by the homogenization theory.

Recently Chekroun et al. (2015a,b) have provided a comprehensive treat-
ment of these issues that combine mathematical rigor and physical intuition. In
a few recent papers, Wouters and Lucarini (2012, 2013, 2016) have provided ex-
plicit formulas for constructing parameterizations able to incorporate the deter-
ministic, stochastic, and non-markovian components. The formulas have been
obtained independently using two rather different approaches, namely a second
order expansion of the Mori-Zwanzig projection operator, and a reworking of
the Ruelle (1998, 2009) response theory, which allows under suitable conditions
to compute the change in the expectation value of any smooth observable of a
system resulting from perturbations of the dynamics in terms of the statistical
properties of the unperturbed flow.

The idea followed by Wouters and Lucarini has been to treat the coupling
between the slow and fast variables as the weak forcing added on top of the
uncoupled dynamics, and then evaluate the impact of the forcings on the sta-
tistical properties of a generic observable of the slow variables. Finally, the last
step has been to retro-engineer explicit formulas for terms that, added to the
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uncoupled dynamics of the slow variables, provide up to second order to the
same results as the actual coupling.

It is important to note that since explicit formulas are provided, one can
indeed construct the parameterizations ab-initio, and not empirically. Addition-
ally, the parameterization is automatically optimized for all possible observables
of the system. Such an approach seems especially promising in all systems, as in
the extremely relevant case of the climate, where there is no spectral gap in the
scales of motions that justifies the assumption of infinite time scale separation
between fast and slow scales. It seems then in general relevant to be able to
retain and check the relevance of the memory term and to construct a suitable
model for the stochastic forcing, going beyond the approximation of using white
noise or simple empirical autoregressive processes.

Note that the approach discussed here is not per se constructed to deal
with multiscale systems only. In fact, the explicit expressions for the terms
responsible for the parameterization are constructed by performing an asymp-
totic expansion controlled by a parameter determining the degree of coupling
between the set of variables of interest and those we want to parameterize.
Clearly, if such a condition is satisfied, we can apply our method also to multi-
scale systems, as done here. Recently, a parameterization constructed according
to such a statistical mechanical point of view has been tested successfully in a
simple low dimensional model (Wouters et al., 2016) and in a more complex
yet simple coupled model (Demaeyer and Vannitsem, 2017). In this paper, we
want to stress another quality of this approach, namely the possibility of having
automatically scale adaptive formulations of the parameterization.

We choose as benchmark system to work with (a modified version of) the
Lorenz ’96 model (Lorenz, 1996), which provides a prototypical yet convincing
representation of a two-scale system where large scale, synoptic variables are
coupled to small scale, convective variables. The Lorenz ’96 model has quickly
become the test-bed for evaluating new methods of data assimilation (Trevisan
and Uboldi, 2004; Trevisan et al., 2010) and is receiving a lot of attention also
in the community of statistical physics (Abramov and Majda, 2008; Hallerberg
et al., 2010; Lucarini and Sarno, 2011; Gallavotti and Lucarini, 2014). More
importantly for our specific case, the Lorenz ’96 model has been used in the pa-
pers of Orrell (2003) and Wilks (2005) to construct explicit models of stochastic
parameterization, so we have previous results to compare to. We wish to stress
that data driven closure models have been recently extended in order to be able
to deal with the unavoidable memory effects due to presence of neglected, hid-
den variables (Kondrashov et al., 2017). One can see the approach proposed
here as the top-down counterpart of the bottom-up approach provided by the
data-driven methods.

The paper is structured as follows. Section 2 provides the main ingredi-
ents of the method for constructing general parameterizations introduced by
Wouters and Lucarini (2012, 2013, 2016). Section 3 describes the Lorenz ’96
system and highlights the modifications we have applied in the present work,
most importantly the introduction of a forcing acting also on the fast variables.
Section 4 is dedicated to describing the performance of the parameterization,
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discuss its scale-adaptive properties, and compare its performance with previous
results. Section 5 concludes the paper with the discussion of the results and the
perspective for future research in this area. In Appendix A we present some
new ideas building on Wouters and Lucarini 2012, 2013, 2016 able to extend
the range of applicability of the theory.

2 Wouters-Lucarini’s parameterization

In this paper we test the effectiveness of the methodology introduced by Wouters
and Lucarini (2012, 2013, 2016) for constructing parameterizations for dynam-
ical systems of the form:

dX

dt
= FX(X) + εΨX(X,Y ), (1)

dY

dt
= FY (Y ) + εΨY (X,Y ), (2)

where theX variables correspond to the dynamics of interest and the Y variables
correspond to the dynamics we want to parameterize. The F vector field on the
right hand side of Eqs. (1)-(2) corresponds to the uncoupled dynamics of the
X and Y variables respectively, while the Ψ field describes the coupling, with ε
being a bookkeeping variable describing the coupling strength. Note that Eqs.
(1)-(2) do not describe, in general, a multiscale dynamical system, where the
X (slow) and the Y (fast) variables are essentially characterized by different
scales of motion. Nonetheless, we can bring it to the standard form elucidating
multiscale behaviour by considering the following form for Eqs. (1)-(2):

dX

dt
= FX(X) + εΨX(X,Y ) (3)

dY

dt
= γF̃Y (Y ) + εΨY (X,Y ) (4)

where γ � 1 and FY (Y ) = γF̃Y (Y ). As clear from the later discussion, it is not
important in our case to include the factor γ also for the coupling term affecting
the Y variables in Eq. (4), because we are eminently interested in separating the
time scales of the decoupled (ε = 0) X- and Y-systems. Following the discussion
presented in the introduction, the goal is to find an approximate equation of
the form

dX

dt
= FX(X) + χ{X} (5)

able to provide a good approximation of the statistical properties of the X
variables, where χ{X} can in general correspond to an integro-differential con-
tribution with also a stochastic component. It seems relevant aiming at being
able to specify in advance the accuracy of the approximation in terms of the
properties of the coupling and, in particular, of the coupling strength ε. Clearly,
if ε = 0, we have that χ{X} = 0 provides a (trivial) solution to our problem. The
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approach can be seamlessly followed also in the presence of a functional form
for the equations where the parameter γ explicitly controls the scale separation
between the X and Y variables. Note that Abramov (2016) has recently intro-
duced an extension of the homogenization method able to deal with a problem
formulated as in Eqs. (1)-(2).

