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Running head: Submergence of rice plants and seed quality 

Abstract 

The resilience of seed quality in rice (Oryza sativa L.) to flooding was investigated. Pot-

grown plants of the japonica cv. Gleva, the indica cv. IR64, and the introgressed line IR64-

Sub1 were submerged in water, to simulate flooding, for 3-5 days at different stages of seed 

development and maturation. Mean seed weight, pre-harvest sprouting, ability to germinate, 

and subsequent longevity in air-dry storage were assessed. Whereas seed quality in both IR64 

and IR64-Sub1 was resilient to submergence, in Gleva the longer the duration of 

submergence and the later in development when plants were submerged the greater the pre-

harvest sprouting. Thousand seed dry weight was reduced more by submergence in Gleva 

than IR64 or IR64-Sub1. At harvest maturity, few pre-harvest sprouted seeds were able to 

germinate upon rehydration after desiccation to 11-12% moisture content. Seed longevity of 

the non-sprouted seed fraction in air-dry hermetic storage (40 °C, 15% moisture content) was 

not affected greatly by submergence, but longevity of the japonica rice was less than that of 

the indica rices due to the former’s steeper seed survival curves. Longevity of the two indica 

rices was predicted well by the seed viability equation and previously-published estimates of 

viability constants for rice. The greater dormancy of IR64 and IR64-Sub1, compared to 

Gleva, enhanced resilience to pre-harvest sprouting and reduced thousand seed dry weight 

from plant submergence. There was little or no effect of plant submergence on subsequent 

air-dry storage longevity of non-sprouted seeds in any genotype. 

 

Keywords: development, flooding, germination, longevity, Oryza sativa L, pre-harvest 

sprouting, rice 
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Introduction  

Heavy rainfall events are very likely and tropical cyclones more likely than not to continue to 

increase throughout the 21
st
 century with low-lying estuary deltas inundated more frequently 

(IPCC, 2013). The resilience of seed quality in rice (Oryza sativa L.) to flooding is therefore 

of growing concern. Flooding of rice crops in the reproductive phase may result in visible 

damage to seed from pre-harvest sprouting, but might it also affect the post-harvest air-dry 

survival of the remaining intact (i.e. non-sprouted) seeds? 

Flooding reduces rice yield by 10-100% depending upon variety, growth stage, plant 

nutrition, crop practices, duration of submergence, and flood water conditions (Yoshida, 

1981; Reddy et al., 1985; Ram et al., 1999; Sharma and Ghosh, 1999; Kotera et al., 2005; 

Kotera and Nawata, 2007; Das et al., 2009; Dar et al., 2013). Submergence early in the 

vegetative stage reduces crop establishment and numbers of tillers and panicles, panicle size, 

and indeed plant survival after flood waters recede (Devender-Reddy and Mittra, 1985; 

Reddy et al., 1985; Sharma and Ghosh, 1999; Das et al., 2009; Singh et al., 2009; Singh et 

al., 2011). Flooding during the reproductive stage also damages yield, with pollen cell 

development, panicle formation or emergence, and progress to flowering impaired 

(Devender-Reddy and Mittra, 1985; Reddy et al., 1985; Kotera et al., 2005). Submergence 

shortly after panicle emergence may reduce seed set (Devender-Reddy and Mittra, 1985; 

Kotera and Nawata, 2007), whilst flooding during grain development disrupts yield 

accumulation (Kotera et al., 2005). Finally, towards the end of seed development and 

maturation, pre-harvest sprouting due to flooding or heavy rainfall is a major factor 

worldwide affecting both yield and quality in cereal crops generally (Gelin et al., 2006), 

particularly in rice. Pre-harvest sprouting of mature rice seeds coincides with wet and warm 

field conditions and leads to discoloured, cracked, lighter grains with poor cooking quality 

(Derera, 1989; Mahbub et al., 2005). 
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Seed quality (ability to germinate, desiccation tolerance, and air-dry seed storage 

longevity) in rice improves considerably during seed filling and maturation (Ellis et al., 1993; 

Ellis and Hong, 1994; Ellis, 2011). The development of seed quality in rice can be limited in 

seed production environments subject to extreme temperature (Ellis et al., 1993; Ellis and 

Hong, 1994; Rao and Jackson, 1996; Martínez-Eixarch and Ellis, 2015). The effect of 

submergence in water during seed development and maturation on subsequent rice seed 

quality has been studied less than that of temperature. In some circumstances, certain aspects 

of seed quality may be improved by the temporary hydration of mature seeds ex planta, often 

known as priming (Heydecker et al., 1973; Heydecker and Gibbins, 1978). Recent research in 

wheat (Triticum aestivum L.) showed that, in the absence of pre-harvest sprouting, the 

reduction in subsequent air-dry seed storage longevity caused by rainfall could be reversed if 

it was followed by desiccation in planta (Ellis and Yadav, 2016; Yadav and Ellis, 2016). 

 Seed dormancy declines as seeds mature with pre-harvest sprouting in many cereals 

under moist field conditions if dormancy is lost before seed is harvested (Bewley and Black, 

1994). Considerable differences in rice seed dormancy at maturity have been shown amongst 

different genotypes produced in the same field environment (Roberts, 1963). Japonica rice is 

more sensitive to seed production environment than indica (Chang, 1991; Ellis et al., 1993). 

