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Summary

In variational data assimilation a least-squares objective function is minimised
to obtain the most likely state of a dynamical system. This objective function
combines observation and prior (or background) data weighted by their respec-
tive error statistics. In numerical weather prediction, data assimilation is used to
estimate the current atmospheric state, which then serves as an initial condition
for a forecast. New developments in the treatment of observation uncertainties
have recently been shown to cause convergence problems for this least-squares
minimisation. This is important for operational numerical weather prediction
centres due to the time constraints of producing regular forecasts. The condition
number of the Hessian of the objective function can be used as a proxy to investi-
gate the speed of convergence of the least-squares minimisation. In this paper we
develop novel theoretical bounds on the condition number of the Hessian. These
new bounds depend on the minimum eigenvalue of the observation error covari-
ance matrix and the ratio of background error variance to observation error
variance. Numerical tests in a linear setting show that the location of observation
measurements has an important effect on the condition number of the Hessian.
We identify that the conditioning of the problem is related to the complex inter-
actions between observation error covariance and background error covariance
matrices. Increased understanding of the role of each constituent matrix in the
conditioning of the Hessian will prove useful for informing the choice of corre-
lated observation error covariance matrix and observation location, particularly
for practical applications.
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1 INTRODUCTION

Data assimilation combines the output from a numerical model of a dynamical system, the background or prior, with
observations of the system to yield an accurate description of the current dynamical state (analysis).
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Contributions from observations and the background are weighted according to their relative uncertainty via error
covariance matrices, meaning that assessing and quantifying observation error are crucial in order to obtain an accurate
analysis sufficiently quickly.1,2 One of the most well-known applications of data assimilation is to numerical weather
prediction (NWP), where observations of the atmosphere and ocean are combined with a prior model state of the
atmosphere in order to produce the initial conditions for a weather forecast. Until recently, diagonal observation error
covariance matrices have been used operationally at all major NWP centres,3 a choice that is only valid in the case that
observation errors are uncorrelated. It has been shown that implementing diagonal error covariance matrices inappro-
priately, that is, when error correlations are nonzero, may lead to suboptimal results.4–8 However, using diagnosed full
observation error covariance matrices directly in the assimilation has been shown to cause problems with the speed of
convergence of the assimilation scheme.9

Variational assimilation, a popular data assimilation method,10–12 finds the analysis by minimising a nonlinear
least-squares objective function. This objective function, which is dependent on both observations and the background
field, is minimised by an iterative method, such as the Gauss–Newton method.13,14 This consists of an outer loop that
solves the full nonlinear problem, and an inner loop that solves the linearised problem, often via a conjugate gradient
method.15 The conditioning of the Hessian matrix of the objective function provides a bound on the rate of convergence
of the conjugate gradient minimisation.16–18 Hence, it can be used as a rough estimate for the number of iterations needed
to solve the inner loop problem. We note, however, that this worst-case bound on convergence can be improved signif-
icantly in the case of clustered eigenvalues.17,19 The magnitude of the condition number also provides an indication of
the sensitivity of the system to perturbations in the data.10 Speed of convergence is critical in practise due to the need to
provide timely forecasts. In this work, we investigate how introducing correlated observation errors affects the condition
number of the Hessian and examine the associated speed of convergence of a conjugate gradient method.

Correlated observation error statistics have been diagnosed for certain observation types (e.g., see other works20–27),
although there are problems associated with their use. In particular, the methods used to diagnose observation error
covariance matrices are imperfect, and the quality of these estimates is unclear. Due to unknown observation error statis-
tics and in order to reduce the computational cost of operational assimilation, in practise, the majority of observation
errors are assumed uncorrelated. However, empirical evidence from simple model experiments indicate that even approx-
imate correlation structures give significant benefit in terms of analysis accuracy.7,28 Similar conclusions can be drawn
for practical implementations.4

In the works of Stewart6 and Stewart et al.,26 it was shown that there were problems with the use of diagonal obser-
vation error covariance matrices in the variational data assimilation for certain instruments. Motivated by this work,
in 2011, the UK Met Office first trialled the use of correlated observation errors in their operational system.3 However,
there were problems with the convergence of the minimisation algorithm, which necessitated the “reconditioning” of
observation error covariance matrices (by altering their eigenvalues), prior to their use in the system. In the works of
Weston3 and Weston et al.,9 it was suggested that slow convergence was caused by the very small minimum eigenvalues
of the diagnosed observation error covariance matrix. This work provides motivation to investigate further the role of the
minimum eigenvalue of the observation error covariance matrix on the conditioning of the variational data assimilation
problem; in turn, developing this crucial understanding will permit the optimal use of correlated observation errors in
data assimilation systems.

Even in the case of uncorrelated observation errors, the minimisation problem for any large system is very ill condi-
tioned. Preconditioning, where the original problem is transformed into an equivalent but less ill-conditioned problem, is
used operationally to mitigate against the slow convergence of the minimisation.29 In data assimilation, the most common
method of preconditioning is the control variable transform,16,30 where the preconditioner is based on the background
error covariance matrix. The optimal choice of preconditioning depends on the formulation of the data assimilation
problem,31 and practical constraints may require the use of a less computationally intensive preconditioner.32 In this work,
an unpreconditioned framework will be used, as it is unknown whether the introduction of correlated observation errors
will alter the optimal choice of preconditioner. This framework also has practical relevance, as the UK Met Office uses
an unpreconditioned 1D-Var routine, where each observation is assimilated individually, for quality control purposes.
Hence, the bounds and conclusions presented here will apply directly to that case.

In this article, we develop a new theory for bounding the condition number of the Hessian of the least-squares objective
function. This theory applies to both uncorrelated and correlated choices of observation error. We investigate the impact
of introducing these correlations via small-scale numerical tests, which illustrate the influence of observation correlations
associated with a physical length scale. We begin in Section 2 by defining a notation common to data assimilation and
the condition number. We explain why the conditioning of the system and the rate of convergence of the minimisation
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are linked and present results from linear algebra that will be used to construct the bounds discussed in Section 3. Three
new sets of bounds will be introduced in Section 3; these will have a varying number of additional constraints on the
constituent matrices. Bounds that separate the contribution of each of the constituent terms have been developed for both
general matrices and matrices with additional assumptions on observation location and observation error correlations.
In Section 4, we discuss our numerical framework for the experiments of Section 5. The results of these numerical tests
support the theoretical conclusions presented in Section 3. In particular, we see that the minimum eigenvalue of the
observation error covariance matrix and the ratio of background variance to observation variance are important terms for
controlling the conditioning of the variational problem for both the bounds in Section 3 and the numerical results from
Section 5. We conclude in Section 6 that even in a simple linear setting, the choice of observation operator has a significant
effect on the conditioning. The theoretical conclusions indicate how correlated error statistics in the observation and
background can be expected to interact, and highlight areas where reconditioning and similar techniques could be used
to reduce the increased computational cost associated with using correlated observation errors operationally. Although
the primary motivation for the investigation of the impact of correlated observation errors arises from their application in
meteorology, the theory and conclusions presented here are very general and apply to any other application of variational
data assimilation such as in neuroscience33,34 and ecology.35,36

2 VARIATIONAL ASSIMILATION AND CONDITION NUMBER

2.1 Notation
In data assimilation, information from observations, y ∈ R𝑝, is combined with information from a background, or “prior”,
field, xb ∈ RN . The analysis, xa ∈ RN , or posterior, is found by weighting each of the two components using their respec-
tive error statistics. It is assumed that observation errors and background errors are unbiased and mutually uncorrelated.
The background and observation error covariance matrices are denoted by the symmetric positive semidefinite matrices
B ∈ RN×N and R ∈ R𝑝×𝑝, respectively (although in practise, we assume B and R are positive definite matrices). Usu-
ally, there are far fewer observations than state variables, that is, p ≪ N. Observation and background information may
describe different variables or be situated at different locations in space. The observation operator h ∶ RN → R𝑝, which
may be nonlinear, is used to map from state space to observation space to allow the comparison of observations with the
background; in particular, y will be compared with h[x].

For variational assimilation methods, the analysis is found by minimising an objective function. In this work, we focus
on 3D-Var, a particular variational assimilation method, which assimilates variables at a single fixed time in the assim-
ilation window over the entire spatial domain.37 In the case of 3D-Var, the objective function is given by the following:

J(x) = 1
2
(x − xb)TB−1(x − xb) +

1
2
(y − h[x])TR−1(y − h[x]). (1)

The state vector xa that minimises this objective function is then used as the initial condition to produce a forecast. When
h is linear, this equation has an analytic solution (see equation 2.4 in the work of Haben16), but (1) is too expensive to be
solved explicitly on an operational scale. In NWP, where observation operators can be nonlinear and high dimensional,
a gradient descent algorithm, such as the Gauss–Newton method, is used to solve a sequence of linearised problems, in
order to converge iteratively to the solution, xa.10 We note that xa corresponds to the maximum a posteriori estimate under
the assumption that all probability distributions are Gaussian.38,39

2.2 Condition number
In practice, to solve the nonlinear problem, the Gauss–Newton method is used to solve a sequence of linearised problems,
often via a conjugate gradient method.29 We will now consider the linearised problem, where the nonlinear problem given
by (1) is linearised about xa, the optimal solution.

