Effects of elevated temperature and CO2 on aboveground-belowground systems: a case study with plants, their mutualistic bacteria and root/shoot herbivores

Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing.
Published version at: http://dx.doi.org/10.3389/fpls.2013.00445
To link to this article DOI: http://dx.doi.org/10.3389/fpls.2013.00445

Publisher: Frontiers

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.
www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online
Effects of elevated temperature and CO2 on aboveground–belowground systems: a case study with plants, their mutualistic bacteria and root/shoot herbivores

James M. W. Ryalls*, Markus Riegler, Ben D. Moore, Goran Lopatinski and Scott N. Johnson

Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, Australia

INTRODUCTION

Many studies report on plant-mediated interactions between spatially separated insect herbivores that live above- and belowground, yet few studies have considered these interactions in the context of global climate change. Climate change involves multiple factors such as warming and rising atmospheric carbon dioxide (CO2) concentrations. While the effects of predicted increases in global average surface temperatures (by 1–4°C within this century) and atmospheric CO2 concentrations (from current levels of 400 to over 550 μmol mol$^{-1}$ by 2050) on insect-plant interactions have been characterized separately, only a handful of studies have considered more than one climate change variable simultaneously (Robinson et al., 2012; Stevbak et al., 2012; Murray et al., 2013). Moreover, the role of plant microbes, such as mutualistic rhizobial bacteria which form intimate associations with plants, has not yet been investigated. Combining trophic complexity and multiple climatic factors is challenging but necessary to provide a more holistic insight into the mechanisms underpinning insect–plant interactions (Ryalls et al., 2013).

All legumes form symbioses with rhizobial bacteria that fix atmospheric nitrogen (N$_2$) and are carried in root nodules (Haug et al., 2013). Root nodulation is important for the larval development of Sitona weevil species (Coleoptera: Curculionidae), including S. discoideus, which feeds on lucerne root nodules throughout its larval growth stages (Allen, 1971; Goldson et al., 1988a; Vink and Phillips, 2007). Sitona discoideus therefore has the potential to reduce N-fixation in lucerne by damaging root nodules (Keane and Barlow, 2002). The net effect of S. discoideus on nodule numbers depends on the ability of the plant to compensate for nodule loss (Quinn and Hall, 1992). The abundance and size of root nodules can also be influenced by climate change. For example, it is widely reported that root nodulation (and biological N-fixation) increases in response to elevated CO2 concentrations (eCO2) (Ryle and Powell, 1992; Lüüscher et al., 2000) but decreases with elevated temperatures (eT) (Munns et al., 1979; Zahran, 1999).

Root-feeding organisms can influence the chemical composition and biomass of aboveground plant parts, which, in turn, can influence the survival of aboveground insect herbivores (Soler et al., 2012). A recent meta-analysis (Johnson et al., 2012) confirmed that root herbivory by beetle larvae usually had beneficial effects on aboveground aphids. This potentially arises through impaired root function and stress-related accumulation of N in the foliage (Masters et al., 1993). Given that, unlike in most other
Acyrthosiphon pisum

We hypothesized that: (i) eCO2 and eT would promote and reduce nodulation and the performance of two cultivars of lucerne of varying resistance to primary herbivory affects plant growth (height) under eCO2 and eT; (ii) the presence of nodule-feeding aphids (e.g., release from natural enemies), still occur since the introduction of lucerne-feeding aphids, including A. pisum, to Australia in 1980, has helped to control aphid popula-
tions. Occasional outbreaks, however, driven by environmental factors including climatic variability and interactions with other trophic groups (e.g., release from natural enemies), still occur (Zarrabi et al., 1995; Humphries et al., 2012). Moreover, the susceptibilit-y of different cultivars to A. pisum can be modified by such factors (Ryalls et al., 2013), and we therefore included cultivars with moderate (“Trifecta”), low (“Sequel”) and no (“Hunter River”) A. pisum resistance.