The Submergence1 (Sub1) gene has been introgressed into selected indica rice 

genotypes to improve submergence tolerance (Septiningsih et al., 2009; Wassmann et al., 

2009). The introgression line IR64-Sub1 has the Sub1-A-1 allele conferring tolerance of 

complete submergence for about 2 weeks whereas cv. IR64 carries the intolerant Sub1-A-2 

allele (Singh et al., 2010). Septiningsih et al. (2009) reported that IR64-Sub1 endured 

submergence in the vegetative phase for up to 17 days and has inherited the grain quality of 

its recurrent parent cv. IR64.  Such studies have been limited to submergence during 

vegetative growth (Septiningsih et al., 2009; Mackill et al., 2010; Singh et al., 2011); the 
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resilience of seed quality in IR64-Sub1, relative to IR64, to plant submergence after anthesis 

has not been reported. 

We tested the null hypotheses that flooding rice plants during seed development and 

maturation does not promote pre-harvest sprouting nor reduce seed dry weight, ability to 

germinate at harvest maturity, or subsequent longevity in air-dry storage. The latter was our 

principle objective, with the former variables determined to indicate the relative severity of 

treatments and vulnerability of plants. Flooding was simulated by submerging rice plants in 

water for different durations at different stages of seed development and maturation. 

Contrasting genotypes of indica and japonica rice were selected for study. Indica rices are 

the more likely to be flooded in cultivation. On the other hand, seed quality in japonica rices 

tends to be less resilient to environment whilst some (including cv. Gleva used here) are 

grown in coastal areas vulnerable to flooding from future sea level rise. Hence both types 

were selected in order to test the hypotheses rigorously with contrasting genotypes, 

particularly whether or not flooding affected the post-harvest longevity of non-sprouted 

seeds.  

 

Materials and Methods 

Two experiments were conducted in successive years. The first, sown on 25 May 2012, 

comprised plants of the japonica rice cv. Gleva submerged for two durations (3, 5 days) at 

four different stages of seed development and maturation after anthesis (9, 30, 35, 40 DAA) 

and a control (not submerged). The second, sown on 9 May 2013, comprised plants of three 

genotypes (Gleva plus the indica rices IR64 and IR64-Sub1) submerged for 4 days, and so 

within the 2-week period that the Sub1 locus confers submergence tolerance (Singh et al., 

2010), at four different developmental stages (10, 30, 40 DAA) and controls. Durations from 
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sowing to flowering are affected by photoperiod and temperature with rice genotypes varying 

in sensitivity (Summerfield et al., 1992). The quantitative phenological sensitivity of these three 

genotypes to photothermal environment was not known. Thus flowering could not be 

synchronized by adjusting sowing dates and so treatments were provided in relation to anthesis, 

not sowing date. 

The plants were grown in pots in blocks (three in 2012, two in 2013) in a temperature 

and photoperiod controlled heated and vented glasshouse (6.4 x 8.6 m) with four adjoining 

dark compartments (each 3.5 x 2.1 x 2.1 m) at the Plant Environment Laboratory, Shinfield, 

UK (51°27'N latitude, 00°56'W longitude). The growing media comprised steam-sterilized 

coarse sand, crushed gravel, peat compost, and vermiculite in the ratio 2:4:1:4. Slow-release 

fertilizer (Osmocote Pro 3-4M, Everris International BV, The Netherlands) containing 

N:P2O5:K2O:MgO (17:11:10:2) was added at 3 kg m
-3

. The 18 cm diameter (3 litre) plastic 

pots (with drain holes) filled with the media were pre-soaked with tap water and left to drain 

overnight. Seven seeds were sown per pot. These pots were placed on trolleys (four, each 2.8 

x 1.1 m with 75 pots) in the dark compartments at a constant temperature of 25 C, initially. 

Temperatures were maintained at 28/20 °C day/night (11 h/13 h) with synchronous 

thermoperiod and photoperiod (11 h d
-1

) from seedling emergence onwards (7 or 10 days 

after sowing (DAS) in 2012 and 2013, respectively): the plants on trolleys were moved from 

the dark compartments into the adjoining glasshouse at 0800 and back at 1900 each day. 

Seedlings were thinned to four per pot at the four-leaf stage (16-30 DAS, depending on 

cultivar). Pots were irrigated by hand with tap water until 14 DAS. Automatic drip feed 

irrigation (six times each day) was provided thereafter. The top of pots was 2 cm above the 

growing media and irrigation filled this gap on each occasion. The nutrient solution, derived 

from Yoshida et al. (1976), contained 100 mg L
-1

 inorganic nitrogen and was acidified to pH 

5.0 ± 0.2. Savona (Koppert B.V., The Netherlands), an insecticidal soap containing 50% fatty 
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acid from potassium salt, was used occasionally to control spider mites and aphids when 

detected.  

Submergence, to simulate flooding, was carried out within a wooden tank (2.4 x 1.2 x 

1.1 m) lined with black polythene in the same glasshouse, with air temperature maintained at 

28 °C and natural light (i.e. ambient photoperiod for the duration of submergence). The tank 

was filled with new tap water before each submergence treatment to avoid contamination. 

Water was circulated by a 180 W pump (RG25, Stuart-Turner, UK) and aerated with four 50-

mm diameter, 14 W air-stones (Aqua One 12000, Precision Manufactured, Australia) at each 

corner throughout to avoid anoxia. Water temperature was associated with glasshouse air 

temperature, but not controlled directly, and during submergence plants differed slightly in 

temperature from those not submerged. All plants within a pot were staked to prevent 

lodging. Steam-sterilized gravel was added on top of the growing media to avoid the latter 

being dislodged during submergence. Submerged panicles were covered by water up to 80-95 

cm deep controlled to 2 cm above the highest panicle. After submergence, plants were 

returned to their previous position on the trolley in the glasshouse and irrigation resumed. 

Irrigation ended two days before seed harvest. Seeds were collected at harvest 

maturity (panicles yellow, grains firm). This was 47 DAA in 2012 and 46 DAA in 2013. 

