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Synchronization based state estimation tries to synchronize a model with the true
evolution of a system via the observations. In practice, an extra term is added to the
model equations which hampers growth of instabilities transversal to the synchronization
manifold. Therefore, there is a very close connection between synchronization and data
assimilation. Recently, synchronization with time-delayed observations has been proposed,
in which observations at future times are used to help synchronize a system that does not
synchronize using only present observations, with remarkable successes. Unfortunately,
these schemes are limited to small-dimensional problems.

In this article, we lift that restriction by proposing an ensemble-based synchronization
scheme. Tests were performed using the Lorenz’96 model for 20-, 100- and 1000-dimension
systems. Results show global synchronization errors stabilizing at values of at least an
order of magnitude lower than the observation errors, suggesting that the scheme is a
promising tool to steer model states to the truth. While this framework is not a complete
data assimilation method, we develop this methodology as a potential choice for a proposal
density in a more comprehensive data assimilation method, like a fully nonlinear particle
filter.
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1. Introduction

The synchronization phenomenon was first described back in
the seventeenth century by Christiaan Huygens, a Dutch scientist
who observed that two pendulum clocks suspended by a common
frame were oscillating, after some time, in opposite directions but
with the same frequency, independently of their start positions. He
described further, that if an intervention was made to any of these
oscillations, this agreement between the frequencies would be
re-established in a short period of time. The researcher attributed
this ‘sympathy of two clocks’ to the frame they were sharing and
its motion. Very recently, Peña-Ramirez et al. (2016) presented a
detailed study of Huygens’ experiment and a mathematical model
including the coupling of the clocks due to a wooden beam, con-
firming the occurrence of synchronization. Therefore, the main
idea behind synchronization is that, if two (or more) systems share
or exchange information in the correct way, they can synchronize
to each other, i.e they can match some of their characteristics.

The equivalence between the concepts of synchronization and
data assimilation was firstly pointed out by Duane et al. (2006).
As stated by them, data assimilation aims to synchronize the
model evolution with the true evolution of the system, finding

the best estimate of the state and its evolution. The coupling
is unidirectional, from the truth to the model system, and
incomplete, as observations are typically sparse and contain
errors. Typically, the model is extended with a nudging or
relaxation term that forces it towards observations of the system.
Synchronization then studies the stability of the synchronization
manifold, which is the D-dimensional linear subspace defined by
xS = xM, where xS and xM denote states of the D-dimensional
system and the D-dimensional model, respectively. To achieve
synchronization, this manifold has to be transversally stable such
that limt→∞ ‖xS(t) − xM(t)‖ = 0. This stability is obtained with
a suitable coupling term added to the model equations.

Recently, a coupling scheme exploiting delay embedding of the
observations has been suggested, such that the forcing term also
includes observations from either past or future (e.g. Abarbanel,
2013; Parlitz et al., 2014; Rey et al., 2014a, 2014b). These methods
use the Jacobian of the forward model to move observation
influence to the time instant of interest. A simplified approach
has also been developed by Pazó et al. (2016), which avoids the
calculation of the Jacobian, but at the expense of less strong
synchronization. The main idea behind these methods is that
observations from other times can be used to boost the number
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of observations in a system that would otherwise not synchronize.
Remarkable synchronization results have been achieved this way
by Rey et al. (2014a, 2014b), who performed tests considering
a twin experiment using the Lorenz’96 chaotic model (Lorenz,
1995), with 20 state variables to be estimated and only one
being observed. Among their results, they were able to find
synchronization errors with magnitudes of the order of 10−15,
close to machine precision. Furthermore, the authors achieved
successful prediction ranges of around 2000 time steps. It should
be mentioned, however, that their method assumes that the
observations contain no errors, which is unrealistic in the data
assimilation context. In their setting, even small observational
errors can have a large impact on the synchronization results.
Furthermore, their method is far too expensive to be used in
realistic high-dimensional geophysical problems as it needs the
propagation of the Jacobian matrix of the forward model, of size
the model dimension squared.

Nowadays, data assimilation is defined more generally as a
Bayesian inference problem in which prior information about
a system, described in a prior probability density function
(pdf), is updated when observations, including their errors
described by the likelihood, become available. Using Bayes’
Theorem the prior pdf and the likelihood are multiplied to
form the posterior pdf, which is the solution to the full data
assimilation problem. So, data assimilation is more general than
synchronization.

This relation between the two becomes apparent when the
data assimilation is assumed to be linear, revealing a close
connection between synchronization and the Kalman Filter. The
main difference is that synchronization uses a tunable parameter
to set the strength of the relaxation term, while in the Kalman Filter
the Kalman gain is determined completely by the error covariances
of model and observations. As is well known, the Kalman Filter
provides the optimal gain, in the sense of minimal unbiased
posterior errors, so the Kalman Filter informs us how to choose
the tuning parameter in synchronization. The same is true when
we use time embedding, in which the Kalman Smoother provides
the optimal gain, in a linear system. It should also be mentioned
that in synchronization, observations are used several times in
the time-embedding framework, which is possible to include in
a Kalman Smoother, but the formulation would become rather
complicated as correlations between model and observation errors
would have to be taken into account. Synchronization typically
does not worry about these correlations, as observation errors are
assumed to be negligible.

