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8 Abstract

9 Trees provide important ecosystem services to urban human society. Their absence can lead to more 

10 pronounced environmental and social consequences, for example the urban heat island effect. 

11 Evapotranspiration (Et) from trees reduces air temperature in the urban microclimate by converting 

12 sensible heat to latent heat. Quantification and valuation of the ecosystem services provided by urban 

13 trees is important for improving cost-benefit evaluations in support of protecting tree planting and 

14 maintenance budgets and, thus, for building climate change resilience into cities. Inclusion of Et cooling 

15 could improve ecosystem service valuation models by producing a more complete picture of the 

16 benefits that urban trees provide to society. 

17

18 This study explores two approaches for evaluating climate regulation as an ecosystem service of urban 

19 trees. Firstly, an enthalpy-based approach was adopted to valuate latent heat of evaporation from tree 

20 transpiration (in three case study urban forests) by equating it to an equivalent service from an active 

21 direct evaporative cooling system. Secondly, energy savings to air-conditioned buildings was modelled 

22 using TRNSYS and TRNFLOW simulation programs with and without air precooled and humidified by 

23 urban trees.

24

25 Trees are shown to provide substantial urban cooling with an annual valuation of £84 m estimated using 

26 the enthalpy-based approach, or ranging from £2.1 m to £22 m using TRNSYS and TRNFLOW dynamic 

27 simulation programs; both for inner London case study. The latter savings arose from a modelled 1.28 – 

28 13.4% reduction in air-conditioning unit energy consumption. Challenges around assumptions of 

29 homogeneity in both built form and urban forest canopy effects are discussed.

30

31 The case study examples highlighted differences in Et cooling between tree species, with Castanea 

32 sativa, Prunus avium, Quercus petraea, Platanus hybrida and Fagus sylvatica typically providing more Et 

33 cooling than any of the other tree species commonly found in urban forests. The research highlighted a 

34 shortage of published Et data, particularly for urban environments. 

35

36 Key Words:

37 Ecosystem services; Evapotranspiration; Urban cooling; Heat comfort; Bowen ratio.
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38 Introduction

39 Trees provide many benefits to people (Davies et al., 2017) and these have been collectively termed as 

40 ecosystem services (ES) (Reid et al., 2005). Urban environments typically have considerably fewer trees 

41 than rural environments, meaning that urban populations may have less access to the ES that trees 

42 provide. In dense urban environments these ES can be of significant importance, for example helping to 

43 mitigate the urban heat island (UHI) effect. This effect occurs where built-up areas absorb more heat 

44 energy than surrounding rural environments and together with the high density energy fluxes from 

45 human activity lead to pronounced increases in ambient surface and air temperature (Arnfield, 2003). 

46 UHIs contribute to human heat stress and the plethora of associated health problems: for example, 

47 Health Protection Agency (2012) reported that heat-related mortality already accounted for 2,000 

48 premature deaths in the UK and forecast this to increase to around 10,800 premature deaths by 2080. 

49 Mora et al. (2017) reviewing the international literature from 1980 to 2014 found 783 cases of heat-

50 related excess human mortality from 164 cities in 36 countries.

51

52 There is a positive correlation between locations that suffer from UHI and those that lack 

53 evapotranspiring surfaces (Ca et al., 1998; Leuzinger et al., 2010) and the inclusion of green 

54 infrastructure in urban environments has been identified as an effective way to mitigate UHI through 

55 evapotranspiration (Et) (Gill et al., 2008; Ballinasa and Barradasa, 2015; Saaroni, et al., 2018). Et 

56 associated with trees results in the release of water vapour from leaves into the air (Kozlowski and 

57 Pallardy, 1997) that reduces the surrounding ambient air temperature through an evaporative cooling 

58 process (Akbari, 2002). Trees and vegetation growing on or in close proximity to buildings also provide 

59 multiple other benefits (Davies et al., 2017), including supporting biodiversity and reducing air pollutant 

60 loading (Varghese et al., 2015). However, while urban forests (herein defined as “all the trees in the 

61 urban realm” Davies et al., 2017) in temperate climates can produce a net cooling benefit by Et, not all 

62 trees offer the same level of cooling: canopy size and leaf amount are important determinants of species 

63 and cultivar differences in water use (Stratópoulos et al., 2018), trees with high leaf area and 

64 transpiration rate are the most effective in reducing air temperatures (Gillner et al., 2015; Rahman et al., 

65 2018) and urban forests vary in their size and species and age-class composition (UFWAC, 2016).

66

67 Under a changing climate, cooling loads in buildings are expected to increase in the future (Jenkins et al., 

68 2008). Mechanical cooling requirements can exacerbate the UHI effect by heat ejection to the 

69 surrounding environment, adding to cooling loads across a city (Masson et al., 2014). Energy demand for 
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70 cooling services can be reduced by the presence of urban trees through both shade casting (so called: 

71 shade-effect trees) and Et cooling (so called: climate-effect trees) (Akbari et al., 2001). Noting that peak 

72 urban electric demand rose by 2-4% for each 1oC rise in daily maximum temperature, Akbari (2002) 

73 reported potential cost savings of up to $200 per tree. However, the effect of Et was not considered and 

74 the level of benefit varied by climate region. Reviewing the literature, Doick et al. (2013) reported that in 

75 temperate climates the role of shading and evapotranspiration are approximately equal. This study is 

76 concerned with the Et cooling of urban trees.