As the linearisation of (1) is a quadratic function,37 finding xa is equivalent to solving a linear system of the form

Sw = b, (2)

where w ∈ RN and b ∈ RN are given by (3.10) in Section 3.2 in the work of Haben.16 (This formulation will be used
in numerical experiments in Section 5.) Here, S ∈ RN×N is the Hessian of the linearisation of the objective function (1)
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given by
S = B−1 + HTR−1H, (3)

where H ∈ R𝑝×N is the Jacobian of the observation operator h linearised about the optimal state. The Hessian can be used
to study the sensitivity of the solution to small changes in observation or background data, by considering its condition
number (see Section 2.7 in the work of Golub et al.18). As B and R are symmetric positive definite, S is also symmetric
positive definite, and hence, the L2 condition number of S can be represented in terms of its eigenvalues.

2.3 Eigenvalue theory
For the remainder of the paper, the following ordering of eigenvalues of matrix D will be used: For a matrix D ∈ RN×N ,
let λmax(D) = λ1(D) ≥ λ2(D) ≥ · · · ≥ λN(D) = λmin(D).

Theorem 1. If S ∈ RN×N is a symmetric and positive definite matrix, then we can write the condition number in the L2
norm as

𝜅2(S) =
λ1(S)
λN(S)

, (4)

where 𝜆1(S) and 𝜆N(S) correspond to the largest and smallest eigenvalues of S, respectively.

Proof. (See Section 2.7.2 in the work of Golub et al.18)

Henceforth, 𝜅2(S) will be referred to as the condition number of S and will be denoted 𝜅(S).
In order to determine the bounds on the condition number of the Hessian we make use of the following result from

linear algebra.

Theorem 2. Consider two symmetric matrices S1, S2 ∈ RN×N . The kth eigenvalue of the matrix sum S1 + S2 satisfies the
following:

λk(S1) + λN(S2) ≤ λk(S1 + S2) ≤ λk(S1) + λ1(S2). (5)

Proof. (See Chapter 2, Theorem 44 in the work of Wilkinson.40)

This result allows us to separate the contributions of B−1 and HTR−1H when bounding the condition number of S given
by (3) and is discussed in Section 3.

A result bounding the eigenvalues of matrix products in terms of the eigenvalues of the constituent matrices is
given by the following.

Theorem 3. If F,G ∈ CN×N are positive semidefinite Hermitian matrices, then

k∏
i=1

λi(FG) ≤
k∏

i=1
λi(F)λi(G), k = 1, … ,N − 1. (6)

Proof. (See Section 9 H.1.a. in the work of Marshall et al.41)

Theorem 4. If F,G ∈ CN×N are positive semidefinite Hermitian and 1 ≤ i1 < · · · < ik ≤ N, then

k∏
t=1

λt(FG) ≥
k∏

t=1
λit (F)λN−it+1(G), (7)

with equality for k = N.

Proof. (See the work of Wang et al.42)
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3 THEORETICAL RESULTS

We now present new bounds on the condition number of the Hessian given by (3). We begin in Section 3.1 by considering
the general case: B and R are general covariance matrices, and H is any linear observation operator. In Section 3.2, we
then introduce further assumptions that constrain H to only observe state variables. Finally, in Section 3.3, we restrict the
form of B and R to have a particular structure.

3.1 General bounds on the condition number
We begin by introducing bounds on the eigenvalues of S in terms of the eigenvalues of B, R, and H.

Lemma 1. For S = B−1 + HTR−1H, where B ∈ RN×N , R ∈ R𝑝×𝑝 are symmetric positive definite covariance matrices,
and H ∈ R𝑝×N with p < N, we can bound the eigenvalues of S below by

λk(S) ≥ max
{
λk(B−1), λN(B−1) + λk(HTR−1H)

}
(8)

and above by
λk(S) ≤ min

{
λk(B−1) + λ1(HTR−1H), λ1(B−1) + λk(HTR−1H)

}
, (9)

where λk(S) is the kth eigenvalue of S.

Proof. The bounds follow immediately from the result of Theorem 2 by exchanging the order of addition. Note that
HTR−1H is not full rank, meaning that λN(HTR−1H) = 0.

As we wish to bound the condition number of S, we are primarily interested in bounding λ1(S) and λN(S). In this case,
the bounds given by (8) and (9) then simplify to

λN(B−1) ≤ λN(S) ≤ min
{
λN(B−1) + λ1(HTR−1H), λ1(B−1)

}
(10)

and
max

{
λ1(B−1), λN(B−1) + λ1(HTR−1H)

}
≤ λ1(S) ≤ λ1(B−1) + λ1(HTR−1H). (11)

We note that this applies to any choice of correlation matrices B and R and for any linear choice of observation operator H.
This suggests that we expect the eigenvalues, and hence condition number, of S to vary based on the interactions between
B and R. We now introduce a new bound on the condition number of (3) for 3D-Var for the most general choice of B, R,
and H.

Theorem 5. Let the background and observation error covariance matrices, B ∈ RN×N and R ∈ R𝑝×𝑝, respectively, be
symmetric positive definite covariance matrices, with p < N. Additionally, let H ∈ R𝑝×N be the observation operator.
Then, the following bounds are satisfied by the condition number of the Hessian (given by (3)):

max
{

1 + λ1(B)λ1(HTR−1H)
𝜅(B)

,
𝜅(B)

1 + λ1(B)λ1(HTR−1H)

}
≤ 𝜅(S)

≤
(
1 + λN(B)λ1(HTR−1H)

)
𝜅(B).

(12)

(This is a slightly modified form of Theorem 6.1.1 in the work of Haben.16)

Proof. To obtain an upper bound for the condition number of (3), we take the upper bound for λ1(S) in (11) and the
lower bound (10) for λN(S),

𝜅(S) ≤
(
1 + λN(B)λ1(HTR−1H)

)
𝜅(B), (13)

using the fact that (λ1(B−1))−1 = λN(B). We can obtain a lower bound for the condition number similarly by taking the
lower bound for λ1(S) in (11) and the upper bound for λN(S) in (10). This gives two possible bounds for 𝜅(S), depending
on which of the two terms is larger,

𝜅(S) ≥ max
{
𝜅(B)

(
1 + λ1(B)λ1

(
HTR−1H

))−1
, (𝜅(B))−1 (1 + λ1(B)λ1

(
HTR−1H

))}
(14)

using the fact that (λ1(B))−1 = λN(B−1). Combining these inequalities completes the proof.



6 of 22 TABEART ET AL.

We note that the two terms in (14) are reciprocals. This means that the lower bound will always be greater than or equal
to one. Any condition number is bounded below by one.18

We now extend this result to write it in a form that explicitly separates the role of the observation error covariance
matrices and the observation operator. This makes it easier to investigate how changes in R, B, and H affect the condition
number of the Hessian.

Corollary 1. Let B ∈ RN×N and R ∈ R𝑝×𝑝, with p < N, be the background and observation error covariance matri-
ces, respectively. Additionally, let H ∈ R𝑝×N be the observation operator. Then, the following bounds are satisfied by the
condition number of the Hessian (given by (3)):

max
⎧⎪⎨⎪⎩

1 + λ1(B)
λN (R)

λN(HHT)

𝜅(B)
,

1 + λ1(B)
λ1(R)

λ1(HHT)

𝜅(B)
,

𝜅(B)
1 + λ1(B)

λN (R)
λ1(HHT)

⎫⎪⎬⎪⎭ ≤ 𝜅(S)

≤

(
1 + λN(B)

λN(R)
λ1(HHT)

)
𝜅(B).

