
An improved mixture of probabilistic PCA 
for nonlinear data-driven process 
monitoring 
Article 

Accepted Version 

Zhang, J., Chen, H., Chen, S. and Hong, X. ORCID: 
https://orcid.org/0000-0002-6832-2298 (2019) An improved 
mixture of probabilistic PCA for nonlinear data-driven process 
monitoring. IEEE Transactions on Cybernetics, 49 (1). pp. 198-
210. ISSN 2168-2267 doi: 10.1109/TCYB.2017.2771229 
Available at https://centaur.reading.ac.uk/74380/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1109/TCYB.2017.2771229 

Publisher: IEEE Systems, Man, and Cybernetics Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



1

An improved mixture of probabilistic PCA for
nonlinear data-driven process monitoring

Jingxin Zhang, Student Member, IEEE, Hao Chen, Member, IEEE, Songhang Chen, and Xia
Hong, Senior Member, IEEE

Abstract—An improved mixture of probabilistic principal com-
ponent analysis (PPCA) has been introduced for nonlinear data-
driven process monitoring in this paper. To realize this purpose,
the technique of a mixture of probabilistic principal component
analysers is utilized to establish the model of the underlying
nonlinear process with local PPCA models, where a novel
composite monitoring statistic is proposed based on the integra-
tion of two monitoring statistics in modified PPCA-based fault
detection approach. Besides, the weighted mean of the monitoring
statistics aforementioned is utilised as a metrics to detect potential
abnormalities. The virtues of the proposed algorithm have been
discussed in comparison with several unsupervised algorithms.
Finally, Tennessee Eastman process and an autosuspension model
are employed to demonstrate the effectiveness of the proposed
scheme further.

Index Terms—Data driven, process monitoring, nonlinear sys-
tems, mixture of probabilistic principal component analysis

I. INTRODUCTION

For the sake of system reliability and operational safety,
large-scale industrial systems and applications increasingly de-
mand improved process monitoring technologies, which have
been extensively researched in recent decades [1–4]. However,
often quantitative models are difficult to establish due to
lack of prior knowledge. Alternatively sensing measurements
which can replicate the desired process behavior are generally
available and are utilized to design data-driven models [5, 6].
Thus, data-driven process monitoring techniques are becoming
more prevalent and have been recognized as powerful tools for
fault diagnosis purpose by comparison with knowledge-based
approaches and approaches based on analytical model [7–9].

Data-driven process monitoring methods have been exten-
sively researched [10, 11]. S. X. Ding has presented a compre-
hensive introduction on data-driven design of fault diagnosis
and summarized several multivariate analysis techniques to
fault diagnosis [12], i.e., principal component analysis (P-
CA), dynamic PCA, partial least squares (PLS), canonical
variate analysis (CCA), etc. Besides, benchmark applications
such as three-tank system, continuous stirred tank heater,
Tennessee Eastman process, are utilized to demonstrate the
effectiveness of these approaches. Yin et al also summarized
a variety of data-driven techniques for multivariate statistical
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process monitoring (MSPM), and analysed their computation-
al complexities as well as data assumption [13], including
independent component analysis (ICA), fisher discriminant
analysis (FDA), subspace aided approach, etc. However, these
data-driven techniques are mainly applied to linear systems.
Aimed at nonlinear applications, various variants of these basic
approaches are developed, e.g., standard techniques under
Gaussian model or probabilistic model [14–17].

Amongst many data-driven approaches, PCA serves as a
classical technique for feature extraction due to its simplicity
and effectiveness [18, 19]. Therefore, PCA has been wide-
ly employed for MSPM in recent years [20–22]. Several
extensions of traditional PCA have been proposed to settle
different issues, e.g., parameter variation [23], practical batch
process [24], large-scale process [25], detecting slowly devel-
oping drifts [26].

However, traditional PCA scheme still has various limi-
tations, e.g. the basic assumption of multivariate Gaussian
distributed data. Besides, the efficiency and detectability of
PCA-based technique would be greatly discounted for non-
linear applications. Numerous sophisticated variants of PCA
have been intensively studied to tackle these problems. For
instance, the locally weighted projection regression (LWPR)
is a nonlinear regression method [27], where PCA-based
process monitoring model can be computed under the locally
weighted framework [28]. In [29, 30], just-in-time learning
(JITL) or neural network (NN) serves as process model to
account for the nonlinear as well as dynamic behavior of
the process, followed by PCA which analyzes the residuals
from the difference between predicted outputs and process
outputs. In addition, PCA under Gaussian mixture model can
be free from the assumption of Gaussian distribution [31].
In work of [32–34], kernel PCA (KPCA) is mainly aimed
at tackling nonlinearity problem. Furthermore, other forms
of nonlinear PCA are also discussed in [35, 36]. Never-
theless, the effectiveness of KPCA is largely dependent on
the option of kernel functions and the corresponding critical
parameters. In addition, traditional PCA algorithm performs
badly when data values are incomplete. Aimed at this problem,
probabilistic PCA (PPCA) was proposed, where expectation
maximization (EM) algorithm could estimate the principal
subspace iteratively [37]. Note that the applications of PPCA
should satisfy the basic assumption that process data follow
multivariate Gaussian distribution.

In order to deal with nonlinearities that are inherent in
many underlying systems, it is of practical interest to in-
tegrate multiple PCA models to get complicated projection
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schemes [38]. Taking the virtues of PPCA aforementioned into
consideration, a complicated model is readily implemented
as a combination of such PPCA models via the technique
of a mixture of probabilistic principal component analysers,
namely, MPPCA approach [39, 40]. MPPCA enables dealing
with any probability density function and can figure out the
global linearity of PCA. Generally speaking, MPPCA inherits
the benefits of PPCA and can be applied to nonlinear systems.

Due to virtues aforementioned, MPPCA has been utilized
for process monitoring [41, 42]. In [41], MPPCA is uti-
lized for sensor fault diagnosis purpose, but detailed theory
of fault detection logic is unavailable. A mixture Bayesian
regularization method of PPCA was proposed for multimode
process monitoring [42]. However, it can not be applied to
nonlinear and non-Gaussian systems. Therefore, it is valuable
and necessary to present a specific description about improved
MPPCA approach for nonlinear process monitoring.

In this paper, we proposed an improved nonlinear data-
driven process monitoring algorithm based on MPPCA, re-
ferred to as I-MPPCA. A new monitoring statistic is intro-
duced based on the integration of two monitoring statistics
in modified PPCA-based fault detection approach. Besides,
the weighted mean of the monitoring statistics aforementioned
is developed to detect potential abnormalities. The major
advantages of I-MPPCA are summarized as follows:

1) It can cope with the global linearity of PCA, which is
appropriate and effective to monitor nonlinear process;

2) The weight of a new data point belonging to a certain
local PPCA model can be interpreted by the probability of
each local model of being chosen;

3) It can process with any probability density function
and owns lower computational complexity as well as stronger
parameter robustness than kernel approaches;

4) It can deliver an optimal monitoring performance even
when some data values are missing;

5) Compared with traditional MPPCA technique, only one
or two global monitoring statistics are developed for process
monitoring, which is more convenient for practical industrial
applications.

