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ABSTRACT

An attribution study has been performed to investigate the degree to which the unusually cold European

winter of 2009/10 was modified by anthropogenic climate change. Two different methods have been included

for the attribution: one based on large HadGEM3-A ensembles and one based on a statistical surrogate

method. Both methods are evaluated by comparing simulated winter temperature means, trends, standard

deviations, skewness, return periods, and 5% quantiles with observations. While the surrogate method per-

forms well, HadGEM3-A in general underestimates the trend in winter by a factor of 2/3. It has a mean cold

bias dominated by the mountainous regions and also underestimates the cold 5% quantile in many regions of

Europe. Both methods show that the probability of experiencing a winter as cold as 2009/10 has been reduced

by approximately a factor of 2 because of anthropogenic changes. The method based on HadGEM3-A en-

sembles gives somewhat larger changes than the surrogatemethod because of differences in the definition of the

unperturbed climate. The results are based on two diagnostics: the coldest day in winter and the largest con-

tinuous area with temperatures colder than twice the local standard deviation. The results are not sensitive to

the choice of bias correction except in the mountainous regions. Previous results regarding the behavior of the

measures of the changed probability have been extended. The counterintuitive behavior for heavy-tailed dis-

tributions is found to hold for a range of measures and for events that become more rare in a changed climate.

1. Introduction

An increased frequency of occurrence of extreme

events such as flooding and heat waves has been re-

ported (Frich et al. 2002; Alexander et al. 2006; Meehl

et al. 2009; Coumou and Rahmstorf 2012; Peterson et al.

2012; Fischer and Knutti 2015) and, as the potentially

most adverse consequences of climate change are re-

lated to extremes, there has been an increased interest in

the attribution of such events (see, e.g., IPCC 2012;

National Academies of Sciences, Engineering, and

Medicine 2016). A particular challenge is the attribution

of single events. While there are a number of papers

addressing event attribution of flooding and heat waves,

there has not been much work done in this area ad-

dressing cold spells. Cold spells also increase morbidity

and mortality, although the effect is weaker than for

extremewarm events (Conlon et al. 2011). Furthermore,
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extreme winter conditions have serious detrimental ef-

fects on infrastructure such as damage to railways,

closed airports, and frozen power lines (see, e.g., Doll

et al. 2014, and references therein).

Part of the lesser interest in the attribution of cold

spells, at least inEurope, can be found in aweaker change

inwinter temperatures than in summer temperatures (see

section 4). Together with the larger natural variability in

winter, this makes changes in cold spells harder to detect.

Cold spells in Europe are closely connected to the North

Atlantic Oscillation (NAO) and blocking (Buehler et al.

2011), with a negative NAO index suggestive of cold

European winters. Stratospheric sudden warmings

propagate downward on subseasonal time scales and lead

statistically to a negative phase of the NAO and associ-

ated colder temperatures in Europe (Baldwin and

Dunkerton 1999; Christiansen 2001). In addition to the

general warming expecting to reduce cold extremes (Van

Oldenborgh et al. 2015), there have also been discussions

about dynamical effects related to anthropogenic forcings

that may change European winter temperatures and cold

spells. One proposed connection is a positive correlation

between autumn sea ice extent and the atmospheric cir-

culation (e.g., the NAO) the following winter, which has

been studied both in observations (Francis et al. 2009;

Overland and Wang 2010; Liu et al. 2012; Tang et al.

2013) and with modeling approaches (Petoukhov and

Semenov 2010;Orsolini et al. 2012; Yang andChristensen

2012; Mori et al. 2014). In another model study Sévellec
et al. (2017) found a link between sea ice and the Atlantic

meridional overturning circulation. With retreating sea

ice resulting from a general warming—and the Arctic

amplification of that warming—such connections could

help to explain the occurrence of recent cold winters in

Europe. However, recent results (Li et al. 2015; Gerber

et al. 2014; Screen 2017) suggest that the relationship

between sea ice, the NAO, and cold spells may be a

chance occurrence or at least is very fragile. Recently,

Francis (2017) related the unsettled science to a potential

combination of a low signal-to-noise ratio and de-

ficiencies in themodels, the experimental designs, and the

metrics of circulation changes.Other broad reviews of the

Arctic influence on midlatitudes are presented by

Overland et al. (2015) and Cohen et al. (2014), while the

reviews by Vihma (2014) and Gao et al. (2015) focus on

the connection between sea ice and midlatitude weather

and climate. Low-frequency changes in European cold

spells may also be related to an intensified anticyclone

that drives changes in the Siberian high (Zhang

et al. 2012).