(15)

Proof. Using Theorem 21.10.1 in the work of Harville,43 we see that HTR−1H has precisely the same nonzero eigen-
values as R−1HHT. Applying the same result, HTR−1H also has the same nonzero eigenvalues as HHTR−1. Therefore,
λ1(HTR−1H) = λ1(R−1HHT) = λ1(HHTR−1). Applying Theorem 3 for k = 1 and i = 1 yields the following bound:

λ1
(
R−1HHT)

≤ λ1(R−1)λ1(HHT) = λ1(HHT)
λN(R)

, (16)

as λ1(R−1) = 1∕λN(R). To bound λ1(R−1HHT) below, we apply Theorem 4 for k = 1 and i1 = 1 to obtain two lower
bounds, as follows:

λ1
(
R−1HHT)

≥ max{λ1(R−1)λN(HHT), λN(R−1)λ1(HHT)} = max
{

λ1(HHT)
λ1(R)

,
λN(HHT)
λN(R)

}
. (17)

Substituting (16) and (17) into the upper and lower bounds of Theorem 5 gives the desired result.

We note that the upper bound in (15) increases as λN(R) decreases. It is not immediately clear how the lower bound
will change with R. This will be discussed in Section 4.3, which provides a summary of how the bounds given by (15) vary
with R and B for the numerical framework tested in Section 5.

3.2 Bounds on the condition number with additional restrictions on the choice
of observation operator
We now develop a further bound, which applies in the case that additional assumptions are made regarding the choice
of observation operator. In particular, we restrict the observation operator to direct observations of single state variables.
We note that if observations are restricted to direct observations of single state variables, then HTH is diagonal with
(HTH)i,i = 1 if variable i is observed and zero otherwise, as shown by Haben et al.44 Under this stricter assumption, we
show that the value of λ1(HHT) is the same, irrespective of the choice of observations.

Lemma 2. If HTH ∈ RN×N is a diagonal matrix with p < N units on the diagonal and the remaining elements zero,
then HHT is the p × p identity matrix.

Proof. As HTH is diagonal, we can calculate its eigenvalues directly; they are simply its diagonal elements. Hence,
HTH has p unit eigenvalues and N − p zero eigenvalues. By Theorem 21.10.1 in the work of Harville,43 HHT has the
same nonzero eigenvalues as HTH, that is, p units. As HHT is symmetric, these eigenvalues correspond to p linearly
independent eigenvectors. We now write HHT in terms of its eigendecomposition. Let 𝚲 = diag(λ1, … , λN) ∈ R𝑝×𝑝

be the matrix of eigenvalues of HHT, and V ∈ R𝑝×𝑝 be the corresponding matrix of eigenvectors of HHT. As the
eigenvalues of HHT are all units, 𝚲 = Ip, the p × p identity. Then,

HHT = V𝚲V−1 = VI𝑝V−1 = VV−1 = I𝑝. (18)

Hence, under the assumptions on HTH, HHT is the p × p identity matrix.
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Hence, if observations are restricted to single state variables, then HHT = I𝑝. Eliminating the H and HT terms from
the bound given by Corollary 1 reduces the number of matrix multiplications required for evaluation. This result is
now used to obtain a bound for the case where observation and background error covariances are correlated and where
observations are limited to model variables. We additionally assume that observation variance, 𝜎2

o , and background vari-
ance, 𝜎2

b , are uniform variances, and hence, the covariance matrices can be written as a scalar variance multiplied by a
correlation matrix.

Corollary 2. Let B = 𝜎2
b C ∈ RN×N and R = 𝜎2

o D ∈ R𝑝×𝑝, where C and D are symmetric positive definite correlation
matrices, and 𝜎2

b and 𝜎2
o are positive scalars denoting the background and observation error variances, respectively. In

addition, let HTH be a diagonal matrix with p < N units on the diagonal and the remaining elements zero. Then, the
following bound on the condition number of S (given by (3)) holds:

max
⎧⎪⎨⎪⎩

1 + 𝜎2
b

𝜎2
o

λ1(C)
λN (D)

𝜅(C)
,

𝜅(C)

1 + 𝜎2
b

𝜎2
o

λ1(C)
λN (D)

⎫⎪⎬⎪⎭ ≤ 𝜅(S) ≤

(
1 +

𝜎2
b

𝜎2
o

λN(C)
λN(D)

)
𝜅(C). (19)

Proof. Using (15) with the definitions of B and R in the theorem statement along with the result of Lemma 2 yields
the desired result immediately.

The bounds given by (19) are equal to those given by (15) for the case of direct observations, so the comments concerning
how the bounds change with R and B following Corollary 1 also apply here. In general, it is not possible to comment on
how the lower bound given by (19) will behave with changing B and R. In Section 5, we provide an overview for how the
terms in (19) change for some specific choices of B, R, and H.

We note that the ratio 𝜎2
b

𝜎2
o

appears in both bounds, meaning that as the observations get more accurate, and the variance
𝜎2

o decreases, we will see an increased upper bound and a decreased lower bound for λ1(B) > λN(B) + λ1(R), with an
increased lower bound for λ1(B) < λN(B) + λ1(R). This was also observed theoretically and numerically by Haben16 for
the case that R is uncorrelated. Both of these results assume the same variance for all observations, which is not true in
general. However, they indicate the general behaviour we would expect for an increase in accuracy across a wide range
of observing systems.

3.3 Bounds on the condition number for circulant error covariance matrices
In this section, we present a lower bound that is tighter than those of (15) for a given matrix framework. Improved bounds
are obtained for this specific case by exploiting the eigenvalue and eigenvector properties of a particular matrix structure.
It is feasible that for other matrix structures, similar properties could be used to compute tighter bounds for other classes
of matrices. However, as the results from Section 3.1 are general and apply to any choice of covariance matrices, we do
not consider other specialised bounds in this work.

It is often desirable for error correlations to be homogeneous and isotropic, meaning that the correlation between two
points is determined solely by the distance between them.45 This makes circulant matrices a natural choice for correlation
matrices on a one-dimensional periodic domain. For the numerical tests discussed in Section 5, both B and R will be
chosen to be circulant matrices, although the bounds given by Theorem 5, Corollary 1, and Corollary 2 apply for any valid
choice of correlation matrix.

Definition 1. (See the work of Davis.46)
A circulant matrix D ∈ RN×N is a matrix of the form

D =

⎛⎜⎜⎜⎜⎜⎝

d0 d1 d2 · · · dN−2 dN−1
dN−1 d0 d1 · · · dN−3 dN−2
dN−2 dN−1 d0 · · · dN−4 dN−3
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
d2 d3s d4 · · · d0 d1
d1 d2 d3 · · · dN−1 d0

⎞⎟⎟⎟⎟⎟⎠
.
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As described by Gray,47 the structure of a circulant matrix of the form given by Definition 1 permits the rapid calcu-
lation of eigenvalues and eigenvectors via a discrete Fourier transform. In practise, this means that we can calculate the
eigenvalues of D directly via the following formula.

Theorem 6. The eigenvalues of a circulant matrix D, as given by Definition 1, are given by

γm =
N−1∑
k=0

dk𝜔
mk, (20)

with corresponding eigenvectors
vm = 1√

N
(1, 𝜔m, … , 𝜔m(N−1)), (21)

where 𝜔 = e−2𝜋i/N is an Nth root of unity.

Proof. (See the work of Gray 47 for full derivation.)

To avoid confusion, the eigenvalues of a circulant matrix calculated using (20) will be denoted by 𝛾 j rather than λj, as
they are ordered in terms of wavenumber rather than size. We can see from (21) that the eigenvectors only depend on N,
the dimension of the circulant matrix. Therefore, any N × N circulant matrix will have the same set of eigenvectors.

We now use this matrix structure to consider a further restriction to the case that observation error is assumed to be
uncorrelated, and the background observation error matrix is required to be circulant. In particular, in the following
theorem, R is taken to be a scalar multiple of the identity. We note that Theorem 7 was presented by Haben et al.45

without proof.

Theorem 7. Let B = 𝜎2
b C ∈ RN×N , where C is a symmetric positive definite circulant matrix, and R = 𝜎2

o I𝑝, where
I𝑝 ∈ R𝑝×𝑝 is the identity matrix. Both 𝜎2

b and 𝜎2
o are positive scalars. In addition, let HTH be a diagonal matrix with p < N

units on the diagonal and the remaining elements zero. Then the following bounds on the condition number of S (given
by (3)) hold: ⎛⎜⎜⎜⎝

1 + 𝑝

N
𝜎2

b
𝜎2

o
λN(C)

1 + 𝑝

N
𝜎2

b
𝜎2

o
λ1(C)

⎞⎟⎟⎟⎠ 𝜅(C) ≤ 𝜅(S) ≤

(
1 +

𝜎2
b

𝜎2
o
λN(C)

)
𝜅(C), (22)

where λ1(C) and λN(C) are the largest and smallest eigenvalues of the matrix C, respectively.

