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ABSTRACT

Output from a high-resolution ensemble data assimilation system is used to assess the ability of an in-

novative nonlinear bias correction (BC) method that uses a Taylor series polynomial expansion of the

observation-minus-background departures to remove linear and nonlinear conditional biases from all-sky

satellite infrared brightness temperatures. Univariate and multivariate experiments were performed in which

the satellite zenith angle and variables sensitive to clouds andwater vapor were used as theBCpredictors. The

results showed that even though the bias of the entire observation departure distribution is equal to zero

regardless of the order of the Taylor series expansion, there are often large conditional biases that vary as a

nonlinear function of the BC predictor. The linear first-order term had the largest impact on the entire dis-

tribution as measured by reductions in variance; however, large conditional biases often remained in the

distribution when plotted as a function of the predictor. These conditional biases were typically reduced to

near zero when the nonlinear second- and third-order terms were used. The univariate results showed that

variables sensitive to the cloud-top height are effective BC predictors especially when higher-order Taylor

series terms are used. Comparison of the statistics for clear-sky and cloudy-sky observations revealed that

nonlinear departures aremore important for cloudy-sky observations as signified by themuch larger impact of

the second- and third-order terms on the conditional biases. Together, these results indicate that the nonlinear

BC method is able to effectively remove the bias from all-sky infrared observation departures.

1. Introduction

The ability to generate accurate cloud and water vapor

(WV) analyses suitable for numerical weather prediction

(NWP) models is perhaps the most challenging aspect of

modern data assimilation (DA) systems because they

typically assume Gaussian error statistics and that linear

relationships exist between the observations and model

state variables. Cloud processes, however, are inheren-

tly nonlinear with complex interactions occurring be-

tween different cloud hydrometeor species and the local

thermodynamic environment at spatial and temporal

scales that are typically much smaller than those repre-

sented by NWP models. Likewise, WV content can

change rapidly in space and time and can influence the

evolution of the cloud field in nonlinear ways. These and

other factors can make it very challenging to effectively

assimilate information from cloud and WV sensitive

observations.

Remotely sensed observations obtained using geosta-

tionary and polar-orbiting satellites provide the only

reliable source of high-resolution cloud and WV infor-

mation covering large geographic domains. Sophisticated

visible, infrared, andmicrowave sensors on board variousCorresponding author: Jason A. Otkin, jasono@ssec.wisc.edu
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satellite platforms provide information about the spatial

distribution and characteristics of the cloud and WV

fields. For regional-scale NWP, observations from geo-

stationary satellites are especially useful because their

continuous viewing of the same area with high temporal

and spatial resolution allow them to more easily con-

strain the evolution of rapidly changing weather features

(Vukicevic et al. 2006; Errico et al. 2007). Satellite ob-

servations, however, often exhibit biases when compared

to their model equivalents computed using the NWP

model background; therefore, bias correction (BC)

methods are typically required to assimilate these ob-

servations (Eyre 2016).

Observation-minus-background (OMB) biases can

occur for a variety of reasons and can differ for clear and

cloudy observations. For example, biases can arise from

calibration errors in a satellite sensor or to instrument

‘‘drift’’ as a sensor ages. Biases can also be introduced by

deficiencies in the forward radiative transfer models

used to compute the model equivalent brightness tem-

peratures. For clear-sky observations, biases may result

from errors in the specification of surface emissivity,

simplifications in the radiative transfer model equations,

inadequate vertical resolution or a low model top in the

NWP model, or the misspecification or absence of at-

mospheric constituents (such as aerosols) observed by

some satellite bands. In the context of clear-sky DA,

biases can also be introduced by incomplete cloud

screening procedures that allow some cloud-affected

observations to pass quality control and thereby in-

correctly enter the DA system. Indeed, most existing

quality control methods were originally designed to re-

move all cloud-affected observations; however, these

constraints are being relaxed as operational modeling

centers move toward all-sky DA (e.g., Okamoto et al.

2014; Zhu et al. 2016). Exclusion of cloud-affected

brightness temperatures has the undesirable conse-

quence of removing observations that could have been

used to improve the model initialization in cloudy areas

of the model domain.

Additional uncertainties regarding the specification of

cloud properties arise when assimilating cloud-affected

infrared brightness temperatures. Though forward ra-

diative transfer modeling for cloudy scenes has become

more accurate in recent years, deficiencies remain, es-

pecially for ice clouds. Simulation of absorption and

scattering properties for liquid clouds is relatively

straightforward because the droplets are assumed to be

spherical. However, there are larger uncertainties with

ice cloud bulk optical properties because there is some

dependence in the infrared on the shape of the ice par-

ticles (Yang et al. 2013). For example, an ice particle

may take the form of a hexagonal plate, solid or hollow

column, bullet rosette, or an aggregate of some form,

and impact the bulk microphysical and optical proper-

ties that result from integration of the individual particle

properties over the assumed size and habit distributions

(Baum et al. 2014). In addition, the ice water path is

related to both the cloud optical thickness and the cloud

particle effective diameter. When computing simulated

brightness temperatures, these diameters should be

computed using the particle size distribution and cloud

property assumptions made for each cloud species by a

given microphysics scheme (e.g., Otkin et al. 2009;

Cintineo et al. 2014; Thompson et al. 2016).

Biases in the OMB departures can also be caused by

systematic errors in the NWPmodel forecasts that result

from deficiencies in the parameterization schemes or

other characteristics of the NWPmodel. It is well known

that model forecasts containing large biases influence

the behavior of BC methods and can degrade the per-

formance of DA systems (Dee 2005; Dee and Uppala

2009; Eyre 2016). Biases can be especially large for

model variables for which few observations are available

to constrain their evolution, such as root zone soil tem-

perature andmoisture (Mahfouf 2010), or variables such

as clouds and WV that are strongly influenced by pa-

rameterization schemes accounting for subgrid-scale

processes. For example, uncertainties in microphysical

parameters controlling cloud generation and decay

processes can lead to systematic errors in the spatial

extent, optical thickness, and height of the clouds, which

in turn impacts the simulated satellite brightness tem-

peratures (Otkin and Greenwald 2008; Cintineo et al.

2014; Eikenberg et al. 2015). Ideally, a BC method

would not remove the bias in the OMB departures as-

sociated with deficiencies in the NWP model because

the observations should be used to correct such sys-

tematic errors. In the absence of a perfect reference

analysis, however, it can be very difficult to determine

whether a bias originates in the observations or forward

radiative transfer model, both of which should be cor-

rected, or in themodel background (Dee 2005). Because

of this uncertainty in bias attribution, all BC methods

functionally act to correct the bias in the ‘‘observations’’

regardless of the true sources of the bias (Dee and

Uppala 2009). Though this outcome is not desirable

because it will limit the ability of the observations to

reduce systematic errors in the analysis, it does satisfy

the requirement by most DA methods that the obser-

vations are unbiased. In addition, the bias-corrected

observations can still be used to reduce random errors in

the analysis. Eyre (2016) noted that the impact of model

bias on the analysis accuracy depends on the rate at

which the NWPmodel state relaxes back toward its own

climatology after the assimilation update. If an NWP
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model quickly returns to its preferred state, then the

analysis errors will continue to be large even if themodel

bias can be removed prior to computing the BC co-

efficients. This points toward the need to fix the bias at

its source within the NWP model. The impact of model

bias on a BC method can be reduced when high-quality

‘‘anchor’’ observations with little or no bias are avail-

able; however, it is not apparent that such observations

exist for WV and clouds.