2.1 The method

The basic idea is to consider the dynamical system (1)-(2) as resulting from an
ε−perturbation of the following dynamical system:

dX

dt
= FX(X), (6)

dY

dt
= FY (Y ), (7)

where the coupling plays the role of the perturbation. We now focus on the X
variables by considering a general observable A = A(X), i.e. a smooth func-
tion of the X variables only. Making suitable hypotheses on the mathematical
properties of the unperturbed system and taking advantage of the Ruelle (1998,
2009) response theory, Wouters and Lucarini have been able to find a useful
expression for the expectation value ρε(A) of the observable A taken according
to the invariant measure ρε(dXdY ) of the coupled dynamical system (1)-(2):

ρε(A) =

∫
ρε(dXdY )A(X). (8)

In what follows, we assume that all invariant measures considered are of the
Sinai-Ruelle-Bowen kind (Eckmann and Ruelle, 1985; Young, 2002). This as-
sumption can be physically motivated by taking into account the chaotic hy-
pothesis (e.g. Gallavotti (2014)). We can also introduce the projected measure

ρ∗ε (dX) =

∫
Y

ρε(dXdY ) (9)

where the inetgration is performed on the Y variables only, such that ρε(A) =
ρ∗ε (A). Using ergodicity, we also have:

ρ∗ε (A) = lim
T→∞

1

T

∫ T

0

dτA(x(t)), (10)

where x(t) = f̃ tx0, with f̃ t defining the flow determined by the dynamical
system (1)-(2). It is possible to find a perturbative expansion of the expectation
value of A taken according to the invariant measure of the coupled system. One
can in fact write

ρ∗ε (A) = ρ0,X(A) + εδ
(1)
Ψ ρ(A) + ε2δ

(2)
Ψ,Ψρ(A) +O(ε3), (11)
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where the first term ρ0,X(A) is the expectation value of A taken according to
the invariant measure of the X-component of the unperturbed system (6):

ρ0,X(A) =

∫
ρ0,X(dX) = lim

T→∞

1

T

∫ T

0

dτA(fτ (x0)), (12)

where we have again used ergodicity and defined f t as the flow of the X variables

part of the dynamical system (6). The second term εδ
(1)
Ψ ρ(A) and the third

term ε2δ
(2)
Ψ,Ψρ(A) correspond to the first and second order corrections, and can

be also expressed as expectation values on ρ0,X(dX) of explicitly determined
observables, which are constructed non-trivially from A and the vector field Ψ.
All the terms can be computed from the statistical properties of the uncoupled
dynamics of the Y variables given in Eq. 7. The explicit expressions can be
found in Wouters and Lucarini (2012).

While the previous result allows for computing the impact of the coupling on
the statistics of any given A observable, it is not useful per se for constructing
a parameterization. Nonetheless, it is possible to retro-engineer an educated
guess for the term χ{X} introduced in Eq. (5), such that up to second order in
ε the expectation value of A according to the invariant measure ρ′ε(dX) of the
system:

dX

dt
= FX(X) + εD(X) + εS{X}+ ε2M{X} (13)

is the same as the expectation value of A according to ρε, or, more explicitly:

ρε(A) = ρ′ε(A) +O(ε3). (14)

Therefore, Eq. (14) provides a useful basis for defining a parameterization
where we are able to control the error on the statistics of the surrogate dynamics
with respect to the full dynamics as a function of ε, and where this applies for
all possible observables A.

The three perturbation vector fields D, S and M correspond to, respectively,
a mean field term, a stochastic forcing and a non-markovian memory term. Note
that the stochastic term has a second order effect on the measure even if its
intensity is proportional to ε; see Lucarini (2012). As shown in Wouters and
Lucarini (2012, 2013, 2016), the explicit expression for these three terms can
be obtained also by performing a second order expansion of the Mori-Zwanzig
projector operator, which constructs the effective projected dynamics for the X
variables only. This suggests that the proposed parameterization might have
skill also in terms of prediction (in the sense of weather forecast); we will test
this elsewhere. In what follows, we refer to this approach as the the W-L
parameterization.

The explicit expressions for the three terms providing the parameterization
shown in Eq. (13) are given below in Eqs. (15), (16) and (20). Therefore, once
we derive D, S, and M , we can use them to construct parameterizations for all
values of ε within the radius of convergence of the expansion. Additionally, if
the coupled model given in Eqs. (1)-(2) is multiscale, this approach allows for
constructing parameterizations integrating the single scale equation (7). This
can significantly ease the computational burden of our problem.
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2.1.1 Deterministic, stochastic, and non-markovian terms

We assume that the coupling terms ΨX(X,Y ) and ΨY (X,Y ) are separable in
the X and Y variables, so that we can write ΨX(X,Y ) = ΨX,1(X)ΨX,2(Y ) and
ΨY (X,Y ) = ΨY,1(X)ΨY,2(Y ). As explained in Wouters and Lucarini (2012,
2013, 2016), such an assumption does not really impact the generality of our
results.

D(X) is a deterministic term that accounts for the average impact that the
coupling has on the X variables and it is given by:

D(X) = ΨX,1(X)ρ0,Y (ΨX,2(Y )). (15)

The second order contribution is composed of two parts. S{X} represents
a stochastic forcing due to the temporal correlation of the fluctuations of the
forcing exerted by the Y-variables onto the X variables. We can write

S{X} = ΨX,1(X)σ(t), (16)

where σ(t) is a stochastic term and is constructed in such a way to reproduce the
lagged correlation of the fluctuations of the forcing. The statistical properties
of the noise σ(t) can be expressed as:

R(t) = 〈σ(t), σ(0)〉
= ρ0,Y

(
(ΨX,2(Y )− ρ0,Y (ΨX,2(Y )))(ΨX,2(f t(Y ))− ρ0,Y (ΨX,2(Y )))

)
,

(17)

〈σ(t)〉 = 0. (18)

where the brackets indicate the expectation value of the stochastic process and
R(t) is the lagged correlation of the (stationary) noise.