The rest of this paper is organized below. Section II reviews
concepts and mathematical formulations of the probabilistic
PCA and MPPCA as preliminaries of our proposed approach.
Section III details the proposed I-MPPCA approach, in which
we propose model selection for I-MPPCA, novel monitoring
statistics as well as corresponding thresholds. Besides, the
monitoring performance is discussed between the proposed
approach and the existing unsupervised approaches. In Sec-
tion IV, Tennessee Eastman (TE) process is employed to
illustrate the rationality and virtues of the proposed approach
in contrast with traditional MPPCA scheme. Then, an autosus-
pension model is adopted to demonstrate the superiorities of
the proposed approach in comparison with other unsupervised
schemes in Section V. Concluding remarks are given in
Section VI.

II. PRELIMINARIES

A. Latent variable models and PCA

Consider using the following model

t = y(x;w) + ξ (1)

to describe the observation process vector t ∈ <d, where x ∈
<q is the vector of latent variables, w is the associated model
parameter vector. ε is an independent noise vector. y (x;w)
is the unknown function of the system. For example, it can be
interpreted by a linear model used in statistical factor analysis,
given by

t =Wx+ µ+ ξ (2)

By means of defining a prior distribution over x and of ξ,
a related distribution is induced in the data space according
to (2). Then, maximum-likelihood approach is utilized to
determine the model parameters given a set observational data.

We assume x ∼ N(0, I), ξ ∼ N(0,Ψ). 0 and I denote
the vector of all zeros and identity matrix with appropriate
dimensions respectively. Ψ ∈ <d×d is assumed to be a diago-
nal matrix, µ ∈ <d is the output mean vector, W ∈ <d×q

is the matrix of loading factors. Based on (2), it can be
shown that the observation vector obeys Gaussian distribution
t ∼ N(µ,C) with C = Ψ +WWT ∈ <d×d.

Consider that a data set of N output data samples {tn}Nn=1

is available. Over the data set, (2) can be represented in matrix
form as

T =WX + u1T + Ξ (3)

where T = [t1, ..., tN ] ∈ <d×N , X = [x1, ...xN ] ∈ <q×N ,
Ξ = [ξ1, ...ξN ] ∈ <d×N . 1 denotes the vector of all ones with
appropriate dimension. Let u = 1

N

∑N
n=1 tn, and the sample

covariance matrix be denoted by S = 1
N (T − u1T)(T −

u1T)T. There exist certain links between factor analysis and
PCA, which have been demonstrated in [43]. PCA problem
can be settled by factor analysis.

Denote the eigenvalue decomposition of S = W̃ΛW̃
T

,
where Λ = diag{λ1, ..., λq, λq+1, ..., λd}, λ1 > λ2 > ... >
λq > 0 are nonzero eigenvalues S, the d − q smallest
eigenvalues are minor and negligible. Specifically we find q-
dimensional vectors

xn =WT(tn − µ) (4)

to represent tn, n = 1, ...N , where W is the first q columns of
W̃ and q is determined by accumulating contribution rate. It
can be shown that projection onto most dominant eigenvectors
leads to finding lower dimensional latent variables whilst
retaining maximal variance of the original variables tn.

B. The probabilistic PCA

Providing that noise ε ∼ N(0, σ2I), a probability distribu-
tion over t-space is revealed for a specific x by the following
formula

p(t|x) = (2πσ2)−d/2 exp

{
− 1

2σ2
‖t−Wx− µ‖2

}
(5)
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A Gaussian prior probability over x can be defined by

p(x) = (2π)−q/2 exp

{
−1

2
xTx

}
(6)

Then, the marginal distribution of t can be acquired in the
form of

p(t) =
∫
p(t|x)p(x)dx

= (2π)−d/2|C|−1/2 exp
{
− 1

2 (t− µ)
T
C−1(t− µ)

}
(7)

where |·| denotes matrix determinant. The model covariance
is given by

C = σ2I +WWT (8)

In accordance with Bayesian theory, given the observation
vector t, the corresponding posterior distribution of x may be
calculated:

p(x|t) = exp

{
−1

2

{
x−M−1WT(t− µ)

}T

(σ−2M){
x−M−1WT(t− µ)

}}
× (2π)−q/2

∣∣σ−2M ∣∣1/2
(9)

where the posterior covariance satisfies

σ2M−1 = σ2(σ2I +WTW )−1 (10)

with M ∈ <q×q , C ∈ <d×d .
The log-likelihood of the observation vector in this model

is

L =
N∑

n=1
ln {p (tn)}

= −N
2

{
d ln (2π) + ln |C|+ tr

(
C−1S

)} (11)

It can be shown [39] that the log-likelihood (11) is maxi-
mized when the columns of W span the principal subspace
of the data. Analytical solutions can also be obtained via
the eigen-decomposition of S, together with the estimation
of noise variance σ2 (based on the smallest eigenvalues of
S). Alternatively iterative method of the EM algorithm can be
used to generate the following complete-data log-likelihood as

Lc =

N∑
n=1

ln {p(tn,xn)}

=

N∑
n=1

ln

{
(2πσ2)−d/2 exp

{
− 1

2σ2
‖tn −Wxn − µ‖2

}
(2π)−q/2 exp

{
−1

2
xT
nxn

}}
(12)

For convenience, we point out that the following qualities are
used in EM algorithm [39]

〈xn〉 =M−1WT (tn − µ) (13)〈
xnx

T
n

〉
= σ2M−1 + 〈xn〉 〈xn〉T (14)

denoting the expected posterior mean and covariance vectors
based on the latent model (2).

C. The mixture of probabilistic PCA

In order to be able to model more complex data, the mixture
of probabilistic PCA (MPPCA) has been introduced [39],
which takes advantage of an integration of local PCA models
via defining a mixture of probabilistic densities on the pre-
dicted output from K local PCA models [39]. Our proposed I-
MPPCA approach for process monitoring is based on MPPCA
since it provides a more powerful base to handle nonlinearities
and missing data.

Instead of representing the system (1) by a single model
of (2), we will consider, in accordance to probability rules, a
mixture of K local PCA models, as

p(t) =

K∑
i=1

p(i)p(t|i)

=

K∑
i=1

πip(t|i)) (15)

where the constraints on the mixing coefficients are πi ≥ 0
and

∑
πi = 1. p(i) is interpreted as probability of choosing

the ith local model. Each of p(t|i) is the local PCA model
given by

t =W ix+ µi + ξi, i = 1, ...,K (16)

which is similar to (2), and has individual projection matrice
W i, mean vector µi, as well as ξi ∼ N(0, σ2

i I).
By comparing with equations (13) and (14), the expected

posterior mean and covariance vectors based on each of K
local PCA can be evaluated as〈

x(i)
n

〉
=M−1

i WT
i (tn − µi) ∈ <q (17)〈

x(i)
n x

(i)
n

T
〉
= σ2

iM
−1
i +

〈
x(i)
n

〉〈
x(i)
n

〉T
∈ <q×q (18)

and are given here for convenience. Note that x(i)
n is nth

sample for each ith model.
The solution procedure of MPPCA is presented in Appendix

A, where two-stage EM scheme is adopted to improve con-
vergence speed and reduce computational cost in Appendix
B.

III. THE PROPOSED I-MPPCA APPROACH FOR PROCESS
MONITORING

The major procedure of MPPCA-based fault detection
scheme can be summarized thereinafter. First, the model
framework including the basic information of local PPCA
models is determined when the log-likelihood reaches the
maximum. Then, with regard to each local PPCA model,
two monitoring statistics, i.e., Hotelling’s T -squared (T 2) and
squared prediction error (SPE), are calculated by utilizing
the probability density of the score vector. To this end, a
procedure for on-line data-driven fault diagnosis is developed
for nonlinear process.