We present a novel case study that examines the interactive effects of temperature (daytime temperature 26 and 30°C, aT and eT, respectively) and atmospheric CO₂ concentration (400 and 640 ppm, aCO₂ and eCO₂, respectively) on the interactions between lucerne cultivars, rhizobial bacteria, a root herbivore and an aphid. Specifically, we set out to investigate how: (i) aphid herbivory affects plant growth (height) under eCO₂ and eT; (ii) eCO₂ and eT affect root nodulation and the performance of S. discoideus; (iii) the presence of nodule-feeding S. discoideus affects the ability of A. pisum to successfully colonize and reproduce on three cultivars of lucerne of varying resistance to A. pisum under eCO₂ and eT. We hypothesized that: (i) eCO₂ and eT would promote plant growth but aphid herbivory would reduce the rate of growth; (ii) eCO₂ and eT would promote and reduce nodulation, respectively, and S. discoideus would perform better (i.e., complete larval development) at lower temperatures and higher CO₂ concentrations, and finally, (iii) nodule-feeding by S. discoideus would have a negative impact on aphid abundance via impaired root function and decreased plant quality. For the pur-pose of this case study, weigel emergence refers to the number of plants with S. discoideus that grew to adulthood and emerged from the soil.

MATERIALS AND METHODS

GROWTH CONDITIONS AND EXPERIMENTAL DESIGN

Four glasshouse chambers, providing two atmospheric CO₂ concentrations (400 and 640 ppm mol⁻¹), aCO₂ and eCO₂, respectively, and two temperature treatments (daytime temperature 26 and 30°C, aT and eT, respectively) combined factorially, were used in this study. aT (maintained at 2618°C day/night on a 15L:9D cycle) represents the daily average temperature data (November to May) for Richmond, NSW (latitude —33°611098, longitude 150°742368; Australian Bureau of Meteorology) and eT (3022°C day/night) was based on the predicted maximum temperature increase for this region within this century (CSIRO, Bureau of Meteorology, 2007). Humidity was controlled at 55%. Photosynthetic active radiation (PAR) was measured every hour between 10 am and 5 pm. PAR ranged from 210 to 380 μmol m⁻² s⁻¹; no significant differences in PAR were observed between cham-
ers overall. As an attempt to compensate for the effects of pseudo replication (though not excluding them) arising from the lack of replication of climates (climate-temperature combinations), we rotated the position of pots randomly within chambers twice weekly (Quirk et al., 2013; Sherwin et al., 2013). The environmen-
tal conditions within the chambers were logged and monitored continuously throughout the experiment to maintain temperature and CO₂ differences between chambers and temperature readings were cross-checked with transportable temperature loggers, as in Murray et al. (2013).

Larvae were sourced from Seedmark, Adelaide, South Aus-
tralia) and were inoculated with Rhizobium bacteria one hour prior to planting by submerging in a solution containing 250 g Nodule N lucerne seed inoculant (New Edge Microbials, Albury, NSW, Aus-
tralia) and 800 mL distilled water. In each chamber, 120 lucerne seeds (40 of each of the three cultivars) were individually planted in 70 mm pots filled with sieved (2 mm) local loamy-sand soil collected from the Hawkesbury Forest Experiment in Richmond, NSW (Barton et al., 2010). Soil was kept moist by watering daily (c. 15 mL). Acyrthosiphon pisum cultures, reared from a sin-
gle parthenogenetic adult female collected in Richmond, NSW were maintained at 22°C day/night on the susceptible cultivar "Hunter River" until required. Additionally, 20 sexually mature S. discoideus adults, also collected by sweep-netting in July 2012 from local lucerne fields in Richmond, NSW, were reared on “Hunter River” and eggs were collected every 24 h and stored on damp fil-
ter paper at 4°C until required. Hatching success was assessed and confirmed (>95% hatched within 5 days) by placing 200 eggs on 10 petri dishes at 25°C. “Hunter River” was included as an experimen-
tal cultivar to provide a baseline for comparison with the resistant cultivars.