When the system is nonlinear, synchronization could be
used, indirectly, in a proposal density in nonlinear data
assimilation. As pointed out by e.g. van Leeuwen (2009), the
proposal density allows for enormous freedom in changing
the model equations, indeed allowing for extra terms with
tunable parameters. For instance van Leeuwen (2009) suggests
the use of an Ensemble Kalman Filter as proposal in a particle
filter, in which the observational-error covariances are made
much smaller than the true observational errors. Furthermore,
observations can be used several times without complicating the
algorithm per se.

With this proposal density freedom in mind, we extend
the synchronization method of Rey et al. (2014a, 2014b)
to high-dimensional settings, in which observation errors are
non-negligible. To this end, we introduce ensemble methods
to avoid the propagation of very large matrices by the
linearized model, and we make the method more robust
to observational noise by observing a larger proportion of
the system.

In section 2 we describe the methodology used to construct both
the synchronization and the ensemble-based synchronization
frameworks and explore the similarities of the latter with the
ensemble smoother. In section 3 we present results on both
frameworks using the Lorenz’96 model in up to 1000-dimensional
settings. In section 4, we summarize and discuss our results and
present conclusions.

2. Methodology

2.1. Synchronization

The initial stage of this work follows the synchronization ideas
of Rey et al. (2014a, 2014b). The method explores the use
of time-advanced embeddings, to bring additional information
from measurements ahead back to the present time. The main
idea is that, after stabilizing the synchronization manifold, very
precise estimates of unobserved variables are generated and these
estimates allow an accurate prediction of the variables, over a
significant forecast period. The effect of measurement noise in
this type of system is also tested. Previous experiments with
observation noise in lower-dimension systems were performed
by Rey et al. (2014b), showing that, as noise levels increase, the
estimate’s accuracy degrades significantly.

The synchronization framework can be summarized as follows.
Define the state x ∈ �Dx and observations y ∈ �Dy at each time
step of the model:

dx(t)

dt
= f {x(t)}, (1)

where f {x(t)} is the nonlinear model.

(i) Define Dd as the delay dimension, containing the time
embeddings to include additional information from Dy

measurements at different times in a time interval
[t, t + (Dd − 1)τ ], where τ is a constant time interval.
Note the similarity with a fixed-lag smoother.

(ii) In the embedding dimension De = Dd ∗ Dy, construct
vectors S ∈ �De related to the states and Y ∈ �De , related
to the observations, as:

S{x(t)} =
(

[H{x(t)}]T, [H{x(t + τ )}]T,

..., [H{x(t + (Dd − 1)τ )}]T
)T

(2)

and

Y(t) =
{
y(t)T, y(t+τ )T, ..., y(t+(Dd−1)τ )T

}T
, (3)

in which S(x) is a map from physical to an embedding space
and H(x) is the observation operator at each observation
time, a map �Dx → �Dy , which can be linear or nonlinear.
For simplicity, we assume that H is the same at each time
instant, but it is straightforward to make H time dependent.

(iii) Calculate the Jacobian matrix ∂S{x(t)}/∂x(t). To this end,
we need to evaluate

∂H{x(t + τ )}
∂x(t)

= HF(x)0→τ , (4)

in which H is the Jacobian of the map H and F(x)0→τ is the
linearized model, so the Jacobian of the nonlinear model,
from time 0 to τ . Then, this Jacobian matrix ∂S{x(t)}/∂x(t)
is of size De × Dx, where Dx is the number of dimensions
of the system.

(iv) Calculate the pseudoinverse ∂S{x(t)}/∂x(t)† of the
Jacobian matrix, using a singular value decomposition
(SVD). Since ∂S{x(t)}/∂x(t) is a De × Dx matrix, this can
be prohibitively expensive for high-dimensional systems.

(v) Finally, calculate the variable evolution with time:

dx(t)

dt
= f {x(t)} + g

∂S{x(t)}
∂x(t)

†

{Y(t) − S(t)}, (5)

where g is a coupling constant, which is a tuning parameter
in synchronization.

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
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(vi) Keep iterating the whole process (stages (i)–(v)) from time
t + 1 on, until the last available observation.

The pseudoinverse ∂S{x(t)}/∂x(t)† spreads the information
from the observed variables at measurement times to all
unobserved variables of the model, at time t. It is important
to note that not all observations that are available in the time
interval [t, t + (Dd − 1)τ ] are used, but only those τ time steps
apart. The idea is that observations in between do not carry much
new information, thus reducing the computational effort. Also
note that one has to recalculate S(x) at every time step, and
hence linearize the model at every time step over the time interval
[t, t + (Dd − 1)τ ]. This, again, is extremely expensive for larger
models.

2.2. The ensemble-based synchronization

The construction of the Jacobian matrix in the synchronization
formulation requires the propagation forward in time of a
Dx × Dx matrix. In higher-dimension systems, this may bring
computational and storage issues. Instead, we will explore an
ensemble framework here, similar to an Ensemble (Kalman)
Smoother (van Leeuwen and Evensen, 1996; van Leeuwen, 1999;
Evensen and van Leeuwen, 2000).

The ensemble methodology can be described by the following
steps (the Appendix A gives the pseudocode):

(i) At time t = 0, generate an ensemble of Nens initial members
by randomly perturbing x(0), i.e. members are isotropically
distributed around x(0).