According to the procedure aforementioned, it is evidently
observed that standard MPPCA has several local models and
each local PPCA model has two monitoring charts. Thus, there
are excessive monitoring charts to be observed for MPPCA,
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TABLE I
OVERALL PROCEDURE OF I-MPPCA APPROACH FOR PROCESS MONITORING

Phase 1: Off-line learning
1. Collect N normal sensing measurements from a nonlinear process.
2. For I-MPPCA with K local models
3. Estimate the model parameters.

3a. Initialize the model parameters W i and µi (i = 1 : K) via traditional PCA.
3b. Calculate the number of principal components through accumulation contribution rate.
3c. Discover the optimal model parameters θ =

{
W i,µi, σ

2
i , πi

}
i=1:K

by implementation of the two-stage EM schedule.
3d. Calculate H(K) and go to step 2 until K = Kmax.

4. Discover the optimal number of local models K◦ among K = {1, 2, . . . ,Kmax} via the criterion given in (19).
5. Calculate the global monitoring statistics from equations (24)-(26) under normal operation condition.
6. Calculate the thresholds of the monitoring statistics from (29) based on the calculated statistics aforementioned.

Phase 2: On-line monitoring
1. Get new sample and preprocess input data according to µi (i = 1 : K◦) aforementioned.
2. Calculate local monitoring statistics in each local model according to equations (21)-(23).
3. Calculate the global monitoring statistics from equations (24)-(26).
4. Detect faults according to the fault detection logic according to (30) or (31).

which is difficult for staff to acquire the accurate information
timely and quickly.

This paper is mainly dedicated to this issue, where just one
or two global monitoring statistics are designed to monitor
the nonlinear process. To realize this aim, T 2 and SPE mon-
itoring statistics are integrated to achieve reliable monitoring
performance for each local PPCA model. Then, the weighted
mean of the combined monitoring statistics aforementioned in
PPCA models is developed to detect underlying abnormalities.
Besides, kernel density estimation (KDE) scheme is applied
to calculate thresholds in order to reduce computational over-
load and enhance generality. Detailed introduction about the
proposed fault diagnosis approach is described below.

A. Optimal number of the local models

It can be evidently discovered that key model parameters are
largely affected by the number of local models K. Besides, the
computational cost increases with K. Therefore, it is essential
to seek for a reliable criteria to determine an optimal value of
K.

In this paper, the optimal number of local models, K◦, can
be determined by the following criteria [44]:

K◦ = argmin
i
H (i) (19)

H (i) ≡ − 1

N

N∑
n=1

K∑
i=1

p (i|tn,θ) ln (p (tn|i))−
K∑
i=1

πi lnπi

(20)
where θ is the set of all model parameter vectors, containing
θ =

{
W i,µi, σ

2
i , πi

}
i=1,...,K

.
Given a value of K, H(i) is calculated after the implemen-

tation of two-stage EM schedule as the model parameter θ is
contained in H(i). Thus, the model structure and parameters
are embedded in each other. The value of K can be deter-
mined alternatively through discovering the smallest integer
satisfying |H (i)−H (i+ 1)| > δ, where δ is a predefined
threshold.

Note that the maximum number of local models Kmax

varies relying on data pattern. However, Kmax = 5 ∼ 10 is
typical.

B. Monitoring scheme of I-MPPCA

I-MPPCA is proposed to solve nonlinear fault diagnosis
problem, which is exactly based on a mixture of PPCA-based
fault detection models.

For each ith local model, T 2
i and SPEi are monitoring

statistics for principal component subspace and residual com-
ponent subspace respectively. As two subspaces are mutually
orthogonal, T 2 statistic can not detect faults that occur in the
residual component subspace and vice versa [12]. The above
two monitoring statistics utilize the identical measurement
unit, i.e. Mahalanobis norm, and they can be integrated into
one chart. Therefore, Tc,i is proposed based on the integration
of T 2

i and SPEi for each local improved PPCA model. Three
monitoring statistics are computed as follows

T 2
i =

∥∥∥M iW
T
i tn

∥∥∥2 (21)

SPEi =
∥∥∥σ−1i (I −W iM iW

T
i )tn

∥∥∥2 (22)

T 2
c,i = t

T
n (σ

2
i I +W iW

T
i )
−1
tn (23)

In the proposed approach, Rni is regarded as weight, which
measures the degree of nth sample belonging to ith local
model. Thus, the associated global monitoring statistics can
be formulated as

T 2 =

K∑
i=1

RniT
2
i

/
K∑
i=1

Rni (24)

SPE =

K∑
i=1

RniSPEi

/
K∑
i=1

Rni (25)

T 2
c =

K∑
i=1

RniT
2
c,i

/
K∑
i=1

Rni (26)
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TABLE II
A BRIEF COMPARATIVE STUDY OF FOUR APPROACHES

Approach Computational cost Parameter Robustness Outliers Big data fault information
K-means Low: O(N) no sensitive sensitive appropriate only detecting whether faults occur
FPCM Low: O(N) no sensitive insensitive appropriate only detecting whether faults occur
KPCA High: O(N2) No. of PCs sensitive insensitive inappropriate fault detection in two subspaces
I-MPPCA Medium: O(KN) No. of PCs, K insensitive insensitive appropriate fault detection in two subspaces

In consideration of the constraint that
∑

iRni = 1, the glob-
al statistics aforementioned can be much simplified without the
necessity of calculating denominator.

C. Summary of the proposed approach

For the fault diagnosis purpose, the thresholds under nor-
mal condition are recognized as reference to detect underly-
ing faults. With regard to traditional PCA-based approach,
thresholds are calculated under the assumption of Gaussian
distributed data. However, process variables can hardly satisfy
this requirement in practical applications. In order to reduce
computational cost and enhance generality, KDE technique is
employed to calculate the associated thresholds [45], which
can be applied to both Gaussian distributed data and non-
Gaussian distributed data. The basic theory is described as
follows.

∧
p(z) =

1

Nh

N∑
n=1

ψ(
z − zn
h

) (27)

where zn(n = 1, . . . , N) are the values of monitoring statis-
tics, h is the bandwidth of kernel function ψ (·). The selection
of h is significant because the consequences of p(z) estimation
would be rough if h is small, whereas the density curve
would be smooth. In this paper, the optimal bandwidth hopt
is determined by minimizing the approximation of the mean
integrated square error, as depicted in (28), where s is the
standard deviation [45].

hopt = 1.06sN−1/5 (28)

Given a confidence level α, the associated threshold Jth of
the monitoring statistic J can be calculated by∫ Jth

−∞
p(J)dJ = α (29)

J can be replaced by T 2, SPE and T 2
c to acquire the

corresponding threshold, namely, Jth,T 2 , Jth,SPE , Jth,T 2
c

.
Thus, the fault detection logic follows

Fault alarm =

{
0, T 2 ≤ Jth,T 2 and SPE ≤ Jth,SPE

1, others
(30)

or
Fault alarm =

{
0, T 2

c ≤ Jth,T 2
c

1, others
(31)

Eventually, the overall procedure of I-MPPCA approach for
nonlinear data-driven process monitoring can be summarized
in Table I.

Generally, the novel monitoring statistic T 2
c by (23) as

well as (26) and the corresponding threshold are adopted

to improve fault detectability, which is considerably simple
and effective. As regard to the proposed approach, missing
alarm rates (MARs) and false alarm rates (FARs) are mainly
considered therein to evaluate the performance. It is expected
that two indexes are better to approach zero.