Proof. By the assumptions on the matrices in the theorem, we can write HTR−1H = 𝜎−2
o HTH and therefore

λ1(HTR−1H) = 𝜎−2
o . Additionally, we have λN(B) = 𝜎2

bλN(C). If we substitute these into the upper bound of (12),
we obtain

𝜅(S) ≤

(
1 +

𝜎2
b

𝜎2
o
λN(C)

)
𝜅(C), (23)

which establishes the upper bound. Rather than repeat this procedure with the lower bound, we produce an improved
estimate by applying the Rayleigh quotient, RS(x), x ∈ CN (defined in Section 5.9 in the work of Süli et al.48). Let
v1 ∈ CN be the eigenvector corresponding to the largest eigenvalue of C−1. Because C−1 is circulant, then all the
components of the eigenvectors of C−1 lie on the unit circle in C (see (21)). In particular, this implies that for an
eigenvector, vm, of C−1,

v†
mHTHvm = 1

N
∑
k∈K

e−2𝜋ikm∕N e−2𝜋ikm∕N = 1
N
∑
k∈K

e2𝜋ikm∕N e−2𝜋ikm∕N = 𝑝

N
, (24)

where K denotes the positions of the nonzero diagonal elements of HTH, and v† denotes the conjugate transpose of
v. The maximum value obtained by the Rayleigh quotient of S occurs at the eigenvector corresponding to the largest
eigenvalue of S (see Section 5.9 in the work of Süli et al.48). Hence,

λ1(S) = max
v∈CN

(RS(v)) ≥ v†
1
(
B−1 + 𝜎−2

o HTH
)

v1 = 𝜎−2
b λ1(C−1) + 𝜎−2

o
𝑝

N
. (25)

Similarly, the minimum value of the Rayleigh quotient occurs at the eigenvector corresponding to the smallest eigen-
value of S. Let vN be the eigenvector corresponding to the smallest eigenvalue of C−1. Then, again using the Rayleigh
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quotient, we find

λN(S) = min
v∈CN

(RS(v)) ≤ v†
N
(
B−1 + 𝜎−2

o HTH
)

vN = 𝜎−2
b λN(C−1) + 𝜎−2

o
𝑝

N
. (26)

Combining (25) and (26), we find

𝜅(S) ≥
𝜎−2

b λ1(C−1) + 𝜎−2
o

𝑝

N

𝜎−2
b λN(C−1) + 𝜎−2

o
𝑝

N

= 𝜅(C)
⎛⎜⎜⎜⎝

1 + 𝜎2
b

𝜎2
o

𝑝

N
λN(C)

1 + 𝜎2
b

𝜎2
o

𝑝

N
λ1(C)

⎞⎟⎟⎟⎠ , (27)

giving the lower bound on the condition number. This completes the proof.

We note that the lower bound presented here is tighter than the others introduced in this section. This comes from
the restriction on the form of S when additional assumptions are made on R and H and does not generalise to the other
results presented in this work. We also observe that the lower bound (22) has an explicit dependence on the number
of observations, p, meaning that 𝜅(S) increases with p. This was studied in detail by Haben.16 Additionally, the ratio
𝜎2

b
𝜎2

o
appears in both bounds, meaning that the discussion following the result of Corollary 2 also applies to the result of

Theorem 7.
We now have bounds that require minimal matrix multiplications for evaluation and that separate the contributions of

B, R, and H. In the following sections we will test these bounds numerically and discuss the impact of changing each of
the constituent matrices in turn.

4 NUMERICAL FRAMEWORK

We now outline the experimental framework that will be used in Section 5 to numerically investigate the bounds presented
in Section 3. In particular, in Section 4.1, we introduce specific matrix structures that will be used to generate covariance
matrices. These structures have been chosen as they permit easy calculation of eigenvalues of the resulting matrices.
We note that these correlation structures illustrate the case where there is a physical length scale associated with our
observation and background error correlations, as in the case of horizontal correlations. Different choices of observation
operator will then be presented in Section 4.2. Finally, in Section 4.3, we define the experiments that will be studied in
Section 5 and discuss the choice of parameters to be used in these tests in detail.

4.1 Correlation and second-order auto-regressive correlation matrices
This work will make use of the second-order auto-regressive correlation (SOAR) function, which is used by the UK
Met Office as a horizontal correlation function, as detailed in the work of Simonin et al.49 It is also commonly used
to model background error correlations,7 as its relatively long tails coincide well with estimates of correlation struc-
ture. Additionally, these longer tails ensure that SOAR matrices are better conditioned for inversion than Gaussian
matrices.10,16

The SOAR function, defined by Daley,50 is homogeneous and isotropic and naturally extends to a circulant form
when we have equally spaced observations on a periodic domain, such as a latitude circle on the Earth. We define
the SOAR error correlation matrix for a 1D model with state variables (or observations) given by equally spaced grid-
points on a fixed domain (the unit circle of radius a = 1), following the procedure given in the works of Haben16 and
Waller et al.51 This makes use of a substitution of a chordal distance for a “great circle distance” to ensure that we obtain
a valid correlation model on the circle, as discussed by Gaspari et al.52 and Jeong et al.53

Definition 2. The SOAR error correlation matrix on the finite domain is given by

D(i, 𝑗) =
⎛⎜⎜⎜⎝1 +

||||2a sin
(

𝜃i, 𝑗

2

)||||
L

⎞⎟⎟⎟⎠ exp
⎛⎜⎜⎜⎝
−
||||2a sin

(
𝜃i, 𝑗

2

)||||
L

⎞⎟⎟⎟⎠ , (28)
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FIGURE 1 Eigenvalues of an error correlation matrix defined by the second-order auto-regressive function given in (28) for N = 20
and a = 1

where L > 0 is the correlation length scale, 𝜃i, j denotes the angle between gridpoints i and j, and a is the radius of the
domain. The chordal distance between adjacent gridpoints is given by

Δx = 2a sin
(
𝜃

2

)
= 2a sin

(
𝜋

N

)
, (29)

where N is the number of gridpoints, and 𝜃 = 𝜋

2N
is the angle between adjacent gridpoints.

As SOAR matrices are circulant by construction, we can calculate their eigenvalues directly using Equation 20. The
distribution of eigenvalues is symmetric and, as shown in Figure 1, decreases monotonically towards the central value.
This means that only two eigenvalues need to be calculated in order to obtain the maximum and minimum eigenvalues
of any SOAR matrix: 𝛾1 and 𝛾N/2 (if N is even) or 𝛾 (N+1)/2 (if N is odd). The circulant structure can hence be exploited to
reduce the number of computations required for computing the bounds given by (15) and (19) for the condition number
of the Hessian.

For the numerical experiments, we alter the length scales of the SOAR matrices corresponding to background and
observation error. Figures will be plotted in terms of the maximum eigenvalues of B−1 and R−1 (recalling that for any
matrix, D ∈ Rm×m, λ1(D−1) = 1∕λN(D)). We note that this also means that λ1(D−1) = 𝛾N∕2(D−1) for N even (or
λ1(D−1) = 𝛾(N+1)∕2(D−1) for N odd), using the notation established in Theorem 6. The relationship between the increas-
ing length scale and the spectrum of a SOAR matrix is shown in Figure 1, namely that as the length scale, L, increases,
the minimum eigenvalue of the SOAR matrix decreases and the maximum eigenvalue increases. This means that the
maximum eigenvalue of the inverse of a SOAR matrix increases with length scale, and its minimum eigenvalue decreases.

Having described the choice of correlation matrices that will be used in the numerical tests in Section 5, in the next
section we discuss the different choices of observation operator that will be tested in our experiments.

4.2 Choice of observation operator
Most previous research into the impact of correlated observation errors on the variational assimilation problem does not
investigate the impact of using different observation operators systematically. Either the operational observation operator
is used (e.g., see other works9,21) or the experiments are carried out in a simple linear case where H is taken to be a
variant of the identity, as in other works.5,7,8,54 In this paper, we compare how the condition number of the Hessian is
affected by different choices of linear observation operator in order to gain some theoretical insight into the role played by
this operator. We define three choices of the observation operator that will be investigated in detail numerically. We are
particularly interested in how important our choice of H is in determining both the true condition number of S and the
value of the bounds given by (15). Firstly, we note that all bounds presented in this work require the assumption that the
observation operator, H, is linear, and the bounds given by (19) and (22) have the restriction that observations are only of
single state variables. All the choices of H that are tested in the numerical experiments presented in this work are linear,
and two correspond to direct observations of single model variables.
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FIGURE 2 Visualisation of the observation operators described in Definition 3 for the case p = 10 and N = 20. Shading indicates the value
of the entry in the matrix; in the case of H1 and H2, all nonzero entries are 1, and for H3, all nonzero entries are 1

5

Definition 3. The observation operators H1, H2, H3 ∈ R𝑝×N , for N = 2p, are defined as follows:

H1(i, 𝑗) =

{
1, 𝑗 = i for i = 1, … , 𝑝

0, otherwise.
(30)

H2(i, 𝑗) =

{
1, 𝑗 = 2 i for i = 1, … , 𝑝

0, otherwise.
(31)

H3(i, 𝑗) =

{
1
5
, 𝑗 ∈ {2i − 2, 2i − 1, 2i, 2i + 1, 2i + 2 (modN)} for i = 1, … , 𝑝

0, otherwise.
(32)

The choice of H = H1 corresponds to observing the first p state variables and to making no observations in the second
half of the state space. Choosing H = H2 corresponds to making observations at alternate state variables over the entire
model domain. The observation operator H = H3 is a smoothed version of H2; state variables at alternate gridpoints are
smoothed over five adjacent points in state space with equal weighting. This can be thought of as a simplified version
of a satellite weighting function (see Section 2.4.1 in the work of Stewart6 and Section 2.1.3 in the work of Rodgers39),
which measures average radiation over several model levels of the atmosphere. In Figure 2, these observation operators
are depicted for a small-scale example when p = 10 and N = 20.