BCmethods can be broadly categorized into two types

(Eyre 2016). The first type uses departures between the

observations and their model equivalents accumulated

over long time periods outside of the DA system to es-

timate and remove the bias from the observations prior

to their assimilation. These so-called static BC methods

typically use the satellite scan angle along with several

atmospheric variables, such as the geopotential thick-

ness over some layer, as the BC predictors. The BC

coefficients for each satellite sensor and band are then

computed using linear least squares regressions between

the predictors and the observations. In practice, how-

ever, these ‘‘static’’ BC coefficients are regularly up-

dated to account for changes in the model background

due to changes in the NWP model or DA system, the

addition of new observations, and upgrades to the for-

ward radiative transfer model. Frequent retuning of a

static BC method can be beneficial because it makes it

more adaptable to changes in the models and observa-

tions. More detailed descriptions of static BC methods

can be found in Eyre (1992), Harris and Kelly (2001),

and Hilton et al. (2009).

With the second type of BC method, known as vari-

ational BC (VarBC), the BC coefficients are updated

simultaneously with the control vector during each DA

cycle using the same set of observations and an aug-

mented control vector (Derber et al. 1991; Parrish and

Derber 1992; Derber and Wu 1998; Dee 2005; Auligne

et al. 2007; Dee and Uppala 2009; Zhu et al. 2014). Like

static BC methods, VarBC typically uses the satellite

scan angle and several variables describing the atmo-

spheric state as the predictors, with the total BC treated

as a linear combination of all predictors. The BC co-

efficient for each predictor is computed during the

minimization of the variational cost function. With an

incremental DA approach withmultiple outer loops, the

BC coefficient increments evolve during each iteration

of the inner loop and are updated at the end of each

outer loop, which allows the coefficients to adjust with

time and capture changes in observation quality. The

state space augmentation approach used by VarBC

also requires an estimate of the background covariances

of the augmented state vector. For simplicity, most

schemes assume that the error for a given BC parameter

is uncorrelated with errors in other parameters for other

satellite sensors and bands and with errors in the model

background (Derber and Wu 1998; Dee 2005).

Most BC methods have been developed for use in

variational or hybrid DA systems; however, several

studies have also explored BC in ensemble DA systems.

Fertig et al. (2009) developed aBCmethod for ensemble

DA that is similar to VarBC in that it uses state aug-

mentation to estimate the biases during the assimilation

step. They showed that their method was able to reduce

both the observation bias and the analysis error in per-

fect model experiments. Similar methods have also been

used successfully in real data experiments assimilating

microwave brightness temperatures (Szunyogh et al.

2008; Aravequia et al. 2011;Miyoshi et al. 2010). In high-

resolution observing system simulation experiments

assimilating infrared brightness temperatures, Cintineo

et al. (2016) found that the analysis and forecast accu-

racy was improved when a simple fixed-value BC was

applied to the clear-sky observations similar to that used

by Stengel et al. (2009, 2013) in a variational DA system.

Cintineo et al. (2016), however, did not bias correct the

cloudy observations prior to their assimilation because

their bias was too complex to properly handle using a

simple fixed-value BC applied uniformly to all cloudy

observations. Zhu et al. (2016) handled biases in all-sky

microwave observations by computing the BC co-

efficients using only cases where both the model back-

ground and the observations were either clear or cloudy.

By doing this, they were able to reduce errors associated

with mismatched cloud fields, while still preserving

cloud-dependent information in the matched observa-

tions. Together, these results provide evidence that

more sophisticated BC methods that can account for

changes in cloud properties are necessary to effectively

remove biases in the OMB departures.

In this study, we present a new BCmethod that can be

used to diagnose and remove biases in all-sky infrared

brightness temperatures using a Taylor series poly-

nomial expansion of the OMB departures. This ap-

proach can diagnose both linear and nonlinear bias

components through use of higher-order Taylor series

terms and a set of BC predictors. For example, with a

third-order approximation, the zeroth- and first-order

terms represent the constant and linear bias compo-

nents, whereas the second- (quadratic) and third-order

(cubic) terms represent nonlinear bias components. We

use this nonlinear BC (NBC)method to remove the bias

from Spinning Enhanced Visible and Infrared Imager

(SEVIRI) infrared brightness temperatures that were

passively monitored during high-resolution ensemble

DA experiments. The paper is organized as follows.

The DA framework is described in section 2, with a
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mathematical description of the NBCmethod presented

in section 3. Statistics obtained using the NBC method

are shown in section 4, with conclusions and a discussion

presented in section 5.

2. Experimental design

a. SEVIRI satellite datasets

The SEVIRI sensor on board the Meteosat Second

Generation satellite provides accurate top-of-the-

atmosphere radiance measurements across 12 visible

and infrared spectral bands with a nadir resolution of

3 km for all infrared bands (Schmetz et al. 2002). The

utility of the NBC method was evaluated using bright-

ness temperatures from the 6.2- and 7.3-mm bands

sensitive to WV over broad layers of the upper and

midtroposphere, respectively, when skies are clear,

while also being sensitive to clouds when they are

present. Under clear conditions, the weighting functions

that depict how much radiation from a given atmo-

spheric height reaches the top of the atmosphere peak

near 350 (500) hPa for the 6.2-mm (7.3mm) bands, and

then decrease to zero in the lower troposphere. When

clouds are present, however, the weighting functions are

truncated near the cloud top, which means that a larger

portion of the top-of-the-atmosphere radiation origi-

nates at higher (e.g., colder) altitudes than would occur

under clear-sky conditions. Their dual sensitivity to

clouds and WV means that observations from these

bands provide valuable information about the atmo-

spheric state that is typically not available with con-

ventional observations. Another motivation for using

these bands is the expectation that their OMB departure

statistics will be more Gaussian than would occur with

infrared ‘‘window’’ bands because there will be a

smoother transition between the brightness tempera-

tures in adjacent clear and cloudy areas.

Cloud-top height retrievals made using SEVIRI ob-

servations were also obtained using software provided

by the EUMETSAT Nowcasting Satellite Applications

Facility andwill be used as one of the BC predictors. The

cloud-top height for each satellite pixel was estimated by

computing simulated clear-sky 10.8-mm brightness tem-

peratures using the Radiative Transfer for TOVS

(RTTOV) radiative transfer model (Saunders et al. 1999)

and temperature and humidity profiles from the global

GME model (Majewski et al. 2002), and then inserting a

cloud at successively higher levels until a best fit is obtained

between the observed and simulated brightness tem-

peratures (Derrien and LeGleau 2005; LeGleau 2016).

