

Authentication of Iceland Moss (Cetraria islandica) by UPLC-QToF-MS chemical profiling and DNA barcoding

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Xu, M., Heidmarsson, S., Thorsteinsdottir, M., Kreuzer, M., Hawkins, J. ORCID: https://orcid.org/0000-0002-9048-8016, Omarsdottir, S. and Olafsdottir, E. S. (2018) Authentication of Iceland Moss (Cetraria islandica) by UPLC-QToF-MS chemical profiling and DNA barcoding. Food Chemistry, 245. pp. 989-996. ISSN 0308-8146 doi: 10.1016/j.foodchem.2017.11.073 Available at https://centaur.reading.ac.uk/74115/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>. Published version at: https://doi.org/10.1016/j.foodchem.2017.11.073 To link to this article DOI: http://dx.doi.org/10.1016/j.foodchem.2017.11.073

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Authentication of Iceland Moss by UPLC-QToF-MS chemical profiling and DNA barcoding

Maonian Xu^a, Starri Heidmarsson^b, Margret Thorsteinsdottir^a, Marco Kreuzer^c, Julie Hawkins^c, Sesselja Omarsdottir^a, Elin Soffia Olafsdottir^a.*

^a Faculty of Pharmaceutical Sciences, University of Iceland, Hagi,
Hofsvallagata 53, IS-107 Reykjavik, Iceland (Emails: <u>xum1@hi.is</u>, <u>margreth@hi.is</u>, <u>sesselo@hi.is</u>, <u>elinsol@hi.is</u>)
^b Icelandic Institute of Natural History, Akureyri Division, IS-600 Akureyri,
Iceland (Email: <u>starri@ni.is</u>)
^c School of Biological Sciences, University of Reading, Reading RG6 6BX,
United Kingdom (Emails: <u>marcokrz@gmail.com</u>,

j.a.hawkins@reading.ac.uk)

* Corresponding author
Elin Soffia Olafsdottir, Ph.D, Professor
Faculty of Pharmaceutical Sciences
University of Iceland
Hagi, Hofsvallagata 53,
IS-107 Reykjavik, Iceland
Tel: +354 5255804
Fax: +354 5254071
Email: elinsol@hi.is

Abstract

The lichen *Cetraria islandica* or Iceland Moss is commonly consumed as tea, food ingredients (e.g. in soup or bread) and herbal medicines. *C. islandica*, which has two chemotypes, can be difficult to distinguish from the sister species *Cetraria ericetorum*. They are collectively referred to as the *Cetraria islandica* species complex. This study aimed to use an UPLC-QToF-MS chemical profiling together with DNA barcoding to distinguish species and chemotypes of the *C. islandica* species complex. Our results show that the two chemotypes of *C. islandica* are clearly distinguishable from each other and from *C. ericetorum* by the chemometric approach. The RPB2 barcode was able to differentiate *C. islandica* from *C. ericetorum* with a barcode gap, but the widely used nrITS barcode failed. Neither of them could discriminate chemotypes of *C. islandica*. In conclusion, this integrative approach involving chemical profiling and DNA barcoding could be applied for authentication of Iceland Moss materials.

Keywords: *Cetraria islandica*, *Cetraria ericetorum*, DNA barcoding, chemical profiling, authentication

1. Introduction

3	Taxonomically, Cetraria islandica or Iceland Moss is not a moss species
4	but a lichen taxon and the classification is based on the symbiotic fungal
5	partner (Parmeliaceae, ascomycete) (Ingolfsdóttir, 2000). This lichen is
6	consumed in Iceland as tea, food ingredients (e.g. in milk soups and bread)
7	and herbal medicines (Xu et al., 2016). Considerable morphological and
8	chemical variations have been found among Icelandic populations of C.
9	islandica and two chemotypes have been reported (Kristinsson, 1969). They
10	consist of the fumarprotocetraric acid (FA)-producing and FA-deficient
11	races, where the latter chemotype has exclusively been found in Iceland
12	(Kristinsson, 1969). Traditional use seems to favor the FA-deficient
13	chemotype of C. islandica, which is believed to be less bitter (Kristinsson,
14	1968). Furthermore, the species boundaries between C. islandica and its
15	sibling species Cetraria ericetorum are still ambiguous: C. ericetorum has
16	similar morphology to certain morphotypes of C. islandica and it is reported
17	to be FA-deficient. Together C. islandica and C. ericetorum are collectively
18	called the Cetraria islandica species complex (Kristinsson, 1969; Thell,
19	Stenroos, & Myllys, 2000). Their chemical profiles, particularly of the C.
20	islandica FA-deficient chemotype and C. ericetorum, have not been
21	thoroughly investigated for food safety, and an accurate identification
22	method for these lichen materials is needed.
23	
24	Chemical profiling or fingerprinting, in particular when using an untargeted
25	approach, can directly detect chemical hazards and contaminants in food or
26	herbal materials, with the limitation that their species sources cannot be
27	determined (de Boer, Ichim, & Newmaster, 2015). Chemometric analysis
28	using complex metabolite datasets has shown great potential in the
29	inspection of food adulteration as well as in the characterization of markers

for adulteration detection (Cubero-Leon, Peñalver, & Maquet, 2014).

Untargeted chemical profiling is especially useful in the distinction of
closely-related plant species, where certain genetic markers may not be
informative (Messina, Callahan, Walsh, Hoebee, & Green, 2014). That
approach has been successfully applied to the lichen *Ramalina siliquosa*complex using liquid chromatography-mass spectrometry (LC-MS) (Parrot,
Jan, Baert, Guyot, & Tomasi, 2013).

37

38 Recently, DNA barcoding has emerged as an effective tool in the 39 identification of plant and animal materials using defined species-specific 40 DNA markers. It has found wide application in the authentication and 41 traceability of food materials (Galimberti et al., 2013). This approach has 42 been extended to the authentication of multiple ingredients samples using a 43 more advanced DNA metabarcoding approach, which involves next 44 generation sequencing (Staats et al., 2016). Practically, DNA barcoding has 45 been applied for authentication of fungi-based dietary products (Raja, Baker, 46 Little, & Oberlies, 2017). Furthermore, identification of lichenized fungi 47 using DNA barcoding has been successfully performed using the fungal 48 nuclear ribosomal internal transcribed spacer region (nrITS) (Kelly et al., 49 2011), which has been proposed as the universal DNA barcode for fungi 50 (Schoch et al., 2012). 51 52 Two DNA barcodes, nrITS and RPB2 (the second largest subunit of 53 ribosomal polymerase II) were selected for this study on the C. islandica 54 lichen materials. Although the widely used nrITS region is known to 55 provide a sufficient amount of variation to distinguish between most fungal 56 species and is represented by many reference sequences in public databases, 57 some drawbacks for DNA barcoding and especially DNA metabarcoding