Here, we present an event attribution study of the cold

European winter of 2009/10. The attribution is based

on two different methods; the first is based on the

ensembles produced with the Hadley Centre Global

Environment Model, version 3, atmosphere-only model

(HadGEM3-A) and the second on ensembles generated

by a statistical surrogate method.

The paper is organized as follows. In section 2 we

describe the data and the diagnostics used for the event

attribution of cold spells. Therein, we also briefly de-

scribe the meteorological details of winter 2009/10 (see

also WMO 2010) focusing on these diagnostics. The two

methods for generating ensembles—the HadGEM3-A

and the statistical surrogate method—are described in

section 3. In section 4 we evaluate these two methods

against observations. In section 5 we present the re-

sulting risk ratios. In the appendix we expand the dis-

cussion of the framing issue of attribution of single

events from Christiansen (2015) to be more relevant for

the present study. The extension includes other mea-

sures of the risk in addition to the fractional attributable

risk and also the situation where the considered event

becomes less frequent in the changed climate. The

conclusions are presented in section 6.

2. The observations, the diagnostics, and the winter
of 2009/10

For surface temperature observations we use the

E-OBS (version 12) daily mean gridded dataset on a

0.58 3 0.58 longitude–latitude land-only grid (Haylock

et al. 2008). Uncertainties in the E-OBS data and com-

parisons with reanalyses are presented in van der Schrier

et al. (2013), who find good agreement between Euro-

pean mean trends in the different datasets. We also use

daily zonal wind from the National Centers for Envi-

ronmental Prediction (NCEP)–National Center for

Atmospheric Research (NCAR) reanalysis on a 2.58 3
2.58 longitude–latitude grid and 17 pressure levels from

1000 to 10hPa (Kalnay et al. 1996). To calculate the

NAO index we use NCEP daily sea level pressure on a

2.58 3 2.58 longitude–latitude grid. For all three datasets
we use the 54-yr-long period 1960–2013, which is also the

period for which the experiments with HadGEM3-A

have been performed (see section 3). We select E-OBS

data for Europe, defined here as latitudes between 358
and 708N and longitudes between 108W and 308E, ex-
cluding grid points where more than 5% of the days are

missing data. This affects only small regions on the Af-

rican coast. Grid points that are missing data between

0% and 5% of the days are filled using nearest neighbor

interpolation, which affects a few grid points on the

African coast and in Turkey.

The NAO is calculated by empirical orthogonal

function (EOF) analysis of winter (DJF) monthly

anomalies of sea level pressure for latitudes between 208
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and 808N and longitudes between 908W and 408E. The
anomalies are first weighted by the square root of the

cosine of the latitudes and linearly detrended. Daily

values of the NAO index are then found by projecting

the leading EOF onto daily sea level pressure anomalies

(see, e.g., Blessing et al. 2005).

There are many possible diagnostics of the severity

of cold winters including different combinations of the

duration, extent, and intensity of the cold periods. In

the following we focus on two diagnostics. The first

diagnostic is defined on gridcell scales as the minimum

temperature over the whole winter. The second di-

agnostic, hereinafter denoted the ‘‘blob index,’’ is a

spatially integrated measure defined as the largest

continuous area with temperature anomalies less

than 22s, where s is the local, seasonally varying

standard deviation (i.e., the standard deviation calcu-

lated for each grid point and for each day of the year).

Thus, the blob index is a combined measure of both the

spatial coherence and the intensity of the cold spell.

The blob index is calculated for each day separately

and for convenience expressed as a fraction of the total

European land area. Both diagnostics are calculated

from daily mean temperatures. The first diagnostic

measures the intensity of the cold period while the

second diagnostic also takes spatial extent into ac-

count, and is similar to the heat-wave diagnostic used in

Christiansen (2015).

We now briefly describe the winter of 2009/10 with a

focus on the chosen diagnostics: the minimum temper-

ature over whole winter and the blob index. The winter

of 2009/10 was a relatively cold winter with a series of

strong cold spells, of which the strongest appeared in the

middle of December. The blob index reached a value of

0.38 on 19 December (Fig. 1, top), which is large but

exceeded in both earlier and later winters (e.g., in the

winter of 2011/12). On 19 December 2009 the temper-

ature was below normal almost everywhere except for

few regions in northern Scandinavia (Fig. 2). The coldest

anomalies, below 24s, are found in the middle of

Germany.1

The temperature of the coldest day of winter 2009/10

confirms that this year was unusually cold in many re-

gions of Europe (Fig. 3). In Germany, Spain, Great

Britain, and Scandinavia temperatures as cold as in

2009/10 are rarely found in other years in the period

1960–2013.