Finally, M{X} is a memory term that describes the effects of the history of
the X variables on their present value through the influence of the Y variables.
This term is essential for capturing the effect of the hidden (Y) variables on
the (X) variables of interest, as clarified by Chekroun et al. (2015a,b). It is
expressed as:

M{X} =

∫ ∞
0

h(τ,X(t− τ))dτ, (19)

where the integral kernel is given by:

h(τ, X̃) = ΨY,1(X̃)ΨX,1(fτ (X̃))ρ0,Y (ΨY,2(Y )∂Y ΨX,2(fτ (Y ))). (20)

Such an average resembles a cross-correlation between the actual state of the
two fields X,Y and the deviation of the trajectory of the same fields evolved at
t = τ .
A remarkable property of this parameterization is its universality, as shown by
Eq. (15) through (20), because we have explicit formulas for computing the
three factors D, S and M for any given expression of the coupling terms or
of the uncoupled dynamics. Another positive aspect of these equations is the
scale adaptivity of the parameterization terms, as we are going to show in next
sections.

8



A proof of concept for scale-adaptive parameterizations

2.2 Independent coupling case

The special case where the two coupling terms are independent from the variable
they are affecting, namely ΨX(X,Y ) = ΨX(Y ) and ΨY (X,Y ) = ΨY (X), is
particularly important for the scopes of this paper. The three terms discussed
above take the following simpler form:

D(X) = ρ0,Y (ΨX(Y )), (21)

S{X} = σ(t), (22)

where

R(t) = 〈σ(0), σ(t)〉 = ρ0,Y ((ΨX(Y )−D)(ΨX(f t(Y ))−D)),

〈σ(t)〉 = 0,
(23)

and

M{X} =

∫ ∞
0

h(t2, X(t− t2))dt2, (24)

where
h(t2, X̃) = ΨY (X̃)ρ0,Y (∂Y ΨX(f t2(Y ))). (25)

In this special case, the stochastic contribution reduces to a simple additive
noise term - compare Eqs. (16) and (22) - while the evaluation of the memory
kernel h is significantly easier as a simpler expression appears in the ensemble
average - compare Eqs. (20) and (25).

We can now prove the scale adaptivity of the method adopted here as follows.
We then consider the case where the equations of motions can be written as
in (6)-(7). We note that the expectation values are computed according to
the invariant measure of the uncoupled equation dY

dt = γF̃Y (Y ), which can be
rewritten as

dY

dτ
= F̃Y (Y ) (26)

where τ = γt.
We clearly have that the constant D in Eq. (21) is not affected by the choice

of the time scale. Instead, the correlation function in Eq. (23) and the memory
kernel in Eq. (25) are affected by the rescaling in the time and only the rescaled
time τ will appear in their arguments. By substituting τ = ct one then obtains
the actual parameterization for every choice of γ. In particular, large values of
γ will lead to a compression of the time axis for the correlation function and
memory kernel, as seen below in the specific case investigated in this study.

3 The Lorenz ’96 Model

It is crucial to test the methodology outlined in the previous section on a con-
crete numerical model having some practical and conceptual relevance. We rec-
ommend the reader to check the recent contributions by Wouters et al. (2016)
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and Demaeyer and Vannitsem (2017). The study presented here is constructed
in such a way that we systematically explore how the performance of the pa-
rameterization changes when we alter both the intensity of the coupling and the
time scale separation between the fast and slow variables. In particular, we are
able to construct a scale adaptive scheme that requires minimal computational
time for constructing a general parameterization scheme.

At this regard, we have chosen to perform our analysis on the Lorenz ’96
model (Lorenz, 1996). The Lorenz ’96 model provides a conceptually mean-
ingful yet extremely simplified representation of the atmosphere; there are two
sets of variables, one describing the dynamics on large scale (so-called synoptic
variables), and one characterizing the dynamics on small scale (so-called con-
vective variables). The convective variables are divided in as many subgroups
of equal size as the number of synoptic variables, each subgroup being coupled
to a different synoptic scale variable. The system is then characterized by cou-
pling within and across scales of motions. The Lorenz ’96 model has quickly
established itself as one of the reference models in nonlinear dynamics for test-
ing e.g. data assimilation (Trevisan and Uboldi, 2004; Trevisan et al., 2010),
schemes and properties of Lyapunov exponents and covariant Lyapunov vectors
and is becoming increasingly popular also within the community of statistical
mechanics (Abramov and Majda, 2008; Hallerberg et al., 2010; Lucarini and
Sarno, 2011; Gallavotti and Lucarini, 2014).

The evolution equations of the Lorenz ’96 model can be written as:

dXk

dt
= Xk−1(Xk+1 −Xk−2)−Xk + F1 −

hc

b

J∑
j=1

Yj,k, (27)

dYj,k
dt

= cbYj+1,k(Yj−1,k − Yj+2,k)− cYj,k +
hc

b
Xk, (28)

with k = 1, ...,K; j = 1, ..., J . The boundary conditions are defined as

Xk−K = Xk+K = Xk,

Yj,k−K = Yj,k+K = Yj,k,

Yj−J,k = Yj,k−1,

Yj+J,k = Yj,k+1.

(29)

The latitudinal circle is divided into K sectors, each one corresponding to one
synoptic slow X variable. Each X variable is coupled to J convective fast Y
variables. As discussed in detail later, the constant c defines the time scale
separation between the fast and slow variables (see also the general form of a
multiscale system as given in Eqs (3)-(4)), while the amplitude of the fluctua-
tions is determined by b, while h controls the strength of the coupling.