(ii) Take the mean of these perturbed states:

x̄(0) = 1

Nens

Nens∑
i=1

xi(0) (6)

and the difference between each member and the mean:

Xi(0) = xi(0) − x̄(0), (7)

in which Xi(0) is the ith column of the initial ensemble
perturbation matrix X(0), a Dx × Nens matrix, and Nens is
the number of ensemble states or members.

(iii) Propagate forward in time each full ensemble member for
τ time steps, where τ is a chosen constant time interval,
and form the ensemble perturbation matrix X(τ ) with the
same dimensions as X(0). Repeat this process for (Dd − 1)
times to cover the full time window [t, t + (Dd − 1)τ ] with
the ensemble.

(iv) Generate the augmented De-dimensional vectors S and Y,
such as in equations (2) and (3), noting that the states x in
S{x(t)} are the ensemble means at each embedding time.

(v) To calculate ∂S(x(t))/∂x(t) we note that, approximately:

H{X(τ )} ≈ HF(x)0→τ X(0), (8)

where again H is the Jacobian of the map H and F(x)0→τ

is the linearized model, so the Jacobian of the nonlinear
model, from time 0 to τ . Note that in the nonlinear case,
H{X(τ )} is defined by:

H{X(τ )} =
[

H{x1(τ )}−H{x(τ )},

· · ·, H{xNens (τ )}−H{x(τ )}
]

(9)

in which

H{x(τ )} = 1

Nens

Nens∑
i=1

H{xi(τ )}. (10)

This allows us to approximately compute the Jacobian
F(x)0→τ as:

HF(x)0→τ ≈ H{X(τ )}{X(0)}†, (11)

where {X(0)}† is the pseudoinverse of X(0). Note that we
do not need to calculate this pseudoinverse explicitly (see
below). The full Jacobian matrix ∂S(x(t))/∂x(t) can be
constructed as:

∂S{x(t)}
∂x(t)

=

⎛
⎜⎜⎜⎝

H(x)
HF(x)0→τ

...

HF(x)0→(Dd−1)τ

⎞
⎟⎟⎟⎠

which can now be rewritten as:

∂S{x(t)}
∂x(t)

≈

⎛
⎜⎜⎜⎝

H{X(0)}{X(0)}†

H{X(τ )}{X(0)}†

...

H{X((Dd − 1)τ )}{X(0)}†

⎞
⎟⎟⎟⎠

So we can now calculate the pseudoinverse of
∂S{x(t)}/∂x(t) by noting that each sub-matrix above has
the factor {X(0)}† in common, as:

∂S{x(t)}
∂x(t)

†

≈ X(0)

⎛
⎜⎜⎜⎝

H{X(0)}
H{X(τ )}

...

H{X((Dd − 1)τ )}

⎞
⎟⎟⎟⎠

†

This shows that we need to compute the pseudoinverse of a
De × Nens measured ensemble perturbation matrix, which
we can do via truncated SVD.

(vi) Use the coupled dynamics to propagate the model states
forward in time, as in Eq. (5).

(vii) Keep iterating the whole process (stages (i)–(vi)) from
time t + 1 on, until the last available observation, at time
t + (Dd − 1)τ .

In our implementation, we take the coupling constant g which
appears in Eq. (5) equal to 1. Also, the ensemble version of
this synchronization scheme utilizes a localization method to
reduce the influence of observations which are far away from the
variables (Houtekamer and Mitchell, 1998); Asch et al. (2016)
give an overview on localization. We assume that we can attribute
a position in physical space to each observation (location on the
Lorenz ring). The implementation of localization is as follows:

(i) For each variable, calculate the distance d (along the ring)
between the position in physical space and all the existing
observations in the system.

(ii) Define a threshold loc for this distance. If this limit is
exceeded, discard the influence of the observation in
the variable. Otherwise, calculate the influence for each
variable:

iloc = exp
[−{d2/(2loc2)}] (12)

storing each value in a vector iloc.
(iii) Compute the Schur product between iloc and the difference

(Y(t) − S(t)) to generate a new variable evolution from
Eq. (5):

dx(t)

dt
= f {x(t)}+g

∂S{x(t)}
∂x(t)

†[
iloc◦{Y(t)−S(t)}]. (13)

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
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Finally, steps (v) and (vi) are not the most efficient way to
perform the necessary calculations. Instead, it would be more
efficient to first calculate[(

[H{X(0)}], [H{X(τ )}],

· · ·, [H{X((Dd − 1)τ )}]
)T

]†

[iloc◦(Y−S)], (14)

which results in a vector of size Nens, which is then used to
right-multiply X(0). This is particularly more efficient in higher-
dimensional cases.