To reduce the data volume and minimize the impact of

spatially correlated errors in the observation departures,

the cloud-top height retrievals and SEVIRI brightness

temperatures were horizontally thinned by a factor of 5

in the zonal and meridional directions. This reduces

their horizontal resolution to ;20–25 km across the

model domain, and is ;8 times coarser than the NWP

model resolution. The cloud-top height retrievals have a

vertical resolution of 200m; however, their uncertainty

is larger, especially for semitransparent clouds (Le

Gleau 2016).

b. KENDA data assimilation system

Ensemble DA experiments in which conventional

observations were actively assimilated and SEVIRI

brightness temperatures were passively monitored were

performed using the Kilometer-scale Ensemble Data

Assimilation (KENDA) system (Schraff et al. 2016)

developed by the German Weather Service Deutscher

Wetterdienst (DWD). The KENDA system is based on

the local ensemble transform Kalman filter method de-

scribed by Hunt et al. (2007) and uses the Consortium

for Small-Scale Modeling (COSMO) Model (Baldauf

et al. 2011) as the NWP model. During this study, ra-

diosonde, surface, wind profiler, and aircraft observa-

tions, were actively assimilated using a 1-h assimilation

window, whereas SEVIRI 6.2- and 7.3-mm brightness

temperatures were passively monitored. With KENDA,

4D assimilation capabilities are obtained through in-

clusion of the observation operators within the COSMO

Model so that themodel equivalents can be computed at

the exact observation times during the forward in-

tegration of the ensemble. Temporally and spatially

varying covariance inflation values are obtained at each

grid point through a combination of multiplicative co-

variance inflation based on Anderson and Anderson

(1999) and the relaxation to prior perturbations ap-

proach described by Zhang et al. (2004). Covariance

localization is performed by updating the analysis at

each grid point using only those observations located

within a specified distance of the grid point. The vertical

localization scale is fixed, but increases with height,

whereas the horizontal scale is determined adaptively.

For more detailed information about the KENDA sys-

tem, the reader is referred to Schraff et al. (2016).

This study uses output from ensemble DA experi-

ments that were performed on the COSMO-DE domain

covering all of Germany and parts of surrounding

countries with 2.8-km horizontal grid spacing. Lateral

boundary conditions were obtained at hourly intervals

from the 7-km resolution COSMO-EU domain run at

the DWD, which in turn is driven by boundary condi-

tions provided by the Icosahedral Nonhydrostatic

(ICON) model (Zangl et al. 2015). The COSMO-DE

domain covers approximately 1200km 3 1200km and

contains 50 vertical levels that are terrain following in
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the lower troposphere and become horizontally flat in

the upper troposphere and stratosphere. The model top

is located at 22 km (i.e., about 40 hPa). The DA exper-

iments employed 40 ensemble members along with a

deterministic run that is initialized by applying the

Kalman gain matrix from the assimilation update to the

deterministic model background. The ensemble and

deterministic runs were initialized at 0000 UTC 16 May

2014 and then updated at hourly intervals during a 5-day

period ending at 0000 UTC 21 May 2014.

Atmospheric prognostic variables in the COSMO

Model include the horizontal and meridional wind

components, temperature, pressure, and the mixing ra-

tios for water vapor, cloud water, rainwater, pristine ice,

snow, and graupel. Cloud microphysical processes, such

as autoconversion, accretion, and self-collection, are

represented using a simplified version of the Seifert and

Beheng (2001) double-moment microphysics scheme

that was reduced to a single-moment scheme for com-

putational efficiency. Cloud formation and decay pro-

cesses are parameterized based on the work of Lin et al.

(1983). Heating rates due to radiative effects are up-

dated at 15-min intervals using the d-two-streammethod

developed by Ritter and Geleyn (1992). Deep convec-

tion is explicitly resolved whereas shallow convection is

parameterized using a simplified version of the Tiedtke

(1989) mass-flux scheme. A 2.5-order turbulent kinetic

energy scheme developed by Raschendorfer (2001) is

used to predict turbulence.

After an initial 12-h spinup period, simulated SEVIRI

brightness temperatures were generated for each en-

semble member and the deterministic run at hourly in-

tervals during a 4.5-day period from 1300 UTC 16 May

to 0000UTC 21May 2014 using first-guess model output

from 1-h COSMO-DE forecasts. The model profiles

were interpolated to the thinned SEVIRI observation

locations, and then simulated 6.2- and 7.3-mmbrightness

temperatures were computed using version 10.2 of the

RTTOV radiative transfer model (Saunders et al. 1999).

RTTOV includes an enhanced cloud-scattering module

that enables the use of cloud profiles located on the

NWP model vertical grid (Matricardi 2005; Hocking

et al. 2011). When computing cloudy brightness tem-

peratures, RTTOV requires vertical profiles of liquid

water content, ice water content, and fractional cloud

cover. These quantities were computed using the

COSMO Model output and empirical relationships de-

veloped by Kostka et al. (2014). The default maximum-

random cloud overlap scheme in RTTOV based on

Raisanen (1998) was used during this study. RTTOV

also includes several options to diagnose the ice particle

effective diameters from the forecast ice water content

based on relationships developed by Wyser (1998),

Ou and Liou (1995), andMcFarquhar et al. (2003) along

with two ice crystal shape options (aggregates and ran-

domly oriented hexagonal crystals) that together are

used to compute the ice radiative properties. For this

study, we assume hexagonal ice crystals and compute

the particle diameters using the McFarquhar et al.

(2003) method. These settings were chosen because they

provided the smallest overall bias during the 108-h study

period based on six sensitivity experiments using the

various ice crystal diameter and shape options. The

mean brightness temperature for ice clouds between

the best and worst options differed by approximately 1K

for the 6.2-mm band and 2.5K for the 7.3-mm band

during the entire study period (not shown), which il-

lustrates the large uncertainty associated with the ice

cloud property lookup tables in RTTOV.

3. Nonlinear bias correction (NBC) method

Traditional BC methods remove biases between a

given set of observed and model-equivalent satellite

brightness temperatures through the use of a set of BC

predictors that describe the atmospheric state or char-

acteristics of the satellite data. Both static and VarBC

methods typically assume that a linear relationship ex-

ists between the observation departure bias and a given

set of predictors or that a global constant can be added

to the observations. This linear BC approach has been

shown toworkwell for clear-sky observations possessing

Gaussian error characteristics for which a set of constant

and linear BC coefficients are sufficient to remove the

bias; however, their use will be suboptimal if the ob-

servation departure bias varies as a nonlinear function of

some predictor. For satellite observations, nonlinear

error dependencies are more likely to occur when

cloudy observations are assimilated given the preva-

lence of nonlinear processes in clouds that could lead to

complex errors in the forecast cloud field and the pos-

sibility that nonlinear error sources could be introduced

by the forward radiative transfer model used to compute

the model-equivalent brightness temperatures. For ex-

ample, with infrared brightness temperatures, it is pos-

sible that increased uncertainty simulating ice radiative

properties in forward radiative transfer models could

lead to biases that are a nonlinear function of some

cloud property, such as cloud-top height. Thus, given the

increased interest in all-sky DA, it is desirable to de-

velop BC methods that can remove both linear and

nonlinear bias components from the innovations.