The choice of H1 was made as a check to allow the comparison of preliminary numerical tests with those from Chapter 6
in the work of Haben.16 The bounds given by Corollary 2 in Section 3 require that HTH be a diagonal matrix with p
units on the diagonal. The observation operator H1 satisfies this requirement, as does H2, meaning that we can apply the
bounds of Corollary 2 for these two cases. Additionally, by Lemma 2, H1HT

1 = H2HT
2 . This means that for fixed choices

of B and R, both H = H1 and H = H2 will yield the same upper and lower bounds. We wish to see whether there will be
a significant difference in the true condition number of S for H = H1 and H = H2.

As H = H3 does not satisfy the condition in the statement of Corollary 2, we must apply the more general bound
given by (15) in Corollary 1. We would like to be able to use the same bounds to compare each of the three choices of
observation operator. A short calculation reveals that we have equality of the bounds given by Corollary 1 and Corollary 2
when observations are restricted to model gridpoints for the framework described here. Hence, for what follows, we will
be comparing the bounds given by (15) irrespective of the observation network chosen.

4.3 Experimental design
We now discuss the experimental framework, which will be used for the numerical tests presented in Section 5. In
particular, we motivate the range of parameters that will be investigated.

We fix the ratio between p, the number of observations, and N, the number of state variables, to be N = 2p for all the
experiments discussed below. The same ratio was used for numerical testing by Haben16 and is not representative of what
is used in practise, where observations are much less dense. Unless stated otherwise, the values N = 200 and p = 100 were
used for all the plots presented here. Other choices of p and N were studied in detail; as qualitative results were similar
for all cases considered, they will not be shown here.

Both the background error covariance matrix, B ∈ RN×N , and the observation error covariance matrix, R ∈ R𝑝×𝑝, are
chosen to be SOAR correlation matrices (see Section 4.1) with fixed variances 𝜎2

b = 𝜎2
o = 1.



12 of 22 TABEART ET AL.

TABLE 1 Summary of how terms that appear in (15) change with the
length scales LB and LR for B ∈ R200×200 and R ∈ R100×100

Length scale LR or LB
0.1 0.33 0.66 0.99 1

λN(R) 1.92 ×10−2 5.74 ×10−4 7.21 ×10−5 2.14 ×10−5 2.08 ×10−5

λ1(R) 6.40 ×100 2.26 ×101 4.67 ×101 6.36 ×101 6.40 ×101

λN(B) 2.54 ×10−3 7.19 ×10−5 8.99 ×10−6 2.67 ×10−6 2.59 ×10−6

λ1(B) 1.28 ×101 4.51 ×101 9.35 ×101 1.27 ×102 1.28 ×102

𝜅(B) 5.05 ×103 6.28 ×105 1.40 ×107 4.77 ×107 4.95 ×107

The domain for the tests is the unit circle (a = 1). In the experiments that follow, we will vary LR, the correlation length
scale of the SOAR matrix defining R, and LB, the correlation length scale of the the SOAR matrix defining B, over a regular
grid, but figures will be plotted in terms of λ1(B−1) and λ1(R−1). In addition to studying the impact of changing the length
scale of B and R for both sets of experiments, we also consider the effect of using the different choices of H presented in
Section 4.2.

4.3.1 Condition number testing
In the numerical tests, we consider how the condition number of S (calculated using the Matlab 2016b function cond)
and the bounds given by (15) change as the minimum eigenvalues of both error covariance matrices change. Of particular
interest is the interaction between changes to both B and R. For the results presented in this paper, the length scales
of both B and R were varied between 0.1 and 1. The equivalent eigenvalues of R and B for these parameters are given
in Table 1.

Table 1 presents the values of the terms that appear in (15) and depend on the background and observation error
matrices for typical values of LB and LR used in the experiments. We observe the following:

• As LR increases, λN(R) decreases; hence, the first term in the lower bound of (15) will increase with increasing LR, and
the third term in the lower bound of (15) will decrease with increasing LR. It is therefore not possible in general to
determine how the lower bound will change with increasing LR.

• As LR increases, λ1(R) increases, meaning that the second term in the lower bound of (15) will decrease with
increasing LR.

• As LB increases, the difference between its minimum and maximum eigenvalues increases, meaning that the condition
number of B increases with LB.

• In this setting, the upper bound of (15) will increase as LR or LB increases, as λ1(B) and 𝜅(B) increase with LB and 1
λN (R)

increases with LR.
• As LB increases, the ratio 𝜅(B)

λ1(B)
= 1

λN (B)
increases, meaning that for the fixed LR, the first and second terms of the lower

bound of (15) will decrease, and the third term will increase.

Therefore, increasing LB for fixed LR will cause both bounds to increase. It is not possible at this stage to say whether
the upper and lower bound will move closer together or further apart as LB increases. It is also not clear which term
in the lower bound of (15) will be the largest for a general choice of B, R, and H. This means that we cannot say how
the lower bound of (15) will change with LR. We will investigate how the bounds change numerically with B and R in
Section 5. Although we understand the effect of changing LB and LR on the bounds of the condition number, we now
want to investigate their influence on the actual value of 𝜅(S).

4.3.2 Convergence of a conjugate gradient routine
In addition to studying how the condition number of the Hessian changes with B, R, and H, it is of interest to determine
the effect of these same changes on the rate of convergence of the minimisation of the objective function. In order to do
this, we consider the convergence rate of a conjugate gradient method applied to the linear system (2) associated with the
3D-Var cost function (1).

To do this, we follow the same method that is used in Chapter 6 in the work of Haben16; we construct a vector w that
has small- and large-scale features, calculate b = Sw, and then recover w by applying a linear solver, in this case, the
conjugate gradient method, to Sw = b. Here we used the Matlab conjugate gradient routine, pcg,55 to investigate the
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change in the number of iterations to convergence. In exact arithmetic, the conjugate gradient method should converge to
the true solution in exactly n iterations for an n-dimensional problem.17 We note that in finite precision, convergence in
n iterations may not occur, as the search directions lose conjugacy due to roundoff errors.56 Operationally, however, even
n iterations are too many in order to obtain a solution in reasonable computational time. This problem is usually solved
by preconditioning, but for this paper, we are interested in the unpreconditioned problem as discussed in Section 1. We
use a tolerance of 1 × 10−6 on the relative residual for all results presented in the next section.

We expect that the impact of changing B and R on the condition number of the Hessian will be similar for both sets
of experiments (condition number and conjugate gradient convergence) due to the theoretical link between the con-
dition number and the convergence of the conjugate gradient method.18,19 In addition to investigating the impact of
changing the length scale on the convergence of 3D-Var, we are interested in how the choice of observation operators
introduced in Section 4.2 influences 3D-Var in terms of both the condition number and the convergence of the conjugate
gradient method.

5 NUMERICAL TESTING

Our experiments focus on how 𝜅(S) changes with both λ1(R−1), for R correlated, and λ1(B−1) for each of the choices of
observation operator introduced in Section 4.2 (recalling that for any matrix D ∈ RN×N , λ1(D−1) = 1∕λN(D)). This extends
the experiments of Haben16 where the effect of the length scale of B on the conditioning of the Hessian was considered
for uncorrelated R. As the terms λ1(B−1) = 1∕λN(B) and λ1(R−1) = 1∕λN(R) appear in both upper and lower bounds of
(15), we investigate the relationship between changing the eigenvalues of B and R and the condition number of S. We also
investigate how correlations in B and in R interact in terms of both the bounds and the true conditioning of the Hessian.
We then test our conclusions in terms of a minimisation problem, to assess the impact of changing correlation length
scales on the number of iterations required for the convergence of a conjugate gradient routine. We present and discuss
the results for H = H1, H2, and H3 separately before comparing the different cases.