The winter of 2009/10 was, as for many other cold

winters, dominated by a strong negative NAO (Wang

et al. 2010; Ouzeau et al. 2011; Buchan et al. 2014)

(demonstrated in the top panel of Fig. S1 in the sup-

plemental material). However, this winter might not

have been as cold as previous winters with the same

NAO levels, suggesting an impact of a general warming

climate (Cattiaux et al. 2010). The negative NAO was

connected to a weak stratospheric vortex (Cohen et al.

2010; Vargin 2015)—as demonstrated in the bottom

panel of Fig. S1—although the main factor responsible

FIG. 1. Blob index as function of time. The blob index is the area

of the largest continuous region with temperature anomalies below

22s, where s is the local, seasonally varying standard deviation. It

is normalized with the total area of the considered region. Shown

are (top)–(bottom) winter 2009/10 from E-OBS, 1960–2013 from

E-OBS, 1960–2013 from a historical HadGEM3-A ensemble

member, and 1960–2013 from a perturbed surrogate ensemble

member. Note that the bottom three panels include all year (not

just winter days).

1 The lead author got stuck in airports at Manchester and then

Amsterdam on the way home from AGU because snow closed the

runways. The meteorological conditions are described online at

https://en.wikipedia.org/wiki/Winter_of_2009-2010_in_Europe.
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for the strong negative NAO has been suggested to be

related to internal tropospheric dynamical processes

(Jung et al. 2011).

3. The two ensemble methods

To make statements about the attributable risk of the

observed extreme event (winter 2009/10) we need in-

formation about the frequencies of similar events of

different magnitudes in both the unperturbed climate

and in the climate under anthropogenic forcings (Allen

2003; Stott et al. 2004, 2013). For each of the climates the

probability for finding an event at least as extreme as the

observed event is calculated. The risk ratio is then de-

fined as the ratio between these two probabilities. See

also the appendix for a more precise definition of the

risk ratio and other measures of the attributable risk. To

obtain these frequencieswehere use ensembles both from

the atmospheric general circulation model HadGEM3-A

and ensembles obtained by a surrogate field method

that produces fields with the same spatial and tempo-

ral structure as an observed target field. These methods

complement each other as they make different assump-

tions about the effect of anthropogenic climate change.

Note that for the HadGEM3-A approach the unper-

turbed climate is represented by preindustrial (1850)

conditions, whereas for the surrogate method it is rep-

resented by 1960 conditions.

a. The dynamical model

Two ensembles, each with 15 members, have been

produced with HadGEM3-A covering the years 1960–

2013. The horizontal resolution is N216 and the model

has 50 tropospheric and 35 stratospheric levels. The

version used here is discussed in A. Ciavarella et al.

(2018, submitted to Wea. Climate Extremes.) and includes

FIG. 2. The temperature of 19 Dec 2009, which is the winter day of 2009/10 with the largest

blob index. Shown are (top left) temperature (8C), (top right) anomaly after removing annual

cycle (8C), and (bottom) anomaly normalized with the local, seasonal standard deviation.
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the Global Atmosphere, version 6 (GA6), atmospheric

science package (Walters et al. 2017). Both ensembles

were recently used for attribution analysis by Christidis

et al. (2016), Eden et al. (2016), and Burke et al. (2016).

A detailed analysis of the perturbed (historical) en-

semble regarding the skill in extreme events is presented

in Vautard et al. (2018, manuscript submitted to Climate

Dyn.). We further note that no significant correlations

between the Arctic autumn sea ice and the winter NAO

are found in these ensembles. This holds both when total

Arctic sea ice and regional sea ice (e.g., the Kara–

Barents Seas) are considered.

The two ensembles differ through the external climate

forcings included; one is driven with both natural and

anthropogenic forcings (historical) and the other with

only natural forcings (histnat). Natural external forc-

ings are variability in total solar irradiance at the top

of the atmosphere and volcanic activity implemented

through a latitudinal variation of stratospheric aerosol

optical depth. Anthropogenic forcings include well-

mixed greenhouse gases, zonal-mean ozone concen-

trations, aerosol emissions, and land use changes. The

external forcings are obtained from sources used by the

generation of models from phase 5 of the Coupled

Model Intercomparison Project (CMIP5; Taylor et al.

2012). In the histnat experiments, anthropogenic forc-

ings are held at preindustrial levels taken to be those of

1850. Boundary conditions at the bottom of the atmo-

sphere are given by sea surface temperatures (SSTs) and

sea ice concentrations fields. In the historical experi-

ments the SSTs and the sea ice are prescribed from

observed values (HadISST1.1; Rayner et al. 2003),

whereas for the histnat experiments an estimate of the

change resulting from anthropogenic influence is re-

moved from the observations (Christidis et al. 2013).