One method that can be used to account for nonlinear

error dependencies in a set of observations is a Taylor

series polynomial expansion that includes higher-order

terms that can capture nonlinear features of the error
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distribution if they exist. For a given set of observed and

model-equivalent brightness temperatures correspond-

ing to a specific satellite sensor and band, the observa-

tion departure vector is defined as

dy5 y2H(x) , (1)

where y is the observation vector, x is the NWP model

state vector, andH(x) is the observation operator that is

used to compute the model equivalent brightness tem-

peratures. If we assume that the bias in the observation

departures can be described by a real function f (z) of a

single variable (e.g., predictor) that is infinitely differ-

entiable around a real number c, Eq. (1) can be de-

composed into an N-order Taylor series expansion:

dy5

"
f (c)1

f 0(c)(z(i)2 c)

1!
1

f 00(c)(z(i)2 c)2

2!

1
f 000(c)(z(i) 2 c)3

3!
1 . . . 1

f (n)(c)(z(i) 2 c)n

n!

#
i51,...,m

,

(2)

where dy is them3 1 observation departure vector andm

is the number of observations, f (n)(c) is the nth derivative

of f evaluated at the point c, and z(i) is the predictor value

for the ith observation. The i5 1, . . . , m notation outside

the square brackets indicates that the Taylor series ap-

proximation is computed separately for each element of the

dy vector using the equation within the brackets. The var-

iable used as the predictor is chosen based on its ability to

capture some aspect of the observation departure bias,

whereas the value z(i) of that variable for a given observa-

tion can be obtained from a variety of sources, such as the

model background or a satellite retrieval. The constant c

can be set to any value because c1 dc simply moves c to

another constant value; therefore, for convenience, we

define c to be the mean of the predictor values:

c5
�
m

i51

z(i)

m
. (3)

It is readily apparent from Eq. (2) that the higher-order

terms represent nonlinear components because the expo-

nents are $2, with the (z2 c)2 and (z2 c)3 polynomials

representing the quadratic and cubic terms, respectively.

The single variable case shown inEq. (2) can subsequently

be generalized to be a function of more than one predictor:

dy5
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which can be written more compactly as

dy5

2
6664�
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d
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where d is the number of predictors, f (nd)(ad) denotes the

nth partial derivative of f evaluated at the point ad, and

x
(i)
d is the ith value for a given predictor xd.

For illustrative purposes, if we assume a single vari-

able, third-order Taylor series expansion for a single

satellite sensor and band, and define the BC coefficients

such that bn 5 f (n)(a)/n!, Eq. (2) can be written as

dy5 [b
0
1 b

1
(z(i) 2 c)1 b

2
(z(i) 2 c)2

1 b
3
(z(i) 2 c)3]

i51,...,m
(6)

or alternatively in matrix notation as

dy5Ab , (7)

where dy is them3 1 observation departure vector, A is

an m 3 n matrix containing the n Taylor series terms

(z(i) 2 c)l for each ith observation, where l5 0, . . . , n2 1,

and b is an n3 1 vector containing the BC coefficients. This

is an overdetermined system of m linear equations in n

unknown coefficients because m. n. The first column
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of A contains ones, with the remaining columns

containing the linear and higher-order Taylor series

terms. Because this kind of system typically does not

have an analytic solution, we instead want to find the

coefficients b that best fit the equations by solving the

quadratic minimization problem b̂5 min
b

S(b), where

the objective function S is given by

S(b)5 �
m

i51

jdy
i
2 �

n

j51

A
ij
b
j
j2 5 jjdy2Abjj2 , (8)

and k � k is the Euclidean norm. Because most real-

world phenomena act as a low-pass filter in the forward

direction whereAmaps b to dy, the inversemapping will

operate as a high-pass filter that amplifies noise and can

therefore lead to a poorly conditioned problem. Pref-

erence, however, can be given to smaller norms by

adding a Tikhonov regularization term, kGb2k, to

Eq. (8), which is a standard approach when solving

inverse problems (Nakamura and Potthast 2015). For

simplicity, we choose a matrix that is a multiple of the

identity matrix (G5aI), such that

Ŝ(b)5 kdy2Abk2 1akIbk2 . (9)

Sensitivity tests showed that a could be set to a very small

value (1029) when one variable was used in the regression;

however, a slightly larger value (1026) was found to work

better for the multivariate regressions. These values were

used for the univariate and multivariate experiments pre-

sented in section 4. The least squares solution can then be

found by differentiating Ŝ with respect to b, and equating

to 0, such that

›Ŝ

›b
5ATdy2 (aI1ATA)b5 0, (10)

or alternatively, after rearranging and multiplying both

sides of Eq. (10) by (aI1ATA)21, we can solve for the

b vector containing the BC coefficients using

b5 (aI1ATA)21ATdy , (11)

where (aI1ATA) is a symmetric, square matrix with

dimensions n 3 n. The small dimensions of this matrix

make it easy to compute its inverse, thereby making it

feasible to include higher-order Taylor series terms, ad-

ditional predictors, and a large OMB departure dataset

when computing the BC coefficients. After solving for b,

which is done separately for each satellite band and

sensor, the BC coefficients can then be applied to dy to

remove the linear and nonlinear conditional bias com-

ponents from the observations.

4. Results

In this section, the ability of the NBC method to

remove biases from all-sky satellite infrared brightness

temperatures is assessed using OMB departure statistics

accumulated at hourly intervals during a 4.5-day period in

which conventional observations were actively assimi-

lated and SEVIRI observations were passively moni-

tored. Figure 1 shows the evolution of the observed

SEVIRI 6.2-mmbrightness temperatures during this time

period. At the start of the period on 16 May (Fig. 1a), an

area of cold upper-level clouds associated with a band of

precipitation was located across the eastern half of the

domain. This weather feature slowly weakened over

Germany during the next two days (Figs. 1b,c), with the

brightness temperatures becoming warmer as the con-

vective clouds were replaced by cirrus and midlevel

clouds. Generally clear skies characterized by warm

brightness temperatures were also present across parts of

the domain during this time period, with clear skies pre-

vailing across most of the region on 19 May (Fig. 1d). A

large area of convection with very cold upper-level clouds

then moved into the western half of the domain on

20 May (Fig. 1e). Overall, it is evident that the study

period contains a wide range of atmospheric conditions

and cloud types that supports a realistic assessment of the

NBC method during the warm season.

a. Univariate bias correction results

To explore the ability of individual predictors to

remove the bias from all-sky infrared observations,

univariate NBC experiments were performed using the

satellite zenith angle and various predictors sensitive to

clouds and WV, such as the brightness temperature,

cloud-top height, and integrated water content over

some vertical layer. This section presents results from a

subset of these experiments that remove the bias from

all-sky SEVIRI 6.2-mm observations. The impact of

each predictor is assessed using OMB departure distri-

butions normalized by the standard deviation in a given

sample and with 2D probability distributions of the de-

partures plotted as a function of a given predictor. The

results are evaluated separately for the original de-

parture distribution and for distributions for which the

bias has been removed using either a zeroth- (constant),

first- (linear), second- (quadratic), or third-order (cubic)

Taylor series polynomial expansion.