58 have been reported (Větrovský, Kolařík, Žifčáková, Zelenka, & Baldrian,

59 2016). While nrITS can identify species, its multi-copy nature of the ITS

60 region may render problems with relative quantification of species in mixed

61	samples. In other cases, intra-individual polymorphism including multiple
62	functional genes, putative pseudo genes or recombinants hamper
63	identifications (Mark, Cornejo, Keller, & Flück, 2016). The single-copy
64	RPB2 gene has been proposed as an alternative to the nrITS region, which
65	could overcome some of these challenges (Větrovský et al., 2016). The
66	performance of RPB2 will be compared to that of nrITS in our study.
67	
68	The overall aim of this study was to explore the usefulness of an
69	authentication approach for Cetraria islandica species complex using
70	UPLC-QToF-MS chemical profiling and DNA barcoding. Specific
71	objectives were: Firstly, to distinguish chemotypes of the species complex
72	by comparing their UPLC-QToF-MS chemical profiles using chemometric
73	data analysis, and secondly to compare the discriminatory power of RPB2
74	and nrITS barcodes for the taxa of the C. islandica species complex.
75	
76	2. Materials and Methods
76 77	2. Materials and Methods
76 77 78	2. Materials and Methods2.1 Sampling and chemotype identification
76 77 78 79	 Materials and Methods Sampling and chemotype identification
76 77 78 79 80	 Materials and Methods 2.1 Sampling and chemotype identification <i>Cetraria islandica</i> (L.) Ach. (English: Iceland Moss; Icelandic: fjallagrös)
76 77 78 79 80 81	 2. Materials and Methods 2.1 Sampling and chemotype identification <i>Cetraria islandica</i> (L.) Ach. (English: Iceland Moss; Icelandic: fjallagrös) and <i>Cetraria ericetorum</i> Opiz specimens were collected in Iceland.
76 77 78 79 80 81 82	 2. Materials and Methods 2.1 Sampling and chemotype identification <i>Cetraria islandica</i> (L.) Ach. (English: Iceland Moss; Icelandic: fjallagrös) and <i>Cetraria ericetorum</i> Opiz specimens were collected in Iceland. Authentic specimens of <i>C. islandica</i> are provide by lichenologists from the
76 77 78 79 80 81 82 83	 2. Materials and Methods 2.1 Sampling and chemotype identification <i>Cetraria islandica</i> (L.) Ach. (English: Iceland Moss; Icelandic: fjallagrös) and <i>Cetraria ericetorum</i> Opiz specimens were collected in Iceland. Authentic specimens of <i>C. islandica</i> are provide by lichenologists from the Icelandic Institute of Natural History, Akureyri, Iceland (AMNH). Collected
76 77 78 79 80 81 82 83 83 84	 2. Materials and Methods 2.1 Sampling and chemotype identification <i>Cetraria islandica</i> (L.) Ach. (English: Iceland Moss; Icelandic: fjallagrös) and <i>Cetraria ericetorum</i> Opiz specimens were collected in Iceland. Authentic specimens of <i>C. islandica</i> are provide by lichenologists from the Icelandic Institute of Natural History, Akureyri, Iceland (AMNH). Collected voucher specimens are deposited at the AMNH herbarium. Intraspecific
76 77 78 79 80 81 82 83 83 84 85	 2. Materials and Methods 2.1 Sampling and chemotype identification <i>Cetraria islandica</i> (L.) Ach. (English: Iceland Moss; Icelandic: fjallagrös) and <i>Cetraria ericetorum</i> Opiz specimens were collected in Iceland. Authentic specimens of <i>C. islandica</i> are provide by lichenologists from the Icelandic Institute of Natural History, Akureyri, Iceland (AMNH). Collected voucher specimens are deposited at the AMNH herbarium. Intraspecific morphological variation of Iceland Moss (<i>C. islandica</i>) as well as the
76 77 78 79 80 81 82 83 83 84 85 86	 2. Materials and Methods 2.1 Sampling and chemotype identification <i>Cetraria islandica</i> (L.) Ach. (English: Iceland Moss; Icelandic: fjallagrös) and <i>Cetraria ericetorum</i> Opiz specimens were collected in Iceland. Authentic specimens of <i>C. islandica</i> are provide by lichenologists from the Icelandic Institute of Natural History, Akureyri, Iceland (AMNH). Collected voucher specimens are deposited at the AMNH herbarium. Intraspecific morphological variation of Iceland Moss (<i>C. islandica</i>) as well as the interspecific similarity between the two species (<i>C. islandica</i> and <i>C.</i>
76 77 78 79 80 81 82 83 83 83 84 85 86 87	 Materials and Methods 2.1 Sampling and chemotype identification <i>Cetraria islandica</i> (L.) Ach. (English: Iceland Moss; Icelandic: fjallagrös) and <i>Cetraria ericetorum</i> Opiz specimens were collected in Iceland. Authentic specimens of <i>C. islandica</i> are provide by lichenologists from the Icelandic Institute of Natural History, Akureyri, Iceland (AMNH). Collected voucher specimens are deposited at the AMNH herbarium. Intraspecific morphological variation of Iceland Moss (<i>C. islandica</i>) as well as the interspecific similarity between the two species (<i>C. islandica</i> and <i>C. ericetorum</i>) can be seen in Figure 1. Additional <i>C. ericetorum</i> type
76 77 78 79 80 81 82 83 83 83 84 85 86 87 88	 Materials and Methods Sampling and chemotype identification <i>Cetraria islandica</i> (L.) Ach. (English: Iceland Moss; Icelandic: fjallagrös) and <i>Cetraria ericetorum</i> Opiz specimens were collected in Iceland. Authentic specimens of <i>C. islandica</i> are provide by lichenologists from the Icelandic Institute of Natural History, Akureyri, Iceland (AMNH). Collected voucher specimens are deposited at the AMNH herbarium. Intraspecific morphological variation of Iceland Moss (<i>C. islandica</i>) as well as the interspecific similarity between the two species (<i>C. islandica</i> and <i>C. ericetorum</i>) can be seen in Figure 1. Additional <i>C. ericetorum</i> type specimens were kindly provided by Dr. Stefan Ekman, Museum of
76 77 78 79 80 81 82 83 83 83 84 85 86 85 86 87 88 89	 Materials and Methods Sampling and chemotype identification <i>Cetraria islandica</i> (L.) Ach. (English: Iceland Moss; Icelandic: fjallagrös) and <i>Cetraria ericetorum</i> Opiz specimens were collected in Iceland. Authentic specimens of <i>C. islandica</i> are provide by lichenologists from the Icelandic Institute of Natural History, Akureyri, Iceland (AMNH). Collected voucher specimens are deposited at the AMNH herbarium. Intraspecific morphological variation of Iceland Moss (<i>C. islandica</i>) as well as the interspecific similarity between the two species (<i>C. islandica</i> and <i>C. ericetorum</i>) can be seen in Figure 1. Additional <i>C. ericetorum</i> type specimens were kindly provided by Dr. Stefan Ekman, Museum of Evolution, Uppsala University, Uppsala, Sweden. The chemotypes of <i>C</i>.

91	method (Kristinsson, 1969). Briefly, a small fragment was cut from a thallus
92	with a blade, and drops of p -phenylendiamine (PD) solution (ca. 2% in
93	ethanol) were added to lichen medulla on a white paper with a glass
94	capillary tube. Then the medullary color reactions were visualized under a
95	stereoscope. Specimens showing a red medullary color after spot testing
96	were assigned as PD+, while the ones without color change as PD PD spot
97	testing was carried out on fragments from three different parts of the thallus,
98	to make sure the chemotype. Fragments were discarded immediately after
99	testing. Voucher information and gene accession numbers are provided in
100	Online Resource (see Table S1). In total, 30 specimens of PD+ C. islandica,
101	15 specimens of PD- C. islandica and 18 specimens of uniformly PD- C.
102	ericetorum were identified.
103	
104	2.2 Chemical profiling
105	
106	2.2.1 LC-MS analysis
107	
108	Air-dried lichen thallus (ca. 20 mg) was weighed and ground into powders
109	under liquid nitrogen. Powdered lichen materials were macerated with
110	acetone under shaking in ambient temperature for 2 h. The extraction was
111	repeated twice. Extracts were combined and evaporated with nitrogen gas
112	flow. Dried residues were then solubilized in HPLC-grade acetonitrile
113	(ACN), diluted into 0.1 mg/mL and filtered (pore size 0.45 $\mu\text{m};$ GE
114	healthcare, UK) before analyses by Waters ACUITY UPLC TM (Waters
115	Corporation, Milford, MA, USA) coupled to Waters Q-ToF SYNAPT G1
116	mass spectrometer (Waters MS Technologies, Manchester, UK).
117	
118	The UPLC system was equipped with a binary solvent delivery system and
119	autosampler. Chromatographic separation of lichen compounds was
120	conducted on an ACQUITY UPLC BEH C18 column (2.1 mm x 100 mm,

121	1.7 μ m; Waters corp., Milford, MA, USA). The column oven was kept at
122	40°C and the autosampler was maintained at 6.0°C. The mobile phase
123	consisted of solvent A: H ₂ O with 0.1% formic acid in water and solvent B:
124	0.1% formic acid in ACN. Gradient elution was used at a flow rate of 0.40
125	mL/min as follows: 30% B, 0-1 min; linear gradient from 30% B/70% A to
126	70% B/30% A, 1-3 min; linear gradient from 70% B/30% A to 100% B, 3-9
127	min; holding at 100% B, 9-13 min; linear gradient from 100% B to 30%
128	B/70% A, 13-14 min; holding at 30% B/70% A, 14-15 min. Pooled samples
129	were used as quality control. The injection volume was 5 μ L.
130	
131	The Synapt G1 QToF-MS mass spectrometer was operated in negative
132	electrospray ionization mode (capillary voltage 3.0 kV, source temperature
133	120°C, desolvation temperature 400°C, cone gas flow 50 L/h, desolvation
134	nitrogen gas flow 800 L/h). Ions with mass range 50 to 1600 m/z (mass to
135	charge ratio) were scanned. All samples were analyzed in triplicates. Details
136	of UPLC-QToF-MS analysis are as previously described (Xu et al., 2017).
137	The UPLC-QToF-MS system and data acquisition were controlled by the
138	MassLynx v4.1 software (Waters Corp., Milford. USA).
139	
140	2.2.2 Chemometric data analysis
141	
142	MS spectra were aligned and normalized using MakerLynx v4.1. Collection
143	parameters were set as 50 counts, mass window 0.05 Da and retention time
144	window 0.2 min. Replicate percentage value was set at 50%. Normalized
145	data were introduced into SIMCA v14.1 software (Sartorius Stedim Data
146	Analytics, Umeå, Sweden) for principal component analysis (PCA). PCA
147	could provide a holistic overview of the grouping of lichen specimens,
148	which was based on chemical data from organic extracts. Compounds were
149	identified by comparing their MS/MS spectra and fragmentation patterns