MAR =
number of samples (J ≤ Jth|f 6= 0)

total samples (f 6= 0)
× 100% (32)

FAR =
number of samples (J > Jth|f = 0)

total samples (f = 0)
× 100% (33)

D. Comparison with other approaches

Due to the absence of data labels in most cases, several
unsupervised techniques are discussed to illustrate the superior
performance of I-MPPCA in this subsection. Since clustering
and feature extraction techniques are typical unsupervised
schemes, K-means [46, 47], fuzzy-possibilistic c-means (F-
PCM) [48] and KPCA are expected to compare with the
proposed approach. The core of process monitoring is a
binary classification issue. K-means and FPCM are popular
classification schemes and thus can be used for fault diagnosis
purpose. The number of clusters is set to be 2.

Several performance indicators are discussed among these
approaches, including computational cost, key parameters,
robustness, etc. Notice that the computational complexity of
on-line monitoring phase is critical and is valuable because
this phase is implemented to monitor real-time operations.
Besides, practical industry has high requirement of real-time
performance. Therefore, computational cost mainly refers to
on-line monitoring procedure in this paper.

K-means is a partition scheme through seeking for certain
clustering centers iteratively. It is considerably simple and easy
to implement for massive data. K-means is sensitive to outliers
since cluster centers are seriously influenced by outliers.
Nevertheless, this approach has a high sensitivity of initial
cluster centers. Once initial centers are chosen improperly,
it is unlikely to acquire effective classification results. The
complexity for general clustering problems is O(kN), and k
is the number of clusters, with k = 2 for fault diagnosis. Thus,
the complexity for process monitoring is O(N).

FPCM has more preferable reliability than K-means. The
major spirit of FPCM is to acquire the membership vector via
minimizing the objective function. The classification conse-
quences are also sensitive to initial cluster centers. FPCM can
solve the noise sensitivity of defect [48]. However, it is unable
to detect which subspace the fault occurs.

The technical core of KPCA is to map low-dimensional data
into high-dimensional linear space and PCA is performed in
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Fig. 1. Monitoring charts of each PPCA model using traditional MPPCA

the high-dimensional feature space. However, KPCA is sensi-
tive to parameter tuning, especially the kernel bandwidth. The
computational complexity is O(N2) owing to the calculation
of Gaussian kernels, which makes it inappropriate for real-
time process monitoring. In addition, as PCA is insensitive to
outliers, this property is inherent in KPCA and I-MPPCA.

I-MPPCA approach partitions the data into several models
via the technique of a mixture of probabilistic principal
component analysers. It can deal with missing data while the
other three approaches are lack of this property [49, 50]. Two
key parameters, the number of local models K and the number
of principal components (PCs), are simply determined with
less computational cost. The computational complexity of the
proposed approach is O(KN). In practical applications, it is
obvious that K � N , which indicates that I-MPPCA is less
complicated than KPCA and suitable to process large data.
Besides, it is insensitive to parameter tuning since K has
limited impact on monitoring consequences when K varies
in a certain range. Moreover, I-MMPCA can estimate which
subspace faults occur by selecting appropriate monitoring
statistic T 2 or SPE.

Major characteristics are concluded in Table II, which
implies that I-MPPCA is superior to the others to some extent.

IV. CASE STUDY ON TE PROCESS

The proposed I-MPPCA is exemplified through the TE
process in this section. Local improved PPCA models are
embedded in traditional MPPCA framework and global mon-
itoring statistic is calculated. This case study is utilized to

evaluate the rationality and superiority of I-MMPCA approach
in comparison with traditional MPPCA approach. The results
are obtained through simulations on MATLAB.

TE process model is a realistic chemical plant simulator that
serves as a preferred benchmark for monitoring study [51, 52].
Since prior knowledge about the mathematical model of TE
process is unavailable, the monitoring approach can be de-
signed only based on sensing measurements. 20 process faults
were initially defined and are adopted in this study, namely,
IDV(1)-IDV(20). More detailed introduction was described
in [53].

In this simulation, 22 control variables and 11 manipulated
variables are chosen as the samples. 960 normal samples
are utilized to acquire off-line learning model. 960 testing
samples, including the first 160 normal samples and 800
subsequent faulty samples, are adopted to evaluate the per-
formance. The confidence level is set to be 0.99. The number
of PCs is selected as 6 based on accumulation contribution
rate. According to the criterion described by (19) and (20),
the number of local PPCA models is 6.

Then, fault IDV(1) is adopted to illustrate the rationality
of I-MPPCA approach. Detailed monitoring consequences
of traditional MPPCA approach are shown in Fig.1, which
are calculated by (21) and (22). With regard to each local
improved PPCA model, another monitoring statistic based
on the integration of T 2 and SPE is described by (23), as
illustrated in Fig. 2. According to Fig. 1 and Fig. 2, fault
can be detected timely and accurately by 12 or 6 monitoring
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Fig. 2. Monitoring charts of each local improved PPCA model under traditional MPPCA framework
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Fig. 3. Monitoring charts using I-MPPCA approach

TABLE III
MARS (% ) BASED ON TE DATA GIVEN IN [53]

Fault IDV(1) IDV(2) IDV(3) IDV(4) IDV(5) IDV(6) IDV(7) IDV(8) IDV(9) IDV(10)
MPPCA (T 2 or SPE) 0.75 1.63 83.88 6.88 7.75 0 0 1.25 84.37 39.12

I-MPPCA (T 2
c ) 0 0.63 83.63 0.5 6.13 0 0 0.88 83.75 36.63

Fault IDV(11) IDV(12) IDV(13) IDV(14) IDV(15) IDV(16) IDV(17) IDV(18) IDV(19) IDV(20)
MPPCA (T 2 or SPE) 53.50 3.50 3.62 21.88 84.25 16.88 36.88 9.00 84.00 18.50

I-MPPCA (T 2
c ) 56.87 1.75 3.50 12.13 63.50 16.13 36.00 8.38 87.75 16.75
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graphs, respectively.
The monitoring consequences of I-MPPCA are represented

in Fig. 3. Posterior probability R is regarded as weight, which
measures membership degree a data point belonging to a
certain local model of being chosen. In order to observe
clearly, weights of the first 50 samples are revealed in Fig. 3a.
The weights are almost 1 or 0, which indicates that the samples
belong to the certain local PPCA model completely or not,
and proves the rationality of the proposed global monitoring
statistics. And the monitoring charts of statistics (24)-(25) are
demonstrated in Fig. 3b and the statistic (26) is illustrated in
Fig. 3c. The global monitoring statistics may change sharply at
several points because the weights of the second local model
are nearly 1 and the corresponding values of SPE as well
as T 2

c are relatively larger than those of other local models.
According to the comparison among Fig. 1, Fig. 2, Fig. 3b and
Fig. 3c, the accuracy rates of 4 sorts of calculation approaches
are almost close. However, the number of monitoring charts
would be reduced from 12 to 1 gradually, which is exactly the
major advantage of I-MPPCA approach.

In addition, faults IDV(1)-IDV(20) are employed to demon-
strate the superior performance of the global combined statistic
in respect of false alarm rates and missing alarm rates. The
detailed MARs are listed in Table III. It can be evidently
acquired that the MARs of T 2

c are almost smaller than those
of T 2 or SPE. Besides, the FAR of T 2 or SPE is 7.5%
while the FAR of T 2

c is 2.5%. Moreover, the computational
complexity is almost similar. Therefore, I-MPPCA approach
provides significant improvement compared with traditional
MPPCA technique in terms of accuracy and convenience.