1) OBSERVED BRIGHTNESS TEMPERATURE

PREDICTOR

As shown by the probability distributions in Fig. 2,

the observed 6.2-mm brightness temperatures are an

excellent predictor of their own bias, especially when
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higher-order Taylor series terms are used. The hori-

zontal magenta line in each panel depicts the mean bias

of the entire distribution, whereas the shorter horizontal

black lines depict the conditional bias in each column

and will be used to assess how the bias varies as a

function of the predictor value. This terminology is be-

ing used to differentiate biases conditioned on the pre-

dictor value from the bias of the overall distribution. For

example, though each distribution except for the origi-

nal distribution will have zero overall bias, this obscures

the fact that the conditional bias could potentially vary

as a function of the predictor value. Inspection of Fig. 2a

reveals a nonlinear pattern in the conditional biases,

with a tendency for the simulated brightness tempera-

tures to be too warm (cold) when the observed bright-

ness temperatures are colder (warmer) than 235K.

Though the mean bias of the distribution is relatively

small (20.83K), the nonlinear pattern in the conditional

biases means that constant and linear BC terms alone

will be unable to remove all of the bias. For example,

even though the constant BC term removes the mean

bias from the distribution (Fig. 2b), its shape remains the

same and, therefore, large conditional biases remain

throughout the distribution. Likewise, the first-order BC

term removes the linear departure component by raising

(lowering) the cold (warm) end of the distribution,

which reduces the conditional biases for the coldest

brightness temperatures, but turns a positive bias into a

negative bias for the warmest brightness temperatures

(Fig. 2c). Removal of the constant and linear bias

components exposes an asymmetric arch shape in the

conditional biases that is largely removed when the

second-order quadratic term is used (Fig. 2d), except for

nonzero biases that remain at the cold and warm ends of

the distribution. Finally, when the third-order cubic

term is used, the general shape of the distribution is

unchanged; however, it is evident that subtle improve-

ments were made to it given that most of the conditional

biases are now close to zero. Together, these results

show that even though each BC distribution has zero

mean bias, the conditional biases in the distribution are

much smaller when the higher-order, nonlinear BC

terms are applied to the observation departures.

Normalized OMB departure histograms computed

using the original observations and the constant, first-,

second-, and third-order BC observations are shown in

Figs. 3a–e. Each histogram is normalized based on its

variance, with the curved red line on each panel

representing a Gaussian distribution with zero mean

and a variance equal to that of the sample. Overall, the

variance and root-mean-square error (RMSE) are

greatly reduced when the first-order BC coefficients

are applied to the observations (Fig. 3c), which is pri-

marily due to the smaller departures for the colder

brightness temperatures (e.g., Fig. 2c). The variance

was further reduced when the second-order BC was

used, with only minimal changes occurring when this

was expanded to a third-order BC (Figs. 3d,e). The fact

FIG. 1. Observed SEVIRI 6.2-mm brightness temperatures (K) valid at 1800 UTC (a) 16 May, (b) 17 May, (c) 18 May, (d) 19 May, and

(e) 20 May 2014.
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that the higher-order terms only had a small impact on

these statistics while simultaneously having a large

positive impact on the conditional biases in Fig. 2 il-

lustrates that more detailed analysis methods such as

2D probability distributions can provide additional

insight into the characteristics of the OMB departure

distributions. Comparison of the histograms also

shows that the negative skewness in the original dis-

tribution (Fig. 3a) changes to positive skewness after

the BC terms are applied. This behavior primarily re-

sults from a conditional positive skewness for bright-

ness temperatures ,230K that is evident in Fig. 2a

by the tendency for the conditional bias in each col-

umn to be located above the bin with the maxi-

mum probability. Because the same BC is applied to a

given brightness temperature regardless of its OMB

departure, the positive skewness in the conditional

distributions is preserved as they are shifted upward,

thereby leading to a positive skewness in the full BC

distributions.

2) CLOUD-TOP HEIGHT PREDICTOR

Because infrared observations are very sensitive to

the vertical distribution of clouds, an experiment was

performed using the NWC SAF cloud-top height re-

trievals as the BC predictor to better isolate the impact

of clouds. To provide complete domain coverage, the

clear-sky observations were assigned a height equal to

the model terrain elevation. Overall, the conditional

biases in the original distribution (Fig. 4a) are close to

zero for cloud-top heights ,7 km; however, the biases

increase for clouds above this level and peak near 26K

FIG. 2. Probability distributions of 6.2-mm observation-minus-background departures plotted as a function of the observed 6.2-mm

brightness temperatures (K) for the (a) original data, and the (b) constant, (c) first-order, (d) second-order, and (e) third-order bias-

corrected observations when the observed 6.2-mm brightness temperature is used as the predictor. The horizontal black line segments

represent the conditional bias in each column. Data were accumulated at hourly intervals during a 108-h period from 1300UTC 16May to

0000 UTC 20 May 2014.
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FIG. 3. Probability density function of normalized 6.2-mm observation-minus-background departures for the (a) original and

(b) constant bias correction distributions. The corresponding first-, second-, and third-order bias correction error distributions when the

(c)–(e) observed 6.2-mm brightness temperatures, (f)–(h) NWC SAF cloud-top heights, (i)–(k) model-simulated total integrated water

content (IWC) in the 100–700-hPa layer, (l)–(n) satellite zenith angle, or (o)–(q) observed 6.2-mmbrightness temperatures, satellite zenith

angle, and IWC are used as the predictors are also shown. Data were accumulated at hourly intervals during a 108-h period from 1300

UTC 16 May to 0000 UTC 20 May 2014.
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for cloud-top heights .10km. This is a complex error

pattern that a constant BC scheme is unable to fix

(Fig. 4b). Indeed, the upward shift of the distribution to

remove the mean bias actually worsens the conditional

biases for cloud-top heights,7 km, while leading to only

minor improvements for the upper-level clouds. The

linear correction (Fig. 4c) slightly improves the condi-

tional biases for lower- and upper-level clouds, but

worsens the bias for midlevel clouds, which together

slightly reduces the variance in the overall distribution

(Fig. 3f). Use of the second-order quadratic term sub-

stantially improves the distribution by removing the

arch in the conditional bias pattern by decreasing the

magnitude of the positive (negative) OMB departures

for cloud tops located in themiddle (upper) troposphere

(Fig. 4d). These changes resulted in a much smaller

variance in the histogram (Fig. 3g). As was the case in

the previous section, the third-order BC led to slightly

smaller conditional biases acrossmost of the distribution

(Fig. 4e), but had minimal impact on the statistics of the

overall distribution (Fig. 3h). Though the cloud-top

height predictor was unable to reduce the variance of

the full distribution as much as the brightness temper-

ature predictor did, the NBC method was still able to

greatly improve the distribution by decreasing the con-

ditional biases. Its use also led to a more symmetric

OMB departure distribution (Fig. 3h). These results

show that cloud-top height information can be used to

remove the bias from all-sky infrared observations if

higher-order Taylor series terms are used.