This estimate comes from ensembles of simulations

with and without anthropogenic forcings generated

with 19 coupled models for the Climate of the 20th

Century Plus (C20C1) Project (http://portal.nersc.gov/

c20c/experiment.html).

Both ensembles share a common atmospheric ini-

tialization on 1 December 1959 from ERA-40 fields

(Uppala et al. 2005). The differences between ensemble

members are produced by two stochastic physics

schemes that generate small differences in the physics of

each simulation (Christidis et al. 2013).

b. Ensemble surrogate field method

Themethod is based on a simple algorithm to produce

ensembles of surrogate fields based on observations.

This method produces surrogate fields with the same

spatial and temporal structure (as measured with in-

stantaneous and lagged cross-correlations) as the origi-

nal observed field of surface temperatures. The method

was used in Christiansen (2015) for attribution of heat

waves and in a study of the significance of the increase in

warm records (Christiansen 2013). The surrogate fields

are generated with a phase-scrambling procedure de-

scribed in Christiansen (2007, 2013) that is very similar

to the multivariate method introduced by Prichard and

Theiler (1994) based on the univariate amplitude ad-

justed Fourier transform (AAFT) method by Theiler

et al. (1992).

The general outline of the procedure is familiar from

bootstrap methods; first a transformation of the original

field into stationary anomalies is performed, then

FIG. 3. (left) Temperature (8C) of the coldest day in winter 2009/10 found individually for

each grid point. (right) Fraction of winters in 1960–2013 with days colder than the coldest day

in winter 2009/10.
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stationary surrogate anomalies are produced from the

original stationary anomalies, and the final surrogate

field is produced by applying the inverse transformation

to the surrogate anomalies.

The stationary anomalies of the original observed

surface temperature field are obtained by removing the

average annual cycle and the secular variations—trends

and variability on the lowest frequencies estimated by a

third-order polynomial fit—at each geographical posi-

tion. The resulting stationary anomalies are Fourier

transformed, then the Fourier phases are randomized

but with the same random phases for all grid points, and

finally inverse Fourier transforms are performed to get

the stationary surrogate anomalies. Now the average

annual cycles are restored at each geographical position

to get a surrogate field of the unperturbed climate state

(i.e., the world that could have been without climate

change). Also adding the secular trends to this field gives

us a surrogate of the perturbed climate.

Repeating this process with different randomizations

allows us to calculate ensembles of fields for both the

unperturbed climate and the perturbed climate. From

these ensembles the relevant distributions of the di-

agnostic can be calculated and the risk ratio for an ob-

served event can be estimated.

The surrogate method is fast and flexible and can

therefore also be used for sensitivity studies and to test

the robustness of the risk ratio to methodological

choices. The method does not depend on physical pa-

rameterizations but only on statistical assumptions. A

fundamental assumption is that it is possible in the ob-

servations to empirically separate internal variability

from climate change. Here this separation is performed

by assuming different temporal scales for the two types

of variability. The method was tested in details in

Christiansen (2015) and found to be adequate for tem-

perature fields while problems may arise for fields that

are strongly non-Gaussian. In agreement with the

analysis in Christiansen (2015) we find here similar re-

sults for cold spells when climate change is defined by

fifth- or seventh-order polynomials.

4. Evaluation

In this section we investigate the extent to which

HadGEM3-A and the surrogate methods reproduce the

relevant features of the observations. Our confidence in

the calculated risk ratios depends on the methods ability

to reproduce long-term temperature trends as well as

cold extremes.

The statistical significance of trends and differences is

estimated by Monte Carlo methods that take the pos-

sible serial correlations of the data into account. The

statistical significance of trends is calculated by a phase-

scrambling method (Theiler et al. 1992; Christiansen

2001) for which the ‘‘bootstrap’’ members retain the full

autocorrelation spectrum of the original detrended time

series. The significance of differences are calculated by a

block-bootstrap method assuming that data separated

by 15 days are independent. This separation corresponds

to roughly twice the temporal decorrelation length of

surface temperatures (see, e.g., Christiansen 2015).

We will use ‘‘historical’’ and ‘‘histnat’’ to denote the

two ensembles from HadGEM3-A. For the surrogate

method we use ‘‘perturbed’’ and ‘‘unperturbed’’ en-

sembles. So the histnat and unperturbed ensembles here

refer to the counterfactual world that could have been.

Some general evaluations related to cold spells were

presented in Vautard et al. (2018, manuscript submitted

to Climate Dyn.) based on the historical HadGEM3-A

ensemble. It was concluded that there were no major

processes hindering the representation of cold spells.

