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Fixed Point Dual Carrier Modulation  

Performance for Wireless USB 
 

Runfeng Yang and R. Simon Sherratt, Senior Member, IEEE 

Abstract — Dual Carrier Modulation (DCM) is currently used 

as the higher data rate modulation scheme for Multiband 

Orthogonal Frequency Division Multiplexing (MB-OFDM) in the 

ECMA-368 defined Ultra-Wideband (UWB) radio platform. 

ECMA-368 has been chosen as the physical radio platform for 

many systems including Wireless USB (W-USB), Bluetooth 3.0 

and Wireless HDMI; hence ECMA-368 is an important issue to 

consumer electronics and the user’s experience of these products. 

In this paper, Log Likelihood Ratio (LLR) demapping method 

is used for the DCM demaper implemented in fixed point model. 

Channel State Information (CSI) aided scheme coupled with the 

band hopping information is used as the further technique to 

improve the DCM demapping performance. The receiver 

performance for the fixed point DCM is simulated in realistic 

multi-path environments1. 

Index Terms — MB-OFDM, DCM, CSI. LLR 

I. 0BINTRODUCTION 

Ultra-Wideband (UWB) technology was historically 

employed in military radar systems. Recently UWB systems 

were proposed to standardize wide bandwidth wireless 

communication systems, particularly for Wireless Personal 

Area Networks (WPAN). The fundamental issue of UWB is 

that the transmitted signal can be spread over an extremely 

large bandwidth with a very low Power Spectral Density 

(PSD). In 2002, the USA Federal Communications 

Commission (FCC) agreed to allocate 7500 MHz spectrum in 

3.1-10.6 GHz band for unlicensed use for UWB devices [1] 

and limited the UWB Effective Isotropic Radiated Power 

(EIRP) to -41.3 dBm/MHz [2]. 

In 2005 the WiMedia Alliance [3] working with the 

European Computer Manufacturers Association (ECMA) 

announced the establishment of the WiMedia MB-OFDM 

(Multiband Orthogonal Frequency Division Multiplexing) 

UWB radio platform as their global UWB standard, ECMA-

368. ECMA-368 was also chosen as physical layer (PHY) of 

high data rate wireless specifications for high-speed Wireless 

USB (W-USB) [4], Bluetooth 3.0 [5] and Wireless High-

Definition Media Interface (HDMI) [6]. Recently ECMA-368 

has published a second updated version [7]. 
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ECMA-368 specifies a MB-OFDM system occupying 14 

bands. Each band with a bandwidth of 528 MHz can support 

up to 480 Mb/s. The first 12 bands are grouped into 4 band 

groups (BG1-BG4), and the last two bands are grouped into a 

fifth band group (BG5). A sixth band group (BG6) containing 

band 9, 10 and 11 is also defined within the spectrum of BG3 

and BG4, in agreement to use within worldwide spectrum 

regulations. The advantage of the grouping is that the 

transmitter and receiver can process a smaller bandwidth 

signal while taking advantages from frequency hopping.  

 The OFDM symbol is the basic quanta of MB-OFDM 

based UWB radio. Each OFDM symbol is constructed from 

the Inverse Fast Fourier Transform (IFFT) of a set of 128 

complex valued carriers made from 100 data carriers, 12 pilot 

subcarriers, 6 NULL valued subcarriers and 10 guard 

subcarriers. The 10 guard subcarriers used for mitigating Inter 

Symbol Interference (ISI) are located on either edge of the 

OFDM symbol and they are the same value as the 5 outermost 

data subcarriers. In addition, the guard subcarriers can be used 

as another form of time and frequency diversity resulting in 

improved performance for the receiver [8]. Each OFDM 

symbol is appended with zero-padded suffix to aid multipath 

interference mitigation and settling times of the transmitter 

and receiver. 

To operate the Physical layer (PHY) service interface to the 

Medium Access Control (MAC) service, a Physical Layer 

Convergence Protocol (PLCP) sublayer is defined to provide a 

method for converting a PSDU (PHY Service Data Unit) into 

a PPDU (PLCP Packet Data Unit) composed from three 

components (shown in Fig. 1): the PLCP preamble (containing 

the Packet/Frame Synchronization and the Channel Estimation 

sequence), the PLCP header, and the PSDU.  