3) VERTICALLY INTEGRATED WATER CONTENT

PREDICTOR

In this section, the impact of using a BC predictor that

depicts the total water content over a vertical layer is

assessed. Numerous experiments were performed using

different vertical layers; however, for brevity, results are

only shown for the predictor that encapsulates the total

FIG. 4. As in Fig. 2, but for probability distributions plotted as a function of the NWC SAF cloud-top height retrieval (km) when this

quantity is also used as the BC predictor.
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water content between 100 and 700hPa because that is the

portion of the atmosphere where 6.2-mm brightness tem-

peratures are most sensitive. Unlike the previous pre-

dictors, this predictor is computed using model output. The

totalwater content is calculated for each ensemblemember

by converting the WV and all cloud hydrometeor mixing

ratios in each model layer into millimeters and then in-

tegrating over the 100–700-hPa layer. Inspection of Fig. 5a

shows that this predictor has a less complex OMB de-

parture pattern than occurred when the cloud-top height

and brightness temperatures were used as the predictors.

There are, however, slightly larger biases on both ends of

the distribution, with a small upward slope in themaximum

probabilities as the totalwater content increases. This linear

error trend is removed by the linear BC term (Fig. 5c),

which reduces the conditional biases when the total water

content is ,7mm, but increases it elsewhere. The subtle

arch in the conditional biases is subsequently removed after

applying the second-order quadratic term (Fig. 5d), with

only minor changes occurring after the third-order term is

used (Fig. 5e). Comparison of the histograms (Figs. 3i–k)

shows that the total water predictor had only a small impact

on the variance of the full distribution; however, the scat-

terplots showed that it still reduced the conditional bias

across most of the distribution. Even so, this predictor still

had a much smaller impact than the previous predictors

that were directly sensitive to the cloud-top height, which

indicates that the location of the cloud top rather than the

vertically integrated cloud and WV content is a more ef-

fective BC predictor for all-sky infrared brightness

temperatures.

4) SATELLITE ZENITH ANGLE PREDICTOR

Given that the satellite zenith angle is widely used

in operational BC methods, an additional experiment

was performed using it as the BC predictor. After

adjusting for the mean bias in the original distribution,

the conditional biases are close to zero across the entire

FIG. 5. As in Fig. 2, but for probability distributions plotted as a function of the vertically integrated total water content (mm) over the

100–700-hPa layer when this quantity is also used as the BC predictor.
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distribution, with only a slight downward trend in the

bias for zenith angles .488 (Fig. 6b). Application of the

first- to third-order BC terms (Figs. 6c–e) eliminated

most of these conditional biases; however, the impact of

this predictor on the statistics of the entire distribution

was negligible according to the histograms (Figs. 3l–n).

These results indicate that the bias in the observations is

only very weakly related to the satellite zenith angle;

however, the small improvements made to the condi-

tional biases by the second- to third-order terms also

show that there is a small nonlinear bias component that

can be removed when using this predictor.

b. Clear- and cloudy-sky error evaluation

Next, the relative impact of the linear and nonlinear

BC terms on the clear and cloudy-sky observations is

examined more closely using a subset of the 6.2-mm

brightness temperatures for which both the model

background and a given observation were identified as

being clear or cloudy. Each observation was classified as

clear or cloudy based on the NWC SAF cloud mask

dataset whereas eachmodel grid point was deemed to be

clear (cloudy) if the sum of all cloud hydrometeor mix-

ing ratios over the entire vertical profile was less

(greater) than 1026 kg kg21. The 2D probability distri-

butions for the clear-sky matched observations are

shown in Fig. 7, with the corresponding histograms

shown in Fig. 8. The observed 6.2-mm brightness tem-

peratures were used as the BC predictor. Inspection of

Fig. 7a reveals that the original distribution contains

both a systematic bias and a large linear trend where

mostly negative OMB departures for the colder bright-

ness temperatures transition into mostly positive de-

partures for the warmer brightness temperatures. The

linear trend indicates that the WV field in the model

background is more uniform than observed such that the

model tends to be too wet (dry) in regions where the

observations indicate less (more) WV. Overall, most of

FIG. 6. As in Fig. 2, but for probability distributions plotted as a function of the satellite zenith angle (8) when this quantity is also used as

the BC predictor.

JANUARY 2018 OTK IN ET AL . 275



the bias is removed from the clear-sky observation de-

partures using only the constant and first-order terms,

with little or no impact due to the higher-order terms

(Figs. 7b–e). This behavior is consistent with existing BC

schemes that use constant and linear corrections to re-

move the bias from clear-sky observation departures.

For the cloud-matched observations shown in Figs. 9

and 10, the NWC SAF cloud-top height retrievals were

used as the predictor. The OMB departure pattern and

conditional biases for these observations are very similar

to that shown in Fig. 4 when both clear- and cloudy-sky

observations were included in the regression. This in-

cludes the generally positive departures for midlevel

clouds and the transition to large negative departures for

the upper-level clouds (Fig. 9a). Large departures re-

mained in the distribution for all cloud-top heights after

the constant and linear BC terms were applied to the

observations (Fig. 9c). It is only when the second- and

third-order terms are used that the conditional biases

become close to zero throughout the entire distribution

(Figs. 9d,e). The histograms in Fig. 10 also reveal that

the quadratic and cubic terms had a much larger impact

on the overall statistics than occurred for the clear-sky

matched observations. These results provide further

evidence that the nonlinear conditional biases evident in

the all-sky scatterplots in section 4a primarily result

from biases associated with the cloudy observations. It

also shows that the NBC method is an effective method

to remove both linear and nonlinear biases from all-sky

infrared brightness temperature departures if a suitable

cloud-sensitive variable is used as the predictor.

c. Multivariate bias correction results

In addition to the univariate NBC experiments dis-

cussed in previous sections, multivariate experiments

were performed to assess the impact of using more than

one predictor to remove the observation bias. For a

third-order polynomial expansion using two variables, it

FIG. 7. As in Fig. 2, but for probability distributions for clear-sky matched observations plotted as a function of the observed brightness

temperature (K) when this quantity is also used as the BC predictor.
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is necessary to solve for seven coefficients in Eq. (11),

whereas 22 coefficients are computed when three pre-

dictors are used. Because a direct approach is used to

simultaneously estimate all of the BC coefficients, it is

not possible to determine the individual contribution of

each predictor on the OMB departures; however, the

total contribution of all of the predictors within a given

Taylor series order (e.g., first, second, and third) can still

be inferred through comparison of the results obtained

using different order expansions. Though using more

than one variable greatly increases the size of the A

matrix, it is still computationally efficient to solve for the

inverse of ATA given its small dimensions.

Numerous experiments using different predictor com-

binations and a second- or third-order polynomial expan-

sion were performed; however, for brevity, this section

only includes results from the combination that had the

largest impact on the OMB departure distributions. This

particular configuration employed a third-order expansion

with the satellite zenith angle, 100–700-hPa total water

content, and observed brightness temperatures for a given

satellite band used as the BC predictors for that band.

