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CHAPTER 11

The Nature of Weather and Climate Impacts 
in the Energy Sector

David J. Brayshaw

Abstract The power sector’s meteorological information needs are 
diverse and cover many different distinct applications and users. 
Recognising this diversity, it is important to understand the general nature 
of how weather and climate influence the energy sector and the implica-
tions they have for quantitative impact modelling. Using conceptual 
examples and illustrations from recent research, this chapter argues that 
the traditional ‘transfer function’ approach that is common to many indus-
trial applications of weather and climate science—whereby weather can be 
directly mapped to an energy impact—is inadequate for many important 
power system applications (such as price forecasting and system operations 
and planning). The chapter concludes by arguing that a deeper under-
standing of how meteorological impacts in the energy sector are modelled 
is required.
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Weather and Climate impaCts in the energy seCtor

The power sector’s meteorological information needs are diverse. On the 
one hand, Transmission System Operators (TSOs) may be concerned with 
detailed geographical forecasts of wind power and demand at relatively 
short lead times (hours or days ahead) for the operational management of 
the power grid. This contrasts, for example, with long-term investors in 
infrastructure and system planners who require a longer view of system 
resilience (years to decades), and energy traders or maintenance planners 
seeking to position themselves for the coming weeks or seasons.

A common theme, however, is the need for a series of conversions to 
transform meteorological information into an actionable decision. The 
three steps in Fig. 11.1 can typically be recognised.

Chapter 6 discussed the first step in this process at length, and under-
standing user needs and preferences is discussed elsewhere in other chap-
ters of this book (Chaps. 1, 3, 4 and 5). Here, the focus is on the general 
process of modelling energy system impacts using meteorological data 
from numerical simulations, illustrated with selected examples (i.e., Impact 
Simulation). It is, however, noted that user preferences—once elicited and 
expressed quantitatively—can be thought of as a conversion of a physical 
impact (in terms of MWh, prices, loss of load) into a ‘utility’ (a numerical 
expression of the user’s preferences). To some extent, they can therefore 
be considered as direct extensions of the impact models discussed below.

It is helpful to identify three distinct levels of complexity in weather- 
and climate-impact modelling, as illustrated in Fig. 11.2.

Meteorological 
simulation

Impact 
simulation

User 
preferences

Fig. 11.1 The process of converting meteorological data into actionable 
information

Single impact

Compound impact

Complex impact

Fig. 11.2 Levels of impact 
complexity
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The simplest level, commonly referred to as ‘point forecasting’, may be 
defined as the response of a single energy system component to a set of mete-
orological drivers for which a transfer function can be written. Typical 
examples might include predicting wind power output for a particular tur-
bine, farm or country, or forecasting power demand over a particular geo-
graphical region (Fig. 11.3). The key aspect is that it is possible to write 
(or otherwise estimate in at least an approximate form) a function, f, which 
converts a set of meteorological variables, {m}, into the energy system 
property of interest E:

 
E f m= { }( )

 

The transfer function may be either physically or empirically derived, 
may be non-linear, many-to-one or probabilistic. Typical examples include 
electricity demand models (Thornton et  al. 2016; Taylor and Buizza 
2003), wind power production models (Dunning et  al. 2015; Cannon 
et al. 2015) and damage models (McColl et al. 2012).

A more complex form of impact occurs when the simultaneous influ-
ence of meteorology on several different components of an energy system 
becomes an important part of the impact. In this case, a transfer function 

0 0 VcutoutVratedVmin

Power output

Wind speed (ms–1)
0
Daily average temperature (oC)

Na�onal-aggregate demand

10 20
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Fig. 11.3 Simple examples of idealised transfer functions used to convert meteo-
rological quantities into estimates of power system properties: (a) an idealised 
wind power curve based on Brayshaw et al. (2011); (b) a simplified demand model 
based on Bloomfield et al. (2016). In each example here, the transfer function is 
shown to depend only on a single meteorological variable for simplicity but in 
general they may incorporate many input variables. Additional dependencies may 
be meteorological (e.g., wind direction for wind power, cloud cover for demand) 
or non-meteorological (e.g., day-of-week for demand), and include stochastic 
‘noise’ to simulate the error and uncertainty in the transfer function
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exists for each component, but the impact is perceived through a 
 combination of those components (often referred to as a ‘compound 
impact’). An example is the residual power load of national power systems 
(i.e., demand net renewables), which depends on demand, solar and wind, 
each of which has a different sensitivity to weather.

In the simplest case, the system can be considered as a set of non- 
interacting energy system components,{E}, and may be written:

 
S L E= { }( )

 

where L is a mapping of the set of energy system components {E} to a 
particular system-wide property of interest, S.