V. CASE STUDY ON AUTOSUSPENSION BENCHMRK

In this section, autosuspension benchmark is employed
to demonstrate the superiority through comparison with K-
means, FPCM and KPCA. The basic description of autosus-
pension model is present briefly in Subsection V-A. Then,
complete data and missing data cases are considered to illus-
trate the optimal performance of I-MPPCA even when some
data values are missing, respectively.

Fig. 4. Flow diagram of autosuspension model

A. Brief description of Autosuspension system
The basic flow diagram of this model is presented in

Fig. 4 and a comprehensive introduction was described in [54].
Besides, the parameters are listed in Table IV and specific
values can be found in [54].

To our best knowledge, the front wheels (suspension 1 and
suspension 2) have the identical configuration and the rear
wheels (suspension 3 and suspension 4) share a different one.
In other words, researchers just need to study suspension 1
and suspension 3. In practice, most common faults originate
from the aging of suspension components, for instance, the
parameter reductions from spring and damper. It is difficult
to establish specific mathematical model owing to lack of
sufficient process knowledge. Therefore, it is essential to im-
plement data-driven techniques for autosuspension monitoring.

Several sorts of sensors are available in industrial appli-
cations, e.g., laser sensor, accelerometers, grometer and linear
variable displacement transducer. For process monitoring task,
only accelerometers are useful and sensing measurements from
four accelerometers are adopted in this study. That is, the
dimension of data is 4.

B. Simulation with complete data
In this section, suspension coefficient reduction is taken as

an example in this paper. These techniques can also be applied
to damper coefficient reduction case. 750 normal samples are
generated to train I-MPPCA model or KPCA model. The
threshold of FPCM should be calculated by normal samples.
K-means need not to train model in advance. Then, 750 testing
samples are generated as follows:

1) Fault 1, the spring coefficient of suspension 1 is reduced
by 30% from the 429th sample;

2) Fault 2, the spring coefficient of suspension 3 is reduced
by 30% from the 529th sample.

Since K-means just provides two classification labels, only
the accuracy rates (MARs and FAR) are given in this paper.

TABLE IV
THE PARAMETERS OF THE AUTOSUSPENSION MODEL

Notation Description
M Vehicle body mass
mi Unsprung mass
θ Pitch motion
ϕ Roll motion
Ix Roll motion rotary inertias
Iy Pitch motion rotary inertias
yi Unsprung mass displacement
∆yi Suspension deflection
∆ẏi Deflection velocity
y0i Road input
ki Linear stiffness parameter
kni Nonlinear stiffness parameter
bei Extension movement damping parameter
bci Compression movement damping parameter
kti Stiffness of the tire
Fsi Force produced by the spring
Fdi Force produced by the damper
fi Force produced by the related actuator
a, b, c, d Distances
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Fig. 5. Monitoring charts of Fault 1
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Fig. 6. Monitoring charts of Fault 2

Therefore, the monitoring charts of the other three approaches
are illustrated in Fig. 5 and Fig. 6. It can be evidently observed
that FPCM, KPCA and I-MPPCA can detect faults timely.

With regard to FPCM, there would be some misleading
places where two membership values are both larger than the
predefined threshold. Besides, FPCM can not detect which
subspace faults happen. KPCA has two monitoring statistics
for residual component subspace and principal component sub-
space. And the consequences reveal that faults appear in both
subspaces. For I-MPPCA approach, it enables providing this
information when global T 2 and SPE statistics are selected.

Besides, the MARs and FARs are listed in Table V and
Table VI, respectively. For this simulation case, KPCA and
I-MPPCA can discover faults completely accurately while K-
means and FPCM have several missing alarm points. More-
over, the FAR of I-MPPCA approaches to zero, lower than
those of K-means and KPCA. Generally speaking, I-MPPCA
delivers optimal monitoring performance among four tech-
niques through the trade-off of FARs and MARs.

In conclusion, I-MPPCA has relatively higher detection
accuracy rates based on the analysis above.

C. Simulation with incomplete data

In order to compare conveniently, autosuspension data
generated in Subsection V-B with different artificial missing

schemes are employed to demonstrate that I-MPPCA can de-
liver optimal performance when some data values are missing.

Note that missing data values are generated randomly to
simulate the practical systems. Besides, with regard to the
proposed approach, the tolerant maximal missing rate for
modeling data is 30% in this paper and the training accuracy
rates basically remain the same with the increasing missing
rates of modeling data before the tolerant maximal missing
rate. Therefore, 750 training samples with 15% missing data
are taken as an example and utilized to establish model in
this study. Then, testing samples with missing data values are
generated as follows:

1) Fault 3, the spring coefficient of suspension 1 is reduced
by 30% from the 429th sample with 5% missing data;

2) Fault 4, the spring coefficient of suspension 3 is reduced
by 30% from the 529th sample with 5% missing data;

3) Fault 5, the spring coefficient of suspension 1 is reduced
by 30% from the 429th sample with 10% missing data;

4) Fault 6, the spring coefficient of suspension 3 is reduced
by 30% from the 529th sample with 10% missing data.

MARs and FARs are concluded in Table V and Table VI.
As to I-MPPCA approach, it can be observed clearly that
missing data values have the least influence on monitoring
performance and the FAR as well as MARs are basically the
lowest. Especially, according to the detection accuracy rates
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Fig. 7. Monitoring charts of Fault 3
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Fig. 8. Monitoring charts of Fault 4

of 6 faults, the accuracy rates will be reduced rapidly with the
increasing missing rate.

Detailed monitoring charts of four faults are shown in
Figs.7-10. According to the comparison of Fault 1, Fault 3 and
Fault 5, Fault 2, Fault 4 and Fault 6, it can be seen that missing
rate has important effect on K-means, FPCM and KPCA.
Besides, the missing alarm points are exactly the positions
of missing samples. And MARs are seriously influenced by
which variable occurs missing data. However, the FAR and
MARs of I-MPPCA approach are slightly affected by these
missing data values.

In conclusion, with regard to missing data, I-MPPCA deliv-
ers optimal performance by comparison with three approach-
es. Furthermore, the proposed approach owns extra virtues,
for instance, low computational complexity, insensitivity to
parameter tuning, being able to monitor two subspaces, etc.
Therefore, I-MPPCA is superior to the others and prior for
nonlinear process monitoring both in practical applications and
in academic study.

VI. CONCLUSION

This paper has proposed a novel computing method of mon-
itoring statistics under the framework of traditional MPPCA
for nonlinear data-driven process monitoring. Appropriate par-
titioning of sensing measurements and the parameters of local

TABLE V
MARS (%) BASED ON AUTOSUSPENSION DATA

Approach K-means FPCM KPCA I-MPPCA
Fault 1 2.82 1.41 0 0
Fault 2 2.85 1.90 0 0
Fault 3 7.14 6.52 6.21 0.62
Fault 4 8.11 7.66 6.76 0.45
Fault 5 13.66 13.04 12.11 1.86
Fault 6 15.77 13.96 13.06 3.15

TABLE VI
FARS (%) BASED ON AUTOSUSPENSION DATA

Approach K-means FPCM KPCA I-MPPCA
Complete data 2.82 0.18 1.41 0
Missing data 5.64 1.04 2.57 0.47

PPCA models are automatically acquired via the technique
of a mixture of probabilistic principal component analysers.
Besides, a two-stage EM schedule is employed to improve
the convergence speed and reduce computational cost. A
novel composite monitoring statistic has been introduced and
calculated in each PPCA model aforementioned. It is shown
that the posterior probability can be regarded as a weight
to data point belonging to a certain PPCA model of being
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Fig. 9. Monitoring charts of Fault 5
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Fig. 10. Monitoring charts of Fault 6

chosen. Therefore, in order to provide an optimal fault de-
tection performance and observational convenience, the global
monitoring statistics are acquired based on the weighted mean
of all local monitoring statistics. Moreover, several typical
unsupervised schemes including feature extraction algorithms
and clustering approaches have been discussed to highlight
the virtues of the I-MPPCA including low computational cost,
parameter robustness, the capability of dealing with incom-
plete data, etc. Finally, simulation studies in comparison with
several known approaches have been carried out based on TE
data and an autosuspension model which have demonstrated
the superior performance of the proposed approach.