Harvest date varied amongst genotypes in 2013 because of differences in flowering date. 

Empty seed were discarded and filled seed threshed from panicles by hand. Blocking was 

maintained throughout plant growth, submergence, harvest, and subsequent laboratory 

investigations. 

Seed samples were air dried in the laboratory at 22 ± 2 °C and changes in seed 

equilibrium relative humidity monitored (Humidat IC1, Novasina, Switzerland, in 2012; 

Aqualab, 3TE, Decagon Devices, Inc. Pullman, USA, in 2013). This regime was selected to 



8 
 

provide a comparatively benign drying environment for seed quality (FAO/IPGRI, 1994). In 

hindsight, it avoided possible improvements that may occur in selected high-temperature 

regimes (Whitehouse et al., 2015, 2017). The seeds dried to 11-12% moisture content over 14 

days in 2012. In 2013 the seeds were wetter at harvest than in 2012 and more variable 

(because there were three cultivars). Most of these samples dried to 12-14% moisture content 

over 14 days, but this period was extended to 20 days where necessary to dry to this value. 

Sprouted seeds (enlargement of micropyle, or emergence of radicle and/or shoot) were 

identified, separated, counted, and maintained as discrete sprouted seed samples. Subsamples 

were then drawn for the immediate tests. The remaining seed were sealed in laminated 

aluminium foil bags (Retort laminate, Moore and Buckle Ltd., St Helens, UK) and stored at 

2-4 °C until experimental seed storage began. 

The moisture content of mature seed was determined on two replicates of 2.5-3.0 g by 

the high-constant-temperature-oven method (ISTA, 2013) with ground seed (Laboratory Mill 

3303, Perten Instruments Ab, Stockholm, Sweden) and calculated on the fresh weight basis. 

The two-stage procedure with pre-drying (ISTA, 2013) was used for less mature seeds 

harvested during seed development: one panicle from each block was selected with loss in 

moisture on pre-drying overnight at 30 ± 2 C determined as the first stage, the pre-dried 

samples ground, and the second-stage loss determined by the high-constant-temperature-oven 

method. 

Thousand seed weight was determined by counting 800 seeds at random (ISTA, 2013) 

from samples of known moisture content and weighing using a balance to 0.1 mg (Mettler 

Toledo, AE160, Greifensee, Switzerland). 

The ability of (non-sprouted) seeds to germinate after harvest was estimated with two 

replicates of 50-70 seeds each between rolled paper towels [Kimberley Clark Professional 

6803 HOSTESS, Natural, 24 x 35 cm, Greenham Sales, UK] moistened with deionized water, 
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in an alternating temperature regime of 34/11°C (16 h/8 h) for 21 days, as recommended to 

break dormancy in rice (Ellis et al., 1983). The criterion of germination was normal seedling 

development (ISTA, 2013). In 2012, samples of dried, sprouted seeds (11-12% moisture 

content) were also tested to assess their capability to germinate upon dehydration and 

reimbibition, with four replicates and a total of 200-280 seeds per sample. 

Samples were stored in order to determine the effects of submergence on the 

longevity of non-sprouted seeds. The moisture content of samples was first determined and 

then adjusted to about 15 % by humidification above water or by drying over silica gel at 20 

°C (depending upon whether increase or reduction in moisture content was required). Seeds 

were left within sealed containers at 2-3 °C for 2-3 weeks for moisture to equilibrate. Seed 

equilibrium relative humidity was then determined at 20 °C to estimate moisture content, and 

moisture content further adjusted towards 15 %. The moisture content of each seed sample 

was then determined by the high-constant-temperature-oven method.  

After moisture equilibration, 10-15 sub-samples of seed (150-200 seeds each) from 

each seed sample were sealed within laminated aluminium foil bags (Moore and Buckle Ltd. 

St Helens, UK), stored hermetically in a heated incubator at 40 ± 0.5 °C with 15.1±0.2%
 

(2012) or 14.7±0.2%
 
(2013) moisture content, sub-samples withdrawn at different periods of 

storage, and tested for ability to germinate (three replicates of 50-70 seeds). Seed survival 

curves (criterion, ability to produce normal seedlings) were fitted to the observations by 

probit analysis in accordance with the equation  

v = Ki - p /σ   (1) 

where v is probit percentage viability after period p (days) in storage in a constant 

environment, Ki is the seed lot constant, and σ (days) is the standard deviation of the 

frequency distribution of seed deaths in time (Ellis and Roberts, 1980). The product of Ki and 
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σ is the period of storage (days) for viability to decline to 50% (p50). This derived parameter 

was also selected to compare seed survival curves.  

The progress of seed development and maturation was also compared amongst the 

genotypes Gleva, IR64 and IR64-Sub1 in 2013. Destructive serial harvests (one panicle taken 

at random from each of six non-submerged pots, threshed separately) were taken every 3-5 

days from 8 DAA until harvest maturity at 47 DAA. Seeds were threshed from these panicle 

samples and mean seed weight and moisture content determined. In addition, for Gleva and 

IR64 only, the development of the ability of freshly-harvested seeds to germinate normally 

was determined. These germination tests comprised smaller samples of 24-70 full seeds (i.e. 

unfilled seeds were not tested). Seed covering structures were removed from seeds that 

remained firm after 21 days in test and the test extended to 28 days to promote loss in 

dormancy.  

Analysis of variance, restricted maximum likelihood analysis, regression analysis, and 

probit analysis were applied to investigate the results using Genstat (13
th

 edition, VSN 

International Ltd., Hemel Hempstead, UK). Multiple comparisons of means for pre-harvest 

sprouting were performed using Tukey’s test. 