An example1 of this is the ‘merit order’ model2 of UK wholesale power 
price, exploring the extent to which month-ahead forecasts could be ben-
eficial to energy-trading and risk management (Fig. 11.4a; see Lynch et al. 
2014; Lynch 2016). In this example, daily ensemble forecasts of UK wind 
power and national total power demand are created from the European 
Centre for Medium-Range Weather Forecasts (ECMWF) system for sev-
eral weeks in advance, and the ‘residual demand’ calculated.3 The residual 
demand is assumed to be met by a mixture of coal and gas generation, 
preferentially utilising the cheapest marginal cost generators first (i.e., 
those bidding to produce power at the lowest price), with the wholesale 
power price being determined by the most expensive generation unit 
required to operate (Fig. 11.4b). The use of sub-seasonal weather forecasts 
three to four weeks ahead was shown to offer an improvement over stan-
dard industry practice for some—though not all—trading applications. 
This work therefore emphasised both the potential benefits of longer- range 
meteorological forecasts for energy, but also the need for careful evaluation 
of the forecast’s performance in the context for which it is being used.

In both ‘point impact’ and ‘compound impact’ problems, the meteoro-
logical state is assumed to map directly to that of the impacted system (via 
a transfer function or set of transfer functions) and, although the mapping 
may be complicated, it is only dependent on the current meteorological 
state. This assumption does not hold, however, in many energy system 
planning and operations problems (e.g., ‘optimal power flow’ or ‘unit 
commitment’). In problems of this type, there are potentially complex 
connections in time and space between different energy system compo-
nents and to forecast the state of the impacted system accurately requires 
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knowledge of both the power system’s initial state and the meteorological 
evolution between the forecast’s initialisation and its target lead time.

It is beyond the scope of the present text to discuss these problems in 
detail but the key concepts of a ‘complex impact’ on the power system can 
be illustrated through a conceptual model,4 as shown in Fig.  11.5. 

ECMWF month-
ahead ensemble 
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Fig. 11.4 An illustration of energy price forecasting using meteorological inputs 
following Lynch (2016) and Lynch et al. (2014). (a) A flow chart illustrating the 
process through which the forecast is made and evaluated. (b) A schematic of the 
‘merit order model’. In (b), the red curve indicates the relationship between sup-
ply and price (more expensive power stations are willing to produce as price rises, 
hence a positive relationship between volume and price). The blue curve indicates 
the relationship between demand and price (the demand for power decreases with 
price, but here is assumed to be perfectly price-insensitive). The intersection of the 
two curves sets the wholesale price and volume of power produced by the market. 
The qualitative shape of the supply curve produced by the two-generation type 
model (as fitted by Lynch (2016) to observed price data using an Ensemble 
Kalman filter) is indicated in (b). Lynch (2016) went on to demonstrate that the 
ECMWF-forecast based process outlined in (a) was able to significantly outper-
form equivalent forecasts using purely historical weather observations for each of 
wind power, demand and price (evaluated over the period December 2010—
February 2014, at a 99% statistical confidence level). ECMWF stands for European 
Centre for Medium-Range Weather Forecasts
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Consider a power system with a single demand node, D, connected to a 
wind power source, W, the output from which is always instantaneously 
utilised. As there is no storage of power, the residual demand E (i.e., 
demand minus wind power, E = D − W) must be met at all times by two 
fossil fuel generators, F1 and F2. F1 has low fuel costs (i.e., it is cheap to 
generate power with F1) but changes in its output must occur slowly, 
whereas F2 has high fuel costs (i.e., it is expensive to use) but its output can 
change rapidly if required.

Consider further a time series of residual demand as shown by the green 
line on the right hand panel of Fig. 11.5. Initially, the residual demand can 
be met entirely by F1—the low cost generator—but on hour 4 the residual 
demand rapidly increases faster than F1 can respond and F2 must be used 
to meet the short fall. Crucially, although the residual demand at hour 4 
could have been determined using a transfer function applied to the 
instantaneous meteorological state,5 the division of the generation used to 
meet this residual demand between F1 and F2 in hour 4 could not have 
been estimated without also knowing the prior and future meteorological 
and power system status. In this example, if the residual demand had been 
higher in hour 3—and hence F1(t = 3) was also higher—then more of the 
residual demand in hour 4 could have been met with the cheaper F1 rather 
than the more expensive F2. In effect, it is not possible to determine the 
value of F1 and F2 at a particular point in time (e.g., t = 4) independently 
of determining F1 and F2 over many surrounding time steps.