The methodology described above has strong similarities with
an Ensemble Smoother (van Leeuwen and Evensen, 1996). The
Ensemble Smoother update can be formulated as:

xa = xf

+X{H(X)}T
(
H(X){H(X)}T+R

)−1{Y(t)−S(t)}. (15)

The main differences between Ensemble Smoothers and our
Ensemble Synchronization are the following. Synchronization
ignores observation errors in the gain. This allows for an inversion
of H(X) directly, instead of (H(X){H(X)}T + R). The latter is
a larger matrix, but, of course, in efficient implementations
the matrix to be inverted in an ensemble smoother is of size
Nens × Nens. Using localization, the matrices in both methods are
of similar size. Ignoring observation errors is perhaps a weakness,
but it is partly compensated for by the extra tuning possibility
via the factor g. Another difference is that observations are used
multiple times in time-embedded synchronization. Using the
same observations multiple times in ensemble smoothers would
introduce correlations between the errors of the state iterates and
the observation errors, complicating the scheme considerably.
Synchronization is not hampered by that issue, and observations
are used several times to increase the observability of the system.
This is a crucial advantage of synchronization.

This comparison also holds true for Ensemble Synchronization
and variational methods which employ ensembles to avoid adjoint
calculations, like 4DEnsVar (e.g. Liu et al., 2008; Fairbairn et al.,
2014; Gustafsson and Bojarova, 2014), and iterative Ensemble
Smoothers like the IEnKS of Bocquet and Sakov (2014), as these
methods are all based on the same assumptions and use the
same ensemble space–time correlations as ensemble smoothers.
The IEnKS, differently from the one presented in this work,
reuses all the observations inside the data assimilation window,
whereas our scheme uses only the observations at every τ time
steps in the [t, t + (Dd − 1)τ ] window. The scheme does use
observations multiple times, but with inflated covariances. Their
approach factorizes the likelihood and assimilates the resulting
sequence of likelihoods sequentially. It is important to recall
that our methodology targets a different purpose. While data
assimilation methods aim to approximate the true posterior pdf,
this synchronization technique tries to find a model trajectory that
follows the observations as close as possible, to synchronize with
the true trajectory. Therefore, as mentioned in the introduction,
synchronization is not a complete data assimilation method, as
uncertainties in model and observations are not incorporated
explicitly in the formulation. A very efficient use we see for the
synchronization scheme is as part of a proposal density in a more
comprehensive data assimilation method, like a particle filter. As
shown by e.g. van Leeuwen (2009), observations can be used as
often as one would wish in a proposal.

3. Experiments and results

The metric typically used in synchronization to monitor the
synchronization error (SE) is the root mean square error (RMSE):

SE(t) =
√√√√ 1

Dx

Dx∑
k=1

{xk
true(t) − xk(t)}2. (16)

In this work, ‘xtrue’ is considered in Eq. (16), as we performed
twin experiments, in which the truth is artificially generated.
In real cases, however, knowledge about the truth relies on the
observations and so ‘xtrue’ would be substituted by ‘y’ and xk

should be replaced by H(x) in this evaluation metric.
Note that, in all cases described below, we have varied the

initial conditions and random number realizations, all leading to
similar qualitative and quantitative results. Hence, these results
can be considered typical for the behaviour of the system at hand.

3.1. Synchronization results using matrix propagation

We performed twin experiments using a Dx-dimensional
Lorenz’96 model,

dxa

dt
= (xa+1 − xa−2)xa−1 − xa + f (17)

for a = 1, ..., Dx and a forcing parameter f = 8.17, which
guarantees chaotic behaviour for Dx = 20, 100 and 1000. A
fourth-order Runge–Kutta scheme was applied, with �t = 0.01
and a constant time interval τ = 10�t. An observation noise
sampled from a normal distribution with standard deviation σo

= 0.1 was used.
The coupling constant g in Eq. (5) can be equal to 1 and we still

obtain synchronization. However, using g = 0.1, and therefore
reducing the influence of the whole coupling term in Eq. (5)
by a factor of 10, produces slightly better results. Therefore,
we use g = 0.1 in all synchronization experiments. After some
experimentation, we have decided to use 2 Dy singular values in
the computation of the SVD for the pseudoinverse of the Jacobian
matrix, as this produced the most stable results. We choose this
value for all the cases shown in this subsection.

3.1.1. 20-variable case

In this case, five variables were observed equidistantly on the
Lorenz’96 ring, being used at every τ time steps, during a total
length of the experiment of 10 000 time steps (comparable with
Rey et al., 2014a, 2014b).

The size of the delay dimension Dd is a crucial factor, as it needs
to be large enough to provide useful and additional information
to compensate the lack of measurements, but small enough to
keep the numerical stability of the pseudoinverse computation.
Figure 1 shows the synchronization errors (RMSE) for different
embedding intervals. The first noticeable point in the figure is
the magnitude of the synchronization error (RMSE), compared
to Rey et al. (2014a). While those authors have reached values
of around 10−15, our results range between the order of 10−2

and 10−3. This is directly related to the inclusion of observational
noise. Therefore, in our tests we define the system as synchronized

Figure 1. Synchronization Error (RMSE) for different delay dimensions in a
20-variable system with five measured variables sampled equidistantly on the
Lorenz’96 ring, using synchronization with matrix propagation. [Colour figure
can be viewed at wileyonlinelibrary.com].