5.1 Investigating changing length scales: observing the first p variables (H = H1)
In Figure 3a, we plot the condition number of S (colour) with the maximum eigenvalue of B−1, shown along the x-axis,
and the maximum eigenvalue of R−1, shown on the y-axis, for the case H = H1. Both axes and the colour values are shown
with a logarithmic scale. We recall that as length scale increases, λ1(B−1) and λ1(R−1) both increase.

We observe the following:

• For a fixed value of λ1(R−1), increasing λ1(B−1) results in an increased value of 𝜅(S). This behaviour is also seen in the
work of Haben16 for an uncorrelated choice of R. The effect of this increase depends on the size of λ1(R−1); larger values
of λ1(R−1) lead to smaller gradients in the contours of 𝜅(S). The inclusion of correlated observation errors therefore
results in a more complex dependence of 𝜅(S) on B.

• For a small fixed value of λ1(B−1), increasing λ1(R−1) results in an increased value of 𝜅(S), whereas for a large fixed
value of λ1(B−1), increasing λ1(R−1) has minimal impact on the value of 𝜅(S).

• In general, the impact of changing λ1(B−1) on 𝜅(S) is larger than when changing λ1(R−1).

We hence note that interactions of λ1(B−1) and λ1(R−1) have an important effect on the condition number of S. This
agrees with the results of Corollary 1, which showed that depending on the relationship between the largest eigenvalues
of B−1 and HTR−1H, there are two distinct bounds on the eigenvalues of S, one in terms of λ1(B−1) and the other in terms
of λ1(HTR−1H).

In Figure 3b, we see the number of iterations required for the conjugate gradient method to solve the problem described
in Section 4.3. The values of λ1(R−1) plotted in Figure 3b are shown in Figure 3a as horizontal lines for 80 values of λ1(B−1).
Firstly, for λ1(B−1) < 4, increasing λ1(B−1) for fixed λ1(R−1) results in an increase in the number of iterations required
for convergence. Additionally, for fixed λ1(B−1), increasing λ1(R−1) results in a clear increase in the number of iterations.
This behaviour agrees well with the qualitative conclusions from the condition number experiment in Figure 3a. For
λ1(B−1) > 4, we see a decrease in the number of iterations as λ1(B−1) increases. In this range, the value of 𝜅(S) is similar
across each of the horizontal lines shown in Figure 3a, so we could expect the number of iterations to convergence to be
similar. Additionally, the Hessian is extremely ill conditioned, which, combined with a small tolerance in the conjugate
gradient routine, could explain the noisy values for large λ1(B−1).
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FIGURE 3 Impact of different choices of observation operator H on 𝜅(S) (a, c, e) and the convergence of the conjugate gradient algorithm
(b, d, f) for: (a, b) H = H1, (c, d) H = H2, and (e, f) H = H3. The matrices B and R are second-order auto-regressive correlation matrices (28)
for N = 200 and p = 100. The x-axis denotes log10(λ1(B−1)). (a, c, e) The y-axis shows log10(λ1(HTR−1H)), and the colour denotes log10(𝜅(S)).
We also show 10 equally spaced contours (solid lines) and horizontal lines (corresponding to the lines plotted in b, d, and f). The solid, dotted,
and dash-dotted lines represent log10(λ1(HTR−1H)) = 3.24, 4.14, and 4.67, respectively

5.2 Investigating changing length scales: observing p alternate state variables (H = H2)
In Figure 3c, we see how changing B and R affects the condition number of S for the case H = H2. The changes in 𝜅(S)
with λ1(R−1) and λ1(B−1) are qualitatively similar to the case H1 described in Section 5.1. Again, we see that the interaction
between B and R has an important effect on 𝜅(S), in agreement with the results of Corollary 1. However, for H = H2,
the change of behaviour of 𝜅(S) does not occur smoothly; we observe a discontinuity in the gradient of the contours. As
λ1(R−1) increases, the value of λ1(B−1) at which this “kink” occurs also increases linearly. We will investigate this kink
further in Section 5.6 and show that it is caused by a change in regime.
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In Figure 3d, we see the number of iterations required for the conjugate gradient method to converge for the case
H = H2.

• For fixed values of λ1(R−1) we observe a change in behaviour as λ1(B−1) increases; for smaller values of λ1(B−1) we see
a decrease in the number of iterations as λ1(B−1) increases, and for larger values of λ1(B−1) the number of iterations
increases with λ1(B−1). This does not agree with the results for the condition number of S in Figure 3c, where an
increase in λ1(B−1) causes an increase in 𝜅(S) for all values of λ1(B−1).

• For smaller values of λ1(B−1), increasing λ1(R−1) leads to an increase in the number of iterations required for conver-
gence. For larger values of λ1(B−1), which occur to the right of the kink, increasing λ1(R−1) decreases the number of
iterations. Again, this is unlike the results seen for the condition number, where increasing λ1(R−1) leads to an increase
in both the actual value and the upper bound of 𝜅(S) for all values of λ1(B−1).

We note that the value of λ1(B−1), where this change in behaviour occurs, is the same as the value of λ1(B−1), where
the change in gradient of the contours occurs in Figure 3c, indicating that the kink is caused by an underlying change
in regime. If we consider the eigenvalues of S (not shown here), the clustering of eigenvalues increases as the kink is
approached. The clustering of eigenvalues is important for the convergence of a conjugate gradient method19 and is
not detected by the condition number. This explains the difference in behaviour between Figure 3c and Figure 3d with
increasing λ1(B−1).

5.3 Investigating changing length scales: observing p alternate variables smoothed over
five state variables (H = H3)
In Figure 3e, we see how changing B and R affects the condition number of S for the case H = H3. The behaviour of
𝜅(S) with changing λ1(B−1) and λ1(R−1) is qualitatively similar to the case H = H2. However, for H = H3 and fixed
λ1(B−1), only changes to very large values of λ1(R−1) result in a significant change to 𝜅(S), and this is true for only the
smallest values of λ1(B−1). Again, interaction between λ1(B−1) and λ1(R−1) has an important impact on 𝜅(S) but to much
less of an extent than in the previous two cases. This agrees with the results of Corollary 1, as the value of λ1(HT

3 R−1H3)
is much smaller than λ1(HTR−1H) for H = H1 or H2, and hence, LR will need to take a much larger value in order that
λ1(HT

3 R−1H3) + λN(B−1) > λ1(B−1) . A discontinuity in gradient similar to the one observed for the case H = H2 is seen
here but for much larger values of λ1(HTR−1H) than for Figure 3c.

In Figure 3f, we see the number of iterations required for the conjugate gradient to converge for the problem described
in Section 4.3 when H = H3. Similar to Figure 3d, we see an initial decrease in the number of iterations required for
convergence, before a turning point where the number of iterations increases with λ1(B−1). This turning point occurs for
the same values of λ1(B−1) as the discontinuity in gradient that was seen in Figure 3e. As the value of λ1(B−1) at which
this kink occurs is much smaller than for the case H = H2, for most values of λ1(B−1), increasing λ1(R−1) decreases the
number of iterations. As in the case H = H2, the clustering of the eigenvalues of S increases as we approach the kink. The
structure of the eigenvalues is more important in determining the convergence of a conjugate gradient method than the
condition number in this case.

5.4 Investigating bounds and actual value of 𝜅(S) for different choices of observation
operator
We now compare the effect of changing the observation operator on both the condition number of S and the bounds of S
introduced in Section 3. Of particular interest is how tight the bounds are for different values of λ1(B−1). For clarity, the
Hessian for the cases H = H1, H = H2, and H = H3 will be referred to as S1, S2, and S3, respectively. Figure 4 displays
the actual value of the condition number and the bounds from (15) for a fixed choice of R with LR = 0.33 for all three
choices of H. We recall (Section 4.2) that the bounds for the cases H = H1 and H = H2 are equal, with tighter bounds for
the case H = H3. This is because the maximum eigenvalue of H3HT

3 , which appears in both upper and lower bounds, is
0.52 rather than 1.

• Figure 4 shows cases where both the upper and lower bounds given by (15) are tight. The upper bound is close to the
actual value of 𝜅(S) for H1, particularly when λ1(B−1) is small. For small values of λ1(B−1), the actual value of 𝜅(S) for
H3 is much closer to the lower bound than the upper bound.
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FIGURE 4 Bounds (dashed lines) and condition number (solid lines) of S for H1 (cross), H2 (triangle), and H3 (circle) for LR = 0.33. The
bounds are calculated using (15) for all choices of H. We note that the bounds for the cases H1 and H2 are the same

• The kink that was observed in Figure 3c for H = H2 can also be seen in Figure 4. The kink occurs at the location where
𝜅(S2) coincides with 𝜅(S3). For values of λ1(B−1) greater than the kink, 𝜅(S2) and 𝜅(S3) are very close to each other.