EXPERIMENTAL PROCEDURE

Plants in each of the four chambers (aCO₂ × aT; eCO₂ × eT; aCO₂ × eT; eCO₂ × eT) were distributed randomly among four treatments: weevils only (W), aphids only (A), weevils and aphids (WA) and no insects or control (C), giving 10 replicates of each treatment per cultivar in each chamber. When plants were six weeks old, half of the plants (treatments W and WA) were inocu-
lated with 20 S. discoideus eggs per plant. This egg density (6027 eggs per m²) resembles S. discoideus eggs densities recorded in NSW during June (5185 eggs per m²; Anschlimann, 1983). Eggs were placed on top of the soil beside the stem of each plant. After a further 4 weeks, two teneral adult pea aphids were transferred to each plant in treatments A and WA. Plants were placed on plastic plinths within water-filled trays, which acted as moats to prevent aphid movement between plants. Aphid presence was recorded
7 and 14 days later and aphids were removed after 21 days. Six weeks after egg inoculation, plants were checked every 12 h for emerging adult weevils (i.e., those that had completed larval development and emerged from the soil leaving an exit hole). One week after aphids were removed, roots were separated from the soil and the numbers of root nodules were counted. Plant heights (from ground level to the base of the highest leaf) were measured 6 (weevil egg inoculation period), 8, 10 (aphid inoculation period) and 14 (harvest period) weeks after planting. Lucerne height is strongly correlated with biomass (Michalk and Herbert, 1977) so this represents an excellent non-destructive proxy for plant growth.

STATISTICAL ANALYSES

Plant responses

The effects of CO2 and temperature on lucerne height measurements over 8 weeks were determined using general linear models within the R statistical interface v2.15.1. The main effect terms of "CO2," "temperature," "cultivar" and "treatment" (i.e., aphid and weevil-treated), as well as their associated interactions, were included. The effects of temperature, CO2, cultivar and weevil presence on the number of nodules were assessed using multifactorial ANOVA in R. The dependent variable "nodule number" was log-transformed to standardize residuals. Pairs of mean estimated effects were compared using a Tukey-Kramer post hoc test. ANOVA was used to compare mean differences in root mass between weevil-treated and untreated plants. Root mass was square root transformed to normalise data.

Insect responses

The effects of temperature and CO2 treatment on the proportion of plants containing weevils that reached adulthood and emerged from the soil were assessed using a generalized linear model with a binomial error structure and logit link function. The effects of CO2, temperature, cultivar and weevil emergence (i.e., the proportion of plants with emerging weevils; \(\chi^2 \), df = 1) were determined using a generalized linear model with a binomial error structure and logit link function, using aphid success (colonization) as the dependent variable. Models were reduced in a stepwise manner by removing the non-significant terms in order of least significance and plants that had died before harvest were not included in analyses.

RESULTS

PLANT RESPONSES

Height

Plant height was significantly greater at higher temperatures at week 6 (\(F_{1,468} = 59.03; P < 0.001 \)) compared to week 8 (\(F_{1,468} = 40.11; P < 0.001 \)) and week 10 (\(F_{1,468} = 8.56; P < 0.004 \)), whereas CO2 did not affect plant height in these weeks (see Figure 1 for significant effects at week 10). In addition, there were significant differences in height between cultivars in these same weeks (\(F_{1,468} = 14.52; P < 0.001 \), \(F_{1,468} = 9.03; P < 0.001 \), \(F_{1,468} = 9.45; P < 0.001 \), with Sequel being significantly bigger than the other two cultivars overall (Table 1). At week 14, aphids reduced plant height (\(z_{1,305} = -2.637; P = 0.008 \)) and there was a significant interaction between CO2 and temperature (\(F_{1,468} = 8.21; P = 0.004 \)) whereby eCO2 increased plant growth at 26°C (from 57.5 ± 4.2 mm at CO2 to 66.4 ± 4.2 mm at eCO2) but not at 30°C. The presence of weevils also interacted with temperature effects (\(F_{1,468} = 6.94; P = 0.009 \)), with weevils decreasing overall plant height at 26°C (from 66.9 ± 4.4 mm without weevils to 58.1 ± 3.9 mm with weevils) but not at 30°C (see Figure 2 for all significant treatment factors).

Nodulation and root mass

Elevated temperature resulted in reduced nodulation (\(F_{1,468} = 34.78; P < 0.001 \)) but the interaction between CO2 and temperature also affected root nodulation (\(F_{1,468} = 4.11; P = 0.042 \)); nodulation increased under eCO2 at 26°C (Tukey HSD; \(P < 0.01 \)) but not at 30°C (Tukey HSD; \(P = 0.983 \), Figure 3). Plants with \(S. \) discoideus had a significantly higher number of nodules and greater root mass than those without (Table 2).