 

Results 

Submergence resulted in considerable pre-harvest sprouting of seeds of Gleva produced in 

2012 (Fig. 1). Pre-harvest sprouting was affected by duration (P<0.001), plant developmental 

stage at submergence (P<0.001), and their interaction (P<0.05). It was greatest following 5 

days’ submergence 40 DAA and lower the earlier and briefer the submergence treatment, 

with no pre-harvest sprouting following submergence at 9 DAA. 
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The moisture content of non-sprouted seeds at 47 DAA (harvest maturity) varied only 

between 17.9 and 21.7%. This was significant (P < 0.05), with the control providing the 

wettest and 5 days’ submergence at 40 DAA the driest seeds.  

Variation in thousand seed dry weight of non-sprouted seeds at harvest maturity was 

limited (Table 1) but significant (P<0.001). All submerged plants provided seeds lighter than 

the control; 9 DAA were the lightest, and 5 days’ submergence provided consistently lighter 

seeds than 3 days’ submergence. 

The germination of freshly-harvested-non-sprouted seed (data not shown) did not 

differ (P > 0.05) from that of dried-non-sprouted seeds. There was a tendency, however, for 

the fresh seeds to germinate more slowly than those dried before the test. This difference 

appeared to be accentuated with longer or later submergence. 

Non-sprouted seeds achieved 89 to 97% normal germination in tests after desiccation 

to 15.1 (± 0.2) % moisture content and rehydration (Fig. 2). The two lowest values were 

following 5 days’ submergence at 9 or 40 DAA, but differences amongst treatments were not 

significant (P > 0.05). 

Dried, pre-harvest sprouted seeds showed reduced ability to germinate (Fig. 2). The 

reduction was greater the longer and later submergence occurred (P < 0.001). About half of 

the pre-harvest sprouted seeds were able to germinate normally with 3 days’ submergence at 

30-40 DAA following desiccation and rehydration (49-66%, Fig. 2a), but few (<5%, Fig. 2b) 

of those submerged for 5 days. Close examination indicated that the least pre-harvest 

sprouted seeds (only the micropyle open at harvest) were more likely to germinate normally 

subsequently than those with radicle already emerged. Seeds with root and shoot already 

emerged were rarely able to germinate normally. 
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Seeds lost viability during hermetic storage at 40 °C with  14.9 - 15.3 % moisture 

content with high ability to germinate initially declining in a negative sigmoid to zero (or 

almost) after 32 days (Fig. 3). The differences in these sigmoidal patterns of seed survival 

amongst blocks within a treatment or amongst treatments generally appeared small. The 27 

different fitted curves are shown in Figure 3, however, as they could not be constrained to a 

common curve, common slope, or common origin (P < 0.001). The survival curves for 5 

days’ submergence at 9 DAA provided the lowest estimates of Ki  (Table 2), and so the lowest 

initial viability and the least “shoulder” before loss in viability was detected (Fig. 3f), whilst 

Ki was greatest in the control. The observations for ability to germinate were close to zero in 

all 27 seed lots for the longest-durations of storage. They were below the fitted values 

provided by the negative cumulative normal distributions in each case.  

Paired F-Tests were used to clarify any differences in p50 resulting from the main 

treatment factors. Duration of submergence had no detectable effect on p50 (P > 0.25), 

whereas developmental stage did (P < 0.05), with p50 shortest following submergence at 9 or 

40 DAA and greatest in the control or submergence at 30 or 35 DAA. 

Flowering date differed amongst the three genotypes in 2013, with 50% anthesis 

earlier in Gleva (73 DAS) than IR64 (87 DAS) and IR64-Sub1 the latest (93 DAS). 

Accordingly, dates (but not durations from anthesis) of submergence and also harvest 

maturity varied amongst genotypes. When compared from anthesis onwards, the temporal 

changes in seed weight and moisture content were broadly similar amongst genotypes (Fig. 

4). Final mean seed dry weight in Gleva (29.5 mg, s.e. 0.34) was much greater than the 

similar values recorded for IR64 (19.6 mg, s.e. 0.26) and IR64-Sub1 (20.3 mg, s.e. 0.31). 

Seed moisture contents at harvest maturity were similar amongst all three at 26.7 (Gleva), 

28.2 (IR64), and 27.6% (IR64-Sub1).  
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Ability to germinate increased with developmental duration and was promoted by 

extending test durations and removing seed covering structures, particularly early in 

development (Fig. 5). Its development was delayed in IR64 relative to Gleva. Moreover, 

ability to germinate was promoted more in IR64 than in Gleva by longer test durations and 

seed covering structure removal. These differences persisted with only a third of seeds of 

IR64 but almost all of those of Gleva able to germinate within 21 days when freshly-

harvested, intact seed were tested from the final harvest at harvest maturity (47 DAA, Fig. 5). 

Pre-harvest sprouting was detected (P < 0.001) at harvest maturity as a result of plant 

submergence in 2013. The majority of treatments resulted in no sprouting. The exceptions 

were principally in seed from plants of Gleva submerged at 30 or 40 DAA with 8 (s.e. 2.5) or 

67 (s.e. 2.5) % of seeds sprouted, respectively; fewer than 1% of seed from IR64 and IR64-

Sub1 plants submerged at 40 DAA sprouted (and none from earlier treatments). Two-way 

analysis of variance confirmed an interaction between submergence at different 

developmental stages and cultivar (P < 0.001) on pre-harvest sprouting. 

Submergence of plants of Gleva or IR64-Sub1 reduced (P < 0.05) thousand seed dry 

weight of non-sprouted seeds, but not in IR64 (P > 0.05) (Fig. 6).  Hence thousand seed dry 

weight was subject to interaction between genotype and submergence treatment (P < 0.001). 