77

78 i-Tree Eco is a tool within the i-Tree suite of peer-reviewed software tools (i-Tree, 2017). It is based on 

79 the UFORE (Urban Forest Effects) methods (Nowak and Crane, 1998) and has been developed to support 

80 urban forest management through the quantification of urban forest characteristics, and analysis and 

81 valuation of the ES that they provide (i-Tree, 2017). Climate regulation from Et cooling is an ES not 

82 currently included in i-Tree Eco. However, the UFORE method has the capability to model leaf area at 

83 the species level and total canopy surface area for a given location (Nowak and Crane, 2003). Latent 

84 heat transfer across an urban forest could be calculated if appropriate Et rates were considered. Indeed, 

85 Et cooling is likely to be substantial on a city-wide scale (Gillner et al., 2015) given maximum 

86 transpiration rates for individual trees can be many hundreds of litres per day (Hsieh et al., 2018; 

87 Stratópoulos et al., 2018).

88

89 The quantification and valuation of ES is of growing international interest within a context of natural 

90 capital accounting (NCA) (UN et al., 2012). Indeed, the UK government is interested in developing 

91 accounts for a broad range of UKNEA habitats including woodland and urban (Defra/ONS, 2017). A 

92 scoping study to develop an urban NCA for the UK incorporated inter alia the climate regulation ES, with 

93 valuation based upon both the ISO standard 7243 estimates of productivity loss at different outdoor 

94 temperatures and an i-Tree Eco based estimation of building energy use avoided due to the presence of 

95 urban trees (Eftec, 2017). The former determines the loss in productivity with and without air 

96 temperature reduction by urban green infrastructure to value the contribution of this ES in terms of 

97 maintaining productivity and notes methodological limitations of an assumed average cooling effect of 

98 parks and woodland. The latter considers the impact of tree shade and shelter on summer cooling 

99 energy (avoided use of air conditioning) as well as winter warming (reduced requirement for electrical 

100 warming). This approach is limited however by the lack of adaptation of the i-Tree module for UK 

101 building types. Both approaches excluded the saving related to the non-emission of CO2. Indeed, a 
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102 comprehensive valuation of this ES is complicated by the multiple ways that trees impact urban 

103 temperatures and, thus, the numerous savings mechanisms that could be considered. 

104

105 This study aimed to evaluate the impact of urban trees on 1) mechanical cooling loads in buildings, and 

106 2) energy cost savings associated with cooling ambient air by mechanical means. Energy saving was 

107 evaluated through a) direct comparison of Et to evaporative cooling using an enthalpy-based approach 

108 to valuate latent heat of evaporation from tree transpiration, and b) by incorporation of Et into 

109 established dynamic building thermal and air flow modelling programs - TRNSYS and TRNFLOW. 

110 Valuation of the climate regulation ES could provide a useful complement to tools, such as i-Tree, that 

111 show the wide range of benefits of urban trees, as well as emergent NCA methodologies.  

112

113 Methodology

114 Evapotranspiration rate of trees
115 Values for Et and stomatal conductance (gs) were gathered from published literature for tree species 

116 relevant to urban environments within a temperate oceanic climate: namely ‘Cfb’ from the Koppen-

117 Geiger Climate Classification (Kottek et al., 2006) and ‘Do’ from the Köppen-Trewartha Climate 

118 Classification (Belda et al., 2014). Where only gs data was available, Et rate (EtR) was calculated using 

119 Fick’s law of diffusion, after Rahman et al. (2011), and converted to units of g/m2/s. Table 1 presents the 

120 minimum, mean and maximum Et for the range of species and cultivars used in this study.

121

122 [Insert table 1: Evapotranspiration rates for tree species, sourced from the published literature.]

123

124 Analysis of EtR was conducted to consider the range of values reported in the literature. Stomatal 

125 conductance, and therefore EtR, has high temporal (especially daily) and spatial variability, affected by 

126 factors such as water vapour pressure deficit, soil moisture, plant health, position orientation and age of 

127 leaves (or needles) (Breuer et al., 2003). To account for such variations as far as reasonably possible 

128 minimum, mean and maximum values from the literature were considered in this study. Figure 1 shows 

129 the mean EtR for eight tree species and three genera where multiple records are reported; minimum 

130 and maximums are shown as vertical bars. Single EtR values for the other 17 tree species and one genus 

131 listed in Table 1 are also shown. The average EtR across all records was 0.058 +/- 0.012 g/m2/s (95% 

132 confidence interval; solid and dashed blue horizontal bars, respectively, in Figure 1). Three of the genus 

133 values and twelve of the tree species EtR (minimum, mean or maximum) values fell within the 95% 

134 confidence intervals of the all-data average. EtR has a linear relationship to the amount of cooling 
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135 provided; therefore the range of EtR for each of the species is indicative of the uncertainty associated 

136 with the cooling results.

137
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139 Figure 1. Mean evapotranspiration rates (EtR; black diamonds) for all of the tree species considered; sourced from 

140 the published literature. Minimum and maximum EtR are shown by vertical bars. For genera with multiple values in 

141 the literature, the genus average and range are shown. The mean of all the species and genera EtR and the 95% 

142 confidence interval of this mean are presented (solid horizontal line, upper and lower intervals as dash horizontal 

143 lines).  

144

145 Evapotranspiration from an urban forest

146 Three case studies were considered, each having a completed i-Tree Eco survey: Edinburgh (Hutchings et 

147 al., 2012), Greater London (Rogers et al., 2015), and Wrexham (Rumble et al., 2015). For Greater 

148 London, the Outer and Inner London figures as detailed in the study are used. The species composition 
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149 and total leaf area values, as reported by i-Tree Eco, were used in conjunction with Table 1 EtR values to 

150 provide a total Et for each case study urban forest. Total Et was determined using the species mean EtR 

151 where possible; where a species mean was not available, the genus average EtR was adopted. Where 

152 neither species nor genus data were available, the all-data mean EtR was used (Table 1). Et was 

153 normalised across the case studies according to land surface area (Et/km2; assuming an even distribution 

154 of trees). 

155

156 The rate of water mass transfer,  (g/m2/s), for Et was converted into rate of thermal energy absorbed,  𝑚
157  (kJ/m2/s), from the surrounding environment using Eq. 1:𝑞
158

159   (1)𝑞 = 𝑚 ×  𝜆𝜐𝐻2𝑜

160

161 Where  is the latent heat of vapourisation of water (  2.456 kJ/g at 292 K and atmospheric 𝜆𝑣𝐻2𝑂
𝜆𝑣𝐻2𝑂

=

162 pressure; Wagner and Pruss, 2002). Calculating energy transfer rate allowed Et to be related to cooling 

163 as a measure of power (i.e. Et power). For modelling purposes, it was assumed that tree leaves had zero 

164 heat capacity (Ca et al., 1999).