150	with those from isolated pure compounds, previously published data and
151	public databases (Metlin and ChemSpider).
152	
153	2.3 Molecular analysis
154	
155	2.3.1 DNA extraction, PCR and sequencing
156	
157	Air-dried lichen residues after acetone maceration were used for total DNA
158	extraction following the CTAB protocol (Cubero, Crespo, Fatehi, & Bridge,
159	1999). Lichen DNA extracts were stored in TE buffer (pH 8.0) at -20°C
160	until use. Polymerase chain reactions (PCRs) were performed to amplify the
161	fungal nuclear ribosomal internal transcribed spacer (nr ITS) and the second
162	largest subunit of RNA polymerase II (RPB2). Each reaction (25 μ L)
163	contained 1×standard Taq reaction buffer, 200 μ M dNTPs, 0.2 μ M forward
164	and reverse primer, 1.25 units of Taq DNA polymerase (New England
165	Biolabs), 1 μ L DNA template, and PCR-grade water. The fungi-specific
166	primers used for the amplification of nr ITS region were: ITS1F (5'-
167	CTTGGTCATTTAGAGGAAGTAA-3') (Gardes & Bruns, 1993) and ITS4
168	(5'-TCC CCGCTTATTGATATGC-3') (White, Bruns, Lee, & Taylor,
169	1990), while the primers for the RPB2 regions were: RPB2-6F(5'-
170	TGGGGKWTGGTYTGYCCTGC-3') (Liu, Whelen, & Hall, 1999) and
171	fRPB2-7cR (5'-CCCATRGCTTGYTTRCCCAT-3') (Liu et al., 1999). PCR
172	amplification was carried out in a Perkin-Elmer Gene Amp PCR system
173	9700 thermal cycler. The PCR cycling conditions for nrITS were: initial
174	denaturation at 94°C for 3 min, 34 cycles of 94°C for 40 s, 54°C for 40 s,
175	68°C for 1 min, then final extension at 68°C for 5 min before cooling down
176	to 4°C. A touchdown PCR program was used for RPB2 region: 94°C for 4
177	min, followed by 6 cycles of 94°C for 1min, 55-50°C (decrease 1°C per
178	cycle) for 1min and 68°C for 1min, then 32 cycles of 94°C for 1min, 50°C
179	for 1min and 68°C for 1min, and final extension at 68°C for 7min, before

180	cooling down at 4°C. Amplicons were visualized in 1.3% agarose gel (gel
181	picture refers to Online Resource Figure S1), purified using ExoSAP
182	(Fermentas) and sent for Sanger sequencing by Marogen Inc. using the same
183	set of primers as used in PCRs.
184	
185	2.3.2 DNA barcoding analysis
186	
187	The discriminatory power of the nrITS and RPB2 barcodes was assessed
188	according to the monophyly criterion and the DNA barcoding gap concept
189	(Meyer & Paulay, 2005). The sequences representing each barcode were
190	aligned using MAFFT v7.215 (Katoh & Standley, 2013) with default
191	parameters and trimmed if necessary. Phylogenetic trees using the Genbank
192	sequences of C. sepincola (accession number KC990137.1 for nrITS) as
193	outgroups were built with RAxML v. 8.0.26 (Stamatakis, 2014) with 100
194	rapid bootstrap replicates under the GTRGAMMA model. The DNA
195	barcode gap analysis was conducted on <i>C. islandica</i> and its sister species <i>C</i> .
196	ericetorum using the R package SPIDER (Brown et al., 2012), using the
197	best-fitting substituion models to measure pair-wise distances. Best-fitting
198	substitution models for each region (TIM2+G for nrITS; TIM2+I for RPB2)
199	were chosen by using the Aikaike Information Criterion (AIC) in
200	jModelTest 2 (Darriba, Taboada, Doallo, & Posada, 2012). Because the
201	TIM2+G and TIM2+I models were not available in the R package APE
202	(Paradis, Claude, & Strimmer, 2004), which was used to calculate pairwise
203	distances, the next best-fitting model for both alignments, TrN+G, was used.
204	
205	The number of false positive and false negative identifications along a DNA
206	divergence threshold were calculated and plotted using the R package
207	SPIDER (Brown et al., 2012). Additionally, the minimum interspecific and
208	maximum intraspecific divergence for each sequence was calculated and
209	plotted.

210	
211	3. Results and Discussion
212	
213	3.1 Chemical profiling and chemometric data analysis
214	
215	Chemical profiling of C. islandica organic extracts has been carried out
216	before using high performance liquid chromatography-ultraviolet detection
217	(HPLC-UV) (Fernández-Moriano, Divakar, Crespo, & Gómez-Serranillos,
218	2015; Gudjónsdóttir & Ingólfsdóttir, 1997). Those previously used methods
219	lack separation efficiency and sensitivity, and thus may underestimate the
220	chemical diversity of <i>C. islandica</i> , e.g. (+)-roccellaric acid 6 was found in <i>C</i> .
221	islandica using a fluorous tag-catch and release approach (Horhant, Lamer,
222	Boustie, Uriac, & Gouault, 2007), but was previously overlooked due to
223	poor chromatographic separation. Additionally, HPLC-UV (Fernández-
224	Moriano et al., 2015) analysis using high UV wavelengths may overlook the
225	content of those aliphatic lichen acids (i.e. compounds 5-8), which are poor
226	UV absorbants. The current UPLC method achieved the separation of
227	compound 6 from its analogues 7 and 8. A list of detected compounds is
228	provided in Table S2, and the structures of major lichen secondary
229	metabolites from the <i>C. islandica</i> species complex are illustrated in Figure 2.
230	
231	Compounds 1-8 were identified in our study by comparing their molecular
232	masses, fragmentation pathway and chromatographic properties with
233	reference data as well as authentic standards isolated in previous studies
234	(Bessadóttir et al., 2014; Gudjónsdóttir & Ingólfsdóttir, 1997). MS ² spectra
235	of each compound and their fragmentation patterns are provided in Online
236	Resource (see Figures S2-S4). MS chromatograms (Figure 3) show that (+)-
237	protolichesterinic acid 7 and its derivatives (i.e. 6 and 8) are the dominant
238	compounds in organic extracts detected in negative ion mode, followed by
239	minor components, such as protocetraric acid 1 and fumarprotocetraric acid

240	3 . The stereochemical diversity of (+)-protolichesterinic acid 7 seems to be
241	largely underestimated before, since two compounds (i.e. $7A$ and $7B$) were
242	detected with the same molecular formula, molecular ions and
243	fragmentation patterns (Figure S4) with compound 7 (Table S2 and Figure
244	3). In <i>C. ericetorum</i> , an additional unknown compound 6A in the peak
245	eluting out at 5.77 min (Figure 3c) was detected having the same mass to
246	charge ratio as well as fragmentation pattern as (+)-roccellaric acid 6 , which
247	suggests that 6A could be a stereoisomer of compound 6 (Figure S4). Up to
248	now, only one stereochemical form of roccellaric acid has been reported in
249	nature, namely (+)-roccellaric acid 6 in C.islandica (Horhant et al., 2007).
250	Three additional stereochemical forms have been synthesized by Mulzer et
251	al. (Mulzer, Salimi, & Hartl, 1993). Minor compounds 1 and 3 eluted quite
252	early ($t_R = 2.49$ and 2.96 min, respectively) under the chromatographic
253	conditions used, reflecting that they are more water-soluble than compounds
254	5-8. Fumarprotocetraric acid 3 (50 mg) is reported to be moderately soluble
255	in 30 mL phosphate buffer at pH 7.4 (Syers, 1969), while the solubility of
256	compound 3 is low (1 mg/L) in 90% acetonitrile with 1% phosphoric acid
257	(Gudjónsdóttir & Ingólfsdóttir, 1997). Thus, polarity and pH of the
258	extraction solvent can be expected to have considerable influence on the
259	extraction efficiency of these lichen acids (i.e. compounds 1-4).
260	
261	As a conventional diagnostic tool, the PD spot test was used to check the
262	chemotype and the presence of compound 3 in C. islandica (Kristinsson,
263	1969). From LC-MS chromatograms shown in Figure 3, the red color
264	reaction by PD spot testing was found to correlate with the presence of
265	compouds 1 and 3 , while these compounds were absent in the PD- C .
266	islandica chemotype and C. ericetorum. The presence of the aliphatic lichen
267	acids (i.e. compounds 5-8) did not result in a red color reaction. The co-
268	occurence of compouds 1 and 3 in organic extracts of C. islandica has been
269	found in literature (Fernández-Moriano et al., 2015).