• For all choices of H shown in Figure 4, increasing λ1(B−1) leads to the upper bound moving away from both the lower
bound and the actual value of 𝜅(S).

We note that we have found different choices of B, R, and H, where the actual values of S are close to both the upper and
lower bounds given by (15). We now discuss the implications of changing B, R, and H in terms of the condition number
of S and the number of iterations required for the conjugate gradient to converge.

5.5 Comparison of results
In this section, we compare the results of the previous sections for different choices of observation operator H, as well as
different choices of B and R. We recall that λ1(B−1) = 1∕λN(B) and λ1(R−1) = 1∕λN(R).

We begin by considering how the lower bounds given by Lemma 1 for λ1(S) change depending on whether λ1(B−1) or
λ1(HTR−1H) + λN(B−1) is the larger term.

• For a fixed value of LR and changing LB: For small values of λ1(B−1), the lower bound of λ1(S) from (8) is given by
λ1(HTR−1H) + λN(B−1), meaning that the maximum eigenvalue of HTR−1H is most important for determining λ1(S).

• As LB increases, at some point, λ1(B−1) will be larger than λ1(HTR−1H) + λN(B−1), meaning that λ1(B−1) will be the
most important term for determining λ1(S).

• Alternatively, fixing LB and changing LR, we observe similar behaviour: For smaller values of LR, we see less impact
on 𝜅(S) when changing LR than for larger values of LR, where a change in λ1(HTR−1H) has a significant effect on the
value of 𝜅(S).

This behaviour is seen for all choices of H in Figure 3. This bound also provides justification for the variation with
λ1(B−1) and λ1(R−1) in the gradient of the contours seen in Figure 3a,c,e.

We now consider the similarities between different choices of observation operator for the two experiments, as follows:

• For a fixed choice of H, there are strong similarities between the effect of increasing λ1(B−1) on the convergence of
the conjugate gradient method and the effect on the condition number of the Hessian. In particular, the kink in the
condition number (Figure 3c,e) and the change in gradient for convergence (Figure 3d,f) occur at the same values of
λ1(B−1) and λ1(R−1) for both H = H2 and H = H3. This indicates that the kink is due to a change in the underlying
structure of S.

• The effect of varying λ1(R−1) and λ1(B−1) for H1, H2, and H3 was broadly similar in terms of 𝜅(S), with the main
difference being the discontinuity in the contours of 𝜅(S) seen for H2 and H3 but not for H1.

We also see some large differences between the two experiments. The main dissimilarity between the graphs for condi-
tion number (Figure 3a,c,e) and for convergence (Figure 3b,d,e) is that increasing λ1(B−1) uniformly results in an increase
in the condition number of S, but it is not always linked to an increase in the number of iterations required for convergence.
This difference was explained in Sections 5.1– 5.3 by the clustering of eigenvalues near the kink for H2 and H3.

For the conjugate gradient experiments, conclusions for the cases H = H2 and H = H3 were very different from those
of the case H = H1. Both H = H2 and H = H3 have block-circulant structures, meaning that in these cases S will
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have a block-circulant structure. We suggest that this is the reason for the difference in eigenvalue clustering behaviour
compared with the case H = H1. This was tested through the use of an additional noncirculant observation operator made
by observing 100 random state variables. The behaviour in this case is very similar to that observed for H = H1. The fact
that qualitative behaviour for the case H = H1 is the same as for the randomly selected observation operator supports the
conjecture that the rapid convergence of the conjugate gradient seen for H = H2 and H = H3 is caused by the inherent
block-circulant structure of S2 and S3.

5.6 Understanding the discontinuity in the gradient for H = H2 and H = H3

We now return to discuss the discontinuity in the gradient, or kink, that was observed for H = H2 and H = H3 for both
the condition number of S (Figure 3c,e) and the convergence of the conjugate gradient method (Figure 3d,f). We explain
this theoretically and discuss why the discontinuity in gradient is observed for H2 and H3 but not for H1. We begin by
considering the bounds for the eigenvalues of S in terms of the eigenvalues of B−1 and R−1, using the bounds given by
Corollary 1 and the discussion that follows in Section 3.1.

Equations (8)–(11) explain the variation with λ1(B−1) and λ1(R−1) that was observed in Figure 3. However, as the bounds
in (10) and (11) apply to all choices of H, they do not explain the difference between the choices of H for which the kink
is observed (H2 and H3) and the choices of H that have smoothly varying values of 𝜅(S) (namely H1).

In order to illustrate why kink occurs for some choices of H but not for others, we present a tighter upper bound for
the specific framework used in the numerical experiments for two cases, beginning with H1. By expressing S in terms
of the difference between a circulant matrix and a low-rank update, we use (20) to directly compute the eigenvalues of
the circulant component via a direct Fourier decomposition. This allows us to show that the kink occurs when there is a
significant change in the wavenumber corresponding to the largest eigenvalue of S.

Lemma 3. We define C1 as in the Appendix. For H = H1, we can bound the eigenvalues of S above by the following:

λk(S) ≤ λk(C1), (33)

where the eigenvalues of C1 are given by the following:

𝛾m(C1) = 𝛾m(B−1) +
𝑝−1∑
k=0

𝜔mkR−1
1,k, m = 0, … ,N − 1, (34)

where 𝜔 = e−2𝜋i/N. Recall (using the notation introduced in Section 3.3) that the 𝛾 js are ordered in terms of wavenumber
rather than by decreasing eigenvalue.

Proof. See the Appendix.

Lemma 3 yields an expression that is a sum of an eigenvalue of B−1, plus a term depending on the coefficients of R−1

and the structure of H1. The choice of H = H1 is important in determining the wavenumber at which the maximum value
of the second term of (34) is achieved. From Section 4.1, we recall that the largest eigenvalue of B−1 occurs for the pth
wavenumber, 𝛾N∕2(B−1), for N = 2p, or 𝛾(N±1)∕2(B−1), for N = 2p + 1. The eigenvalues of B−1 ordered by the wavenumber
are shown by circles in Figure 5. The crosses in Figure 5 show the second term of (34) ordered by the wavenumber. For
H1, the largest value of the second term of (34) occurs for the same wavenumber as the largest eigenvalue of B−1. The
maximum value of this term is equal to λ1(R−1). This means that as λ1(S1) changes from being controlled by λ1(R−1) to
λ1(B−1), the change appears smooth, as the wavenumber associated with the frequency of the largest eigenvalue remains
constant. It is clear that increasing LB will have a significant effect on the value of this bound, as changing LB increases
λ1(B−1) significantly, and hence the upper bound given by (33). Therefore, for both regimes, changing LB has a large
impact on both bounds for λ1(S).

We now present a similar bound for H = H2.

Lemma 4. For H = H2, the eigenvalues of S are bounded above by the following:

λk(S) ≤ λk(C2), (35)

where the eigenvalues of C2 are given by the following:

𝛾m(C2) = 𝛾m(B−1) +
𝑝−1∑
k=0

𝜔2mkR−1
1,k, m = 1, 2, … , 𝑝 − 1. (36)
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FIGURE 5 Plots of the contribution of the background and observation terms to the eigenvalues of the circulant matrix made up of the
first row of S1 and S2 for LR = 0.7 and LB = 0.3. Circles denote the eigenvalues of B−1 (which is a term in both (34) and (36)), crosses denote
the contribution of R−1 in the second term of (34) (i.e., for H = H1), and pluses denote the contribution of R−1 in the second term of (36) (i.e.,
for H = H2)

Recall (Section 3.3) that 𝛾 js are ordered in terms of the wavenumber rather than by the maximum eigenvalue.

Proof. See the Appendix.

Lemma 4 also yields an upper bound that is the sum of an eigenvalue of B−1 and a term depending on R−1 and the
choice of H2. We note that the values of the second term of (36) take the same values as the second term of (34) but in a
different order. These are shown by the pluses in Figure 5, where we see that in the order of wavenumber j, the second
term of (36) yields the spectrum of R−1 twice. The second term of (36) is maximised for j = p∕2 and j = 3p∕2. These are
different wavenumbers to the value of j = p, which maximises the first term.