165

166 The distribution of heat from Et cooling can be generally characterised by the Bowen ratio (B) 

167 (Santamouris, 2013). Guided by Taha (1997), the Bowen ratios of ‘typical’ UK urban and wooded areas 

168 were used to apply an adjustment factor of 0.5.(Btree+1/Burban+1) to calculated Et energy values. This 

169 generalised adjustment factor does not consider local spatial factors, but provides an estimate for the 

170 amount of energy that equates to cooling, i.e. the effective Et cooling potential.

171

172 A common method of assigning a monetary value to ES is to use a comparative service as an economic 

173 benchmark (Defra/ONS, 2017). Following the methodology of Rahman et al. (2011), an economic 

174 assessment of Et cooling from trees was made through direct comparison with the cost to provide 

175 equivalent cooling from operating an air conditioning (A/C) unit. An active direct evaporative cooling 

176 system (DEC) was used for comparison because the cooling mechanism is the same as Et from trees 

177 (Amer et al., 2015). A mid-sized evaporative cooler was selected (model ECP07, EcoCooling Ltd, 

178 www.ecocooling.org). This model provides 35 kW of cooling from 1.5 kW of electricity and a flow rate 

179 range 10-14.5 m3/hr. The B-adjusted Et cooling power of the trees was divided by the rated cooling 

180 capacity of the evaporative cooler (35 kW) to give the number of A/C units required to deliver an 
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181 equivalent amount of cooling as the three case study urban forests. This value was then multiplied by 

182 electricity consumption of the cooler (1.5 kW) and an electricity unit price of 0.14 £/kWh (UK average 

183 electricity variable unit ‘Direct Debit’ and ‘Prepayment’ tariffs for 2017; BEIS, 2018) to provide an 

184 equivalent cooling value (£/hr). The comparison is made with the operational cost of A/C units and does 

185 not include purchasing or maintenance costs.

186
187 The potential energy impact of evapotranspiration on building cooling systems

188 The direct comparison method described above is limited conceptually as A/C units are not designed for 

189 outdoor use. However, the results provide useful comparison to previous work. A more realistic, though 

190 novel, approach is to recognise that trees are cooling the outdoor ambient air, which in turn impacts the 

191 cooling load placed on A/C systems. Through building energy modelling the energy dynamics and local 

192 spatial factors of different types of building structures found in UK cities were used to assess the impact 

193 of Et cooling by urban trees on building energy consumption. This approach provided a practical scenario 

194 that is transferable to building energy cost savings. 

195

196 Modelling energy impact on a single building and a street canyon 

197 To evaluate how trees cooling the surrounding environment impacts on a building’s cooling requirement 

198 a dynamic thermal energy model: TRaNsient SYstems Simulation package (TRNSYS) (TRNSYS, 2010) with 

199 airflow analysis by TRNFLOW (TRNFLOW, 2009), was employed to capture both the indoor and outdoor 

200 processes. TRNSYS is a reference software and one of the listed simulation programs in the 

201 European/British Standard on thermal solar systems and components: BS/EN12977 (2018). TRNSYS is a 

202 recognised simulation package within the ‘Best Directory of Building Energy Software Tools’ (formerly 

203 hosted by US Dept. of Energy) and has been tested and validated by International Energy Agency (IEA; 

204 under Task 34/43). The IEA comprehensive study demonstrated the robustness of the algorithms used in 

205 the TRNSYS (Loutzenhiser et al., 2007; Neymark et al., 2008). In addition, the software has been 

206 successfully used over multiple decades in a broad range of built environment research (Bradley and 

207 Utzinger, 2007; Shahrestani et al., 2013; Shahrestani et al., 2017; Antoniadis and Martinopoulos, 2018; 

208 Stritih et al., 2018). 

209

210 While, ultimately, the cooling load of a building is determined by the many different physical attributes 

211 of the indoor and outdoor environment (i.e. solar gains, humidity, surface temperatures, air 

212 temperature, wind speed, heat capacity and orientation), the indoor air conditions control the level of 

213 cooling demand and the outdoor air temperature influences the energy requirement to meet that 
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214 cooling demand. For this reason, the modelling was broken into two conceptual parts: (i) Et influence on 

215 outdoor air temperature, and (ii) a simplified representation of a building to understand cooling demand 

216 at a given cooling set-point temperature, as the energy needs for cooling are also impacted by relative 

217 humidity (RH).    

218

219 For this element of the research, Inner London was adopted as the case study area. Using the i-Tree Eco 

220 published leaf area density and the average EtR for the urban forest composition of Inner London it was 

221 possible to determine the change in absolute humidity of the volume of air surrounding a building (or in 

222 a street canyon, see below) at a given moment in time. Modelling the Et effect of trees as an evaporative 

223 cooling process with constant enthalpy, a psychrometric chart (Supplemental Figure 1) was used to 

224 determine a temperature drop in the air surrounding the trees, assuming that the entire Et was used in 

225 cooling the air, and that effects remained local to the tree and buildings (i.e. no boundary layer mixing). 

226 The minimum, mean and maximum EtR (Table 1) were applied to the leaf area density of Inner London 

227 (from Table 2) and scaled to a modelled building area (Figure 2). This scaled EtR was used to calculate a 

228 temperature drop in a volume of air immediately surrounding the simplified representations of a 

229 building, and these representations were assumed to be homogenously representative of Inner London 

230 when scaling the energy efficiencies for valuation purposes.