270	
271	The two-component PCA score plot (Figure 4) of the UPLC-QToF-MS data
272	provides the visualization of how different chemical groups relate to each
273	other. Three chemical groups were formed based on their chemical profiles,
274	representing the PD- (CI PD-) and PD+ chemotypes (CI PD+) of C.
275	islandica and C. ericetorum (CE). The first component explains 43.6%
276	chemical variations, mainly interspecific differences between CE and CI.
277	The secondary component accounts for 10.4% variations, mainly
278	intraspecific differences between CI PD+ and CI PD PCA is a useful tool
279	in summarizing metabolite data and revealing groupings of food ingredients
280	from different biological origins (Azilawati, Hashim, Jamilah, & Amin,
281	2015; Cubero-Leon et al., 2014). From the Figure 4, the lichen C. islandica
282	shows high intraspecific chemical variations in Iceland with two
283	chemotypes recognized as reported before (Kristinsson, 1969), while
284	Icelandic C. ericetorum shows relatively less variation, even when
285	compared with non-Icelandic C. ericetorum specimens. This could partly be
286	explained by the limited distribution of CE, resulting in less variation. CE
287	has a restricted geographic distribution in north and east Iceland, whereas CI
288	has a rather wide distribution around Iceland (Thell & Moberg, 2011).
289	
290	3.2 DNA barcoding
291	
292	Sizes of PCR products were ca. ~600-900 bp for fungal nrITS and ca. ~900
293	bp for fungal RPB2 (Online Resource Figure S1). The variation of the
294	fungal nrITS PCR products was due to the presence of a group I intron
295	sequence in the longer amplicons, and absence in the short ones. In total 97
296	new sequence were obtained, including 48 for RPB2 and 49 for fungal
297	nrITS. PCRs of a few old herbarium reference specimens were not
298	successful (Online Resource Table S1).
299	

300	The phylogenetic tree based on the ITS region (Figure 5a) shows that C .
301	ericetorum is paraphyletic and nested within the C. islandica clade, whereas
302	both C. ericetorum and C. islandica are monophyletic in the RPB2 tree
303	(Figure 5b). Therefore the phylogenetic analyses support RPB2 as a barcode
304	with power to discriminate between the two species of Cetraria, but shows
305	that the nrITS barcode does not discriminate the species under study. The
306	pairwise distance analysis supports this interpretation, revealing that RPB2
307	is able to distinguish the two taxa, whereas the nrITS region always yields
308	false positive or negative identifications (Figure 6). There are other cases
309	where the nrITS region fails to discriminate lichenized fungi (Kelly et al.,
310	2011; Pino-Bodas, Martín, Burgaz, & Lumbsch, 2013), though the nrITS
311	region revealed interspecific barcoding gaps among most species of genera
312	Melanelia and Montanelia (Leavitt et al., 2014; Pino-Bodas et al., 2013).
313	The failure of the nrITS region in this case might be attributed to
314	intragenomic polymorphism in the ITS region, a phenomenon described in
315	other lichen-forming fungi (Kelly et al., 2011; Mark et al., 2016). It has also
316	been reported that the nrITS region alone is not suitable to estimate the
317	phylogenetic relationships within the C. islandica group (Thell et al., 2000).
318	
319	The limited application of RPB2 as a barcoding region has been explained
320	by difficult PCR amplification and sequencing (Schoch et al., 2012).
321	Specimens stored for over 3 years have shown problems in PCR
322	amplification (Kelly et al., 2011). We have, however, not encountered a
323	PCR amplification problem for either locus even with specimens which are
324	15 years old. Successful PCR amplification of the RPB2 region using even
325	older specimens (Cladonia sp.) of about 30 years has also been recorded
326	(Pino-Bodas et al., 2013). Age-dependent problems with PCR amplification
327	may be taxon-specific, as well as influenced by the DNA extraction method
328	in use. We noted that the sequence alignment of RPB2 is much simpler. In
329	contrast to the hypervariability of the nrITS region, RPB2 is also

330	recommended as an alternative marker for phylogenetic analysis (Větrovský
331	et al., 2016). We therefore reject the nrITS region and propose the RPB2
332	region as an efficient DNA barcode for testing medicinal products
333	containing Iceland Moss, at least in terms of discriminating between C.
334	ericetorum and C. islandica.
335	
336	Although the RPB2 region is effective for discriminating between species,
337	chemotypes of <i>C. islandica</i> are not discriminated (Figure 5). In Figure 5b, <i>C</i> .
338	islandica specimens from Iceland show two strongly supported clades, I and
339	II. All of the C. islandica PD- chemotype specimens fall into clade I, but are
340	interspersed with PD+ chemotypes, while clade II contains exclusively PD+
341	C. islandica specimens. Some lichen chemotypes have been shown to be
342	monophyletic (Fehrer, Slavíková-Bayerová, & Orange, 2008), but they can
343	also be not (Lutsak, Fernández-Mendoza, Nadyeina, Şenkardeşler, &
344	Printzen, 2017).
345	
346	Domestically, Cetraria islandica is sold as whole lichen-thalli food
347	ingredients or tea in Iceland. Accurate identification is generally not
348	difficult for taxonomic experts, but it may prove intractable to identify
349	powdered lichen materials, which lack morphological or sometimes
350	chemical characters. DNA barcoding as outlined here could substantially
351	facilitate identification by comparing new sequence data with reference data
352	generated from expertly identified voucher specimens.
353	
354	The current study focused on the authentication of natural lichen materials
355	without downstream processing. In case of highly processed herbal
356	materials where DNA may undergo considerable degradation, an alternative
357	method could be double gene targeting PCR, which amplifies selected
358	shorter regions (e.g. 70-150 bp) (Hossain et al., 2016, 2017).
359	

360	3.3 The advantage of the integrative approach for authentication of
361	Iceland Moss

363	Lichen material authentication generally operates at the species level and as
364	shown in this study DNA barcoding using RPB2, is an efficient method for
365	species identification in the C. islandica species complex. The advantage of
366	DNA barcoding is in identification of raw plant materials, sources of
367	contaminants and species composition (de Boer et al., 2015), which is
368	beyond the scope of chemical analysis. Generally, chemical profiling of
369	lichen secondary metabolites do not have the independent role in
370	identification/authentication of lichen species (Lumbsch, 1998). First, the
371	utility of metabolite data in lichen identification varies among lichen
372	taxa/populations. Our results (Table S2 and Figure 4) have demonstrated the
373	utility of chemical profiling in discriminating species (C. islandica and C.
374	ericetorum) and chemotypes (PD+ and PD-) in the Cetraria islandica
375	species complex. However, chemical profiling may have limited utility in
376	species discrimination where remarkable chemical variations (e.g. different
377	in major lichen compounds) are present, such as the lichen Ramalina
378	siliquosa (Lumbsch, 1998; Parrot et al., 2013). Such a huge variation may
379	pose a challenge in lichen identification: how much chemical variation is
380	allowed to define a species? To address this problem, it has been suggested
381	that chemical characters be correlated with other characters, preferentially
382	genetic sequence data (Lumbsch, 1998). The correlation between
383	phylogenetic relationship and chemotyping (i.e. PD+ and PD-) was
384	investigated in our study (Figure 5b).
385	
386	Although chemical profiling does not have an independent role in lichen
387	species identification/Iceland Moss authentication, it is indispensable for the
388	quality control of marker or health-beneficial components. It can provide
389	both qualitative and quantitative information on phytochemical composition