Within Gleva, the differences amongst submergence at 10, 30 or 40 DAA were not 

significant but all these seeds were lighter than the control (P < 0.05). No differences were 

detected within IR64, but the small decline in thousand seed dry weight with 

submergence in IR64-Sub1 was significant (P < 0.05). 

Ability to germinate normally in all seed lots (non-sprouted seeds) declined in a 

sigmoidal pattern during hermetic storage, such that all or almost all seeds of Gleva, IR64 

and IR64-Sub1 had lost viability after 30, 44, and 41 days in storage, respectively. Seed 
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survival curves, fitted by probit analysis to each seed lot separately, differed considerably 

amongst treatments (Table 3). The principal difference was amongst genotypes, with Gleva 

providing the smallest estimates of both σ and p50 (Table 3, Fig. 7).  Estimates of σ were 

similar between IR64 and IR64-Sub1, but those for Ki and p50 were greater for IR64-Sub1 

than for IR64.  

These differences were confirmed by the analyses. There were no differences in Ki, σ, 

or p50 within each genotype (P > 0.05), that is submergence was not damaging to the 

longevity of non-sprouted seeds, but estimates of σ differed amongst genotypes (P<0.05), 

with Gleva shorter lived than IR64 and IR64-Sub1 (Table 3), as did p50 (P < 0.001) with 

Gleva (15-19 days) less than IR64 (24-29 days), which was less than IR64-Sub1 (31-35 days) 

(Fig. 7). Note, however, that there was no difference (P > 0.05) between the controls (no 

submergence) for IR64 and IR64-Sub1 . 

 

Discussion 

Simulated flooding of rice plants damaged seed, with substantial pre-harvest sprouting the 

longer the duration of submergence and the closer to harvest maturity it occurred (Fig. 1). 

The japonica rice Gleva was more sensitive to such damage than the indica rices, confirming 

that japonica cultivars are the more vulnerable to flooding damage (Fukao et al., 2006, 2009; 

Xu et al., 2006; Hattori et al., 2009; Bailey-Serres et al., 2010; Mickelbart et al., 2015).  

Seed dormancy delays or prevents germination (Bewley et al., 2013) and is regulated 

by the genetics of the mother plant, developing embryo, and by environment (Bewley and 

Black, 1994; Taiz and Zeiger, 2006; Sugimoto et al., 2010). The mechanisms include 

restraint by seed covering tissues which delays imbibition and physically obstructs embryo 

growth, and embryo growth restriction by endogenous abscisic acid (Hilhorst, 1995; 
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Sugimoto et al., 2010; Bewley et al., 2013). Developing seeds of Gleva declined in dormancy 

sooner than IR64 with seed covering structures playing a role in delaying germination, but 

this diminished as harvest maturity approached in Gleva (Fig. 5). This was to be expected: 

the longer the delay to harvest, the lower the dormancy (Pili, 1968); and japonica cultivars 

tend to be less dormant than indica cultivars and so more susceptible to pre-harvest sprouting 

(Sugimoto et al., 2010). 

Pre-harvest sprouting damages seeds because the further germination progresses the 

less likely the seed or seedling is to survive considerable desiccation and later rehydration 

(Hong and Ellis, 1992). This was the case here (Fig. 2), but what are the consequences  of 

plant submergence on seeds which did not sprout? 

The reduced dry weight of non-sprouted seeds showed damage to seed physical 

quality following submergence at 9 < 30 < 35 = 40 DAA < control, and similarly 

submergence for 5d < 3d (Table 1). While reduced photosynthate supply under water (Das et 

al., 2009; Singh et al., 2009) cannot be ruled out as a factor in the lighter non-sprouted seeds 

at 9 DAA, it does not explain the effect of submergence after seed filling ended. Cellular 

respiration after imbibition (Woodstock and Grabe, 1967; Footitt and Cohn, 1995; Tung and 

Serrano, 2011) may have caused dry matter loss for submergence from 30 DAA onwards. 

The strong interaction for thousand seed dry weight between genotypes and seed 

developmental stage at submergence in 2013, where cv. Gleva showed the greatest sensitivity 

to damage, combined with the lower dormancy of Gleva suggest activation of germination 

sensu strictu (Bewley et al., 2013) was the major cause of reduced seed dry weight.  

The potential air-dry survival of seed that had sprouted was reduced at harvest 

maturity (Fig. 2). Hence, seed storage survival curves were determined only for non-sprouted 

seeds to avoid confusing air-dry survival results for the two cohorts. The effect of plant 
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submergence on subsequent seed longevity was nil (Fig. 7c) or small (Figs 3, 7a, b) in the 

context of differences in longevity amongst different seed lots stored in the similar 

environments (e.g. Ellis and Roberts, 1981), or between japonica rice seed produced at 

different temperatures (Ellis et al., 1993), or between blocks within treatments here (Figs 3, 

7).  

In Gleva, for example, longevity was only reduced substantially after 5 days’ 

submergence at 9 or 40 DAA in 2012 and only increased substantially after 4 days’ 

submergence at 30 DAA in 2013 (Fig. 3, Tables 2, 3). Close examination of the survival 

curves for Gleva submerged for 5 days at 9 DAA in 2012 (Fig. 3f) indicates a reduction in 

initial viability and more rapid loss in viability (Table 2). This treatment hadn’t resulted in 

any pre-harvest sprouting (Fig. 2). It is possible that germination sensu strictu might have 

occurred however (for example, given the lighter thousand seed weight, Table 1) and 

subsequent air-dry survival therefore reduced in some seeds. However, longevity was not 

reduced in the closest parallel treatment (4 days’ submergence at 10 DAA) in 2013 (Fig. 7a). 