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 2. Synchronization Error (RMSE) for different standard deviations (σ ) of
observation noise in a 20-variable system with five measured variables sampled
equidistantly on the Lorenz’96 ring (Dd = 5), using synchronization with matrix
propagation. [Colour figure can be viewed at wileyonlinelibrary.com].

when RMSE < σo and stabilized when no sharp peaks in the
synchronization error are found along the run. Figure 1 illustrates
the following:
(i) an embedding interval of at least Dd = 3 is needed to reach
RMSE values < σo and achieve synchronization;
(ii) for Dd = 2, the system does not stabilize and shows moments
of desynchronization;
(iii) for Dd = 4 and Dd = 5, low RMSE values are obtained and
convergence seems to have been reached.

In order to test the impact of the observation noise in the
system, we varied σo between 0.1 and 0.001, as shown in Figure 2.

Figure 4. Trajectory of one of the variables in Figure 3, enlarged at the end of the
estimation period. The blue line is the truth, the red dashed line is the estimate
and the green dots are the observations. Synchronization with matrix propagation
was used. [Colour figure can be viewed at wileyonlinelibrary.com].

It is clear that the measurement noise affects the quality of
synchronization, particularly in the first 500 time steps. We used
the same realizations for the observation noise in all experiments,
and the similar time series for different values of σo show that we
have reached synchronization in the linear regime. In general, we
find RMSE ≈ (1/5)σo.

After 9960 time steps (10 000 time steps minus (Dd − 1)τ , for
Dd = 5), the system is set to run freely, i.e. no synchronization
scheme is used. Figure 3 shows estimations and predictions for
the first ten variables (and Figure 4 shows an expansion at the
end of the estimation period of one of the variables to highlight
the differences between the truth and the observations). During
the estimation period, the green lines (estimates) match visually
perfectly to the blue lines (truth). This shows how close our
estimates are to the true values. Also, during prediction stage,

Figure 3. Trajectories of the first ten variables (y axes) and our estimates (upto 9960 time steps–red lines) and predictions (after 9960 time steps). The blue lines are
the truth and the green lines are the estimates/predictions. The observed variables are: 0, 4 and 8. Synchronization with matrix propagation was used. [Colour figure
can be viewed at wileyonlinelibrary.com].

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
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(a)

(b) (c)

Figure 5. (a) Synchronization error (RMSE) for a 20-variable system with five measured variables sampled equidistantly on the Lorenz’96 ring (Dd = 5), and
unobserved variable estimates/predictions for estimation periods of (b) 4855 time steps and (c) 9454 time steps. The prediction range in (b) is of ≈ 400 time steps,
while (c) is of ≈ 150 time steps. Synchronization with matrix propagation was used. [Colour figure can be viewed at wileyonlinelibrary.com].

very precise values are reached for almost 500 time steps and after
that, predictions start to diverge from the truth, given the chaotic
nature of the model. This prediction range is reduced compared
to Rey et al. (2014a, 2014b), again related to the inclusion of
observational errors.

The prediction range depends on how well synchronized the
system is at the starting point of the prediction. Figure 5 shows
that if, for instance, we start prediction at time step 4855, where we
find minimal RMSE values, it is possible to predict an unobserved
variable very precisely for around 400 time steps. If, however, we
start predicting at time step 9454, when the RMSE value points
out a less synchronized moment of the system, the prediction
range for the variable is reduced, reaching around 150 time steps.

We believe that there are two reasons for encountering a
reduced prediction range:

(i) poor initial conditions due to poor synchronization, as
mentioned before; and

(ii) the fact that, even if a tiny amount of observation
noise is included, simulations will (at the end of the
synchronization period) end up in a different part on the
chaotic attractor, where local divergence of neighbouring
trajectories might be larger. To exclude this effect, one
should average over many simulations with different initial
conditions and/or many prediction attempts, at different
times.

We were not able to use synchronization when only one variable
is observed and observation errors are included. Even increasing
Dd to up to 20 did not help. Our conclusion is that there is not
enough information in the one noisy observation to synchronize
the system. This has changed dramatically when we increased the
number of observed variables per time step to 5, which means
that about 25% of the system is observed. As soon as we found
synchronization, we could reduce the time-embedding window
to 40 (so Dd = 5), compared to a larger embedding interval needed
in Rey et al. (2014a). We come back to this important point in
the concluding section.

3.1.2. 100-variable case

In this case, 25 variables were observed at every τ = 10 time
steps. Noting that after the initial transient period, the length

Figure 6. Synchronization error (RMSE) for a 100-variable system with 25
measured variables sampled equidistantly on the Lorenz’96 ring (Dd = 5).
Synchronization with matrix propagation was used. [Colour figure can be viewed
at wileyonlinelibrary.com].

of the estimation period is not the crucial point in finding
synchronization, we have reduced the length of these experiments
to 1000 time steps.

Keeping the previous optimal value for the delay dimension
Dd = 5, we show in Figure 6 the RMSE values decreasing to
around 10−2, deriving good estimates of all variables throughout
the estimation period, as shown for a few variables in Figure 7.
Note that the estimation period in this case goes until time step
960, after which the prediction begins.

Accurate predictions are obtained for around 250 time steps.
It is interesting to see that the dimension of the system has no
influence on the synchronization error and the delay dimension.

3.1.3. 1000-variable case

In this experiment, 250 variables were observed and the estimation
period was also 960 time steps. Although the number of variables
has increased, the delay dimension to compensate the lack of
measurements is still the same, i.e. Dd = 5. Figure 8 shows
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Figure 7. Trajectories of three unobserved variables in a 100-dimension system.
The blue lines are the truth and the green ones are the estimates. Predictions start
at time step 960 (red lines). Synchronization with matrix propagation was used.
[Colour figure can be viewed at wileyonlinelibrary.com].