390	during extraction and downstream processing. Coupled to chemometric
391	tools, chemical profiling could also be used in differentiation of intraspecific
392	chemical variants, which is superior to DNA barcoding.
393	
394	In conclusion, this study highlights the integrative use of chemical profiling
395	and DNA barcoding for the authentication of Iceland Moss. The members of
396	Cetraria islandica species complex were easily characterized using
397	chemometric tools. Furthermore, DNA barcodes were compared and the
398	locus RPB2 proved to be superior to nrITS in distinguishing species of C .
399	islandica species complex. Our study shows how chemical profiling and
400	DNA barcoding can be used to differentiate chemical variants and species in
401	the complex, and suggests the use of this integrated approach for accurate
402	characterization of this closely related taxa as well as other plant materials
403	used for human consumption.
404	
405	Acknowledgements
406	
407	
107	This work was supported by the People Programme (Marie Curie Actions)
408	This work was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/
408 409	This work was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ [grant number 606895]; Bergthora and Thorsteinn Scheving Thorsteinsson
408 409 410	This work was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ [grant number 606895]; Bergthora and Thorsteinn Scheving Thorsteinsson Fund. Professor Kristinn P. Magnusson and Ph.D student Maney
408 409 410 411	This work was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ [grant number 606895]; Bergthora and Thorsteinn Scheving Thorsteinsson Fund. Professor Kristinn P. Magnusson and Ph.D student Maney Sveinsdottir, University of Akureyri, Iceland, are acknowledged for their
408 409 410 411 412	This work was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ [grant number 606895]; Bergthora and Thorsteinn Scheving Thorsteinsson Fund. Professor Kristinn P. Magnusson and Ph.D student Maney Sveinsdottir, University of Akureyri, Iceland, are acknowledged for their help in molecular analysis. The authors are particularly grateful to Dr.
408 409 410 411 412 413	This work was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ [grant number 606895]; Bergthora and Thorsteinn Scheving Thorsteinsson Fund. Professor Kristinn P. Magnusson and Ph.D student Maney Sveinsdottir, University of Akureyri, Iceland, are acknowledged for their help in molecular analysis. The authors are particularly grateful to Dr. Hörður Kristinsson (AMNH) for specimen collection and thoughtful
408 409 410 411 412 413 414	This work was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ [grant number 606895]; Bergthora and Thorsteinn Scheving Thorsteinsson Fund. Professor Kristinn P. Magnusson and Ph.D student Maney Sveinsdottir, University of Akureyri, Iceland, are acknowledged for their help in molecular analysis. The authors are particularly grateful to Dr. Hörður Kristinsson (AMNH) for specimen collection and thoughtful discussion.
408 409 410 411 412 413 414 415	This work was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ [grant number 606895]; Bergthora and Thorsteinn Scheving Thorsteinsson Fund. Professor Kristinn P. Magnusson and Ph.D student Maney Sveinsdottir, University of Akureyri, Iceland, are acknowledged for their help in molecular analysis. The authors are particularly grateful to Dr. Hörður Kristinsson (AMNH) for specimen collection and thoughtful discussion.
408 409 410 411 412 413 414 415 416	This work was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ [grant number 606895]; Bergthora and Thorsteinn Scheving Thorsteinsson Fund. Professor Kristinn P. Magnusson and Ph.D student Maney Sveinsdottir, University of Akureyri, Iceland, are acknowledged for their help in molecular analysis. The authors are particularly grateful to Dr. Hörður Kristinsson (AMNH) for specimen collection and thoughtful discussion.
408 409 410 411 412 413 414 415 416 417	This work was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ [grant number 606895]; Bergthora and Thorsteinn Scheving Thorsteinsson Fund. Professor Kristinn P. Magnusson and Ph.D student Maney Sveinsdottir, University of Akureyri, Iceland, are acknowledged for their help in molecular analysis. The authors are particularly grateful to Dr. Hörður Kristinsson (AMNH) for specimen collection and thoughtful discussion.
408 409 410 411 412 413 414 415 416 417 418	This work was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ [grant number 606895]; Bergthora and Thorsteinn Scheving Thorsteinsson Fund. Professor Kristinn P. Magnusson and Ph.D student Maney Sveinsdottir, University of Akureyri, Iceland, are acknowledged for their help in molecular analysis. The authors are particularly grateful to Dr. Hörður Kristinsson (AMNH) for specimen collection and thoughtful discussion. Conflicts of interest: none References

420	Azilawati, M. I., Hashim, D. M., Jamilah, B., & Amin, I. (2015). RP-HPLC
421	method using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate
422	incorporated with normalization technique in principal component
423	analysis to differentiate the bovine, porcine and fish gelatins. Food
424	Chemistry, 172, 368–376.
425	Bessadóttir, M., Skúladóttir, E., Gowan, S., Eccles, S., Ómarsdóttir, S., &
426	Ögmundsdóttir, H. M. (2014). Effects of anti-proliferative lichen
427	metabolite, protolichesterinic acid on fatty acid synthase, cell
428	signalling and drug response in breast cancer cells. Phytomedicine,
429	21(12), 1717–1724. https://doi.org/10.1016/j.phymed.2014.08.006
430	Brown, S. D. J., Collins, R. A., Boyer, S., Lefort, M. C., Malumbres-Olarte,
431	J., Vink, C. J., & Cruickshank, R. H. (2012). Spider: An R package
432	for the analysis of species identity and evolution, with particular
433	reference to DNA barcoding. Molecular Ecology Resources, 12(3),
434	562–565. https://doi.org/10.1111/j.1755-0998.2011.03108.x
435	Cubero-Leon, E., Peñalver, R., & Maquet, A. (2014). Review on
436	metabolomics for food authentication. Food Research International,
437	60, 95-107. https://doi.org/10.1016/j.foodres.2013.11.041
438	Cubero, O. F., Crespo, A., Fatehi, J., & Bridge, P. D. (1999). DNA
439	extraction and PCR amplification method suitable for fresh,
440	herbarium-stored, lichenized, and other fungi. Plant Systematics and
441	Evolution, 216(3-4), 243-249. https://doi.org/10.1007/BF01084401
442	Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2:
443	more models, new heuristics and parallel computing. Nature Methods,
444	9(8), 772–772. https://doi.org/10.1038/nmeth.2109
445	de Boer, H. J., Ichim, M. C., & Newmaster, S. G. (2015). DNA Barcoding
446	and Pharmacovigilance of Herbal Medicines. Drug Safety, 38(7), 611-
447	620. https://doi.org/10.1007/s40264-015-0306-8
448	Fehrer, J., Slavíková-Bayerová, S., & Orange, A. (2008). Large genetic
449	divergence of new, morphologically similar species of sterile lichens
450	from Europe (<i>Lepraria</i> , Stereocaulaceae, Ascomycota): Concordance
451	of DNA sequence data with secondary metabolites. <i>Cladistics</i> , 24(4),
452	443–458. https://doi.org/10.1111/j.1096-0031.2008.00216.x
433	Fernandez-Moriano, C., Divakar, P. K., Crespo, A., & Gomez-Serranilios,
454	M. P. (2015). Neuroprotective activity and cytotoxic potential of two
455	Parmenaceae ficience 22(0), 847, 855
450	Phytomealcine, 22(9), 847–855.
457	Colimbarti A. Do Mottio E. Loso A. Druni I. Enderioi S. Cosirochi
450	Martallos S. Labra M (2013) DNA barading as a new tool for
460	food trecobility. Food Pasaarah International 50(1) 55, 63
461	https://doi.org/10.1016/i foodres.2012.09.036
462	Gardes M & Bruns T D (1993) ITS primers with enhanced specificity
463	for hasidiomycetes, application to the identification of mycorribiza
464	and rusts Molecular Ecology 2(May 2016) 113–118
465	https://doi org/Doi 10 1111/J 1365-294x 1993 Th00005 X
466	Gudiónsdóttir, G., & Ingólfsdóttir, K. (1997). Quantitative determination of
467	protolichesterinic- and fumarprotocetraric acids in <i>Cetraria islandica</i>
468	by high-performance liquid chromatography. <i>Journal of</i>
469	Chromatography A, 757(1–2), 303–306.
470	https://doi.org/10.1016/S0021-9673(96)00670-X
471	Horhant, D., Lamer, a. C. L., Boustie, J., Uriac, P., & Gouault, N. (2007).
472	Separation of a mixture of paraconic acids from <i>Cetraria islandica</i>
473	(L.) Ach. employing a fluorous tag-catch and release strategy.
474	Tetrahedron Letters, 48(34), 6031–6033.
475	https://doi.org/10.1016/j.tetlet.2007.06.077
476	Hossain, M. A. M., Ali, M. E., Abd Hamid, S. B., Asing, Mustafa, S., Mohd
477	Desa, M. N., & Zaidul, I. S. M. (2016). Double Gene Targeting
478	Multiplex Polymerase Chain Reaction-Restriction Fragment Length
479	Polymorphism Assay Discriminates Beef, Buffalo, and Pork