On the other hand, the small improvement to seed longevity after submergence such as 4 

days’ at 30 DAA in the same genotype (Fig. 7a) might be ascribed to priming. Priming can 

benefit aged or immature seed (Burgass and Powell, 1984; Demir and Ellis, 1992; Powell et 

al., 2000; Butler et al., 2009a, b). However, we suggest that neither damage nor benefit 

occurred in non-sprouted seeds to any great extent in the current study: rather, subsequent air-

dry seed survival was remarkably resilient to submergence for 3-5 days in water for seeds 

resistant to pre-harvest sprouting. 

The improved seed viability equation (Ellis and Roberts, 1980) estimates the value of 

σ for seed lots in a known constant, hermetic, air-dry storage environment.  Ellis and Hong 

(2007) provided two sets of estimates for the constants for rice: analysis of rice data alone; or 
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including data from other species to provide a common temperature response. Seed storage 

moisture contents ranged from 14.5 - 14.9% in 2013 (Table 3). Assuming storage temperature 

ranged from 39-41 C, then the improved seed viability equation and viability constants for 

rice provides estimates of σ for storage at 41 C, 14.9% down to 39 C, 14.5% of 11.1 to 17.2 

days (rice data model) or 10.7 to 16.5 days (common temperature model). These ranges 

overlap with observations from the current research (Table 3) for the indica rices IR64 (σ = 

12.0 - 19.0 days) and IR64-Sub1 (σ = 11.6 - 15.9 days). Hence the independent estimates 

(Ellis and Hong, 2007) provide good agreement with the current study for the indica rices. 

In contrast, the observations for the japonica rice Gleva in 2013 (σ = 7.2 - 10.2 days, 

Table 3) were below the independent estimates above. This difference was less in 2012, 

where seed storage moisture contents ranged from 14.9 - 15.3% (Table 2): estimates of σ at 

39 C, 14.9% to 41 C, 15.3% are 9.9 - 15.3 days (rice data model) or 9.6 - 14.7 days 

(common temperature model), with observations of 6.6 - 15.7 days in 2012 (Table 2), and so 

more variable than in 2013. Chang (1991) reported that japonica cultivars possess 

intrinsically poorer seed storage characteristics, whilst Ellis et al. (1993) reported estimates of 

σ were ranked indica > javanica > japonica rice. The seed viability constants for rice (Ellis 

and Hong, 2007) therefore overestimated longevity in japonica cultivars, but provided good 

predictions in indica cultivars.  

 Differences between seeds produced by the indica rice IR64-Sub1 and its parent IR64 

were negligible. Both were highly resistant to submergence in the reproductive phase, with 

almost no sprouted seeds detected, even in the extreme treatment of 4 days’ submergence at 

40 DAA (< 1%). Neither was subsequent seed longevity affected by submergence (Fig. 7). 

Hence, introgression of the Sub1 gene into cv. IR64 has not reduced resilience of the seed to 

submergence late in seed development and maturation; and the much greater dormancy of 
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seed of IR64 and IR64-Sub1, compared with Gleva, provides this resilience. The Sub1 

introgression was reported to provide yield advantage in completely-flooded conditions 

imposed to seedlings only 14 days old (Septiningsih et al., 2009; Singh et al., 2009; Sarkar 

and Bhattacharjee, 2011) and this was more evident with flooding for 7-14 days than shorter 

durations (Dar et al., 2013).  Hence, whilst no benefit to seed was detected from the Sub1 

introgression after flooding late in ontogeny here, a longer duration of flooding might have 

exposed differences. 

 IR64-Sub1 may have provided slightly greater longevity than IR64 under the same 

production and same storage environment but there was no difference amongst the controls 

(Fig. 7). Mapping of QTLs has revealed associations between ability to germinate under 

anoxia, maintenance of normal seedling growth, seed dormancy. and longevity caused by the 

co-location of QTLs in rice (Miura et al., 2002; Sasaki et al., 2005; Angaji et al., 2010; 

Septiningsih et al., 2013). Hence, further investigation of the longevity of seed of IR64 and 

IR64-Sub1 produced under the same conditions is warranted.  

 In conclusion, sprouting was the greatest consequence of plant submergence. Where 

dormancy prevented sprouting, there was only a small reduction in seed dry weight, and little 

or no impact on subsequent seed longevity. Thus dormancy in rice seed provides resilience to 

damage from flooding in planta for post-harvest air-dry survival as well as pre-harvest 

sprouting.  
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Figure Legends 

Figure 1. Pre-harvest sprouting (vertical bars represent ± s.e.) in response to 3 (□) 

or 5 (■) days’ submergence of plants of japonica rice cv. Gleva in water at 

different stages of development (Control = no submergence). Pre -harvest 

sprouting was assessed in samples harvested 47 DAA (harvest maturity) and first 

dried to 11-12% moisture content. Columns with a different letter indicate a 

significant difference (P < 0.05) using Tukey’s Multiple Range Test.   

 

Figure 2. Ability of dried seeds, harvested 47 DAA, of cv. Gleva to germinate 

(non-sprouted seeds, □) or re-germinate (pre-harvest sprouted seeds, ■) normally 

(vertical bars represent ± s.e.) after p revious submergence of plants in water for 

3 (a) or 5 (b) days at 9, 30, 35, or 40 DAA (Control = no submergence; combined 

population of pre-harvest sprouted or not seeds, ). 