231

232 Two zonal models were developed using TRNSYS: (i) a single zone building in isolation, and (ii) a street 

233 canyon consisting of two single zone building blocks in parallel (Figure 2). In each, shade-casting by trees 

234 onto the buildings is not considered by the model; in the latter case, mutual shading of buildings is 

235 modelled. Each considered the influence of regional weather conditions (larger scale weather systems) 

236 on cooling as well as capturing some of the mixing processes of buoyancy and forced flow direction of 

237 air. A weather file representative of conditions of London (after: Levermore and Parkinson, 2006), 

238 determined the boundary conditions of the model at each time step. The single zone isolated building 

239 was 10m x 10m x 20m (h;w;l) and situated centrally in a total volume of 20m x 30m x 20m (h;w;l). For 

240 the street canyon, each building block was 18m x 20m x 100m (h;w;l) in a total volume of 36m x 80m x 

241 100m (h;w;l). Simulations ran at 1 hr time steps from January 1st to December 31st.

242

243 The cooling season was taken as June 1st to September 30th - the warmest of the British summer 

244 months. A constant Et was applied for the single building case and for the street canyon a fixed daily 

245 profile of Et was applied following a simple polynomial curve based on work by Gerosa et al. (2012) to 
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246 account for hourly changes in canopy transpiration. A 4th order polynomial was applied (Equation 2). 

247 Building cooling was considered to be available 24 hr a day with the cooling limited to a temperature 

248 set-point of 23˚C and a RH set-point of 50%, or 60%. A constant system Coefficient of Performance (CoP) 

249 of 2.0 was applied, as was the electricity unit price (0.14 £/kWh; BEIS, 2018). 

250

251

252                                      (2)
4

t

2
tmax × 

E =
0                                 
(0.00022 ( t - 13) - 0.03 ( t - 13) + 1) E    

                         t
          6 t

<6  or  t 2
<21

1≥
≤⎧

⎨
⎩

253 where Etmax is the maximum Et for the day and t is time, in 24 hr clock system.

254

255 Each building block had the same schedule of operation, set point cooling temperature, occupant 

256 density and internal heat gains (see Supplemental Material: Table S1).

257

258
259 Figure 2. Model dimensions for representing (a) single, isolated building, and (b) a street canyon and 
260 row of buildings with each row considered as a single open plan zone. The surrounding volume (black 
261 dashed line) determined the area for calculating availability of Et. Air flow from wind and buoyancy 
262 effects was considered by splitting the surrounding volume into equally sized sub-volumes, as depicted 
263 by the blacked dotted line. Each cuboid represents a different microclimate surrounding the building 
264 cuboid (solid black lines). 

265

266 Ambient conditions are not only important to determining the loads under which a cooling system 

267 operates, but are also important for determining the influence of air infiltration and ventilation rates on 

268 cooling demands. For this study, the building ventilation was considered to be 100% mechanically driven 

269 in order to ascertain the level of cooling load offset provided by trees. Infiltration, however, is 

270 dependent on the pressure coefficients (Cp) on the surface of a building – important to airflow network 
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271 programs (Cóstola et al., 2009). Whilst there is recognised uncertainty in use of standard Cp values, for a 

272 first approximation the values provided by (Grosso, 1992) using the CpCalc+ calculation program were 

273 applied to provide representative values of a building over 3 storeys in height. Cp values applied in the 

274 two models are shown as Supplemental Material (Table S2).

275

276 Results 

277 Case study areas

278 Urban forest composition was similar across each case study area and for many of the genera EtR values 

279 were available from the literature (Table 1). The most important species for providing Et cooling were 

280 also similar across the case studies, with at least two of Castanea sativa, Prunus avium or Platanus 

281 hybrida featuring in the top three (Table 2). Edinburgh had the second highest number of trees per km2, 

282 but the lowest normalised leaf area (Table 3). Outer London had fewer trees/km2 but 27% more leaf 

283 area than Edinburgh, suggesting that Outer London’s trees have larger canopies or species with larger 

284 leaves. Inner London’s trees evapotranspired the most: on average 26.5 kg H2O/tree/hr (Table 3). Total 

285 transpiration varied from 1,420 kg H2O/s in Wrexham to 44,900 kg H2O/s in Outer London (Table 3). 

286 When normalised by leaf area or case study area Et ranged 47.4-54.1 kg H2O/s/km2 (by leaf area, Table 

287 3) or 30.4-37.7 kg H2O/s/km2 (by land area, data not shown).

288

289 [insert Table 2. The three most common tree species and most important species for delivering Et 

290 cooling in each of the case study urban forests]

291 [insert Table 3. Evapotranspiration across the case study urban forests]
292
293 Table 4 presents results for Et cooling for each of the case study urban forests. Adjusted total Et cooling 

294 energy (q) is presented along with the equivalent number of A/C units required to provide the same 

295 amount of cooling, value of cooling and the 95% confidence interval. Outer London with the largest 

296 urban forest and corresponding leaf-area (Table 3) produced the greatest total amount of cooling at 

297 55,200 MW (Table 4) or £321 m/annum in A/C unit equivalents (assuming cooling 8 hr/day, June 

298 through Sept; £83.9 m/annum for Inner London). When normalised ‘per tree’ the range in the average 

299 values of cooling was 4.8 kW/tree (Wrexham) to 9.1 kW/tree (Inner London); equivalent to 0.03 to 0.05 

300 (+/-0.01) £/hr/tree across the three urban forests (Table 4). The power ratings on a per tree basis are 

301 comparable to those reported by Rahman et al. (2011) who reported 1.4, 3 and 7 kW/tree for Pyrus 

302 calleryana in August growing in Amsterdam soil, grass verge or pavement, respectively. 
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303
304 [insert Table 4.  Summary of the estimated value of the effective cooling from each urban forest case 
305 study]
306

307 Urban building energy savings - Single building model

308 On average, the level of reduction in cooling resulting from current levels of tree provision in Inner 

309 London ranged between 0.6 and 0.9% depending on indoor RH control levels (Table 5). Day et al. (2009) 

310 estimated that London accounted for 11% of Britain’s total cooling load. Assuming that this almost 

311 exclusively applies to Inner London (i.e. 9 of the 11%), and taking the official government figures on total 

312 cooling load for the UK in 2016 to be 13,037 GWh (BEIS, 2017), then the trees in Inner London provide a 

313 cooling benefit of 7.0 – 10.6 GWh. Taking a midpoint of 8.8 GWh and a unit price of £0.14/kWh, the 

314 saving equates to £1.23 million per year under the current assumptions. 