400	
480	Substitution in Frankfurter Products. <i>Journal of Agricultural and</i>
481	<i>Food Chemistry</i> , 64(32), 6343–6354.
482	https://doi.org/10.1021/acs.jafc.6b02224
483	Hossain M A M Ali M E Hamid S B A Asing Mustafa S Desa
103	$\begin{array}{c} 110 \text{ ssalin, Wi. A. Wi., All, Wi. E., Hallind, S. D. A., Asing, Mustala, S., Desa, \\ M. N. M. R. Z. 1, I. I. C. M. (2017). Transform 1, 11 and 3, 5, Desa, \\ \end{array}$
484	M. N. M., & Zaidul, I. S. M. (2017). Targeting double genes in
485	multiplex PCR for discriminating bovine, buffalo and porcine
486	materials in food chain. Food Control, 73, 175–184.
487	https://doi.org/https://doi.org/10.1016/i.foodcont.2016.08.008
488	Ingolfsdóttir K (2000) Bioactive compounds from Iceland Moss In B S
100	Deulson (Ed.) <i>Disactive Carbohydrate Delymous</i> (np. 25-26)
400	Faulsen (Ed.), <i>Bioactive Carbonyarate Folymers</i> (pp. 25–30).
490	Springer Netherlands. https://doi.org/10.100//9/8-94-015-95/2-8_3
491	Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment
492	software version 7: Improvements in performance and usability.
493	Molecular Biology and Evolution, 30(4), 772–780.
494	https://doi.org/10.1093/molbey/mst010
191	Kally I I Hollingsworth P M Coppins P I Ellis C I Harrold P
400	Keny, L. J., Honnigsworth, F. M., Coppins, B. J., Eins, C. J., Harron, F.,
496	Tosh, J., & Yahr, R. (2011). DNA barcoding of lichenized fungi
497	demonstrates high identification success in a floristic context. New
498	<i>Phytologist</i> , 191(1), 288–300. https://doi.org/10.1111/j.1469-
499	8137.2011.03677.x
500	Kristinsson H (1969) Chemical and Morphological Variation in the
501	Cotraria islandica Complex in Icaland. The Bryologist
501	144 million and a complex in rectand. The Dryologist.
502	nttps://doi.org/10.1639/000/-2/45(1969)/2[344:CAMV11]2.0.CO;2
503	Leavitt, S. D., Esslinger, T. L., Hansen, E. S., Divakar, P. K., Crespo, A.,
504	Loomis, B. F., & Lumbsch, H. T. (2014). DNA barcoding of brown
505	Parmeliae (Parmeliaceae) species: A molecular approach for accurate
506	specimen identification, emphasizing species in Greenland.
507	Organisms Diversity and Evolution $14(1)$ $11-20$
507	https://doi.org/10.1007/s12127.012.0147.1
500	https://doi.org/10.100//s1512/-015-014/-1
509	Liu, Y. J., Whelen, S., & Hall, B. D. (1999). Phylogenetic relationships
510	among ascomycetes: evidence from an RNA polymerse II subunit.
511	Molecular Biology and Evolution, 16(12), 1799–1808.
512	https://doi.org/10.1086/523946
513	Lumbsch H T (1998) The use of metabolic data in lichenology at the
514	species and subspecies levels. Lichenologist 30(1-5), 357-367
	species and subspecies levels. <i>Lichenologist</i> , $50(4-5)$, $557-507$.
515	Lutsak, I., Fernandez-Mendoza, F., Nadyeina, O., Şenkardeşier, A., &
516	Printzen, C. (2017). Testing the correlation between norstictic acid
517	content and species evolution in the Cetraria aculeata group in
518	Europe. The Lichenologist, 49(1), 39–56.
519	https://doi.org/10.1017/S0024282916000566
520	Mark K Corneio C Keller C & Elück D (2016) Barcoding lichen-
521	forming fungi using 454 purosequencing is challenged by artifactual
521	and historical services servicition. Consumer 704(March 1, 56
522	and biological sequence variation. Genome, 704(May), 1–50.
523	https://doi.org/10.1139/gen-2015-0189
524	Messina, A., Callahan, D. L., Walsh, N. G., Hoebee, S. E., & Green, P. T.
525	(2014). Testing the boundaries of closely related daisy taxa using
526	metabolomic profiling. Taxon, 63(2), 367–376.
527	https://doi.org/10.12705/632.15
528	Meyer C P & Paulay G (2005) DNA harcoding: Error rates based on
520	approximation approximation and a Children (2003). DIVA barcouning. Entor facts based on
529	comprehensive sampling. PLos Biology, 3(12), 1–10.
530	https://doi.org/10.13/1/journal.pbio.0030422
531	Mulzer, J., Salimi, N., & Hartl, H. (1993). First asymmetric synthesis of (+)-
532	and (-)-Roccellaric acid and dihydroprotolichesterinic acid.
533	Tetrahedron: Asymmetry, 4(3), 457–471.
534	https://doi.org/10.1016/S0957-4166(00)86089-9
535	Paradis E Claude I & Strimmer K (2004) ADE: Analyzog of
535	nations, E., Claude, J., & Sullilline, K. (2004). AFE. Allalyses of
330 527	phylogenetics and evolution in K language. <i>Bioinformatics</i> , 20(2),
53/	289–290. https://doi.org/10.1093/bioinformatics/btg412
538	Parrot, D., Jan, S., Baert, N., Guyot, S., & Tomasi, S. (2013). Comparative
539	metabolite profiling and chemical study of Ramalina siliquosa

540	complex using LC-ESI-MS/MS approach. Phytochemistry, 89, 114-
541	124. https://doi.org/10.1016/j.phytochem.2013.02.002
542	Pino-Bodas, R., Martín, M. P., Burgaz, A. R., & Lumbsch, H. T. (2013).
543	Species delimitation in <i>Cladonia</i> (Ascomycota): A challenge to the
544	DNA harcoding philosophy Molecular Ecology Resources 13(6)
545	1058_1068_https://doi.org/10.1111/1755_0098.12086
546	Paia \mathbf{H} A Bakar T P Little I C & Obselies N H (2017) DNA
547	horosoding for identification of consumer relevant much some A
547	barcoding for identification of consumer-relevant musifications: A
540 F40	partial solution for product certification? Food Chemistry, 214, 383–
549	392. https://doi.org/10.1016/j.foodchem.2016.07.052
550	Schoch, C. L., Seifert, K. a., Huhndorf, S., Robert, V., Spouge, J. L.,
551	Levesque, C. A., Chen, W., Fungal Barcoding Consortium. (2012).
552	Nuclear ribosomal internal transcribed spacer (ITS) region as a
553	universal DNA barcode marker for Fungi. Proceedings of the
554	National Academy of Sciences of the United States of America,
555	109(16), 1-6. https://doi.org/10.1073/pnas.1117018109
556	Staats, M., Arulandhu, A. J., Gravendeel, B., Holst-Jensen, A., Scholtens, I.,
557	Peelen, T., Prins, T.W., Kok, E. (2016). Advances in DNA
558	metabarcoding for food and wildlife forensic species identification.
559	Analytical and Bioanalytical Chemistry, 4615–4630.
560	https://doi.org/10.1007/s00216-016-9595-8
561	Stamatakis, A. (2014). RAXML version 8: A tool for phylogenetic analysis
562	and post-analysis of large phylogenies. <i>Bioinformatics</i> , 30(9), 1312–
563	1313 https://doi.org/10.1093/bioinformatics/htu033
564	Svers I K (1969) Chelating ability of fumarprotocetraric acid and
565	Parmelia conspersa Plant and Soil 31(1) 205–208
566	https://doi.org/10.1007/BE012720/2
567	Thell A & Moharg P (2011) Nordia Liahan Flora Volume A
560	Barmalianaa Muan of Evolution Unneals University
500	That A Stranger S. R. M. H. J. (2000) A DNA of the State Control of the Control o
509	Then, A., Stenroos, S., & Mynys, L. (2000). A DNA study of the Certaria
570	aculeata and C. Islandica groups. Folia Cryptog. Estonica. Fasc., 30,
5/1	95–106.
5/2	Vetrovsky, I., Kolařík, M., Ziťčakova, L., Zelenka, I., & Baldrian, P.
5/3	(2016). The rpb2 gene represents a viable alternative molecular
5/4	marker for the analysis of environmental fungal communities.
575	Molecular Ecology Resources, 16(2), 388–401.
576	https://doi.org/10.1111/1755-0998.12456
577	White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and
578	direct sequencing of fungal ribosomal RNA genes for phylogenetics.
579	In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.),
580	PCR Protocols: a Guide to Methods and Applications (pp. 315–322).
581	San Diego, USA: Academic Press INC.
582	Xu, M., Heidmarsson, S., Olafsdottir, E. S., Buonfiglio, R., Kogej, T., &
583	Omarsdottir, S. (2016). Secondary metabolites from cetrarioid lichens:
584	chemotaxonomy, biological activities and pharmaceutical potential.
585	Phytomedicine, 23(5), 441–459.
586	https://doi.org/10.1016/i.phymed.2016.02.012
587	Xu, M., Heidmarsson, S., Thorsteinsdottir, M. Eiriksson, F. F. Omarsdottir
588	S & Olafsdottir E S (2017) DNA barcoding and LC-MS
589	metabolite profiling of the lichen-forming genus Melanelia · Specimen
590	identification and discrimination focusing on Icelandic taxa. PLoS
591	$ONE_{12}(5) = 0.01780.12$ https://doi.org/10.1271/journal_pone_0.01790.12
502	014L, 12(3), co170012. https://doi.org/10.15/1/journal. pone.01/8012
372	