Figure 8. Synchronization error (RMSE) for a 1000-variable system with 250
measured variables sampled equidistantly on the Lorenz’96 ring (Dd = 5).
Synchronization with matrix propagation was used. [Colour figure can be viewed
at wileyonlinelibrary.com].

synchronization with low RMSE values. Again, good estimates of
all variables are produced as Figure 9 shows. Also, very precise
predictions are obtained for more than 250 time steps, as is shown
in Figure 9. Again, comparing with the 20- and 100-dimensional
cases, we find no dependence on the system size.

It should be mentioned that this run is extremely expensive,
propagating a 1000 by 1000 matrix for 40 time steps at each
time step. This is the main motivation to turn to the ensemble
framework.

3.2. Ensemble-based synchronization results

The previous results were obtained by propagating a matrix
of size Dx × Dx for (Dd − 1)τ time steps, for each forward
model time step. This is extremely demanding computationally.
In the following, we explore ensemble methods, reducing the
computation by a factor of Dx/Nens.

For these experiments, we basically used the same configuration
as before, using 20-, 100- and 1000-variable systems. Like in

Figure 9. Trajectories of five unobserved variables in a 1000-dimension system.
The blue lines are the truth and the green ones are the estimates. Predictions start
at time step 960 (red lines). Synchronization with matrix propagation was used.
[Colour figure can be viewed at wileyonlinelibrary.com].

the previous experiments, the same proportion of the system is
observed (25%), so that every fifth variable is measured. Tests were
performed for different ensemble sizes, delay dimensions Dd and
also standard deviations σo for the measurement noises. Ensemble
members are slightly perturbed, with a normal distribution of
N ∼ (0, 0.01). Different ensemble sizes were tested: 5, 15, 20,
50, 100 and 200 members, but we will show results only for
the minimal number of ensemble members needed in each case,
corresponding to the cheapest configurations. The number of
singular values used in the computation of the SVD is equal to
the number of ensemble members used. This is valid for all the
ensemble cases shown next.

3.2.1. 20-variable case

For this case, again, five variables were observed, being used at
every ten time steps τ , during 10 000 time steps.

As the main purpose of implementing an ensemble version of
the synchronization system is to make it more computationally
feasible for realistic systems, the first crucial information in these
experiments is the number of ensemble members needed to
achieve synchronized results. Tests were performed for different
numbers of ensemble members and very precise estimations were
obtained by using only five members in the ensemble.

Regarding the effective embedding interval to make the system
stabilize and synchronize, Figure 10 shows the synchronization
errors (RMSE) for different Dd values. In these results, we note
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Figure 10. Synchronization error (RMSE) for different delay dimensions in a 20-variable system with five measured variables sampled equidistantly on the Lorenz’96
ring and five ensemble members. Ensemble synchronization was used. [Colour figure can be viewed at wileyonlinelibrary.com].

Figure 11. Synchronization error (RMSE) for different standard deviations (σ )
of observation noise in a 20-variable system with five measured variables
sampled equidistantly on the Lorenz’96 ring and five ensemble members
(Dd = 5). Ensemble synchronization was used. [Colour figure can be viewed
at wileyonlinelibrary.com].

that for Dd = 3, the system does not stabilize, showing peaks of
less synchronized moments. For Dd = 4 and 5, low RMSE values
are reached, however a more stable and synchronized system is
obtained while using Dd = 5, which tends to stabilize faster and
more consistently. Tests were also performed for delay dimensions
varying from Dd = 6 to 12, showing synchronization in all of
these cases. However, for Dd = 11 and 12 desynchronization is
observed at some time steps along the run, although the mean
RMSE values remain of the order of 10−2.

It is also noticeable that the synchronization scheme presented
previously has slightly lower RMSEs, compared to the ensemble
scheme, but the latter is still providing RMSE values well below
the observation noise.

We have also tested the impact of the size of the observation
noise in the ensemble system in combination with ensemble size.
Figure 11 shows that, for five members, RMSE seems to stabilize
at σ = 0.01 level, even for σo = 0.001. This suggests that Monte-
Carlo noise is an important contributor to RMSE. To investigate
this further, the same case was run with 100 ensemble members
(Figure 12). As the number of members increases, the system
tends to get more stabilized at σ = 0.1, reaching smaller RMSE
values for all observation noise levels, compared to the results in
Figure 11.

Figure 12. As Figure 11, but for 100 ensemble members. [Colour figure can be
viewed at wileyonlinelibrary.com].

The predictions for the first ten variables are shown in Figure 13.
Also for this experiment, our estimates are very close to the truth.
Although prediction ranges for this experiment are reduced
compared to the ones for the synchronization scheme shown in
Figure 3, very precise values are reached for around 300 time
steps, which is still a considerable period.

3.2.2. 100-variable case

This case considers 25 observed variables, the same estimation
period for the previous 100-variable case, and a delay dimension of
Dd = 5. The main difference from the 20-variable case is that, due
to the increase of number of variables to 100, in this experiment
15 ensemble members were required to stabilize the system and
make the model synchronize with the truth. Figure 14(a) shows
good results for this configuration, with RMSE values decreasing
to a magnitude of 10−2.