To transmit a Packet Service Data Unit (PSDU) that 

contains information bits, ECMA-368 has eight transmission 

modes by applying various levels of coding and diversity, 

which offers 53.3, 80, 106.7, 160, 200, 320, 400 or 480 Mb/s 

to the MAC layer. After the bit interleaver, the coded and 

interleaved binary data sequence is mapped onto a complex 

constellation. A Quadrature Phase Shift Keying (QPSK) 

constellation is used for data rates 200 Mb/s and lower. Dual 

Carrier Modulation (DCM) is used as a four-dimensional 

constellation for data rates 320 Mb/s and higher. DCM was 

introduced to the MB-OFDM proposal by Batra and 

Balakrishnan [9] as one of the enhancement changes to create 

the current WiMedia Alliance standard.  
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The resulting complex numbers are loaded onto the data 

subcarriers of the OFDM symbol implemented using an IFFT 

to create real or complex baseband signal. Fig. 2 and 3 depict 

the encoding and decoding process for the scrambled PSDU 

respectively. Chapter II introduces DCM mapping process. 

Chapter III discusses the DCM demaper using Log Likelihood 

Ratio (LLR) demapping method and Channel State 

Information (CSI) aided scheme for the further demapping 

technique. Chapter VI discusses the performance 

measurements and comparison while chapter VII presents the 

conclusions. 

II. BDCM MAPPING 

A. 6BFrequency diversity 

Coded information on a single tone is unreliable if a 

channel has deep fade. However, the probability of 

experiencing a channel deep fade is extremely small if two 

tones with the same information are separated by a large 

bandwidth. Frequency diversity is used in the DCM by 

mapping the same coded information but different forms onto 

two different tones at different channel frequencies with a 

large bandwidth separation. 

B. 7BDCM constellation mapping 

After bit interleaving, the 1200 interleaved and coded bits 

are divided into groups of 200 bits, and further grouped into 

50 groups of 4 reordering bits. Each group of 4 bits is 

represented as (bg(k), bg(k)+1, bg(k)+50, bg(k)+51),  where k ∈  

[0…49] and 
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These four bits are mapped to two QPSK symbols 

(xg(k)+jxg(k)+50), (xg(k)+1+jxg(k)+51) as illustrated in (2). 
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Then the DCM mapper uses a DCM matrix H as in (3) to 

execute mapping of the two QPSK symbols into two DCM 

symbols (yT(k), yT(k+50)) as illustrated in (4). The resulting 

DCM symbols are formed into two 16-QAM like 

constellations [7].  
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where 1/ 10  is a normalization factor for normalizing the 

average symbol power to be a constant unit. 

The two resulting DCM symbols (yT(k), yT(k+50)) are 

allocated into two individual OFDM data subcarriers with 50 

sub-carriers separation to achieve frequency diversity. In total 

100 DCM symbols (complex numbers) are given to the 128pt 

IFFT block for building an OFDM symbol. Each OFDM sub-

carriers occupies a bandwidth of about 4 MHz. Therefore the 

bandwidth between the two individual OFDM data sub-

carriers related to the two complex numbers (IT(k), QT(k)) and 

(IT(k+50), QT(k+50)) is at least 200 MHz, which offers good 

frequency diversity gain against channel deep fading. Fig. 4 

depicts the DCM mapping process. 

III. 2BDCM DEMAPPING 

A. 8BLog likelihood ratio demapping 

The receiver converts each time-domain OFDM symbol 

into the frequency-domain via the Fast Fourier Transform 

(FFT). Then Channel Estimation and symbol Equalization 

follows. To demap the DCM symbols at the receiver, the 

received and equalized symbols previously transmitted on 

different sub-carriers can be demapped by using Log 

PLCP Preamble  

    53.3, 80,106.7, 160 

200, 320, 400, 480 Mb/s 

6 OFDM 

Symbols 

Packet/Frame Sync PLCP Header CE Sequence PSDU 

12 or 24 OFDM 

Symbols 

12 OFDM 

Symbols 
 

Fig. 1. PPDU structure   
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Fig. 2. Encoding process for the scrambled PSDU at Transmitter 
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Fig. 3. Decoding process for the scrambled PSDU at Receiver 
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Fig. 4. DCM mapping process 
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Likelihood Ratio (LLR). The DCM deampper uses two 

separate subcarriers concurrently to decode the symbol pair. If 

one symbol within one subcarrier is lost or degraded, it can be 

detected, even recovered by the DCM demapper. The 

proposed DCM soft demapping employs the DCM mixing 

matrix to combine the two equalized complex numbers into a 

sub-group of 4 soft bits. It is required to repeatedly execute 

demapping of the two received DCM sysmbols to output 

groups of 200 soft-bits. The soft bits from the DCM demapper 

are then inputted to the bit deinterleaver, the soft-bit Viterbi 

decoder and then descrambled to recover the PSDU. The 

generic format of LLR equation can be expressed in the 

following. 