593 Figure captions 594

- 595 Figure 1. Morphological variation and similarity of Iceland
- 596 Moss (*Cetraria islandica*) chemotypes and its sibling species
- 597 Cetraria ericetorum. C. islandica shows considerable
- 598 morphological variation, from wide (**a** and **c**) to narrow thallus
- 599 (**b** and **d**). Two chemotypes were identified in *C. islandica*
- 600 specimens using *p*-phenylendiamine (PD) spot testing/staining,
- 601 including PD+ (red medullary color after staining; **a** and **b**) and
- 602 PD- (no red medullary color after staining; **c** and **d**). The lichen
- 603 *C. ericetorum* (e) is uniformly PD- and has narrow thallus.
- 604 Scale: 1 cm.
- 605
- 606 **Figure 2.** Chemical structures of major lichen secondary
- 607 metabolites detected in the *Cetraria islandica* species complex.
- 608 Compounds include protocetraric acid 1, succinprotocetraric
- acid 2, fumarprotocetraric acid 3, virensic acid 4,
- 610 nephrosterinic acid 5, (+)-roccellaric acid 6, (+)-
- 611 protolichesterinic acid 7 and (+)-lichesterinic acid 8. Minor
- 612 compounds refer to Table S2.
- 613
- 614
- 615 **Figure 3.** MS chromatograms of the PD+ (**a**) and PD- (**b**)
- 616 chemotypes of *Cetraria islandica* and PD- *C. ericetorum* (c)
- 617 and thallus color reaction by PD staining of PD+ (**d**) and PD- (**e**)
- 618 chemotypes of *Cetraria islandica* and PD- *C. ericetorum* (f).

619 Major secondary metabolites are labelled corresponding to

620 structures 1-8 in Figure 2. Compounds 7A and 7B were

621 tentatively identified as stereoisomers of (+)-protolichesterinic

622 acid **7**, and **6A** a stereoisomer of (+)-roccellaric acid **6**. Scale =

623 0.5 mm.

624

Figure 4. PCA plot giving an overview of metabolite data and
indicative grouping of species and chemotypes in the *Cetraria islandica* species complex. Three chemical groups include PDchemotype (CI PD-), *C. islandica* PD+ chemotype (CI PD+)
and *C. ericetorum* (CE). Authentic herbarium specimens were

630 marked as dark green (CI PD+), dark red (CI PD-) and grey

631 (CE).

632

USS Figure 5. Maximum incentiood (ML) nees of the Certain	633	Figure 5.	Maximum	likelihood	(ML)	trees of the	Cetraria
--	-----	-----------	---------	------------	------	--------------	----------

634 *islandica* species complex reconstructed using barcode markers.

635 (a) ML tree reconstructed using the nrITS barcode, with *C*.

636 *ericetorum* specimens marked in red; (b) ML tree using the

637 RPB2 marker, where tree well-supported clades were identified:

638 I, II and III. The PD+ chemotype is labelled with a red dot after

639 each specimen. Bootstrap values > 70 are shown above

640 branches in both trees.

641

642 Figure 6. Barcoding gap analysis of *Cetraria islandica* species

643 complex for each marker. (a) Number of false positive and

- 644 false negative identifications along a threshold from 0.1% 4%
- 645 DNA divergence; (b) Evaluation of inter- vs. intraspecific
- 646 divergence. The distances for each gene were calculated
- 647 according to the best model of evolution. Samples that are in
- 648 the top-left half of the plot have a greater minimum
- 649 interspecific than maximum intraspecific divergence and
- 650 exhibit a barcode gap.

Figure S1. Agarose gel electrophoresis of PCR products from fungal nrITS and RPB2 loci. Lane 1-6: PCR products of fungal nrITS locus, ranging from 600 (intron-absent) to 900 bp (intron-present). Lane 7-12: PCR products of fungal RPB2 locus of ca. 900 bp. M: ladder. NC: negative control.

Figure S2. MS spectra of major depsidones in the PD+ *Cetraria islandica* chemotype. MS (**a**) and MS² (**b**) spectra for protocetraric acid **1**; MS (**c**) and MS² (**d**) spectra for fumarprotocetraric acid **3**.

Figure S3. MS fragmentation patterns for major depsidones (protocetraric acid 1; fumarprotocetraric acid 3) in the PD+ *Cetraria islandica* chemotype.

Figure S4. MS spectra for major paraconic acids in *Cetraria islandica* species complex. (a) MS spectrum of (+)-roccellaric acid 6; (b) MS spectrum of (+)-protolichesterinic acid 7; (c) MS spectrum of (+)-lichesterinic acid 8. MS fragment ions of compounds 7 and 8 differed in the ratio of molecular ion [M-H]⁻ to the decarboxylated molecular ion [M-CO₂-H]⁻. The higher stability of lichesterinic acid molecular ion could be explained by hyperconjugation, where the electrons in the C-C bond between lactone ring and carboxylic group interacts with the unhybridized *p*-orbital in the adjacent ethylenic carbon; (d) MS spectrum of the peak eluting out at t_R 5.87 min containing two compounds 6A and 7A in Fig 3. They are tentatively identified as a stereoisomer (compound 6A; m/z 325.2 and 281.2) of 6 and a stereoisomer (compound 7A; m/z 323.2 and 279.2) of 7, respectively.

C	Collection data Encoimon you have Snot toot		C all a stars		GenBank accession number		
Country Conection date Specifien		Specimen voucher	n voucher" Spot test" Collector		DNA Isolate	RPB2	nrITS
Cetraria islandica							
Iceland: IVe	21-Aug-2012	LA31863	PD+	Starri Heidmarsson	CI1	KY768945	KY764967
Iceland: IAu	16-Aug-2012	LA31864	PD+	Starri Heidmarsson	CI4	KY768946	KY764968
Iceland: INo	21-Aug-2012	LA31865	PD+	Starri Heidmarsson	CI6	KY768947	KY764969
Iceland: IVe	23-Aug-2012	LA31866	PD+	Starri Heidmarsson	CI7	KY768948	KY764970
Iceland: INo	8-Jul-2013	LA31867	PD-	Starri Heidmarsson	CI11	KY768949	KY764971
Iceland: IVe	23-Jul-2013	LA31868	PD+	Starri Heidmarsson	CI12	KY768950	KY764972
Iceland: IVe	25-Jul-2013	LA31869	PD+	Starri Heidmarsson	CI13	KY768951	KY764973
Iceland: IVe	25-Jul-2013	LA31870	PD+	Starri Heidmarsson	CI14	KY768952	KY764974
Iceland: INo	16-Aug-2012	LA31871	PD+	Starri Heidmarsson	CI15	KY768953	KY764975
Iceland: ISu	12-Jul-2013	LA31872	PD+	Starri Heidmarsson	CI16	KY768954	KY764976
Iceland: IVe	11-Jul-2013	LA31873	PD+	Starri Heidmarsson	CI17	KY768955	KY764977
Iceland: IVe	11-Jul-2013	LA31874	PD+	Starri Heidmarsson	CI18	KY768956	KY764978
Iceland: IVe	23-Jul-2013	LA31875	PD+	Starri Heidmarsson	CI19	KY768957	KY764979
Iceland: IVe	9-Aug-2013	LA31876	PD+	Starri Heidmarsson	CI25	KY768958	KY764980
Iceland: IVe	23-Jul-2013	LA31877	PD+	Starri Heidmarsson	CI26	KY768959	KY764981
Iceland: IVe	8-Jul-2013	LA31878	PD+	Starri Heidmarsson	CI27	KY768960	KY764982
Iceland: IVe	8-Jul-2013	LA31879	PD+	Starri Heidmarsson	CI28	KY768961	KY764983
Iceland: IVe	11-Jul-2013	LA31880	PD+	Starri Heidmarsson	CI29	KY768962	KY764984
Iceland: IVe	8-Jul-2013	LA31881	PD+	Starri Heidmarsson	CI30	KY768963	KY764985
Iceland: IVe	21-Aug-2013	LA31882	PD+	Starri Heidmarsson	CI31	KY768964	KY764986
Iceland: IVe	8-Jul-2013	LA31883	PD+	Starri Heidmarsson	CI32	KY768965	KY764987
Iceland: INo	24-Jul-2012	LA31884	PD-	Starri Heidmarsson	CI57a	KY768966	KY764988
Iceland: INo	24-Jul-2012	LA31885	PD-	Starri Heidmarsson	CI57b	KY768967	KY764989
Iceland: INv	30-Aug-2013	LA31886	PD+	Starri Heidmarsson	CI58	KY768968	KY764990
Iceland: IAu	15-Aug-2012	LA31887	PD+	Starri Heidmarsson	CI59	KY768969	KY764991

Table S1. Voucher specimens of *Cetraria islandica* species complex used in the current study, including country, collection date, voucher number, spot test results/chemotype, DNA isolate number and GenBank accession numbers.