APPENDIX A
SOLUTION PROCEDURE OF MPPCA

According to (15), the log-likelihood of observation data for
a mixture model can be depicted as:

L =
N∑

n=1
ln {p (tn)}

=
N∑

n=1
ln

{
K∑
i=1

πip (tn|i)
} (34)

The maximum-likelihood is utilized to determine key pa-
rameters of the model, where the proper segmentation of the
data occurs automatically when the log-likelihood reaches its

maximum. An iterative EM algorithm is developed to optimize
the model parameters πi, µi, W i and σ2

i , which was first
introduced in [55].

Suppose that Rni = p (i|tn) is the posterior probability of
the ith local model for generating data tn, it can be estimated
using Bayesian rule

Rni =
p (tn|i)πi
p (tn)

(35)

With regard to this posterior distribution, the expectation of
LC can be acquired in the form of

〈Lc〉 =
N∑

n=1

K∑
i=1

Rni

{
lnπi −

d

2
lnσ2

i −
1

2
tr
{〈
x(i)
n x

(i)
n

T
〉}

− 1

2σ2
i

‖tn − µi‖
2
+

1

σ2
i

〈
x(i)
n

〉T
WT

i (tn − µi)

− 1

2σ2
i

tr
{
WT

i W i

〈
x(i)
n x

(i)
n

T
〉}}

(36)

In order to obtain the optimal values of key model param-
eters aforementioned, a Lagrange multiplier λ is utilized to
achieve the maximum value of (36). Thus, the solution of



12

maximum likelihood can be transformed into the following
optimization problem max 〈LC〉+ λ

(
K∑
i=1

πi − 1

)
s.t.

∑
πi = 1

(37)

To our best knowledge, traditional EM algorithm is consid-
erably complicated due to iterative convergence process. In this
paper, a two-stage EM schedule is adopted, where generalized
EM (GEM) is utilized in M-step to improve convergence speed
and reduce computational complexity [56]. The two-stage EM
algorithm for MPPCA is described in detail in Appendix B.

APPENDIX B
A TWO-STAGE EM FOR MPPCA

The log-likelihood function we expect to maximize is de-
scribed as the likelihood (34).

The relevant expected complete-data log-likelihood is inter-
preted as

L̂C =

N∑
n=1

K∑
i=1

Rni ln
{
πip(tn,x

(i)
n )
}

(38)

where Rni is calculated by (35). The first stage of the two-
stage EM schedule (E-step) is maximizing (38) to acquire µ̃i

and π̃i.
The second stage (M-step) takes advantage of generalised

EM (or GEM) to update W i and σ2
i . The typical feature of

GEM is to increase the value of L̂C and not to maximize it
during the iteration process. Regarding L̂C as the likelihood
of interest, one cycle of EM is performed about W i and σ2

i .
M-step procedure can be simplified further when (36) is

expanded for
〈
x
(i)
n

〉
and

〈
x
(i)
n x

(i)
n

T
〉

, only terms in µ̃i

appear. Thus, the expected complete-data log-likelihood now
can be obtained by inspection of (36) as follows

〈Lc〉 =
N∑

n=1

K∑
i=1

Rni

{
ln π̃i −

d

2
lnσ2

i −
1

2
tr
{〈
x(i)
n x

(i)
n

T
〉}

− 1

2σ2
i

‖tn − µ̃i‖
2
+

1

σ2
i

〈
x(i)
n

〉T
WT

i (tn − µ̃i)

− 1

2σ2
i

tr
{
WT

i W i

〈
x(i)
n x

(i)
n

T
〉}}

(39)

Much simplified M-step formulas can be acquired when (39)
reaches the maximum with respects to W i and σ2

i (keeping
µ̃i fixed)

W̃ i = SiW i

(
σi

2I +M−1
i WT

i SiW i

)−1
(40)

σ̃i
2 =

1

d
tr
(
Si − SiW iM

−1
i W̃

T

i

)
(41)

where

Si =
1

π̃iN

N∑
n=1

Rni(tn − µ̃i)(tn − µ̃i)
T (42)

µ̃i =

N∑
n=1

Rnitn

N∑
n=1

Rni

(43)

π̃i =
1

N

N∑
n=1

Rni (44)

Obviously, the symbol ˜ indicates new variables that may be
updated in the M-step. Iteration of (42)-(44) as well as (35)
followed by (40) and (41) in turns is ensured to reach a local
maximum of the likelihood (34).

ACKNOWLEDGMENT

This work was supported by the Chunmiao Project of
Haixi Institute of Chinese Academy of Sciences (Program
No.CMZX-2016-005), National Natural Science Foundation
of China (No.61603369) and National Natural Science Foun-
dation of China (No.61703388).

REFERENCES

[1] R. H. Kwong and D. L. Yonge-Mallo, “Fault diagnosis
in discrete-event systems with incomplete models: learn-
ability and diagnosability,” IEEE Trans. Cybern., vol. 45,
no. 7, pp. 1236–1249, Jul. 2015.

[2] E. Alizadeh, N. Meskin, and K. Khorasani, “A nega-
tive selection immune system inspired methodology for
fault diagnosis of wind turbines,” IEEE Trans. Cybern.,
vol. 47, no. 11, pp. 3799–3813, Nov. 2017.

[3] Y.-L. Wang, C.-C. Lim, and P. Shi, “Adaptively adjusted
event-triggering mechanism on fault detection for net-
worked control systems,” IEEE Trans. Cybern., vol. 47,
no. 8, pp. 2299–2311, Aug. 2017.

[4] J. Han, H. Zhang, Y. Wang, and X. Sun, “Robust fault
detection for switched fuzzy systems with unknown
input,” IEEE Trans. Cybern., vol. DOI: 10.1109/TCY-
B.2017.2755864, 2017.

[5] C. Mu, Z. Ni, C. Sun, and H. He, “Data-driven tracking
control with adaptive dynamic programming for a class
of continuous-time nonlinear systems,” IEEE Trans. Cy-
bern., vol. 47, no. 6, pp. 1460–1470, Jun. 2017.

[6] T. Li, B. Ni, M. Xu, M. Wang, Q. Gao, and S. Yan,
“Data-driven affective filtering for images and videos,”
IEEE Trans. Cybern., vol. 45, no. 10, pp. 2336–2349,
Oct. 2015.

[7] Z. Hou, R. Chi, and H. Gao, “An overview of dynamic-
linearization-based data-driven control and applications,”
IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 4076–4090,
May 2017.