In absence of forcing and dissipation, the sum of the squares of the vari-
ables (the energy of the system) is conserved. For a detailed description of the
statistical mechanical and conservation properties of the system (yet in a sim-
plified version), the reader is encouraged to look into Lucarini and Sarno (2011);
Blender and Lucarini (2013); Gallavotti and Lucarini (2014).
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We note that the coupling between the X and the Y terms has the simplified
form discussed in the previous section (what we referred to as the independent
coupling), and is linear. This simplifies the treatment below, which is nonethe-
less possible also for more complex forms of coupling.

The choice of the parameters defining the strength of the external forcing,
the number of sectors and subsectors, the strength of the coupling, the relative
amplitude of the fluctuations and the time scale separation between the two
systems determines the properties of the dynamical system.
The original parameters chosen by Lorenz are c = 10.0, b = 10.0, h = 1.0,
K = 36 and J = 10 (providing therefore a total of 36 X variables and 360 Y
variables). We remind that, following the original derivation of the model, 1
unit of time is equivalent to 5 days, while the usual integration time step is
0.005, corresponding to 36 minutes.

When one is well within the chaotic regime (e.g. F1 is sufficiently large) and
considers a sufficiently large number of sectors (and subsectors), it is reasonable
to expect to be able to define intensive properties that are stable with respect to
the specific choice of K and J, see discussion in Gallavotti and Lucarini (2014)
for a simpler version of the model.

We have implemented two modifications to the Lorenz ’96 model:

• We have introduced a forcing term also in the equations describing the
dynamics of the Y variables (see Eq. (31)), in order to represent the
direct effect of forcings at small scales (mimicking, e.g., the impact of
direct solar forcing on convective motions). This has the effect of making
the fast variables an active component of the system: they can also pump
energy into the X variables and are not exclusively dissipating energy
coming from larger scales.

• We have changed the boundary conditions on the Y variables in such
a way that the fast variables of different sectors do not interact with
each other, in the spirit of having the fast variables representing sub-grid
scale phenomena (see Eqs. (32)). Note that if J � 1 and we are in a
chaotic regime, it is reasonable that this change has negligible impact on
the statistics of the system, as information does not propagate efficiently
between convective variables belonging to neighbouring sectors. Addition-
ally, the parameterization becomes easier to implement, because, following
the basic idea behind super-parameterization, subgrid variables belonging
to different X sectors are independent and equivalent in the uncoupled
case (see Eqs. (6)-(7)).

Therefore, the evolution equations (27)-(28) are modified as follows:

dXk

dt
= Xk−1(Xk+1 −Xk−2)−Xk + F1 −

hc

b

J∑
j=1

Yj,k, (30)

dYj,k
dt

= cbYj+1,k(Yj−1,k − Yj+2,k)− cYj,k +
c

b
F2 +

hc

b
Xk, (31)

11
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with modified boundary conditions

Xk−K = Xk+K = Xk,

Yj−J,k = Yj+J,k = Yj,k.
(32)

The parameter ε in Eqs. (1)-(2) is hc
b and the coupling terms are ΨX =

−ε
J∑
j=1

Yj,k and ΨY = εXk, b defines the ratio between the typical size of the

X and Y variables, while the parameter γ controlling the scale separation is
given by c. We choose F1 = 10.0 and F2 = 6.0, so that chaos is realized in
the uncoupled version of the system (obtained from Eqs. (30)-(31) by setting
h = 0) for both the large and small scale variables of the system separately. We
choose for h, b, c, K, and J the standard values mentioned above. We have
verified that the change in the boundary conditions for the Y variables has a
negligible effect on the statistical properties of the X variables: the pdf of each
X variable (Fig. 1), its time correlation (Fig. 2), and the spatial correlation of
the X variables at zero time lag (Fig. 3) are virtually identical for the original
and modified Lorenz ’96 model. The presence of chaos and of a corresponding
nontrivial invariant measure for the Y variables are necessary for being able to
construct the W-L parameterization. In Appendix A we discuss how such a
requirement can be relaxed through a suitable re-definition of the background
around which the perturbative theory is applied.

We now show how to practically construct a scale-adaptive parameterization.
This provides us with a great deal of flexibility and extremely parsimonious
numerical costs. We show that the uncoupled evolution equation for the Y
variables (Eq. (7)) can be written in a universal form. In fact, it is easy to
check that, operating the substitutions

τ = ct (33)

and
Zj,k = bYj,k, (34)

we get for the uncoupled evolution equation for the rescaled Y variables:

dZj,k
dτ

= Zj+1,k(Zj−1,k − Zj+2,k)− Zj,k + F2. (35)

Therefore, for all values of h, b, and c we can construct the parameterizations
just by resorting to the invariant measure of Eq. (35) and adopting the suitable
rescaling. Note that in the case of this specific system we are able to rescale
also the size of the Y variable and achieve a higher degree of flexibility than in
the general case discussed above. This emphasizes the scale-adaptivity of the
approach proposed here, and makes sure that only modest computation effort
is needed to deal with the problem of parameterization.

Note that, compared to the general case of multiscale system discussed be-
fore, in this case we have the additional problem that changing the value of c = γ
leads also to an increase in the value of ε, so that large values of c might break
the weak coupling hypothesis. The problem can be circumvented by increasing
at the same time the value of b or considering smaller values of h.

12
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Figure 1: Probability density of the X variable for the original (solid line) and
the modified (dashed line) Lorenz 96 model. See text for details.
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Figure 2: Time autocorrelation of the X variable for the original (solid line)
and the modified (dashed line) Lorenz 96 model. See text for details.
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Figure 3: Spatial autocorrelation of the X variable for the original (solid line)
and the modified (dashed line) Lorenz 96 model. See text for details.
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3.1 Constructing the Parameterization

The first order term in the parameterization is recovered using ergodicity and
averaging D(X) in Eq. (21). By symmetry, the coupling is the same for all the
X variables:

Dk(Xk) = D(X) = D = −1

b
lim
T→∞

1

T

∫ T

0

J∑
j=1

Zj,k(τ)dτ, (36)

where k = 1, . . . ,K and the average is performed by integrating Eq. (35).
The value of this term is −20.12

b for all k′s; choosing b = 10 we get Dk(Xk) =
−2.012. Therefore, the coupling between fast and slow scales leads on the
average to a reduction in the effective forcing applied to the slow variables. In
other terms, this indicates a net energy flux from slow to fast variables. Despite
the simplicity of the model considered here and of the coupling between the X
and Y variables, this corresponds to the effect of introducing eddy viscosity in
more complex fluid dynamical models.