315 [inset Table 5: Total cooling supplied to single building with and without tree Et cooling applied and for 

316 different RH control set points]

317

318 Urban building energy savings - Street canyon building model

319 The cooling energy provided by Inner London trees at the three rates of Et (minimum, mean, maximum) 

320 are presented in Table 6. In the case of sensible cooling loads, trees in Inner London produced between 

321 1.28% and 13.4% energy saving when RH of the building indoor environment was not controlled for. 

322 However, the latent cooling load increased in all instances as a result of the increased moisture from the 

323 Et of trees. Accounting for both sensible and latent cooling loads, the presence of trees would cause an 

324 increase of between 0.09 - 1.15% when controlling indoor environments to 23°C at 50% RH, but would 

325 result in a decrease in cooling load of between 0.9% and 3.09% for an indoor RH of 60%. Cooling systems 

326 rarely (if at all) operate to tightly control indoor RH and as such the latent energy component of a 

327 building cooling system is likely to be much lower than shown here. Looking, therefore, at the effect on 

328 sensible cooling alone, a reduction of 1.28 - 13.4% in cooling demand for a typical summer could be 

329 associated with the presence of trees in Inner London when considering the full 95% confidence interval 

330 of species Et rates. This equates to an annual cost saving of between £2.1 million to £22.0 million for a 

331 typical cooling season in Inner London (assuming that the savings in energy usage are applicable pan-

332 Inner London and that 9% of the 13,037 GWh (BEIS, 2017) total cooling load for the UK applies to Inner 

333 London, as above).
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334 [insert Table 6. Cooling energy demand and saving potential from trees for a range of Et for the street 
335 canyon model scenario and with separation of sensible and latent cooling loads]

336

337 Discussion

338 Evapotranspiration Data

339 Review of the available literature revealed that EtR is significantly influenced by the characteristics of 

340 plants and weather conditions (Heath, 1998; Atkinson et al., 2004). In this study, therefore, Et data were 

341 only used from studies in regions with similar climate to the UK. Of the 25 species for which Et data were 

342 available, ten were not present in any of the case study’s urban forests (Table 1); data for these 

343 subsequently featured in the genus average values. The influence of sunlight, temperature, humidity, 

344 water availability, and wind speed on Et means that even within a single species, variation within a city 

345 due to microclimatic effects should be expected. Kruijt et al. (2008) and Bernacchi et al. (2011) have 

346 shown the impact of air quality (CO2 and O3 concentrations) on the rate of Et; and Heath (1998) showed 

347 daily variation in gs due to meteorological conditions. In this study, the variation of these influencing 

348 factors was accounted for through the use of minimum, mean and maximum Et, only. One limitation of 

349 the study, therefore, is uncertainty due to changes in Et under prolonged drought-stress conditions. Gill 

350 et al. (2013) note: increased length and frequency of summer droughts is likely to decrease the cooling 

351 potential of Et, when it is most needed. Furthermore, EtR values were not available at the species-level 

352 for ca. 90% of the three urban forests (data not shown). However, applying the range of EtR values 

353 allowed estimation of a range of Et cooling provided and further insight to the benefit of trees in urban 

354 settings that may otherwise go unrecognised yet is useful in urban planning and urban forestry 

355 management policy creation. 

356

357 Evapotranspiration from an urban forest 

358 The two defining parameters of Et in this study are EtR and leaf area. Species, genus and overall-average 

359 EtR were assumed not to differ between the three case studies. The validity of this assumption should be 

360 tested further to check the applicability of the approach to cities across UK, Europe and areas of similar 

361 climate; however it was considered appropriate for this study due to the use of minimum, mean and 

362 maximum published values. Given this assumption, leaf area was the main parameter determining total 

363 Et and hence cooling. An urban forest with more healthy mature and large stature trees will typically 

364 have a larger leaf area and, therefore, offer greater cooling potential. The case for more large stature 

365 trees in the urban environment is frequently made (e.g., UFWACN, 2015) on intuitive (a larger canopy de 
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366 facto casts more shade) as well as scientific argument (Rahman, et al., 2018; Smithers, et al., 2018, for 

367 example). Our results support such claims: by virtue of their greater cumulative leaf areas larger 

368 canopied trees provided more of the climate regulation ES. Table 1 illustrates, however, that small 

369 stature trees including: Crataegus laevigata, Prunus ‘Umineko’, Pyrus calleryana and Sorbus arnoldiana 

370 have average Et rates that suggest they can be significant contributors to latent heat transfer (Et >0.075 

371 g/m2/s). Their size means that these species can be suited to a range of planting locations, for example 

372 where there is insufficient room for a tree of large stature. Stratópoulos et al. (2018) showed that some 

373 small to medium stature trees, including Acer campestre and Ostrya carpinifolia, showed higher 

374 flexibility in response to changing weather with increased growth and transpiration under favourable 

375 conditions and more conservative water use when dry. Their inclusion in the urban forest may thus 

376 support efforts to build resilience to a changing climate through species diversification, however 

377 widespread use may reduce delivery of evapotranspirational cooling due to the regulated water use of 

378 these species. 

