Empirical likelihood tests for nonparametric detection of differential expression from RNA-seq data

It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing.
Published version at: http://dx.doi.org/10.1515/sagmb-2015-0095
To link to this article DOI: http://dx.doi.org/10.1515/sagmb-2015-0095

Publisher: De Gruyter

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur
CentAUR
Central Archive at the University of Reading
Reading's research outputs online
1 Empirical likelihood

For n i.i.d one dimensional observations x_1, \ldots, x_n the empirical likelihood (Owen, 1988) can be defined as

$$f(x) = \prod_{i=1}^{n} p_i,$$

(1)

where we assign each observation a weight p_i, and constrain these such that $\sum_{i=1}^{n} p_i = 1, \forall i, 0 \leq p_i \leq 1$. Focussing on the empirical likelihood for the mean μ of our observations x_i, we simply require that

$$\sum_{i=1}^{n} p_i x_i = \mu.$$

(2)

Then we have three constraints, and aim to find the the p_i that maximise the empirical likelihood $f(x)$ under these constraints. Fortunately by using Lagrange multipliers we can find the optimal p_i by solving a one dimensional root finding problem. Defining

$$G = \sum_{i=1}^{n} \log(np_i) - n\lambda \sum_{i=1}^{n} p_i (x_i - \mu) + \gamma \left(\sum_{i=1}^{n} p_i - 1 \right),$$

(3)

and taking the partial derivative with respect to p_i, applying the method of Lagrange multipliers (Owen, 2001) we have

$$\frac{\partial G}{\partial p_i} = \frac{1}{p_i} - n\lambda (x_i - \mu) + \gamma = 0,$$

(4)

and we can solve for γ by considering

$$\sum_{i=1}^{n} p_i \frac{\partial G}{\partial p_i} = 0$$

(5)

$$\sum_{i=1}^{n} (1 - n\lambda p_i (x_i - \mu) + p_i \gamma) = 0$$

(6)

$$n + \gamma = 0,$$

(7)

*to whom correspondence should be addressed
since we know $\sum_{i=1}^{n} p_i(x_i - \mu) = 0$. Then substituting $\gamma = -n$ into equation 4 we have

$$\frac{1}{p_i} - n\lambda(x_i - \mu) - n = 0$$ \hspace{1cm} (8)

$$p_i = \frac{1}{n\lambda(x_i - \mu) + n}. \hspace{1cm} (9)$$

and so p_i depends only on solving equation 4 for λ. We know that

$$\sum_{i=1}^{n} p_i(x_i - \mu) = 0$$ \hspace{1cm} (10)

$$\sum_{i=1}^{n} \frac{(x_i - \mu)}{n\lambda(x_i - \mu) + n} = 0; \hspace{1cm} (11)$$

and so we can solve for λ for a given value of μ using a univariate root finding algorithm. Then using equation 9 we can find the p_i and calculate the empirical likelihood in equation 1.

1.1 Euclidean likelihood

The Euclidean likelihood (Baggerly, 1998) defines the log likelihood as

$$\log f(x|\mu) = -\frac{1}{2} \sum_{i=1}^{n} (np_i - 1)^2,$$ \hspace{1cm} (12)

with the constraints $\sum_{i=1}^{n} p_i = 1$ and $\sum_{i=1}^{n} p_i x_i - \mu = 0$. Again we apply the method of Lagrange multipliers (Owen, 2001)

$$G = -\frac{1}{2} \sum_{i=1}^{n} (np_i - 1)^2 - n\lambda \sum_{i=1}^{n} p_i(x_i - \mu) + \gamma \left(\sum_{i=1}^{n} p_i - 1 \right),$$ \hspace{1cm} (13)

and setting the partial derivative of G with respect to p_i to zero we have

$$\frac{\partial G}{\partial p_i} = n(1 - np_i) - n\lambda(x_i - \mu) + \gamma = 0$$ \hspace{1cm} (14)

$$\frac{1}{n} \sum_{i=1}^{n} (n(1 - np_i) - n\lambda(x_i - \mu) + \gamma) = 0$$ \hspace{1cm} (15)

$$-n\lambda(\bar{x} - \mu) + \gamma = 0.$$ \hspace{1cm} (16)

Substituting $\gamma = n\lambda(\bar{x} - \mu)$ back into equation 14

$$n(1 - np_i) - n\lambda(x_i - \mu) + n\lambda(\bar{x} - \mu) = 0$$ \hspace{1cm} (17)

$$p_i = \frac{1}{n} \left(1 - \lambda(x_i - \bar{x}) \right).$$ \hspace{1cm} (18)

Given that $\sum_{i=1}^{n} p_i(x_i - \mu) = 0$, we can substitute equation 18 to give
\[
\sum_{i=1}^{n} \frac{(x_i - \mu)}{n} \left(1 - \lambda(x_i - \bar{x})\right) = 0 \quad (19)
\]

\[
\bar{x} - \mu - \sum_{i=1}^{n} \frac{\lambda}{n} (x_i - \mu)(x_i - \bar{x}) = 0 \quad (20)
\]

\[
\bar{x} - \mu - \sum_{i=1}^{n} \frac{\lambda}{n} (x_i - \bar{x})(x_i - \bar{x}) = 0 \quad (21)
\]

\[
\bar{x} - \mu - \lambda s = 0, \quad (22)
\]

where \(s \) is defined as \(s = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x}) \). Substituting \(\lambda \) into equation 18 we have

\[
p_i = \frac{1}{n} \left(1 - \frac{1}{s} (\bar{x} - \mu)(x_i - \bar{x})\right), \quad (23)
\]

and substituting \(p_i \) into equation 12 we arrive at

\[
\log f(x|\mu) = -\sum_{i=1}^{n} \left(\frac{1}{s} (\bar{x} - \mu)(x_i - \bar{x})\right)^2 \quad (24)
\]

\[
= -\frac{1}{s^2} (\bar{x} - \mu)^2 \left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right) \quad (25)
\]

\[
= -\frac{1}{s^2} n(\bar{x} - \mu)^2, \quad (26)
\]

References