The kth component of the stochastic term S{X} in Eq. (22) is constructed
as an additive noise σ(t) featuring the following lagged covariance:

Rk(τ) = Rk(ct) = lim
T→∞

1

T

∫ T

0

(−
J∑
j=1

Zj,k(τ1)

b
−D)(−

J∑
j=1

Zj,k(τ + τ1)

b
−D)dτ1,

(37)
where the evolution of the Z variables is given by Eq. (35) and the covariance
is reported in Fig. 4. We can construct surrogate time series of σ to be used
for the parameterized simulation either from properly resampling time series

of the fluctuation term −
J∑
j=1

Zj,k

b − D or by reproducing them using simple

stochastic models like those belonging to the AR(n) family. We follow the
second route, taking advantage of the software package ARFIT (Neumaier and
Schneider, 2001; Schneider and Neumaier, 2001). Note that this term describes
the backscatter of energy from the small towards the large scales.
Note that, as the argument of the function is ct, we have that in the limit of
c → ∞ the autocovariance tends to zero for all t > 0, because the function R
tends to zero for large values of its argument, while one has for all values of c
that R(0) is finite. As a result, one obtains as limit a white noise of vanishing
amplitude for any fixed value of ε.

We now wish to provide an explicit expression of the kth component of the
non-markovian term M{X} given in Eq. (24). We express the memory kernel
hk(τ, X̃k) (where τ = ct) as follows:

hk(τ1, X̃k) = −1

b
X̃kH(τ1), (38)

where

H(τ1) = limΩ→∞
1

Ω

∫ Ω

0

J∑
j=1

∂

∂Zj,k(ω)
Zj,k(τ1 + ω)dω. (39)
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Figure 4: Time lagged autocovariance of the noise term σ(t) with b = 10 and
h = 1. See text for details.
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Figure 5: Memory effects as measured by the factor H, see Eq. (39), with b = 10
and h = 1. See text for details.

In Fig. 5 we plot the factor H on the right hand side of Eq. (38), this
clarifies that the kernel weighs less states of the X variables with larger time
separation, as expected. Increasing the value of c leads to a compression of the
time axis by a factor of c. Since H(τ)→ 0 in the limit of c→∞, h vanishes for
all values of t > 0. Hence, memory effects disappear in this limit.

We expect that, for a given value of ε, the larger the value of c, the more dom-
inant is the contribution to the parameterization coming from the deterministic
first order term.

Note that Abramov (2016) addresses the problem of parameterizing a mod-
ified version of the Lorenz’96 system similar to the one presented here by a
modified version of the homogenization method. The derived parameterization
is different from what obtained here as the homogenization method assumes
infinite separation of scales between the fast and slow variables. Abramov ob-
tains a stochastic contributions that is always white (yet its variance depends
on the time scale separation), and an extra deterministic linear term that, from
construction, might point at a surrogate way to implicitly deal with memory
effects.
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4 Performance of the parameterization

In this section a series of statistical tests are performed in order to check the
skill of the W-L parameterization. In what follows, we refer to Eqs. (30)-(31)
as the coupled model. The uncoupled model is, instead, given by the evolution
equations of Eq. (30) where the last term is excluded (or, equivalently, h is
set to 0). The model with first order parameterization is obtained by inserting
expression (36) in Eq. (13) and disregarding the other terms. The model with
second order parameterization is obtained by inserting in Eq. (13) both the first
and second order terms. We test the skill of the parameterization in reproducing
the statistical properties of the coupled model and compare it to the performance
of the parameterization constructed according to the method proposed by Wilks
(2005). We choose for this test the standard values of the parameters c = 10,
b = 10, h = 1; every other possible choice for these factors can be covered
through a proper rescaling of the values for D, S and M , as shown in sections
4.1 and 4.2.

Wilks proposed an empirical parameterization of the fast dynamical variables
in the Lorenz ’96 model. The idea is to fit the unresolved tendencies of the X
variables (i.e. the forcings terms written as a function of the Y variables) using
a polynomial regression in the form

gU (Xk) = b0 + b1Xk + b2X
2
k + b3X

3
k + b4X

4
k + ek, (40)

where the bs are the regression coefficients, while ek is a stochastic function
constructed according to the following AR(1) process:

ek(t) = φek(t−∆) + σe(1− φ2)1/2zk(t), (41)

written in term of the fitting parameters φ (lag-1 autocorrelation of ek), σe
(standard deviation of the process ek), where zk is a Gaussian uncorrelated
process with zero mean and unitary variance. The parameterized system is
then written as follows:

dXk

dt
= Xk−1(Xk+1 −Xk−2)−Xk + F1 − gU (Xk). (42)

Note that in the case of Wilks’s parameterization, all terms are markovian
and there is no clear justification of why the stochastic residual is captured by
an AR(1) process, nor of why a 4th order polinomial is chosen. On the other
side, the W-L parameterization provides a simple constant as deterministic term
D(X) (see Eq. (36)), which seems an oversimplification compared to the fourth
order polynomial used by Wilks. This clarifies that the two approaches are
rather different in nature. We remark that the framework for parameterizations
for slow-fast system recently proposed by Wouters and Gottwald (2017) and
based on the Edgeworth expansion might provide a sound basis for justifying
and possibly deriving explicitly closures structurally analogous to what proposed
by Wilks for the Lorenz ’96 system.
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Figure 6: Probability density of the X variable for the different models consid-
ered in the paper. See text for details.