 

Figure 3. Seed storage survival (% normal germination plotted against period in 

hermetic storage at 40 °C with 15.1 ± 0.2% moisture content) of non -sprouted 

seeds of japonica rice cv. Gleva harvested at 47 DAA (harvest maturity) from 

plants not submerged (Control, a), or submerged in water for 3 days (b - e) at 9 

(b), 30 (c), 35 (d), or 40 DAA (e), or for 5 days (f - i) at 9 (f), 30 (g), 35 (h), or 

40 DAA. Observations are shown for seed lots from each block (1, ♦; 2, ■; 3, ▲) 

together with the fitted negative cumulative normal distributions (1, ; 2, ; 3, 

). The latter are quantified in Table 2.  
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Figure 4. Fresh () and dry (▲) weight (mean ± s.e.) and moisture content 

(Block 1;●, Block 2;○) of seeds from control (non-submerged) plants of japonica 

rice cv. Gleva (a), and the indica rices IR64 (b) and IR64-Sub1 (c) grown at 

28/20 °C (11 h/13 h). The intersect of the solid lines represents the end of grain 

filling [mass maturity, i.e. 27.6 (s.e. 1.17), 27.5 (s.e. 1.21), or 24.0 (s.e.  3.10) 

DAA in a, b, c respectively]; R
2
 values shown are for these broken–stick 

regression lines. 

 

Figure 5. Ability to germinate normally of fresh ( i.e. not dried) seed of cvs 

Gleva (♦) and IR64 (●) harvested serially during seed development and 

maturation, from plants grown at 28/20 °C (11 h/13 h), after 21 days in test ( ) 

at 34/11°C (16 h/8 h), or when combined with subsequent removal of seed covering 

structures from ungerminated seeds and tested for an additional 7 days ( ). 

Seed moisture content (%) at harvest is shown for each observation.  

 

Figure 6. The effect of submergence for four days in water at 10, 30, or 40 DAA 

(C = control, no submergence) of rice plants rice cvs Gleva, IR64 and IR64-Sub1 

on subsequent 1000 seed dry weight (0 % moisture content; vertical bars 

represent ± s.e.) for non-sprouted seed samples harvested 46 DAA (harvest 

maturity). 

 

Figure 7. Effect of submergence of plants of rice cvs Gleva (a), IR64 (b), and 

IR64-Sub1 (c) in water for 4 days at 10, 30 or 40 DAA on the subsequent 
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longevity (p50; vertical bars represent ± s.e.) of seeds harvested at harvest 

maturity (46 DAA) and stored hermetically at 40° C with 14.7 ± 0.2% moisture 

content for each block (1, ♦; 2, ■) and the mean value (●). Further information on 

the fitted seed survival curves is provided in Table 3.  
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Table 1. Thousand seed dry weight (0% moisture content) of non-sprouted rice cv. 

Gleva at harvest maturity (47 DAA) after submergence for 0 (control, repeated in both 

columns), 3, or 5 days at different seed developmental stages.   

 

Treatment 

(DAA) 

1000 seed dry weight (g) (s.e.) 

(DAA) 3 d submergence 5 d submergence 

Control [29.5 (0.22)] [29.5 (0.22)] 
  9 28.4 (0.19) 27.4 (0.16) 

30 28.6 (0.19) 27.9 (0.19) 

35 29.3 (0.15) 28.7 (0.18) 

40 29.1 (0.35) 28.5 (0.21) 
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Table 2. Seed longevity (parameters of seed viability equation, fitted by probit analysis) of 

japonica rice cv. Gleva, harvested at 47 DAA (harvest maturity) in 2012 after submergence in 

water for 0 (control), 3, or 5 days at 9-40 DAA, in hermetic storage at 40° C with moisture 

contents shown. The 95% confidence intervals (CI) are shown for p50. 

DD
1
 DS

2
 B

3
 MC

4
 Ki (s.e.) 1/σ (s.e.) σ (d) p50  (d, s.e.) 95% CI 

    

 

   

 

Nil
5
 0d 1 15.1 1.92 (0.103) 0.081 (0.006) 12.3 23.7 (0.95) 22.1-25.8 

  2 15.2 2.68 (0.136) 0.152 (0.007) 6.6 17.6 (0.36) 16.9-18.3 

  

3 14.9 2.37 (0.125) 0.104 (0.007) 9.6 22.8 (0.65) 21.6-24.1 

 
         9 3d 1 15.2 1.79 (0.074) 0.093 (0.004) 10.7 19.2 (0.57) 18.2-20.4 

  2 15.0 2.17 (0.113) 0.106 (0.006) 9.4 20.5 (0.56) 19.5-21.6 

  3 15.0 2.07 (0.107) 0.125 (0.006) 8.0 16.6 (0.43) 15.7-17.4 

 

5d 1 15.2 1.35 (0.070) 0.063 (0.006) 15.7 21.3 (1.58) 18.8-24.9 

  

2 15.0 1.40 (0.083) 0.094 (0.005) 10.6 14.9 (0.47) 14.0-15.8 

  

3 15.0 1.52 (0.088) 0.103 (0.006) 9.7 14.8 (0.47) 13.9-15.7 

         30 3d 1 15.1 2.19 (0.094) 0.108 (0.006) 9.3 20.3 (0.59) 19.2-21.5 

  

2 15.1 2.24 (0.113) 0.115 (0.006) 8.7 19.4 (0.48) 18.5-20.4 

  3 15.0 2.22 (0.109) 0.113 (0.005) 8.9 19.7 (0.44) 18.8-20.6 

 5d 1 15.3 1.86 (0.080) 0.083 (0.005) 12.0 22.4 (0.80) 21.0-24.1 

  

2 15.3 2.47 (0.123) 0.137 (0.007) 7.3 18.0 (0.42) 17.2-18.8 

  

3 14.9 2.49 (0.121) 0.118 (0.006) 8.5 21.1 (0.45) 20.3-22.0 

         35 3d 1 15.1 2.04 (0.090) 0.098 (0.006) 10.2 20.8 (0.71) 19.5-22.3 

  