 

( ) ( ))exp()exp(log)exp()exp(log YXBALLR +−+=                   (5) 

 

In our case, a LLR is calculated from the received DCM 

symbols yR(k) and yR(k+50). In addition, the LLR functions 

related to the two 16-QAM like constellations are 

independent. Hence the LLR for a group of 4 bits (bg(k), bg(k)+1, 

bg(k)+50, bg(k)+51) is formed from combining the two independent 

LLR, as in (6), (7), (8) and (9). σ
2
 is noise variance associated 

with the channel. 
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For a Gaussian channel, the LLR can be approximated as two 

piecewise-linear functions which depend on the amplitude of 

I/Q signals [10], [11]. Furthermore, the maximum LLR value 

can be approximated to be soft magnitude with the associated 

bit completely depending on the amplitude of the I/Q signals. 

In our case, there are two bits associated with each of the two 

16-QAM like constellations completely relying on their soft 

magnitude of the I/Q. Hence the LLR functions related to 

these two bits from each constellation are considered to be 

partially linear. Therefore some terms of these LLR functions 

are approximated by the proposed soft magnitude, as in (10), 

(11), (12) and (13).   
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B. 9BEnhancement by exploiting Channel State Information  

In OFDM modulation, the OFDM subcarriers suffer from 

different noise powers, for example, echoes, deep fades, etc. 

Each OFDM subcarrier position has a dynamic estimation for 

the data reliability. This dynamic estimation in frequency-

domain is defined as Channel State Information (CSI), which 

is used to enhance the channel decoder’s error correction 

performance [12] [13]. Each data carrier has a potentially 

different CSI based on the power of the channel estimate at the 

corresponding frequency. The more reliable CSI is applied to 

the associated data subcarrier, the better decoding performance 

can be. The proposed CSI aided scheme coupled with the band 

hopping information maximizes the soft demapping 

performance [14] [15]. The resulting CSI is a scalar term 

indicative of the power of each frequency component of the 

sequences. The soft bits for the demodulator are scaled by the 

corresponding CSI, hence more reliable data for better 

decoding and achieve better system performance. As a result, 

each soft bit with incorporated CSI is derived as the following. 

{ }50)()( ,min)()(
+

∗= kkkgkg CSICSIbLLRbSoft                          (14) 

{ }501)(1)( ,min)()(
+++

∗= kkkgkg CSICSIbLLRbSoft             (15) 

{ }5050)(50)( ,min)()(
+++
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{ }5051)(51)( ,min)()(
+++

∗= kkkgkg CSICSIbLLRbSoft         (17) 
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IV. 3BSYSTEM PERFORMANCE MEASUREMENTS

The system is simulated in a realistic multipath channel 

environment of 100 channel realizations in Foerster’s Channel 

Model 1 (CM1) [16] with conformance test requirement in 

ECMA-368. All simulations results are averaged over 2000 

packets with 1024 octets per payload in the 

percentile channel realization (the worst 10% channels are 

discarded). The link success probability is defined as system

can be achieved with a Packet Error Rate (PER) less than 8%

[17]. We maintain strict adherence to timing and use a 

hopping characteristic of Time Frequency Code (TFC)=1, and 

incorporate a Noise Figure (NF) of 6.6 dB and 2.5 dB 

implementation loss to the system model [7]. The simulation 

was performed with the use of guard pilot diversity resulting

 

V. CONCLUSION 

ECMA-368 offers a robust wireless solution and low cost 

wireless service in high speed WPAN. This paper 

DCM mapping and demapping processes

Meanwhile, the fixed point DCM with 6

maintain system performance with using the 

DCM, which achieves a successful link of 

Mb/s in realistic multipath channel environment
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