We test the ability of the parameterizations in reproducing the probability
density function of the variable Xk, the lagged temporal correlation Corr(t) =
〈XkXk(t)〉, and the spatial correlations at zero time lag Sp(l) = 〈XkXk+l〉.

Fig. 6 shows the probability density of the Xk variables for all considered
models. It is clear how the second order parameterization offers a better result
with respect to the first order, which is in turn a clear improvement of the
basic uncoupled system. Both Wilks’s approach and the W-L parameterization
provide rather good approximations of comparable quality for the distribution
of the X variable of the original system.

We then consider normalized second order properties for the X variables.
We first look at the lagged time autocorrelation (see Fig. 7). Higher order
parameterizations lead to a better agreement with the coupled model, even if
the improvement in the skill is most evident for small time lags. Nevertheless,
the Wilks method provides very good results also for lags larger than 0.4 time
units.

Fig. 8 shows the performance of the parameterization in simulating the
spatial correlation of the Xk variable. We find that considering higher order
approximations in the parameterizations we do not get a substantial improve-
ment of the results, even if the first and second order parameterization lead
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Figure 7: Temporal autocorrelation of the X variable for the different models
considered in the paper. See text for details.

to an improvement with respect to the uncoupled case. In this case Wilks’s
parameterization follows closely the full coupled model and overperforms the
parameterizations constructed according to the method discussed here.

The analysis of the second and higher order moments is shown in the next
section.

4.1 Sensitivity to the Strength of the Coupling

As our expansion is based on assuming the presence of weak coupling between
the slow and the fast variables, it is crucial to test its performance as we vary
the value of the coupling strength h = ε bc (see Eqs. 30 and 31) with respect to
its standard value of 1. Note that we are treating the case where b = c = 10
are held fixed, so that h = ε is changed in what follows. We look at the first
moment and at the second, third and fourth central moments of the variable
Xk.

Fig. 9 shows that all parameterizations perform pretty well in terms of
representing the first moment of Xk for all considered values of h < 1.4. Larger
values of h lead to a qualitative change in the properties of the system and fall
outside the range of interest.

We note that, surprisingly, the first order parameterization constructed using
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Figure 8: Spatial autocorrelation of the X variable for the different models
considered in the paper. See text for details.

22



A proof of concept for scale-adaptive parameterizations

0 0.2 0.4 0.6 0.8 1 1.2 1.4

h

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

F
ir
s
t 
m

o
m

e
n
t

1st order parameterization

2nd order parameterization

Coupled model

Wilks parameterization

Figure 9: First moment as a function of the coupling strength for the different
models considered in the paper. See text for details.

the W-L method overperform the second order model for h / 1, which hints
at the importance (at least in this case) of possibly developing a theory for the
third order scheme, beyond the W-L parameterization.

Figs. 10, 11 and 12 portray the performance of the parameterizations in
reproducing the values of the second, third and fourth centered moments, re-
spectively. We consistently find that, while all methods are quite successful, the
Wilks parameterization provides the best results, with the second order model
constructed with the W-L method coming close second.

We wish to underline that the Wilks parameterization needs to be con-
structed from scratch for each different value of h (as well as of b and c). This
marks a fundamental difference with the parameterization tested in this study,
where we need just to linearly rescale the first order term and quadratically
rescale the two second order terms. Another problem shown by Wilks’s method
is the lack of stability in case of high values of h; as a matter of fact, in order
to obtain results for h > 1.2 we had to reduce drastically the time step in the
numerical integration, thus having a much higher computational cost.
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Figure 10: Second centered moment as a function of the coupling strength for
the different models considered in the paper. See text for details.
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Figure 11: Third centered moment as a function of the coupling strength for
the different models considered in the paper. See text for details.
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Figure 12: Fourth centered moment as a function of the coupling strength for
the different models considered in the paper. See text for details.
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Table 1: Values of the constants determining the parameterization according to
the Wilks method for various values of the model’s parameter c.

c b0 b1 b2 b3 b4 σe φ
1 1.694× 10−1 1.619× 10−2 7.507× 10−4 −7.868× 10−5 3.06× 10−7 1.04× 10−1 0.9995
5 9.122× 10−1 9.419× 10−2 −5.644× 10−3 4.025× 10−5 1.852× 10−5 4.659× 10−1 0.9996
10 1.81 1.467× 10−1 −1.357× 10−3 1.446× 10−3 −1.313× 10−4 8.965× 10−1 0.9997
20 3.721 4.861× 10−1 2.752× 10−2 −2.38× 10−2 2.427× 10−3 1.47 0.9997
100 1.317× 101 1.059 2.969× 10−1 6.534× 10−2 3.421× 10−3 9.905× 10−2 0.9998

4.2 Scale adaptivity

The most relevant advantage of the W-L approach proposed here is that it al-
lows one to construct general parameterizations by suitably rescaling the three
terms - deterministic, stochastic and non-markovian - after having estimated
them through a single numerical simulation.
The method proposed by Wilks is more precise for each given choice of the
system’s parameters but lacks such a flexibility, which might be of crucial rele-
vance when trying to develop self-adaptive parameterizations. The coefficients
appearing in the Wilks parameterizations (see Table 1) cannot be readily pre-
dicted with suitable expressions.

Using the general results for the first and second order terms of the W-L
parameterization and adopting the suitable rescaling for the amplitude and the
time axis discussed in the previous section, it is possible to explore an infinite
range of scenarios for the values of b, c, and h. We present some examples below.

In Fig. 13 we show that the probability densities of Xk obtained through
the different parameterizations are in good agreement with what shown by the
coupled model. Note that choosing c = 1 implies also assuming that there is
no scale separation between the X and the Y variables. In fact, as discussed
before, the W-L method can be used also in this case.

Since we are treating the case where the coupling should not be too strong
compared to the unperturbed vector flow (this is the condition under which
we can use the W-L method), as said before, increasing the value of c can be
problematic unless we reduce accordingly the value of h (or increase the value of
b). We then show in Fig. 14 the probability density function of the X variable
in the case c = 100, b = 10, h = 0.1, with a much stronger coupling than the
previous case of Fig. 13.
In this case, it is clear that considering a parameterization is crucial for repro-
ducing satisfactorily the statistics of the X variable, and we observe that the
first order parameterization is already rather successful. Note that as c becomes
larger, the memory term has a less and less relevant role and the stochastic con-
tributions is rather similar to a white noise forcing.