INSECT RESPONSES

Weevils

Elevated temperature had a negative effect on weevil emergence (i.e., the proportion of plants with emerging weevils; \(z_{1,214} = -3.29; P = 0.001 \)), whereas eCO2 positively affected weevil emergence (\(z_{1,214} = 2.00; P = 0.045 \), Figure 4). Weevil emergence was not influenced by cultivar type (Table 1). These responses resembled those seen for nodulation, i.e., negative and positive effects of eT and eCO2, respectively.

Aphids

\(A. \) pisum was not significantly affected by changes in temperature and CO2 or the presence of weevils, although there was a trend for the proportion of plants that were successfully colonized by \(A. \) pisum to be lower in plants inoculated with \(S. \) discoideus eggs (\(\chi^2 \), df = 1) 3.15; \(P = 0.076 \).
Table 1 | Effect of cultivar on plant height, root nodulation, aphid colonization and weevil emergence.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Plant height (mm)</th>
<th>Number of nodules per plant</th>
<th>Plants colonized by aphids (%)</th>
<th>Weevil emergence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunter River</td>
<td>46.3 ± 2.1</td>
<td>9.8 ± 0.8</td>
<td>27.5</td>
<td>6.3</td>
</tr>
<tr>
<td>Sequel</td>
<td>54.8 ± 2.1</td>
<td>12.4 ± 1.1</td>
<td>20.0</td>
<td>13.8</td>
</tr>
<tr>
<td>Trifecta</td>
<td>45.6 ± 1.9</td>
<td>75 ± 0.9</td>
<td>32.5</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Test results: $F_{2,468} = 3.96; P = 0.020^*$
$F_{2,409} = 9.585; P < 0.001^*$
$\chi^2(df = 2) = 3.324; P = 0.190$
$\chi^2(df = 2) = 2.899; P = 0.235$

Overall means (± standard error) and frequencies shown. *Significance indicated by linear model outputs and ANOVA (χ^2) test results.

FIGURE 2 | Height of three lucerne cultivars (Hunter River, H; Sequel, S and Trifecta, T) 14 weeks after sowing in treatments with and without aphids and weevils (plants with weevils, W+; plants without weevils, W–). Graphs (A–D) represent the four "CO2 × temperature" treatments. Mean values (± standard errors) of significant treatment factors (cultivar, aphid presence, CO2 temperature and temperature: weevil presence) in the final model shown.

DISCUSSION

Our study is first to incorporate the effects of both eT and eCO2 on a system combining above- and belowground insect herbivores. The results demonstrate that eT can negate the positive effects of eCO2 on lucerne nodulation and herbivory belowground, an important consideration for determining future outcomes of climate change.

Elevated temperature promoted plant growth initially and aphid herbivory reduced plant growth at week 14. The reduction in height of plants with aphids present, however, was facilitated by root feeding by *S. discoideus*, indicated by an interaction between temperature and weevil presence at week 14; the presence of *S. discoideus* decreased lucerne height at eT but not at eT. Few weevils, however, emerged at eT, suggesting that they did not account for the changes in plant growth observed at eT. 30°C may represent an upper developmental threshold (i.e., the temperature at which development rate becomes suboptimal) for *S. discoideus*. Arbab et al. (2008) identified 28°C as the optimum temperature for *S. discoideus* development with development time decreasing with increasing temperatures within the range of 8.5 to 28°C (from a hatching rate of 69.01 ± 0.92 days to 8.46 ± 0.14 days, respectively). Additionally, egg development rates at 26°C matched rates at 30°C and they calculated the upper developmental temperature threshold as 30 to 32.6°C. Temperature increases toward the thermal optimum may positively influence the abundance of *S. discoideus*, whereas temperatures above 30°C may negatively affect *S. discoideus* numbers.

Effects of CO2 on root nodulation mirrored their effects on the emergence of *S. discoideus* at 26°C, suggesting that *S. discoideus* performance was influenced by the number of root nodules on lucerne. eCO2 has been shown to promote nodulation and performance of another *Sitona* species (*S. lepidus*) on white clover (*Trifolium repens*) (Johnson and McNicol, 2010). In that study, the effects of temperature were not tested, though the authors speculated that enhanced nodulation and *S. lepidus* larval performance seen under eCO2 might be tempered by eT. In the present...
Effects of temperature on the number of root nodules per plant under eCO2 (closed bars) and aCO2 (open bars). Mean values (± standard errors) shown. Bars with the same letters were not significantly different (P < 0.05).