379

380 Building energy efficiency

381 The results showed that Et from the trees in Inner London is likely to provide significant energy savings 

382 due to the already high and increasing cooling energy demand. Even a reduction as small as 1% equated 

383 to a substantial financial benefit - £1.64 m - yet the study revealed that evaporative cooling may 

384 contribute a saving of up to a 13.4% reduction in energy consumption for sensible heat cooling. At the 

385 same time, moisture content in the microclimate is increased and this may increase the demand for 

386 latent cooling in buildings, which highly depends on the approach of humidity control in the indoor 

387 environment. For instance, under a very tight control of RH to 50%, Et may lead to an increase to total 

388 cooling demand by up to 1.15%. But this is without consideration of other cooling mechanisms 

389 associated with trees (shading and short-wave energy reflection; Smithers et al., 2018). Furthermore, it 

390 is highly atypical for cooling systems to operate under tight humidity control, especially in the UK. Under 

391 the more realistic RH control mechanisms and set-point of 60%, the modelling showed that Et from trees 

392 contributed an annual energy consumption saving across Inner London of up to 3.1% (when considering 

393 sensible and latent cooling together), equivalent to £5.09 m. If energy savings due to the shade-effect 

394 was also valued, the climate regulation ES valuation is likely to be even greater (Akbari et al., 2001; 

395 Akbari, 2002; Hsieh et al., 2018).

396
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397 In using a combination of published Et rates, tree population survey data and a first order modelling 

398 estimate of impact on cooling load, certain limitations in the estimates must be recognised. The results 

399 demonstrate value can be attributed to tree cooling, however the assumptions of homogeneity in both 

400 built form and urban forest canopy effects are limiting factors. The figures should be considered as 

401 estimates on order of magnitude. The mixing of air in the urban canopy layer and impact of building 

402 height on availability of tree cooling needs further consideration to demonstrate the impact of trees on 

403 cooling energy demand. Addressing some of the assumptions in this work could lead to a reduction in 

404 this estimated potential saving. Consideration of specific microclimatic effects – such as increased 

405 localised air temperatures leading to increased vapour pressure deficit and thus increased Et (Peters et 

406 al., 2010) – could also, however, demonstrate increased cooling load offsets. Turbulence and mixing of 

407 air in the canopy layer immediately around a building have in part been accounted for by use of a zonal 

408 model that captured some of the mixing processes of buoyancy and forced flow direction of air. To 

409 represent the diffusion of cooling to the wider urban boundary layer and to take account of local (urban 

410 canyon) temperature variations (Grimmond, 2007) a more sophisticated modelling approach may be 

411 warranted. Furthermore, the study has not considered the influence that vegetative and built surface 

412 fractions can have on energy fluxes (Lorridon and Grimmond, 2012). Selection of different sites could 

413 lead to more representative values of overall city energy fluxes (Ward et. al., 2014).

414

415 Improving the valuation of urban tree ecosystem service provision

416 i-Tree Eco has been developed to help assess and manage urban tree populations for the benefits they 

417 can provide (i-Tree, 2017). To this end, a primary function of the tool is to quantify and monetarise 

418 environmental functions of the urban forest. The economic case for urban trees is stronger where a 

419 more comprehensive range of the benefits are valued. The current i-Tree Eco (version 6) provides inter 

420 alia an estimate of building energy use avoided based upon shade provision (summer time) and shelter 

421 provision (winter time) that result in decreases in electricity and gas consumption for cooling and 

422 heating, respectively. However the valuation is not fit-for-purpose internationally, where the model has 

423 not been parameterised for different construction materials. The first of our two modelling approaches 

424 is consistent with the i-Tree Eco approach with its calculation of leaf area according to urban forest 

425 (species) composition and deferring to genus data where species specific values are not available. 

426 However, as this approach is not a direct analogue of an anthropogenic service equivalent it’s suitability 

427 in natural capital accounting type situations should be further tested (Defra/ONS, 2017). 

428
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429 Comparisons to A/C units is limited since they are intended to cool air in enclosed buildings, not open air 

430 environments. However, they are useful conceptually to provide a comparative monetary value for the 

431 cooling service. The value produced here for the Et cooling potential of Inner London was £84 m/annum. 

432 In comparison, the building energy modelling provided a cost saving, directly attributable to the trees, of 

433 between £2.1 m and £22.0 m annually (for Inner London) based upon the practical energy costs to 

434 cooling indoor environments in the same situations. As such, a way to value a particular outcome of Et 

435 has been explored and shown to be significant. The sophistication of the evaluation is currently limited 

436 by its consideration of one hypothetical street scene, only. Modelling street canyons of varying size 

437 more representative of the heterogeneity of a large city such as London and comparison to other 

438 cityscapes needs to be tested prior to its application within or alongside a tool like i-Tree. 

439

440 Conclusion 

441 Evapotranspiration rate (EtR) data proved to be limited. New data collection on gs and EtR of different 

442 tree species is required to improve understanding of the role of urban trees in cooling cities. Within 

443 these limitations, the study showed that the range of cooling potential provides energy saving 

444 associated with the sensible cooling load of buildings. The sensitivity to cooling regime (i.e. sensible 

445 versus latent), simplifications in the modelling approach, and focus on Et effects demonstrate there is 

446 more to be done to understand the full impact of urban forest on building energy saving use. Such work 

447 must consider varying climatic conditions if the role of climate change and microclimatic effects are to 

448 be understood. Furthermore, transferability of Et measures could be improved through the publication 

449 of standard metrics of tree height, trunk diameter and canopy sizes, which were often missing from the 

450 literature reviewed. 

451
452 The case study results show that the amount of evapotranspirational cooling has substantial economic 

453 value – in the order of 106 £/annum when calculated through comparison with a replacement service or 

454 via direct impacting on building air-conditioning. Growing city populations, increased energy density and 

455 projected climate change (IPCC, 2014) are already causing city authorities to plan the mitigation of and 

456 adaptation to future heat stress. Including the assessment of Et cooling energy into tools such as i-Tree 

457 Eco could improve the effectiveness of urban tree planning and management under a changing climate.

458
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643 Table 1 – Evapotranspiration rates for tree species taken from literature. “spp.” used to indicate where 

644 species not specified. Underlined values calculated from the reported stomatal conductance values. 