Icoland: Nu	22 Aug 2012	T A 21000	רום	Starri Haidmargaan	CI60	VV769070	VV764002
Iceland. Inv	22-Aug-2013	LA31000	PD-		C160	K I /089/0	K I 704992
Iceland: INv	26-Aug-2013	LA31889	PD-	Starri Heidmarsson	C161	KY/689/1	KY/64993
Iceland: INo	14-Aug-2012	LA31890	PD+	Starri Heidmarsson	CI62	KY768972	KY764994
Iceland: IVe	15-Aug-2012	LA31928	PD+	Starri Heidmarsson	CI63	KY768973	KY764995
Iceland: INo	21-Aug-2012	LA31891	PD+	Starri Heidmarsson	CI64	KY768974	KY764996
Iceland: INo	28-Jun-2012	LA31929	PD-	Starri Heidmarsson	CI65	KY768975	KY764997
Iceland: IVe	12-Jul-2013	LA31892	PD+	Starri Heidmarsson	CI66	KY768976	KY764998
Iceland: INv	22-Aug-2013	LA31893	PD-	Starri Heidmarsson	CI67	KY768977	KY764999
Iceland: INo	24-Jun-2012	LA31894	PD+	Starri Heidmarsson	CI68	KY768978	KY765000
Iceland: INo	2012	LA31895	PD-	Starri Heidmarsson	CI69	KY768979	KY765001
Iceland: INo	2012	LA31896	PD-	Starri Heidmarsson	CI70	KY768980	KY765002
Iceland: INo	8-Aug-2012	LA31897	PD+	Starri Heidmarsson	CI77	KY768981	KY765003
Iceland: INo	28-Jun-2012	LA31898	PD+	Starri Heidmarsson	CI78a	KY768982	KY765004
Iceland: INo	28-Jun-2012	LA31899	PD+	Starri Heidmarsson	CI78b	KY768983	KY765005
Iceland: INo	23-Aug-2012	LA31927	PD-	Starri Heidmarsson	CI87a	KY768984	KY765006
Iceland: INo	11-Jul-2002	LA30017	PD-	Hordur Kristinsson	CI115	KY768985	KY765007
Iceland: INo	14-Aug-2012	LA31900	PD-	Starri Heidmarsson	CI117a	KY768986	KY765008
Iceland: INo	10-Aug-2006	LA31128	PD-	Hordur Kristinsson	CI113	-	-
Iceland: INo	10-Jul-1998	LA17549	PD-	Hordur Kristinsson	CI36	-	-
Iceland: INo	5-Jul-1998	LA17221	PD-	Hordur Kristinsson	CI37	-	-
Cetraria ericetorum							
Iceland:IAu	10-Aug-1997	LA18976	PD-	Hordur Kristinsson	CE1	-	KY765009
Finland: Sodankylä	21-Aug-2003	NO2530	PD-	Beata Krewicka	CE6	KY768987	KY765010
Sweden: Uppsala	20-May-2002	NO23002	PD-	Leif Tibell	CE8	KY768988	KY765011
Sweden: Uppsala	18-Oct-2015	NO5626	PD-	Stefan Ekman	CE11	KY768989	KY765012
Iceland: IAu	13-Jul-2014	LA20746	PD-	Hordur Kristinsson	CE13	KY768990	KY765013
Iceland: INo	29-Aug-2016	LA31901	PD-	Hordur Kristinsson	CE15	KY768991	KY765014
Iceland: INo	1-Sep-2010	LA31538	PD-	Hordur Kristinsson	CE16	KY768992	KY765015
Iceland: IAu	9-Aug-1997	LA27354	PD-	Hordur Kristinsson	CE2	-	-

Sweden: Gävleborg	15-Jun-1997	NO501	PD-	Ake Agren	CE3	-	-
Russian: Komi	6-Jul-2000	L135019	PD-	-	CE4	-	-
Canada: Quebec	2-Jul-1999	NO5021	PD-	Jan-Eric Mattsson	CE5	-	-
Poland: Silesia	19-Jul-1998	KO2101	PD-	-	CE7	-	-
Russia: Komi	2-Jul-1997	NO7971	PD-	Björn Larsson	CE9	-	-
Iceland: INo	31-Jul-1996	NO720	PD-	Starri Heidmarsson	CE10	-	-
Iceland: INo	18-Aug-1998	LA20809	PD-	Hordur Kristinsson	CE12	-	-
Iceland: INo	7-Jun-1998	LA18310	PD-	Hordur Kristinsson	CE14	-	-
Iceland: INo	19-Aug-1998	LA29284	PD-	Hordur Kristinsson	CE17	-	-
Iceland: INo	10-Aug-1997	LA18982	PD-	Hordur Kristinsson	CE18	-	-

^a INo, INv, IVe, IMi, IAu and ISu refer to corresponding area in Icelandic map below;

^b Authentic herbarium specimens are marked in boldface; ^c Spot testing/chemotype identification results are reported as PD+ (medullary red color after *p*-phenylendiamine staining) and PD- (no red color after *p*-phenylendiamine staining).

t _R (min) ^a	$[M-H]^{-}$ $(m/z)^{b}$	Product ions (m/z) ^c	Mass error (ppm) ^d	Molecular formula	Compound ^e	Lichen ^f
2.48	373.0540	355.0498, 329.0706, 311.0576, 285.0798	-5.4	C ₁₈ H ₁₄ O ₉	Protocetraric acid 1	CI (PD+)
2.55	385.0650	341.0783, 329.2408	-	-	Unidentified	CE
2.67	487.0986	373.0665, 355.0501 , 311.0594	-	-	Unidentified	CI (PD+)
2.75	473.0806	355.0451 , 311. 0550	-0.8	$C_{22}H_{18}O_{12}$	Succinprotocetraric acid 2	CI (PD+)
2.88	517.1052	401.0900, 369.0647, 325.0730	6.7	-	Unidentified	CI (PD+)
2.96	471.0536	355.0467 , 311.0581	-1.4	$C_{22}H_{16}O_{12}$	Fumarprotocetraric acid 3	CI (PD+)
3.07	489.3547	355.0500, 343.0474 , 311.0598, 299,0618	-	-	Unidentified	CI (PD+)
3.17	387.0728	355.0474, 343.0864, 311.0580, 299.0962	3.1	$C_{19}H_{16}O_{9}$	Unidentified	CI (PD+)
3.21	293.1744	236.1066, 221.1552	-3.1	$C_{17}H_{26}O_4$	Unidentified	CI, CE
3.34	431.3405	355.0503, 309.1720	7.4	$C_{24}H_{48}O_6$	Unidentified	CI (PD+)
3.57	357.0607	313.0723, 269.0848	-0.8	$C_{18}H_{14}O_8$	Virensic acid 4	CI (PD+)
4.17	295.2257	277.2194, 171.1052	-5.4	$C_{18}H_{32}O_3$	Unidentified	CE
4.71	-	443.3083, 279.2310 , 250.1470	-5.0	-	Unidentified	CI, CE
4.94	-	297.2133, 279.2383 , 264.1647, 253.2214	-	-	Unidentified	CI, CE
5.03	279.2364	251.2069	-	-	Unidentified	CI, CE
5.09	295.1935	251.2062	8.8	$C_{17}H_{28}O_4$	Nephrosterinic acid 5	CI, CE
5.44	-	311.2299, 281.2556	-	-	Unidentified	CI, CE
5.77	323.2168	279.2314	-3.6	$C_{19}H_{32}O_4$	A stereoisomer of (+)-Protolichesterinic acid 7 A	CI, CE
5.77	325.2370	281.2527	-2.8	$C_{19}H_{34}O_{4}$	A stereoisomer of (+)-Roccellaric acid 6 A	CE
6.05	325.2405	281.2511	8.0	$C_{19}H_{34}O_4$	(+)-Roccellaric acid 6	CI, CE
6.17	323.2234	279.2322	-0.7	$C_{19}H_{32}O_4$	(+)-Protolichesterinic acid 7	CI, CE
6.23	323.2224	279.2372	0.6	$C_{19}H_{32}O_4$	Lichesterinic acid 8	CI, CE
6.46	323.2218	279.2336	4.5	$C_{19}H_{32}O_4$	A stereoisomer of (+)-Protolichesterinic acid 7B	CI, CE

Table S2. Chromatographic and MS data of metabolites tentatively identified from acetone extracts of taxa in the Cetraria islandica species complex.

 6.46 323.2218 279.2336 4.5 $C_{19}H_{32}O_4$ A stereoisoner of (+)-Protonenesterine acid 7B
 C_{1}, C_{2}
 a^{a} t_R means retention time;
 [M-H]⁻ stands for deprotonated molecular ion;
 C_{1} C_{1} ericetorum.