2 15.3 2.33 (0.119) 0.112 (0.006) 8.9 20.8 (0.50) 19.9-21.8 

  3 15.0 2.35 (0.114) 0.111 (0.005) 9.0 21.1 (0.47) 20.2-22.0 

 5d 1 15.1 2.23 (0.098) 0.095 (0.005) 10.6 23.6 (0.80) 22.1-25.2 

  2 15.2 2.51 (0.126) 0.120 (0.006) 8.3 20.8 (0.48) 19.9-21.8 

  3 15.0 2.14 (0.105) 0.115 (0.005) 8.7 18.6 (0.44) 17.7-19.4 

         40 3d 1 15.0 1.54 (0.070) 0.081 (0.005) 12.4 19.1 (0.72) 17.8-20.6 

  

2 15.2 2.24 (0.112) 0.117 (0.006) 8.5 19.2 (0.47) 18.3-20.1 

  

3 14.9 2.06 (0.105) 0.107 (0.006) 9.3 19.2 (0.49) 18.3-20.2 

 

5d 1 14.9 1.73 (0.076) 0.100 (0.005) 10.0 17.4 (0.56) 16.4-18.6 

  2 15.1 2.16 (0.113) 0.123 (0.007) 8.1 17.5 (0.48) 16.6-18.5 

  3 15.1 1.48 (0.098) 0.092 (0.006) 10.8 16.0 (0.58) 14.9-17.2 
 

1
 DD = Duration of development until submergence (DAA) 

2
 DS = Duration of submergence (days) 

3
 B = block 

4
 MC = moisture content of storage (%) 

5
 Control treatment (plants not submerged) 
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Table 3. Seed longevity (parameters of seed viability equation, fitted by probit analysis) of rice 

cvs Gleva, IR64, and IR64-Sub1harvested at harvest maturity in 2013 after submergence in 

water for 0 (control) or 4 days at 10-40 DAA, in hermetic storage at 40° C with moisture 

contents shown. The 95% confidence intervals (CI) are shown for p50. 

1
 Cv = Cultivar  

2 
DD = Duration of development until submergence (DAA) 

3
 B = block 

4
 MC = moisture content of storage (%) 

5
 Control treatment (plants not submerged) 

 

  

Cv
1
 D

2
 B

3
 MC

4
 Ki (s.e.) 1/σ (s.e.) σ (d) p50  (d, s.e.) 95% CI 

    

 

   

 

Gleva C
5
 1 14.7 2.20 (0.074) 0.138 (0.004) 7.2 15.9 (0.22) 15.5-16.4 

  2 14.8 2.01 (0.070) 0.137 (0.004) 7.3 14.6 (0.22) 14.2-15.1 

 10 1 14.6 2.06 (0.070) 0.135 (0.004) 7.4 15.3 (0.22) 14.8-15.7 

  2 14.6 2.05 (0.070) 0.136 (0.004) 7.4 15.1 (0.22) 14.7-15.6 

 30 1 14.8 2.29 (0.070) 0.108 (0.003) 9.3 21.2 (0.28) 20.7-21.8 

  2 14.7 2.08 (0.068) 0.122 (0.004) 8.2 17.1 (0.24) 16.6-17.6 

 40 1 14.5 1.66 (0.089) 0.098 (0.007)    10.2 16.4 (0.47) 15.6-17.4 

  2 14.5 1.94 (0.100) 0.119 (0.008) 8.4 16.8 (0.48) 16.0-17.8 

IR64 C
5
 1 14.5 1.63 (0.052) 0.058 (0.002) 17.3 28.2 (0.48) 27.3-29.2 

  2 14.7 1.96 (0.059) 0.066 (0.002) 15.1 29.7 (0.44) 28.9-30.6 

 10 1 14.7 1.46 (0.049) 0.053 (0.002) 19.0 27.6 (0.51) 26.7-28.7 

  2 14.6 1.76 (0.056) 0.084 (0.002) 12.0 21.0 (0.34) 20.4-21.7 

 30 1 14.5 2.03 (0.060) 0.077 (0.002) 12.9 26.2 (0.37) 25.5-26.9 

  2 14.6 1.28 (0.046) 0.053 (0.002) 19.0 24.5 (0.48) 23.5-25.4 

 40 1 14.5 1.51 (0.050) 0.060 (0.002) 16.8 25.4 (0.45) 24.6-26.3 

  2 14.6 1.91 (0.058) 0.073 (0.002) 13.7 26.1 (0.38) 25.3-26.8 

IR64 C
5
 1 14.9 2.18 (0.065) 0.065 (0.002) 15.4 33.6 (0.48) 32.6-34.6 

Sub 1  2 14.7 2.93 (0.092) 0.087 (0.003) 11.6 34.0 (0.48) 33.2-34.8 

 10 1 14.9 2.09 (0.062) 0.070 (0.002) 14.5 30.2 (0.48) 29.3-31.0 

  2 14.8 2.50 (0.075) 0.078 (0.003) 12.9 32.2 (0.48) 31.4-33.0 

 30 1 14.9 2.64 (0.082) 0.073 (0.003) 13.7 36.2 (0.48) 35.3-37.2 

  2 14.5 2.19 (0.065) 0.066 (0.002) 15.2 33.3 (0.48) 32.3-34.2 

 40 1 14.8 2.17 (0.065) 0.064 (0.002) 15.7 34.2 (0.48) 33.2-35.2 

  2 14.7 2.03 (0.061) 0.063 (0.002) 15.9 32.4 (0.48) 31.5-33.4 
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Figure 1.  
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Figure 2 
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Figure 3  
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Figure 4 
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Figure 5  
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Figure 6  
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Figure 7 
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