[8] Y.-L. Wang, P. Shi, C.-C. Lim, and Y. Liu, “Event-
triggered fault detection filter design for a continuous-
time networked control system,” IEEE Trans. Cybern.,
vol. 46, no. 12, pp. 3414–3426, Dec. 2016.

[9] L. Li, S. X. Ding, J. Qiu, and Y. Yang, “Real-time
fault detection approach for nonlinear systems and its
asynchronous T-S fuzzy observer-based implementation,”
IEEE Trans. Cybern., vol. 47, pp. 283–294, Feb. 2017.



13

[10] S. Yin, H. Gao, J. Qiu, and O. Kaynak, “Fault detection
for nonlinear process with deterministic disturbances: a
just-in-time learning based data driven method,” IEEE
Trans. Cybern., vol. 47, no. 11, pp. 3649–3657, Nov.
2017.

[11] S. Yin, S. X. Ding, X. Xie, and H. Luo, “A review
on basic data-driven approaches for industrial process
monitoring,” IEEE Trans. Ind. Electron., vol. 61, no. 11,
pp. 6418–6428, Nov. 2014.

[12] S. X. Ding, Data-driven design of fault diagnosis and
fault-tolerant control systems, ser. Advances in Industrial
Control. Springer London, 2014.

[13] S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A
comparison study of basic data-driven fault diagnosis and
process monitoring methods on the benchmark Tennessee
Eastman process,” J. Process Control, vol. 22, no. 9, pp.
1567–1581, Oct. 2012.

[14] L. P. Queiroz, F. C. M. Rodrigues, J. P. P. Gomes, F. T.
Brito, I. C. Chaves, M. R. P. Paula, M. R. Salvador, and
J. C. Machado, “A fault detection method for hard disk
drives based on mixture of Gaussians and non-parametric
statistics,” IEEE Trans. Ind. Informat., vol. 13, no. 2, pp.
542–550, Apr. 2017.

[15] M. Kristan and A. Leonardis, “Online discriminative
kernel density estimator with Gaussian kernels,” IEEE
Trans. Cybern., vol. 44, no. 3, pp. 355–365, Mar. 2014.

[16] J. Zhu, Z. Ge, and Z. Song, “Non-Gaussian industrial
process monitoring with probabilistic independent com-
ponent analysis,” IEEE Trans. Autom. Sci. Eng., vol. 14,
no. 2, pp. 1309–1319, Apr. 2017.

[17] X. Lu, C. Liu, and M. Huang, “Online probabilistic
extreme learning machine for distribution modeling of
complex batch forging processes,” IEEE Trans. Ind.
Informat., vol. 11, no. 6, pp. 1277–1286, Dec. 2015.

[18] H. Wang, M. Chen, X. Shi, and N. Li, “Principal com-
ponent analysis for normal-distribution-valued symbolic
data,” IEEE Trans. Cybern., vol. 46, no. 2, pp. 356–365,
Feb. 2016.

[19] Y. Yin, D. Xu, X. Wang, and M. Bai, “Online state-
based structured SVM combined with incremental PCA
for robust visual tracking,” IEEE Trans. Cybern., vol. 45,
no. 9, pp. 1988–2000, Sep. 2015.

[20] Q. Jiang, X. Yan, and B. Huang, “Performance-driven
distributed PCA process monitoring based on fault-
relevant variable selection and Bayesian inference,” IEEE
Trans. Ind. Electron., vol. 63, no. 1, pp. 377–386, Jan.
2016.

[21] D. You, X. Gao, and S. Katayama, “WPD-PCA-based
laser welding process monitoring and defects diagnosis
by using FNN and SVM,” IEEE Trans. Ind. Electron.,
vol. 62, no. 1, pp. 628–636, Jan. 2015.

[22] K. Honda and H. Ichihashi, “Regularized linear fuzzy
clustering and probabilistic PCA mixture models,” IEEE
Trans. Fuzzy Syst., vol. 13, no. 4, pp. 508–516, Aug.
2005.

[23] W. Li, H. H. Yue, S. Valle-Cervantes, and S. J. Qin,
“Recursive PCA for adaptive process monitoring,” J.
Process Control, vol. 10, no. 5, pp. 471–486, Oct. 2000.

[24] T. J. Rato, J. Blue, J. Pinaton, and M. S. Reis,
“Translation-invariant multiscale energy-based PCA for
monitoring batch processes in semiconductor manufac-
turing,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2, pp.
894–904, Apr. 2017.

[25] J. Zhu, Z. Ge, and Z. Song, “Distributed parallel PCA
for modeling and monitoring of large-scale plant-wide
processes with big data,” IEEE Trans. Ind. Informat.,
vol. 13, no. 4, pp. 1877–1885, Aug. 2017.

[26] X. B. He and Y. P. Yang, “Variable MWPCA for adaptive
process monitoring,” Ind. Eng. Chem. Res., vol. 47, no. 2,
pp. 419–427, Jan. 2008.

[27] S. Yin, X. Xie, J. Lam, K. C. Cheung, and H. Gao,
“An improved incremental learning approach for KPI
prognosis of dynamic fuel cell system,” IEEE Trans.
Cybern., vol. 46, no. 12, pp. 3135–3144, Dec. 2016.

[28] S. Yin, C. Yang, J. Zhang, and Y. Jiang, “A data-driven
learning approach for nonlinear process monitoring based
on available sensing measurements,” IEEE Trans. Ind.
Electron., vol. 64, no. 1, pp. 643–653, Jan. 2017.

[29] C. Cheng and M.-S. Chiu, “Nonlinear process monitoring
using JITL-PCA,” Chemom. Intell. Lab. Syst., vol. 76,
no. 1, pp. 1–13, Mar. 2005.

[30] J. Chen and C.-M. Liao, “Dynamic process fault mon-
itoring based on neural network and PCA,” J. Process
Control, vol. 12, no. 2, pp. 277–289, Feb. 2002.

[31] L. Cai, X. Tian, and S. Chen, “Monitoring nonlinear and
non-Gaussian processes using Gaussian mixture model-
based weighted kernel independent component analysis,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 1, pp.
122–135, Jan. 2017.

[32] J. Ni, C. Zhang, and S. X. Yang, “An adaptive approach
based on KPCA and SVM for real-time fault diagnosis
of HVCBs,” IEEE Trans. Power Del., vol. 26, no. 3, pp.
1960–1971, Jul. 2011.

[33] C. F. Alcala and S. J. Qin, “Reconstruction-based con-
tribution for process monitoring with kernel principal
component analysis,” Ind. Eng. Chem. Res., vol. 49,
no. 17, pp. 7849–7857, Sep. 2010.

[34] Z. Ge, C. Yang, and Z. Song, “Improved kernel PCA-
based monitoring approach for nonlinear processes,”
Chem. Eng. Sci., vol. 64, no. 9, pp. 2245–2255, May
2009.

[35] X. Liu, K. Li, M. McAfee, and G. W. Irwin, “Improved
nonlinear PCA for process monitoring using support
vector data description,” J. Process Control, vol. 21,
no. 9, pp. 1306–1317, Oct. 2011.

[36] D. Iacoviello, A. Petracca, M. Spezialetti, and G. Placidi,
“A classification algorithm for electroencephalography
signals by self-induced emotional stimuli,” IEEE Trans.
Cybern., vol. 46, no. 12, pp. 3171–3180, Dec. 2016.

[37] M. E. Tipping and C. M. Bishop, “Probabilistic principal
component analysis,” J. Roy. Statist. Soc. Ser. B, vol. 61,
no. 3, pp. 611–622, 1999.