645 (References are: 1.Heath, 1998;  2.Wullschleger et al., 1998;  3.Breuer et al., 2003;  4.Atkinson et al., 2004; 

646 5.Betson and Scholefield, 2004;  6.Fini et al., 2009; 7.Leuzinger et al., 2010;  8.Hipps et al., 2014; 9.Rahman 

647 et al., 2015; 10.Gillner et al., 2015).

648

Common 

Name
Scientific Name

Experiment 

Conditions

Age

(years)

Height

(m)

DBH*

(cm)

Et min

(g m-2 s-1)

Et max

(g m-2 s-1)

Mean Et

(g m-2 s-1)

Genus Et 

(Mean)

(g m-2 s-1)

Norway 
Maple6,7

Acer 
platanoides Irrigated n/a n/a 3.5 0.034 0.075 0.053

Red Maple2 Acer rubrum n/a n/a n/a n/a 0.021 0.021 0.021

0.037

Red Horse 
Chestnut7,10

Aesculus × 
carnea Hayne n/a 15 9.2 20.75 0.009 0.009 0.009

Horse 
Chestnut7

Aesculus 
hippocastanum n/a n/a n/a n/a 0.053 0.053 0.053

Chestnut spp.1 Aesculus spp. In Ambient 
Air 2 n/a n/a 0.029 0.041 0.035

0.032

Turkish 
Hazel10

Corylus corluna 
L. n/a 13 8.5 15.75 0.034 0.034 0.034 0.034

Midland 
Hawthorn9

Crataegus 
laevigata n/a n/a 6 1.37 0.074 0.089 0.081 0.081

Beech spp.1 Fagus spp. In Ambient 
Air 2 n/a n/a 0.035 0.045 0.040

Common 
Beech2 Fagus sylvatica 100-yr-old 

plantation n/a 35 54 0.039 0.039 0.039

0.039

Red Beech2 Nothofagus 
fusca

Pristine 
forest n/a 34 60 0.077 0.077 0.077 0.077

Maidenhair 
Tree10

Ginkgo biloba 
L. n/a 19 12.6 25.5 0.014 0.014 0.014 0.014

Tulip Tree10 Liriodendron 
tulipifera L. n/a 14 10.65 19.75 0.004 0.004 0.004 0.004

Crabapple 
Tree9

Malus 
‘Rudolph’ n/a n/a 6 1.37 0.046 0.077 0.062

Common 
Apple3

Malus 
domestica n/a 9 n/a n/a 0.063 0.063 0.063

0.062

Sitka Spruce3 Picea sitchensis n/a n/a 11.5 n/a 0.044 0.044 0.044 0.044

Corsican Pine5 Pinus nigra Forest n/a 15 n/a 0.040 0.040 0.040

Cluster Pine2 Pinus pinaster n/a n/a 20 34 0.019 0.019 0.019
0.030

London 
Plane3,7

Platanus 
acerifolia

fully 
expanded 

leaves
28 20 n/a 0.031 0.096 0.063 0.063
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Common 

Name
Scientific Name

Experiment 

Conditions

Age

(years)

Height

(m)

DBH*

(cm)

Et min

(g m-2 s-1)

Et max

(g m-2 s-1)

Mean Et

(g m-2 s-1)

Genus Et 

(Mean)

(g m-2 s-1)

Black 
Cottonwood2

Populus 
trichocarpa n/a n/a 15 15 0.120 0.120 0.120 0.120

Umineko 
Cherry 

Blossom9

Prunus 
‘Umineko’ n/a n/a 6 1.37 0.070 0.085 0.077

Cherry spp.4 Prunus spp. wild n/a n/a n/a 0.048 0.048 0.048

0.063

Callery pear9 Pyrus 
calleryana n/a n/a 6 1.37 0.097 0.155 0.126 0.126

Oak spp.1 Quercus spp. In Ambient 
Air 2 n/a n/a 0.041 0.058 0.049 0.049

Mountain 
Ash9

Sorbus 
arnoldiana n/a n/a 6 1.37 0.074 0.076 0.075 0.075

Small leaved 
lime6,7,10 Tilia cordata Irrigated n/a n/a 3.5 0.031 0.075 0.057

Broad leaved 
lime6,7

Tilia 
platyphyllos Irrigated n/a n/a 3.5 0.023 0.054 0.041

Silver lime6,7 Tilia tomentosa Irrigated n/a n/a 3.5 0.040 0.086 0.061

Common 
lime6 Tilia x europaea Irrigated n/a n/a 3.5 0.028 0.075 0.052

0.053

Dutch Elm10
Ulmus x 

hollandica Mill. 
‘Lobel’

n/a 14 12.88 23.5 0.023 0.023 0.023 0.023

Et average (all genera): 0.054

649 * DBH: diameter at breast height
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651 Table 2. The three most common tree species and the three most important species for delivering Et 

652 cooling in each of the urban forest case studies.

 Edinburgh Inner London Outer London Wrexham

1st Acer pseudoplatanus Betula spp. Acer pseudoplatanus Acer pseudoplatanus

2nd Ilex aquifolium Tilia x vulgaris Quercus robur Crataegus monogyna

Most 
common 
species

3rd Betula pendula Magnolia spp. Crataegus pedicellata Betula pendula

1st Castanea sativa Platanus 
hybrid Castanea sativa Platanus hybrida

2nd Acer platanoides Quercus 
petraea Crataegus monogyna Fagus sylvatica

Top Et 
providers

3rd Prunus avium Prunus avium Populus spp Castanea sativa

653  

654

1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400



26

655 Table 3. Evapotranspiration across the three case study urban forests.

City
Area size

(km2)

Number of 

trees

(000’s)

Total leaf 

area

(km2) (000’s)

Total Et

(kg s-1)

Mean Et 

per leaf 

area

(kg s-1 km-2)

Mean Et per 

tree

(kg hr-1 tree-1) 

Edinburgh 115 638 74 3,500 47.4 19.8

Inner London 310 1,587 217 11,700 53.9 26.5

Outer London 1,285 6,807 1,047 44,900 54.1 23.7

Wrexham 38 364 29 1,420 48.9 14.0
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658 Table 4.  Summary of the estimated value of the effective cooling from each urban forest case study.