A separate multivariate experiment (not shown) that

employed the cloud-top height rather than the brightness

temperature as the third predictor revealed that it had a

smaller impact, similar to what occurred with the univar-

iate experiments shown earlier. There may be some

overlap between the brightness temperature and satellite

zenith angle predictors; however, this should be minimal

because the zenith angle predictor primarily accounts for

potential biases in the radiative transfer model associated

with the pathlength through the atmosphere, whereas the

brightness temperature predictor is being used as a proxy

for the cloud-top height given its strong sensitivity to the

cloud top. Unlike the previous sections that focused ex-

clusively on the 6.2-mm band, this section presents results

from experiments that removed the bias from both of the

SEVIRI WV-sensitive bands (e.g., 6.2 and 7.3mm). All

observations, both clear and cloudy sky, were used during

these experiments.

1) SEVIRI 6.2-mm EXAMPLE

Figure 11 shows the OMB departure distributions

for the 6.2-mm multivariate NBC experiment, with the

FIG. 8. Probability density function of normalized clear-sky matched 6.2-mm observation-minus-background departures for the

(a) original data, and the (b) constant, (c) first-order, (d) second-order, and (e) third-order bias corrected observations when the observed

6.2-mm brightness temperature is used as the predictor. Data were accumulated at hourly intervals during a 108-h period from 1300

UTC 16 May to 0000 UTC 20 May 2014.
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corresponding normalized histograms shown in Figs. 3o–q.

Comparison to Fig. 2 shows that the departure distribu-

tions for themultivariate case are similar to those from the

univariate case employing only the observed brightness

temperature as the BC predictor. This is not surprising

given that the experiments employing the satellite zenith

angle and total water content predictors both had a much

smaller impact on the distributions (Figs. 5 and 6). Overall,

the shape of the distribution is improved after the linear

term is used; however, there are still large conditional

biases at both ends of the distribution (Fig. 11c). The arch

pattern in the conditional bias was subsequently removed

after the quadratic term was applied (Fig. 11d), with

slightly smaller (larger) biases occurring at thewarm (cold)

end of the distribution after using the third-order cubic

term (Fig. 11e). Though the distributions are similar to

those shown in Fig. 2, it is evident that the width of the

conditional distribution is less for all predictor values. This

is encouraging because it shows that even though the

impact of the satellite zenith angle and total water content

predictors was relatively small when used individually,

they still provided new information that further reduced

the OMB departures when used in combination with the

observed brightness temperature predictor. Inspection of

the histograms (Figs. 3o–q) shows that the variance was

greatly reduced compared to the univariate experiments;

however, each of the distributions had a large positive

skewness similar to that seen in Figs. 3c–e when the

brightness temperature was used as the BC predictor. It is

important to note, however, that quality control measures

could potentially be used to reduce the skewness in the

distribution after the BC terms are applied. This topic will

be explored in a future study.

2) SEVIRI 7.3-mm EXAMPLE

In this section, we assess the ability of the multivariate

NBC method to improve the observation error charac-

teristics of the 7.3-mm band. As discussed in section 2a,

FIG. 9. As in Fig. 2, but for probability distributions for cloudy-skymatched observations plotted as a function of the NWCSAF cloud-top

height retrieval (km) when this quantity is also used as the BC predictor.
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observations from this band are sensitive to WV and

clouds in the middle and upper troposphere, with a

weighting function that peaks near 500 hPa in clear-sky

scenes. Overall, each of the OMB departure distribu-

tions (Fig. 12) have shapes that are similar to the cor-

responding 6.2-mm distributions (Fig. 11); however,

their error range is larger because theweighting function

for this band peaks at a lower level in the troposphere,

thereby leading to potentially larger departures because

of mismatched clouds in the observations and model

background. Though the linear BC term substantially

improves the distribution by making the departures

less negative for colder brightness temperatures, non-

zero conditional biases remain across most of the dis-

tribution, with negative (positive) biases occurring for

brightness temperatures colder (warmer) than 230K

(Fig. 12c). As occurred in the previous experiments, the

conditional biases are almost eliminated after the

second-order BC term is used, with minimal changes

occurring because of the third-order term (Figs. 12d, e).

The negative skewness present in the original histogram

(Fig. 13a) switches to a large positive skewness after the

linear BC term is used (Fig. 13c). Inspection of theOMB

departure distributions shows that the positive skewness

developed in response to the large upward shift in the

conditional distributions for the colder brightness tem-

peratures (Fig. 12a) that exposed the conditional posi-

tive skewness in the original distribution for warmer

brightness temperatures that was being masked in the

overall histogram by the large negative OMB de-

partures. Another notable feature of the histograms

is that their peaks are higher and narrower than the

6.2-mm histograms (Figs. 3o–q). This strongly non-

Gaussian behavior was already present in the original

histogramand is likely due to the large percentage of clear-

sky observations containing small departures combined

with fatter tails due to cloud displacement errors. Even so,

these results show that the NBC method improved the

distribution such that the variance was much lower and

the conditional biases were reduced to near zero across

most of the distribution. Also, as was the case with the

6.2-mmband, the linearBC termhad the largest impact on

the overall statistics; however, the variance was also re-

duced when using the higher-order nonlinear BC terms.

FIG. 10. Probability density function of normalized cloudy-sky matched 6.2-mm observation-minus-background departures for the

(a) original data, and the (b) constant, (c) first-order, (d) second-order, and (e) third-order bias corrected observations when the NWC

SAF cloud-top height retrieval is used as the predictor. Data were accumulated at hourly intervals during a 108-h period from 1300

UTC 16 May to 0000 UTC 20 May 2014.
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5. Discussion and conclusions

In this study, output from a high-resolution, regional-

scale ensemble DA system was used to explore the ability

of an innovativemethod to remove the bias associatedwith

all-sky satellite infrared brightness temperatures using a

Taylor series polynomial expansion of the OMB de-

partures. This so-called NBC method uses OMB statistics

accumulated over some period of time to remove linear

and nonlinear conditional biases in a distribution through

use of higher-order Taylor series terms and a set of BC

predictors. Nonlinear conditional biases can be identified

using second- (quadratic) and third-order (cubic) terms

(and even higher-order terms if desired), whereas the

constant and linear bias components can be diagnosed

using the zeroth- and first-order terms, respectively.

The ability of theNBCmethod to effectively remove the

bias associated with all-sky SEVIRI infrared brightness

temperatures was assessed using output from high-

resolution ensemble DA experiments performed using

the KENDA system. OMB departure statistics for the 6.2-

and 7.3-mmbands sensitive to clouds andWV in the upper

and middle troposphere, respectively, were accumulated

at hourly intervals during a 108-h period from 16 to 21May

2014 using output from the COSMO-DE domain that

covers Germany and surrounding areas with 2.8-km hori-

zontal grid spacing. Conventional observations were ac-

tively assimilated, whereas the SEVIRI observations

were passively monitored and therefore did not affect the

analyses during the hourly assimilation cycles. Model-

equivalent brightness temperatures were computed for

each observation and ensemble member using the

RTTOV radiative transfer model. The study period con-

tained both clear-sky areas and awide range of cloud types

that together promoted a realistic assessment of the NBC

method during the warm season.