Table 2 | Mean (± standard error) numbers of nodules and root mass between weevil-treated and -untreated plants.

<table>
<thead>
<tr>
<th></th>
<th>Number of nodules</th>
<th>Root mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weevil-treated</td>
<td>209.11.71 ± 0.94</td>
<td>0.093 ± 0.004</td>
</tr>
<tr>
<td>Weevil-untreated</td>
<td>209.8.08 ± 0.57</td>
<td>0.071 ± 0.003</td>
</tr>
<tr>
<td>Test results</td>
<td>F<sub>1</sub><sub>,417</sub> = 11.52; F<sub>1</sub><sub>,417</sub> = 11.55; P = 0.001</td>
<td>P < 0.001</td>
</tr>
</tbody>
</table>

Summary statistical results of tests for differences between the variable means are provided.

Few changes were observed in aphids feeding aboveground, although numbers of aphids that colonized plants (i.e., remained on the plant and reproduced) were low, making aboveground-belowground and cultivar interactions difficult to interpret. Johnson et al. (2012) confirmed that, generally, aboveground aphids are positively affected by belowground root feeders. Unlike most other root herbivores, S. discoideus attacks root nodules (and therefore sites of N acquisition). Negative effects of root herbivory on aphids could therefore arise through both reduced phloem turgor via impaired root function and lower quality phloem sap from nodule damage specifically (e.g., Murray et al., 1996). This is supported by Goldson et al. (1996), who reported that S. discoideus reduced the biomass and nitrogen concentration in lucerne as a direct result of nodule damage. Indeed, there was a trend for aphids to be less able to colonize plants with weevils present, albeit not at a 95% confidence interval (P = 0.076). The low number of aphids at the end of this experiment may have contributed to obscuring these negative impacts. Alternatively, given that weevils began to stimulate nodulation the negative impacts of initial nodule damage on aphids may have begun to be reversed, or at least alleviated. This demonstrates the importance of considering the exact nature of root herbivory, for instance which parts of the roots are targeted and ultimately how these effects change over time (e.g., triggering of compensatory responses).

Root and nodule feeding also have the potential to affect neighboring plants by altering nitrogen availability in the soil (Murray and Hatch, 1994; Ayres et al., 2007). This arises because N leaks out of lacerated nodules and is taken up by co-occurring plants. Traditionally, studies between belowground and aboveground herbivores are conducted on the same shared host plant, but in this instance it could be envisaged that belowground herbivory affects aboveground herbivores on neighboring plants of different species. Essentially, root herbivory by S. discoideus may reduce the quality of lucerne while indirectly improving the quality of...
neighboring host plants. Where aphids can feed on both lucerne and the neighboring plant, this may cause aphids to migrate between plants.

Results suggest that the contrasting effects of eT and eCO₂ on weevils likely occurred through changes in root nodulation patterns. Further study, including repeated experimental runs to reduce pseudoreplication and allow for the dissection of effects, should be undertaken to determine how nodate feeders belowground will affect aphids feeding aboveground, with potential pest management implications for the lucerne industry, as well as other legumes that are attacked by both insects. Incorporating such trophic complexity and multiple climatic factors represents a significant challenge for biologists, yet one that we must address to gain realistic insights into how global climate change will affect insect–plant interactions.

Acknowledgments

This work was undertaken as part of a Ph.D. research project funded by the Hawkesbury Institute for the Environment. We would like to thank Aidan Hall, Andrew Gherlenda and Lisa Brownfield for support and help with glasshouse work.

References

Acknowledgments

Gyllenhal (Coleoptera: Curculionidae) under constant temperature. Environ. Entomol. 37, 1301–1308. doi: 10.1603/EN07-1801

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 01 June 2013; accepted: 17 October 2013; published online: 11 November 2013.

This article was submitted to Plant-Microbe Interaction, a section of the journal Frontiers in Plant Science.

Copyright © 2013 Ryalls, Riegler, Moore, Lopaticki and Johnson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.