As last test (Fig. 15) we stress the rescaling of the model applying the
transformation to all the parameters at the same time, shifting from the c = 10,
b = 10, h = 1 to the c = 5, b = 8, h = 1.1 scenario.
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Figure 13: a) Probability density of the X variable in the case of c = 1, b = 10
and h = 1. See text for details. b) Zoom on the peak of the distribution.
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Figure 14: a) Probability density of the X variable in the case of c = 100, b = 10
and h = 0.1. See text for details. b) Zoom on the peak of the distribution.
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Figure 15: Probability density of the X variable in the case of c = 5, b = 8 and
h = 1.1. See text for details.
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5 Conclusions

Constructing accurate and efficient parameterizations is a central task in the nu-
merical modelling of geophysical fluids, because these systems are characterized
by variability on a large range of spatial and temporal scales. Parameteriza-
tions are expected to be able to improve our ability to predict and represent
the statistical properties of the slow, large scales variables of interest bypassing
the need for representing explicitly the dynamics of fast, small scale variables.
Modern climate and weather prediction systems devote relevant resources to
improving the parameterizations of subgrid scale processes. Unfortunately, pa-
rameterizations are usually constructed ad-hoc, targeting the optimisations of
one of few specific properties of interest, and must usually be re-tuned each
time the resolution of the model is changed or new components are added. This
creates intrinsic uncertainties in the performance of the model and reduces its
overall robustness.

General mathematical findings suggest that parameterizations should in-
clude deterministic, stochastic, and non-markovian contributions (Chekroun
et al., 2015a,b; Wouters and Lucarini, 2012, 2013, 2016). In particular, non-
white noise and non-markovian terms result from the finiteness of the scale
separation between resolved and unresolved scales. Indeed, current develop-
ments in meteorology and climate science are strongly proposing supplementing
the common deterministic parameterizations with stochastic components and
satisfactory improvements in the skill are observed (Palmer and Williams, 2008;
Franzke et al., 2015; Berner et al., 2016).

In this paper we implement the parameterization scheme developed for gen-
eral systems by Wouters and Lucarini through a re-elaboration of the Ruelle
response theory (Ruelle, 1998, 2009) and, independently, through an expan-
sion of the Mori-Zwanzig projection operator (Zwanzig, 1960, 1961; Mori et al.,
1974), where the coupling between the variables of interest and the variables we
want to parameterize is seen as small perturbation to the uncoupled dynamics
of the former ones, thus taking a weak coupling hypothesis. This parameteriza-
tion describing the dynamical impact of the neglected variables can be written
as the sum of as a deterministic term (mean field effect) stochastic term (im-
pacts of fluctuations), and non-markovian term (role of memory). We underline
that following this point of view, instead, no hypotheses are taken on the scale
separation between the systems, as opposed to well-exploited approaches as the
homogenization method (Pavliotis and Stuart, 2008). We also show that the
W-L method can be used in general for constructing scale-adaptive parameter-
izations when multi-scale systems are considered.

We test this parameterization scheme on a mildly modified version of the
Lorenz ’96 two-level model (Lorenz, 1996), which is a prototypical multi-scale
system of great interest for nonlinear science in general.

We construct a scale adaptive parameterization able to describe accurately
the coupling between slow and fast scales, to describe conditions of finite scale
separation and to reach the infinite time separation limit.

In particular, we are able to construct explicitly the properties of the noise
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term responsible for the stochastic component of the parameterization and the
memory kernel responsible for the non-markovian term.

The parameterization does a very good job in surrogating the effects of the
fast variables, as tested by evaluating the expectation value and the correla-
tion properties of the slow variables, and shows a great deal of flexibility when
different intensity for the coupling strength is varied.

We have also tested the parameterization discussed here against the heuristic
approach previously proposed by Wilks (2005). The Wilks method allows for
constructing detailed parameterizations for each choice of the systems parame-
ters, and outperforms the parameterizations constructed following Wouters and
Lucarini. Nonetheless, the Wilks parameterization is not scale adaptive and
needs to be retuned each time we change one or more parameters of the system,
whereas the W-L parameterization is universal within the approximation de-
fined by Eq.(14), except for the application of an algebraic rescaling, as proved
by our last tests. We argue that, depending on the specific problem one needs
to address, an accurate ad-hoc method or the flexible but less precise method
proposed here might prove more advantageous.

The flexibility of this approach has been demonstrated by changing by two
orders of magnitude the time scale separation and also in the most general case
when all the parameters c, b and h are changed with respect to the original
values. It would be interesting to sistematically compare the parameterization
described here with what recently proposed by Abramov (2016) and Wouters
and Gottwald (2017) through modifications of the homogenization method, in
order to assess benefits and pitfalls of each approach. It would also be extremely
interesting to test, for a given system of interest, the correspondences and differ-
ences between the point of view proposed here and the bottom-up, data-based,
complementary approach proposed by Kondrashov et al. (2017), which also al-
lows for dealing with non-markovian effects. Especially promising seems the
possibility of testing and comparing the scale-adaptivity of the two approaches.

We wish to test next the relative performance of the parameterizations de-
scribed here in terms of prediction of the state of the system described by the
X variables. Additionally, we plan to test sistematically what is presented in
Appendix A, i.e. the flexibility we have in the theory used here of selecting
different background states for constructing the parameterization.