Aiming to construct a framework that can be used in high-
dimensional systems, the scheme requires the implementation
of a localization method to reduce the influence of spurious
correlations arising from using a small ensemble size. We use a
localization radius of influence rad = 3, so that any observations
located further than the threshold loc = 3 × rad are ignored
by the variable. The localization function has an exponential
shape. By localizing the effect of these distant observations in

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. (2017)



Ensemble Synchronization

Figure 13. As Figure 3, but for the ensemble-based synchronization system. [Colour figure can be viewed at wileyonlinelibrary.com].

Figure 14. Synchronization error (RMSE) for a 100-variable system with 25 measured variables sampled equidistantly on the Lorenz’96 ring (Dd = 5): (a) fifteen
ensemble members, without localization, and (b) five ensemble members with localization applied. Ensemble synchronization was used. [Colour figure can be viewed
at wileyonlinelibrary.com].

the variables, we were able to reduce the number of ensemble
members from 15 to 5. Results (Figure 14(b)) show that, with
localization, the system stabilizes and synchronizes faster than
without localization. Estimates and predictions for some variables
are shown in Figure 15.

3.2.3. 1000-variable case

For this experiment, 250 variables were observed for the same
estimation period. As the number of variables increases, if we
run the configuration without localization, the delay dimension
needs to increase to Dd = 10 for synchronization to set in. In

addition, the number of ensemble members required to get
the system synchronized increases significantly to 100 members
(Figure 16(a)).

By using localization with a radius of influence rad = 10, the
number of ensemble members is reduced from 100 to 20. Also,
we are able to reduce the embedding interval, from Dd = 10
back to Dd = 5. Results (Figure 16(b)) are better than the ones
without localization, producing good estimates and predictions
(Figure 17).

At this point it is important to mention the computational
complexity of the two methods, the pure synchronization
(matrix propagation) and the ensemble-based synchronization.
The number of model runs needed is strongly reduced in the
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Figure 15. Trajectories of three unobserved variables in a 100-dimension system
for the ensemble-based synchronization system with localization and five ensemble
members. The blue lines are the truth and the green ones are the estimates.
Predictions start at time step 960 (red lines). Ensemble synchronization was used.
[Colour figure can be viewed at wileyonlinelibrary.com].

ensemble-based method, the difference being a factor Dx/Nens.
Furthermore, the matrix method needs the linearized model
equations, and these are typically more expensive than fully
nonlinear model runs because more terms appear in the equations.
It is worth mentioning that these time-extended measurements
aim to effectively extract information from other existing
observations, at the expense of an additional computational
complexity. If the system is fairly well observed, simpler methods
can be used. However, if the system does not have enough
available measurements, one must use a more computationally
intensive algorithm, such as the one presented here.

Another interesting point to be added is the role of the variable
τ in this system as an indicator of the temporal frequency of
measurements needed for the achievement of accurate estimates
and forecasts. To better understand this idea, an experimental
simulation was performed (results not shown here), setting
τ = �t and the window length equivalent to (Dd − 1)10�t.

In this experimental configuration, the length of the window used
is kept, but now all the measurements within it are used, instead
of using observations at only every 10 time steps (the standard
configuration used in the article). We found results which are
roughly equivalent to the experiments shown here. That gives us
an interesting clue about the minimum observation frequency
needed to achieve successful estimates/forecasts. Therefore, our
present configuration (e.g. using only the measurements that
appear at every ten time steps inside the time embedding interval)
seems to be enough. Using observations of these variables more
frequently would not add much more information to this system.

4. Conclusions

An innovative methodology is proposed for an ensemble-based
synchronization scheme, which works well for a desirable small
number of ensemble members. From a synchronization point of
view, the initial values of the ensemble members were chosen
in a random, isotropic distribution around the initial state. This
helped the method to work, since the members are immediately
attracted by the most expanding directions, so they represent, after
a short transient, the unstable dynamics transversal to the syn-
chronization manifold, which is what is needed for a stabilization
method. This way, high-dimensional applications of synchro-
nization are now within reach. Different initial conditions and
random-number realizations were tested in all the cases presented
here, deriving qualitatively and quantitatively similar results.

Table 1 shows the total RMSE means for the run
periods, summarizing results for the 100- and 1000-variable
systems for the pure synchronization and the ensemble-based
synchronization with and without localization. It demonstrates
that the synchronization scheme with a matrix propagation
produces better synchronized systems with lower RMSEs than
the ensemble-based scheme. However, the former cannot be
extended to higher-dimensional systems, as a matrix the size
of the system dimension has to be propagated by the linearized
model. The ensemble method does provide good synchronization
results, even for high-dimensional systems when localization is
used. Note that inflation is not needed in this type of framework.