Adjusted total q
A/C unit* 

equivalents

Cooling 

Value†
Average q

A/C unit* 

equivalents 
Cooling value†

City

(MW) (000’s) (k £ hr-1) (kW tree-1) (tree-1) (£ hr-1 tree-1)

Edinburgh 4,290 (±1,300) 123 26 (±8) 6.7 (±2.0) 0.2 £ 0.04 (±0.01)

Inner London 14,400 (±4,300) 411 86 (±25) 9.1 (±2.7) 0.3 £ 0.05 (±0.02)

Outer London 55,200 (±16,000) 1,580 329 (±97) 8.1 (±2.4) 0.2 £ 0.05 (±0.01)

Wrexham 1,740 (±510) 50 10 (±3) 4.8 (±1.4) 0.1 £ 0.03 (±0.01)

*based on 1.5 kW evaporative cooler (EcoCooling Ltd).

†at the 2017 UK Average rate of 0.14 £/kWh (BEIS, 2018)
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661 Table 5: Total cooling (and energy demand for cooling) supplied to a single building with and without 

662 tree Et cooling applied and for different relative humidity (RH) control set points.

Cumulative cooling (and energy) demand MWh
Indoor RH=50% Indoor RH=60%Description 

Et=0.015 Et=0.055 Et=0.165 Et=0.015 Et=0.055 Et=0.165 

With trees 6.68
(3.34)

6.65
(3.33)

6.57
(3.29)

5.51
(2.75)

5.47
(2.74)

5.37
(2.68)

Without trees 6.69
(3.35)

6.69
(3.35)

6.69
(3.35)

5.52
(2.76)

5.52
(2.76)

5.52
(2.76)

Cooling demand 
reduction (summer) 0.15% 0.60% 1.82% 0.24% 0.92% 2.73%
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666 Table 6. Changes in cooling (and energy) demand with and without trees in the street canyon model 
667 scenario, over the one-year modelling period for a range of Et values and relative humidity (RH) set-
668 points of 50% and 60% (based upon a CoP=2). 

669

Cumulative cooling (and energy) demand MWh

Indoor RH=50%

Et=0.015 Et=0.055 Et=0.165
Description

 
Eva 
Clg* Sensible Latent Total Eva Clg Sensible latent Total Eva Clg Sensible latent Total

With trees 51.6
(25.8)

291.7
(145.9)

129.2
(64.6)

420.9
(210.5)

177.3
(88.7)

278.2
(139.1)

144.9
(72.5)

423.1
(211.6)

532.1
(266.0)

255.8
(127.9)

169.6
(84.8)

425.4
(212.7)

Without trees 0
295.5

(147.7)
125.1
(62.5)

420.6
(210.2) 0

295.5
(147.7)

125.1
(62.5)

420.6
(210.3) 0

295.5
(147.7)

125.1
(62.5)

420.6
(210.3)

% change in 
demand -1.28% 3.30% 0.09% -5.85% 15.9% 0.61% -13.4% 35.6% 1.15%

Cumulative cooling (and energy) demand MWh

Indoor RH=60%

Et=0.015 Et=0.055 Et=0.165
Description

 

Eva Clg Sensible Latent Total Eva Clg Sensible latent Total Eva Clg Sensible latent Total

With trees 51.6
(25.8)

291.7
(145.9)

58.3
(29.2)

350.0
(175.0)

177.3
(88.7)

278.2
(139.1)

68.0
(34.0)

346.1
(173.1)

532.1
(266.0)

255.8
(127.9)

84.4
(42.2)

340.2
(170.1)

Without trees 0
295.5

(147.7)
55.6

(27.8)
351.0

(175.6) 0
295.5

(147.7)
55.6

(27.8)
351.0

(175.5) 0
295.5

(147.7)
55.6

(27.8)
351.0

(175.5)
% change in 
demand -1.28% 4.95% -0.29% -5.85% 22.4% -1.39% -13.4% 52.0% -3.09%

670
671 * Eva Clg: evaporative cooling
672
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1 Material to be supplied as Supplemental Information

2

3
4 Figure S1. Psychrometric Chart for determining cooling from increased humidity (from: 
5 http://www.handsdownsoftware.com).

6

7

http://www.handsdownsoftware.com


2

8 Table S1: Modelled internal gains, cooling system set points and daily period of operation used in the 
9 calculations.

Attribute Value Units
Indoor Setpoint Temperature 23 °C

Relative Humidity (RH) Set-point 50,60 %

Period Building Occupied 7am to 6pm -

Occupant Density 12 m2/person

Occupant Heat Gain (sensible) 60 W/person

Occupant Heat Gain (latent) 40 W/person

Equipment Heat Gain (sensible) 140 W/person

Lighting Heat Gain (sensible) 10 W/m2

10
11
12
13
14 Table S2. Wind pressure coefficients of infiltration effects on building cooling requirements.

Wind direction (Degree) **Façade Orientation (Height)*
0 90 180 270

South (9m) -0.017 -0.039 0.02 -0.039

South (27m) -0.022 -0.051 0.061 -0.051

East (9m) -0.057 0.001 -0.057 -0.024

East (27m) -0.028 -0.116 -0.028 -0.012

North (9m) 0.02 -0.039 -0.017 -0.039

North (27m) 0.061 -0.051 -0.022 -0.051

West (9m) -0.057 -0.024 -0.057 0.001

West (27m) -0.028 -0.012 -0.028 -0.166

Roof (36m) 0.008 0.008 0.008 0.008
* Height refers to the height of the location that the Cp value is calculated for.
** Direction of wind is determined from the North, e.g. 90 degrees represents Easterly winds.
Derived from: Cpcalc+ for buildings more than 3-storeys in height (Grosso, 1992)
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