FIG. 11. As in Fig. 2, but for probability distributions plotted as a function of the observed 6.2-mm brightness temperatures when the

observed 6.2-mm brightness temperature, satellite zenith angle, and vertically integrated total water content from 100 to 700 hPa are used

as the BC predictors.
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Univariate and multivariate NBC experiments were

performed using the satellite zenith angle and other

predictors sensitive to clouds andWV, with their impact

on the conditional bias and other aspects of the OMB

departure distributions assessed using normalized his-

tograms and probability distributions plotted as a

function of the predictor. Overall, the results revealed

that there are often strongly nonlinear conditional bias

patterns in the OMB probability distributions that

cannot be removed using only constant and linear BC

terms. Though the overall bias of each distribution is

equal to zero regardless of the order of the Taylor series

expansion, there are often large conditional biases that

vary as a function of the BC predictor. Because each

SEVIRI band had a relatively small systematic bias,

the constant BC term only had a small impact on the

distributions. The linear first-order term generally

had the largest impact on the statistics of the entire

distribution as measured by reductions in the variance;

however, conditional biases often remained across

much of the distribution. These conditional biases were

typically reduced to near zero across the entire distri-

bution only after the nonlinear second- and third-order

terms were applied to the OMB departures. Indeed, the

conditional bias patterns often exhibited an arch shape

for which the second-order quadratic term is ideally

suited to remove. The tendency for the nonlinear terms

to have a small impact on the variance of the entire

distribution while simultaneously having a large posi-

tive impact on the conditional biases also illustrates that

detailed analysis methods such as 2D probability dis-

tributions provide valuable insight into the behavior of

FIG. 12. Probability distributions of 7.3-mm observation-minus-background departures plotted as a function of the observed 7.3-mm

brightness temperatures (K) for the (a) original data, and the (b) constant, (c) first-order, (d) second-order, and (e) third-order bias

corrected observations when the observed 7.3-mmbrightness temperature, satellite zenith angle, andmodel-integrated total water content

from 100 to 700 hPa are used as the predictors. Data were accumulated at hourly intervals during a 108-h period from 1300UTC 16May to

0000 UTC 20 May 2014.
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the BC method that is not possible using traditional 1D

error histograms.

Inspection of the univariate NBC results showed that

the variance of the BC distributions was smallest when

the brightness temperature observations were used

as the BC predictor. The variance was also substantially

reduced when the NWCSAF cloud-top height retrievals

were used as the predictor. Both of these predictors

were able to diagnose and remove nonlinear biases as-

sociated with the cloudy observations. For example,

large positive conditional biases for midlevel clouds

transitioned into large negative conditional biases for

upper-level clouds. Though not examined during this

study, the different signs of the conditional biases for

these clouds could be related to the ability of the

COSMO Model and RTTOV to properly simulate ice

and mixed-phase cloud properties. The experiments

using the satellite zenith angle or vertically integrated

water content showed that these BC predictors had a

much smaller impact on the variance of the overall dis-

tribution. This behavior indicates that variables sensi-

tive to the cloud-top height are more effective BC

predictors for all-sky infrared brightness temperatures,

especially when higher-order Taylor series terms are

included. Even so, the multivariate experiments showed

that though the zenith angle and total water content

predictors only had a relatively small impact on the

departure histograms when used individually, they still

provided new information that greatly reduced the

variance of the distribution when used in combination

with the observed brightness temperature predictor.

Additional univariate NBC experiments were per-

formed to examine the influence of linear and nonlinear

components on the OMB departure distributions for

clear- and cloudy-sky observations using a subset of the

6.2-mm brightness temperatures for which both a given

observation and the corresponding model grid point were

identified as being clear or cloudy. Overall, comparisons

of the statistics for the clear-sky and cloudy-sky matched

observations revealed that nonlinear error sources are

much more important for cloudy-sky observations as

signified by the much larger impact of the second- and

third-order Taylor series terms on the variance and the

conditional biases in the distributions. For the clear-sky

FIG. 13. Probability density function of normalized 7.3-mm observation-minus-background departures for the (a) original data, and the

(b) constant, (c) first-order, (d) second-order, and (e) third-order bias-corrected observations when the observed 7.3-mm brightness

temperatures, satellite zenith angle, and vertically integrated total water content from 100 to 700 hPa are used as the BC predictors. Data

were accumulated at hourly intervals during a 108-h period from 1300 UTC 16 May to 0000 UTC 20 May 2014.
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observations, the conditional biases could be effectively

removed using only the zeroth- and first-order terms,

which is consistent with existing operational BC methods

that typically remove the bias from clear-sky satellite

observations using a set of constant and linear BC co-

efficients. These results show that the nonlinear condi-

tional bias patterns evident in the all-sky OMB departure

distributions primarily resulted from nonlinear biases in

the cloudy-sky infrared brightness temperatures. They

also show that the NBC method can effectively remove

both linear and nonlinear conditional biases from all-sky

infrared brightness temperatures provided that a suitable

cloud-sensitive variable is used as one of the predictors.

Future work includes running cycled DA experiments

using the KENDA system to assess the impact of the

NBCmethod on the forecast accuracy when assimilating

clear- and cloudy-sky infrared brightness temperatures.

Additional experiments will be necessary to explore the

ability of the method to remove biases from the OMB

departures when the simulated brightness temperatures

and cloud-top heights are used as the BC predictors

rather than their observed counterparts. Preliminary

results indicate that predictors derived from the NWP

model cloud field rather than the observations have a

smaller impact on the overall statistics as measured by

reductions in variance; however, they were still able to

effectively remove the conditional biases across most of

the distribution when higher-order Taylor series terms

were used. These results also indicate that it may be

necessary to use up to a fourth-order polynomial to

remove the bias if the NWP-derived quantities are used

rather than their observed counterparts. A more de-

tailed assessment of this sensitivity is currently under

way. Additional experiments will also be necessary to

explore the ability of the NBC method to remove biases

from infrared bands that are sensitive to the land surface

or other atmospheric constituents such as ozone, as well

as for all-sky microwave and visible radiances.

Though the NBC method used in this paper was

implemented as a static, offline method, it could also

be incorporated into online methods such as VarBC

through inclusion of additional nonlinear predictors. For

example, the VarBC system at the Met Office uses

Legendre polynomial predictors to remove residual scan

biases and Fourier predictors to correct complex orbital

biases in some satellite sensors (Cameron and Bell

2016). Higher-order predictors, such as the quadratic

form of the temperature lapse rate and fourth-order

polynomial of the satellite angle bias, are also widely

used in operational VarBC systems. Zhu et al. (2015)

recently showed that inclusion of a quadratic aircraft

ascent/descent term reduced the bias when assimilating

aircraft temperature observations. Results from the

current study could be used to help inform the devel-

opment of operational DA systems as they continue to

expand into all-sky satellite DA. Finally, many of the all-

sky OMB departure distributions exhibited narrow

peaks and fat tails that could potentially be better rep-

resented using a Huber norm (Huber 1972) represen-

tation, which has been shown to lead to improved

quality control and more observations being assimilated

(Tavolato and Isaksen 2015). Further research is nec-

essary to determine if using a Huber norm in combina-

tion with the NBC method can improve existing quality

control methods by identifying erroneous observations

after the nonlinear conditional biases have been re-

moved from the distribution. This approach could po-

tentially preserve more cloud-affected observations

where nonlinear biases are more prevalent, thereby

leading to additional observations being assimilated in

sensitive areas of the domain.
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