It is interesting to note the relation between the time embedding
dimension and the number of observations at each observation
time. As Rey et al. (2014a) noticed, to stabilize all growing modes
off the synchronization manifold of a 20-dimensional Lorenz’96
system, one could use an eight-dimensional delay embedding of
a single observable instead of (simultaneously) measuring eight
different state variables of the system. This result was obtained for
noiseless data. We found that, with noisy observations, increasing

Figure 16. Synchronization error (RMSE) for a 1000-variable system with 250 measured variables sampled equidistantly on the Lorenz’96 ring: (a) 100 ensemble
members, without localization (Dd = 10), and (b) 20 ensemble members with localization applied (Dd = 5). Ensemble synchronization was used. [Colour figure can
be viewed at wileyonlinelibrary.com].
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Figure 17. As Figure 15, but for five unobserved variables in a 1000-dimension
system for the ensemble-based synchronization system with localization and 20
ensemble members. [Colour figure can be viewed at wileyonlinelibrary.com].

the embedding dimension De = Dd ∗ Dy by increasing Dd is
not sufficient to achieve synchronization, but the number of
observations Dy has to be chosen larger than one. We have not
been able to synchronize the system when only one variable was
observed, even when the observation error was small, of order
0.001, and Dd as large as 20, in the 20-dimensional system. The
only way to synchronize the system was to increase the number
of observations at each observation time. In all simulations
presented here Dy = 0.25Dx turned out to provide good results
for Dd = 5. If we increase the number of available measurements
to Dy = 0.5Dx, we are able to synchronize the system with a delay
dimension Dd = 2 (results not shown here), confirming this
close relationship between Dd and Dy. However, more research is
needed to better characterize the observational requirements of
the synchronization system.

Also, our findings indicate that the embedding dimension De

needs to be of the order of the system dimension to obtain
RMSE values below the observational error, but again, more
research is needed. It should be noted that this result is related to
the RMSE of the whole system, not just the observed variables.
Another remark to be made is that in these experiments the
results were not too sensitive to the value of the coupling constant
g, as synchronization can still be obtained with g = 1. We have
used g = 0.1 for slightly better results and so have reducing the
influence of the whole coupling term in Eq. (5) by a factor
of 10. Tuning this parameter may perhaps be trickier in a real
geophysical system, and the search for an optimal value might

Table 1. Total RMSE mean for 1000 time-step runs for the pure synchronization
(Synch) and the ensemble-based synchronization (EnSynch).

EnSynch

Dx Synch (no localiz.) (with localiz.)

100 0.02 0.05 0.05a

1000 0.02 0.09b 0.05

a Nens decreased from 15 to 5. b Dd = 10, in this case.

need a variable dependent g. When the observation errors are
large, we have to ensure that the synchronization will not lead to
overfitting. This can be prevented by tuning the parameter g, such
that the best forecasts are obtained. Finally, we did not investigate
the influence of a non-uniform observation network, combined
with different localization radii, again an interesting endeavour
for future work.

On the data assimilation side, our results suggest that both
schemes are valuable tools to steer model states to the true
evolution of the system. Nevertheless, although good estimates
of the states are obtained, there are no uncertainties involved,
so these methodologies should not be used as stand-alone data
assimilation methods. Furthermore, observations inside the time
interval [t, t + (Dd − 1)τ ] are used more than once, which would
lead to complicated schemes in conventional data assimilation
methods. Both problems, however, can be solved simultaneously
by viewing them as part of a more comprehensive data assimilation
method like a particle filter. This is indeed our final goal, to
investigate the usefulness of these synchronization schemes as
(part of) a proposal density in a fully nonlinear particle filter.
van Leeuwen (2010) introduced a simple relaxation term to future
observations in his particle filter to steer the particles towards the
high-probability region of the posterior between observations.
This was incorporated in a high-dimensional system in Ades and
van Leeuwen (2015), and in a climate model by Browne and
van Leeuwen (2015). The latter study found that the relaxation
term was not functioning well enough, with the model drifting too
far from the truth between observations. Browne (2016) found a
similar issue, both with the simple relaxation term and with an
Ensemble Kalman Smoother as proposal between observations.
This is one of the motivations to investigate synchronization for
this purpose in this article.

Since synchronization as discussed here is deterministic, the
idea is to add a stochastic term to each synchronized particle,
drawn from the model error pdf, so the scheme can be used in the
particle filter framework. When the model error pdf is assumed to
be Gaussian, as is most common because we do not know much
about these errors, the proposal density related to synchronization
is a Gaussian too, and easy to implement. Specifically, we need to
change the weight of each particle by a factor

p(xn
i |xn−1

i )

q(xn
i |xn−1

i , ym)
, (18)

in which i is the particle index, n is the time index between
observations and m is the observation time, in the case that
observations are not available at every time step. p(xn

i |xn−1
i ) is the

transition probability of the original model, and q(xn
i |xn−1

i , ym)
is the transition density of the modified model equation due
to the synchronization term. Both of these transition densities
are known and typically assumed to be Gaussian, e.g the
first is a Gaussian with mean f (xn−1

i ) and covariance Q. The
implementation is similar to the relaxation-term proposal in
van Leeuwen (2010).

Finally, the use of time embeddings as a crucial factor in
these schemes was discussed. Future work to be considered
could be the implementation of a backward–forward (Pazó
et al., 2016) version of the synchronization code, in order
to compare its efficiency and performance with the proposed
methods.
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Appendix

A Pseudocode for synchronization scheme

This appendix contains the pseudocode for the first six steps of the
ensemble-based synchronization scheme described in section 2.2.
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