Hence, we can bound λ1(S) above by λ1(R−1)+λN∕4(B−1)when λ1(HTR−1H)+λN(B−1) > λ1(B−1). In this case, increasing
LB has a very small effect on the upper bound for λ1(S), as λN∕4(B−1) does not change significantly with LB. However, when
λ1(B−1) > λ1(HTR−1H) + λN(B−1), small changes to LB will have a larger impact on λ1(B−1) for all choices of H. Similar
behaviour is observed for fixed LB and changing LR. This change in the wavenumber of the largest eigenvalue explains
why the kink occurs in the case of H2.

Finally, we discuss why the kink occurs for different values of LB and LR for H2 and H3. We have shown that the kink
occurs when λ1(B−1) becomes larger than λ1(HTR−1H)+λN(B−1). For all values of LR, λ1(HT

2 R−1H2) ≫ λ1(HT
3 R−1H3). As

the contribution of B−1 is not affected by the choice of observation operator, changing from H2 to H3 increases the value
of LR necessary for λ1(HTR−1H) to be greater than λ1(B−1). Hence, the kink is only visible (see Figure 3e) for LR ≫ LB for
the choice H = H3.

6 CONCLUSIONS

Data assimilation is an important technique for combining information from observations with model data for the purpose
of state estimation. One application of this is in NWP, where data assimilation is used to combine observations of the
atmosphere with a numerical model, in order to obtain an accurate description of the current state of the atmosphere. In
this case, correct specification of the uncertainty of each term is needed to produce the best forecast. The introduction of
correlated observation error terms at operational NWP centres motivates investigation into the influence of observation
error covariance on the convergence of the data assimilation procedure. We emphasise that the results presented here are
general and are relevant for any application of variational data assimilation. Improved knowledge of the role of correlated
observation error covariances will be of use in the context of engineering,33 neuroscience,33,34 and ecology.35,36

In this work, we developed theoretical bounds on the condition number of the Hessian of the 3D-Var objective function,
which can be studied as a bound on the speed of convergence of the minimisation. These bounds were then tested in a
simple numerical framework. We found the following:

• The bounds separate the contributions of the (correlated) observation error, background error, and observation opera-
tor, allowing us to better understand the role played by each term.We note that Theorem 5 and Corollary 1 in particular
are general bounds applying to any valid covariance matrices and any choice of observation network.
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• Numerical experiments for simple linear choices of observation network revealed interaction between observation
error and background error terms. This interaction was also demonstrated theoretically for any choice of observation
network and error covariance matrices.

• The structure of the observation network was seen to be crucial for determining how the observation and background
errors interact.

• Both bounds and experiments revealed that the minimum eigenvalue of the two error covariance matrices is important
for determining the conditioning of the Hessian, as well as the number of iterations required for the convergence of
a minimisation procedure. This agrees with the findings of Weston et al.,9 where small minimum eigenvalues of the
observation error covariance matrix caused convergence problems in a practical setting.

• The ratio of the variances was also shown to be influential, although this was not investigated in detail in this work.
This was also seen in the work of Haben.16

We emphasise that many of the theoretical results and conclusions presented in this work are general and apply to
any valid choice of background and observation error covariance matrices and any linear observation operator. In par-
ticular, although the theoretical results presented in this paper focus on the 3D-Var problem, a natural extension to
4D-Var is obtained by replacing the observation operator H with the generalised 4D observation operator that incorpo-
rates dynamical model information.16 It is therefore expected that the eigenvalues of this model will also be important for
the conditioning of the Hessian in this framework.

The importance of the choice of observation operator was revealed by the numerical tests, both for the condition number
of the Hessian and in terms of interaction between observation and background error covariances. Even for two observa-
tion networks with identical theoretical bounds, very different behaviour was observed numerically. This was explained
by the existence of underlying structures in the Hessian, induced by the structures of the constituent error covariance and
observation operator matrices. Better understanding of these interactions will be important for predicting the response of
operational systems to the introduction of correlated observation errors. This is particularly applicable in practical appli-
cations where diagnosed correlated observation error covariance matrices must be adapted prior to their use in order to
ensure the convergence of the minimisation of the objective function.

In the numerical experiments presented in this paper in Section 5, the observation and background error covariance
matrices were altered by changing the length scales of the underlying correlation functions. This approach is mainly appli-
cable for spatial correlations, where correlation length scales have a physical interpretation. There is significant research
investigating spatial correlations,20,23,27,51 but much current work concerns the practical implementation of interchannel
correlations for satellite observations.3,6,9,21,22,26 Although the theory presented in Section 3 applies directly to the case of
interchannel correlations, it would be of interest to extend our numerical testing to the interchannel covariance case. In
particular, practical experiments have revealed that the minimum eigenvalue of the observation error correlation matrix
is important for the conditioning of the Hessian in the case of interchannel correlations,3,9 which coincides with the the-
oretical and experimental results presented in this work. This is of particular interest as the correlation structure used by
Weston et al.9 is not circulant and demonstrates that, even beyond the numerical framework presented in this paper, our
qualitative conclusions provide useful insight.

An additional area of future interest is investigation into how the best choice of preconditioning changes with the intro-
duction of correlated observation error. Bounds on conditioning for the preconditioned case could be found by extending
the results presented here, using similar theoretical techniques to those used in this work. The numerical and theoretical
results discussed in this paper suggest that interactions between observation and background correlations are also likely in
that framework. It is expected that understanding how the introduction of correlated observation error covariance affects
the unpreconditioned 3D-Var problem will provide insight for suitable preconditioning methods in the correlated setting.
One question of particular interest is whether the use of the background error covariance term as a preconditioner, as is
done for the control variable transform,30 remains optimal. One example of an operational problem that is not precondi-
tioned is the 1D-Var used at the UK Met Office for quality control5; the conclusions from this paper apply directly to that
implementation. The application of these results to the UK Met Office system will be discussed in a future paper.

ACKNOWLEDGEMENTS

This work is funded in part by the UK Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral
Training in Mathematics of Planet Earth, the UK Natural Environmental Sciences Research Council (NERC) Flooding
from Intense Rainfall programme (NE/K008900/1), the EPSRC DARE project (EP/P002331/1), and the NERC National
Centre for Earth Observation.



20 of 22 TABEART ET AL.

ORCID

Jemima M. Tabeart http://orcid.org/0000-0001-6806-8608
Sarah L. Dance http://orcid.org/0000-0003-1690-3338
Amos S. Lawless http://orcid.org/0000-0002-3016-6568
Joanne A. Waller http://orcid.org/0000-0002-7783-6434

REFERENCES
1. Buehner M. Error statistics in data assimilation: Estimation and modelling. In: Lahoz W, Khattotov B, Menard R, editors. Data assimilation:

Making sense of observations. Heidelberg: Springer-Verlag, 2010. p. 93–112.
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APPENDIX: PROOFS

In this section, we present the proofs for Lemmas 3 and 4 (Section 5.6), in which we express S as the difference between
a circulant matrix and a singular matrix in order to bound the eigenvalues of S above.
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Proof of Lemma 3. We exploit the structure of S that arises from the choice of H; entries from R−1 are only added to
the top left p × p block of B−1. Let C1 be the circulant matrix generated by the first row of S1. Then, for i = 1, … ,N,

C1(1, i) = B−1(1, i) +
(
HT

1 R−1H1
)
(1, i) =

{
B−1(1, i) + R−1(1, i) for i = 1, … , 𝑝

B−1(1, i) for i = 𝑝 + 1, … ,N.
(A1)

Let H̃1 be given by

H̃1(i, 𝑗) =

{
1 for 𝑗 = i, i = 𝑝 + 1, … ,N
0 otherwise.

(A2)

Then, we can write S1 = C1 − H̃T
1 R−1H̃1. Applying (5), we obtain

λk(S) ≤ λk(C1) + λ1(−H̃1R−1H̃1). (A3)

As H̃T
1 R−1H̃1 is not full rank and is positive semidefinite, its smallest eigenvalue is 0. Hence, λ1(−H̃T

1 R−1H̃1) =

−λN(H̃T
1 R−1H̃1) = 0, and we have that

λk(S1) ≤ λk(C1). (A4)
As C1 is circulant, we calculate its eigenvalues via a direct Fourier transform (20). In the order of wavenumber, the
eigenvalues of C1 are given by

𝛾m(C1) =
𝑝−1∑
k=0

𝜔mk
(

B−1
1,k + R−1

1,k

)
+

N−1∑
k=𝑝

𝜔kmB−1
1,k m = 0, … ,N, (A5)

where 𝜔 = e2𝜋i/N is an Nth root of unity. Separating the contributions of B−1 and R−1 yields

𝛾m(C1) =
N−1∑
k=0

𝜔mkB−1
1,k +

𝑝−1∑
k=0

𝜔mkR−1
1,k. (A6)

Proof of Lemma 4. We follow the same arguments as the proof for Lemma 3 above.
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