What we have shown in this paper is, evidently, mostly a proof of con-
cept aimed at essaying the potential (and the pitfalls) of the W-L approach
and showing its scale-adaptivity, which had not been thoroughly studied be-
fore. This is, together with the recent contributions by Wouters and Lucarini
(2016) and Demaeyer and Vannitsem (2017), just the first step in the direction
of understanding its applicability in GFD systems of practical interest, where
large datasets need to be processed and the computation of the memory term
seems at first sight problematic. In particular, we will aim at constructing fil-
ters for large eddy simulations (Pope, 2004; Arakawa, 2004). This clearly seems
to be an ambitions task and further investigations are needed in this direction.
In fact, the potential of the WL parameterization might be higher than what
shown until now. In a recent publication, Lucarini and Wouters (2017) showed
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that it is possible to derive explicit formulas allowing for projecting imposed
changes in the dynamics of the full system due to perturbations onto the re-
duced, parameterized dynamics. This paves potentially the way for constructing
extremely flexible parameterizations. This is another direction of work worth
investigating.
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A Forcing in the fast dynamics

As discussed in Wouters and Lucarini (2012, 2013, 2016), a basic requirement
for the proposed approach to allow for the construction of a parameterization for
the Y variables is to have that the uncoupled dynamics of the Y variables given
in Eq. (7) features a non-trivial invariant measure and fast decay of correlations
due to the presence of chaos. Physically, this requires presence of an external
forcing leading to the injection of energy for the Y variables; this is achieved in
the system studied here by choosing a sufficiently large value for the constant
F2. Another way to address such a problem is shown in Wouters et al. (2016),
where a stochastic forcing, corresponding to the presence of energy injection
coming from even smaller, unresolved scale, is considered.

In order to extent the method to physical situations where energy is in-
jected only in the X variables, we need to resort to a simple mathematical trick
that amounts to changing the background state around which the perturbation
induced by the presence of coupling is considered.

The idea is to rewrite Eq. (2) (we refer here for simplicity to the case with
ΨX(X,Y ) = ΨX(Y ) and ΨY (X,Y ) = ΨY (X)) as follows:

dY

dt
= FY (Y ) + εG+ εΨY (X)− εG, (43)

such that the vector flows defining the uncoupled dynamics and the coupling
are defined as follows:

F̃Y (Y ) = FY (Y ) + εG, (44)

ε̃ΨY (X) = εΨY (X)− εG. (45)
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Figure 16: Probability density of the X variable calculated adding G to uncou-
pled Y equation. The standard case is the one shown in section 4. See text for
details.

The choice of the artificial forcing G gives us a degree of flexibility and
must obey only the requirement that Ẏ = F̃Y (Y ) is chaotic. Note that, within
the radius of expansion ensuring the validity of the perturbative approach the
specific choice of G affects only weakly our final result.

An obvious choice is to choose G = ρ0,X(ΨY (X)), which makes sure that,
at zero order, the uncoupled system has a nontrivial dynamics, because we have
chosen a background state where the Y variables receive from the X variables
approximately as much energy as in the fully coupled case.

The procedure can be repeated also in the case, like the one analyzed here,
where we do not have the requirement of shifting the background state, and the
natural definition of the uncoupled dynamics of the Y variables given in Eq. (7)
can be used. We have tested here this hypothesis by using the framework given
in Eqs. (44)-(45) and choosing the standard values for the system’s parameters
and G = ρ0,X(ΨY (X)) = 2.57. In Figs. 16 and 17 we show that, at the second
order, we obtain almost undistinguishable results with respect to what shown
in Fig. 6 for probability density and Fig. 7 for the time autocorrelation using
F2 = 6 and c

bF2 +G = 8.57 as forcing of the uncoupled Y equation.
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H. M., Colangeli, M., Coleman, D. R. B., Crommelin, D., Dolaptchiev, S. I.,
Franzke, C. L., Friederichs, P., Imkeller, P., Järvinen, H., Juricke, S., Kit-
sios, V., Lott, F., Lucarini, V., Mahajan, S., Palmer, T. N., Penland, C.,
Sakradzija, M., Storch, J.-S. V., Weisheimer, A., Weniger, M., Williams,
P. D., and Yano, J.-I. (2016). Stochastic Parameterization: Towards a new
view of Weather and Climate Models. Bulletin of the American Meteorological
Society.

Blender, R. and Lucarini, V. (2013). Nambu representation of an extended
Lorenz model with viscous heating. Physica D: Nonlinear Phenomena,
243(1):86–91.

Chekroun, M. D., Liu, H., and Wang, S. (2015a). Approximation of Stochastic
Invariant Manifolds. SpringerBriefs in Mathematics. Springer International
Publishing, Cham.

Chekroun, M. D., Liu, H., and Wang, S. (2015b). Stochastic Parameterizing
Manifolds and Non-Markovian Reduced Equations. SpringerBriefs in Mathe-
matics. Springer International Publishing, Cham.

Demaeyer, J. and Vannitsem, S. (2017). Stochastic parameterization of subgrid-
scale processes in coupled ocean-atmosphere systems: Benefits and limitations
of response theory. Quarterly Journal of the Royal Meteorological Society,
143(703):881–896.

Eckmann, J. and Ruelle, D. (1985). Ergodic theory of chaos and strange attrac-
tors. Reviews of Modern Physics, 57(4):617–656.

Franzke, C., Majda, A. J., and Vanden-Eijnden, E. (2005). Low-order stochas-
tic mode reduction for a realistic barotropic model climate. J. Atmos. Sci,
(62):1722–1745.

Franzke, C. L. E., O’Kane, T. J., Berner, J., Williams, P. D., and Lucarini,
V. (2015). Stochastic climate theory and modeling. Wiley Interdisciplinary
Reviews: Climate Change, 6(1):63–78.

35



A proof of concept for scale-adaptive parameterizations

Gallavotti, G. (2014). Nonequilibrium and Irreversibility. Springer International
Publishing.

Gallavotti, G. and Lucarini, V. (2014). Equivalence of Non-equilibrium En-
sembles and Representation of Friction in Turbulent Flows : The Lorenz 96
Model.

Ghil, M. and Childress, S. (1987). Topics in Geophysical Fluid Dynamics: At-
mospheric Dynamics, Dynamo Theory, and Climate Dynamics, volume 60 of
Applied Mathematical Sciences. Springer New York, New York, NY.
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