Thus, if one wishes to model the status of the power system at any instant, 
it is therefore important to correctly represent both the meteorological  

Fig. 11.5 A conceptual model of a simple power system with four components: 
two fossil fuel generators (F1 and F2) with differing characteristics, wind power 
generation W and demand D. Residual demand (E = D − W), shown by the green 
line on the time series (right-hand plot), must be met by the combined generation 
from F1 and F2. See main text for discussion
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time series trajectory and the power system’s time-evolving response to it. 
It is not sufficient to simply apply a transfer function to an instantaneous 
‘snapshot’ of weather in isolation from the rest of the time series trajectory to 
produce a full estimate of the power system’s status. In practice, the time-
dependences introduced by power system response constraints are also fur-
ther complicated by spatial connections introduced by transmission 
limitations (i.e., finite rates of power transfer between locations). In contrast 
to ‘point forecasting’, however, there has been relatively little assessment of 
‘time-trajectory forecasting’ (or spatial patterns of co- dependent meteoro-
logical surface variables) in the meteorological research literature in either a 
weather-forecasting or climate modelling context. Similarly, there has also 
been relatively little attention paid to the quality of meteorological data used 
in sophisticated energy system planning and operations studies. New 
research is, however, beginning to tackle some of these concerns, for exam-
ple, Bloomfield et al. (2016) highlight that significant errors may arise if 
insufficiently long weather records are used for power system planning and 
Pfenninger and Keirstead (2015) have provided a recent example of com-
plex unit commitment modelling in a climate- change context.

Despite the differing levels of energy system impact complexity, many 
challenges in energy meteorology have similarities to other meteorological 
applications (e.g., insurance, water and agriculture). The need to calibrate 
and downscale meteorological variables from coarse prediction datasets to 
specific localised properties is a particularly ubiquitous problem. Direct 
meteorological observations of the site (for ‘statistical downscaling’) and 
‘dynamical downscaling’ (with finer resolution numerical models) can 
assist in many circumstances, but it is especially challenging when the 
response of the impacted system depends on more than one meteorologi-
cal input (in such cases, the co-variability of the meteorological properties 
may be important as well as the individual meteorological properties them-
selves). It is also noted that downscaling and calibration only improve the 
forecast if the large-scale dynamics of the system are well-simulated and, in 
practice, errors associated with meteorological downscaling and transfer 
functions are often difficult to separate (see, e.g., Cannon et al. 2017).

summary

To summarise, the transfer from ‘meteorology’ to ‘energy’ is, in many 
cases, highly non-linear. This has profound implications for simulation and 
prediction of energy system impacts, suggesting that forecast skill may be 
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strongly influenced by the transformation from meteorological variables 
to energy variables. In an ideal world, this may act to either increase or 
decrease the skill of the forecast, depending on the specific characteristics 
of the forecast problem but, in practice, the skill of an energy forecast will 
often tend to be lower than the meteorological forecast from which it origi-
nates as errors in the transformation process will tend to compound errors 
in the original meteorology. Careful diagnosis is needed to identify which 
aspects of the forecasting system—from the meteorological prediction to 
its downscaling and transformation into an energy property, and finally its 
conversion into an end-user decision—lead to the dominant sources of 
error, and to focus analytical resources on the scales and processes where 
skill is achievable.

notes

1. Other examples of similar ‘compound impact’ problems can be found in 
peak-load estimation (e.g., Thornton et  al. 2017) and simple models for 
system planning applications (e.g., load duration curves for the estimation 
of the optimal generation-type mix: Green and Vasilakos 2010; Bloomfield 
et al. 2016).

2. See, e.g., Staffell and Green (2016) for an introduction to ‘merit order’ 
concepts.

3. The residual demand is presented here as total demand minus wind power 
generation for simplicity. In practice, Lynch (2016) made several additional 
calculations, removing inflexible generators (such as nuclear) and other 
varying contributions (such as embedded solar and interconnectors) from 
the total demand.

4. See, e.g., Wood et  al. (2014) and Staffell and Green (2016) for an 
introduction.

5. That is, a function of the form E(t = 4) = f ({m(t = 4)}).
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by/4.0/), which permits use, duplication, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, a link is provided to the Creative Commons license and 
any changes made are indicated.

The images or other third party material in this chapter are included in the 
work’s Creative Commons license, unless indicated otherwise in the credit line; if 
such material is not included in the work’s Creative Commons license and the 
respective action is not permitted by statutory regulation, users will need to obtain 
permission from the license holder to duplicate, adapt or reproduce the material.
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