[38] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos,
“MPCA: Multilinear principal component analysis of
tensor objects,” IEEE Trans. Neural Netw., vol. 19, no. 1,
pp. 18–39, Jan. 2008.



14

[39] M. E. Tipping and C. M. Bishop, “Mixtures of proba-
bilistic principal component analysers,” Neural Comput.,
vol. 11, no. 2, pp. 443–482, 1999.

[40] J. Zhao, “Efficient model selection for mixtures of proba-
bilistic PCA via hierarchical BIC,” IEEE Trans. Cybern.,
vol. 44, no. 10, pp. 1871–1883, Oct. 2014.

[41] R. Sharifi and R. Langari, “Nonlinear sensor fault diag-
nosis using mixture of probabilistic PCA models,” Mech.
Syst. Signal Process., vol. 85, pp. 638–650, Feb. 2017.

[42] Z. Ge and Z. Song, “Mixture Bayesian regularization
method of PPCA for multimode process monitoring,”
AIChE J., vol. 56, no. 11, pp. 2838–2849, Nov. 2010.

[43] B. Thompson, Exploratory and confirmatory factor anal-
ysis: Understanding concepts and applications. Amer-
ican Psychological Association, 2004.

[44] L. Xu, “Bayesian Ying–Yang machine, clustering and
number of clusters,” Pattern Recognit. Lett., vol. 18, no.
11–13, pp. 1167–1178, Nov. 1997.

[45] P.-E. P. Odiowei and Y. Cao, “Nonlinear dynamic process
monitoring using canonical variate analysis and kernel
density estimations,” IEEE Trans. Ind. Informat., vol. 6,
no. 1, pp. 36–45, Feb. 2010.

[46] C. Yiakopoulos, K. C. Gryllias, and I. A. Antoniadis,
“Rolling element bearing fault detection in industrial
environments based on a K-means clustering approach,”
Expert Syst. Appl., vol. 38, no. 3, pp. 2888–2911, Mar.
2011.

[47] C. Boutsidis and M. Magdon-Ismail, “Deterministic fea-
ture selection for K-means clustering,” IEEE Trans. Inf.
Theory, vol. 59, no. 9, pp. 6099–6110, Sep. 2013.

[48] R. Khanchana and M. Punithavalli, “Web usage mining
for predicting users’ browsing behaviors by using FPCM
clustering,” Int. J. Eng. Tech., vol. 3, no. 5, pp. 491–496,
Oct. 2011.

[49] K. Wagstaff, “Clustering with missing values: No im-
putation required,” Classification, Clustering, and Data
Mining Applications, pp. 649–658, 2004.

[50] H. Xiao, D. Huang, Y. Pan, Y. Liu, and K. Song, “Fault
diagnosis and prognosis of wastewater processes with
incomplete data by the auto-associative neural networks
and ARMA model,” Chemom. Intell. Lab. Syst., vol. 161,
pp. 96–107, Feb. 2017.

[51] G. Wang and S. Yin, “Quality-related fault detection
approach based on orthogonal signal correction and mod-
ified PLS,” IEEE Trans. Ind. Informat., vol. 11, no. 2, pp.
398–405, Apr. 2015.

[52] X. Xie, W. Sun, and K. C. Cheung, “An advanced PLS
approach for key performance indicator-related predic-
tion and diagnosis in case of outliers,” IEEE Trans. Ind.
Electron., vol. 63, no. 4, pp. 2587–2594, Apr. 2016.

[53] J. J. Downs and E. F. Vogel, “A plant-wide industrial
process control problem,” Comput. Chem. Eng., vol. 17,
no. 3, pp. 245–255, Mar. 1993.

[54] G. Wang and S. Yin, “Data-driven fault diagnosis for
an automobile suspension system by using a clustering
based method,” J. Franklin Inst., vol. 351, no. 6, pp.
3231–3244, Jun. 2014.

[55] A. P. Dempster, N. M. Laird, and D. B. Rubin,

“Maximum-likelihood from incomplete data via the EM
algorithm,” J. Roy. Statist. Soc. Ser. B, vol. 39, pp. 1–38,
1977.

[56] O. Onur, T. Wimalajeewa, and B. Dulek, “Asynchronous
linear modulation classification with multiple sensors
via generalized EM algorithm,” IEEE Trans. Wireless
Commun., vol. 14, no. 11, pp. 6389–6400, Nov. 2015.

Jingxin Zhang received her B.E. degree in electrical
engineering and automation from Harbin Engineer-
ing University, Harbin, China, the M.E. degree in
control science and engineering from Harbin In-
stitute of Technology, Harbin, China, in 2014 and
2016, respectively. She is currently an Assistan-
t Engineer with Quanzhou Institute of Equipment
Manufacturing, Haixi Institutes, Chinese Academy
of Sciences, Jinjiang, China.

Her research interests include data-driven fault de-
tection and diagnosis, fault prognosis, performance

monitoring, dimensionality reduction and their applications in the industrial
process.

Hao Chen received the B.Eng. degree in automatic
control from the National University of Defense
Technology, Changsha, China, in 2006, the M.Sc.
degree in control systems with distinction from the
University of Sheffield, Sheffield, U.K., in 2009, and
the Ph.D. degree in cybernetics from the School of
Systems Engineering, University of Reading, Read-
ing, U.K., in 2014, sponsored by the Engineering and
Physical Sciences Research Council and Defence
Science and Technology Laboratory from the British
Government.

From 2014 to 2015, he was a Post-Doctoral Research Fellow with the
Department of Chemical and Materials Engineering, University of Alberta,
Edmonton, AB, Canada, and Syncrude Canada Ltd., Fort McMurray, AB,
Canada. He is currently an Associate Professor with Haixi Institutes, Chinese
Academy of Sciences, Jinjiang, China. His current research interest include
online learning, soft sensors, system identification, neural networks, machine
learning, signal processing, big data analysis and their applications in the
industrial process.

Dr. Chen was a recipient of the Chinese Government Award for Outstanding
Self-financed Students Abroad in 2012.

Songhang Chen received the Ph.D. degree in con-
trol theory and control engineering from the Insti-
tute of Automation, Chinese Academy of Sciences,
Beijing, China, in 2014. From 2014 to 2016, he
worked as an Assistant Researcher with the State
Key Laboratory for Management and Control of
Complex Systems, China. He is currently an As-
sociate Professor with Quanzhou Institute of E-
quipment Manufacturing, Haixi Institutes, Chinese
Academy of Sciences, Jinjiang, China. His research
interests include multiobjective optimization, high-

performance computing, big data, and Internet of things.



15

Xia Hong received the B.Sc. and M.Sc. degrees
from the National University of Defense Technology,
China, in 1984 and 1987, respectively, and the Ph.D.
degree from The University of Sheffield, U.K., in
1998, all in automatic control. She was a Research
Assistant with the Beijing Institute of Systems En-
gineering, Beijing, China, from 1987 to 1993. She
was a Research Fellow with the Department of
Electronics and Computer Science, University of
Southampton, from 1997 to 2001.

She is currently a Professor with the Department
of Computer Science, School of Mathematical, Physical and Computational
Sciences, University of Reading. She is actively involved in research into
nonlinear systems identification, data modelling, estimation and intelligent
control, neural networks, pattern recognition, learning theory, and their
applications. She has authored over 170 research papers, and co-authored a
research book. Dr. Hong received the Donald Julius Groen Prize from IMechE
in 1999.