Here we will focus on quantities directly related to the

two diagnostics and compare the evaluations of the dy-

namical model and the surrogate method.

a. The European mean perspective

The observed spatially averaged European winter

(DJF) mean temperature has a linear trend of 0.308C
decade21 (95% confidence interval is [0.12, 0.51]8C
decade21) in the period 1960–2013 (Fig. 4). This is

somewhat larger than the ensemble mean of the

HadGEM3-A historical ensemble, which shows a trend

of 0.208C decade21 (95% confidence interval, [0.12,

0.28]8C decade21). Both these trends are significant to

the 5% level while only approximately half of the indi-

vidual HadGEM3-A historical ensemble members

show significant trends. However, 3 out of the 15 en-

semble members show a trend that is comparable to that

of the observations. The trends are probably due to a

combination of increasing greenhouse gases and de-

creasing European aerosol emissions. However, there is

no significant difference in the trends calculated for the

whole period, the period before 1985, and the period

after 1985, either for observations or for models. It is

also worth noting that the HadGEM3-A has a negative

bias that is dominated bymountainous regions as seen in

the next subsection.

The ensemble mean of the perturbed ensemble of

surrogates has a linear trend of 0.348C decade21 (signif-

icant to the 5% level; 95% confidence interval, [0.26,

0.42]8C decade21) close to that of the observations as

should be expected by construction. The ensemble of

surrogates shows less variation among ensemble mem-

bers than does the HadGEM3-A ensemble, and all of

them show significant trends. The unperturbed ensemble
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mean and the histnat ensemble mean show weak and

insignificant trends. The NAO index has a weak non-

significant trend in the observations while it is almost zero

in the two HadGEM3-A ensembles (not shown).

The correlation of the European mean winter tem-

perature between observations and the ensemble mean

of the HadGEM3-A historical ensemble is 0.47 (95%

confidence interval is [0.15, 0.51]). For theHadGEM3-A

histnat ensemble the correlation is 0.29 ([0.01, 0.53]). As

expected the correlations for the surrogate ensembles

are smaller, 0.28 ([20.14, 0.60]) and 0.02 ([20.28, 0.32]),

reflecting that for this method only the trend will con-

tribute. For the observations the correlation between

the European mean winter temperature and the NAO

index is 0.67 ([0.40, 0.82]), and similar values (0.61 and

0.63) are found for the two HadGEM3-A ensembles.

Correlations of winter mean NAO index between ob-

servations and the two HadGEM3-A ensemble means

are 0.19 ([20.03, 0.41]) and 0.22 ([0.03, 0.46]), whereas

the correlation between the NAO index in the two en-

semble means is 0.52 ([0.29, 0.70]). Thus, for both ob-

servations and the HadGEM3-A ensembles the SSTs

determine a considerable part of the average European

land temperature and the NAO index and the land

temperature are well correlated. However, the NAO

itself is only to a limited extent determined by SSTs (see,

e.g., Greatbatch 2000, and references therein).

To get an overall impression of the changes in winter

extremes we normalize the local temperatures for each

grid point with the local, seasonally varying standard

deviation (calculated for each grid point and for each

day of the year) and pool them all together (Fig. 5). The

challenge of detection and attribution of cold extremes

becomes clear: although there is a general change in the

distributions the changes are particularly small for the

cold tail. This is quantitatively different from summer

temperatures (Fig. S2 in the supplemental material),

which show a general shift of the whole distribution

towardwarmer values. Both theHadGEM3-Ahistorical

ensemble and the perturbed surrogate show changes

comparable to observations. Note also that the distri-

butions in winter are heavily negatively skewed so that

the values in the negative tail are numerically larger than

those in the positive tail. This is in agreement with the

observation (Twardosz and Kossowska-Cezak 2016)

that more extreme cold than extreme warm winters are

observed.

The blob diagnostic combines intensity and spatial

coherence of the cold spell and requires a specific vali-

dation. In Fig. 1 the diagnostic is shown as function of

time for a random historical HadGEM3-A ensemble

member and for a random perturbed surrogate ensem-

ble member. The two ensemble members compare well

with observations. Figure 6 shows the return periods in-

cluding only winter days of the historical HadGEM3-A

and the perturbed surrogate ensembles, as well as for

observations. We see that both the surrogate method

and HadGEM3-A reproduce the observed return pe-

riods of the largest continuous area very well. However,

there is a tendency for the HadGEM3-A to over-

estimate the return periods for events smaller than 0.35.

b. The local perspective

In section 4b(1) we present an evaluation based on all

winter days, and in section 4b(2) we briefly add to the

evaluation of the temperatures of the coldest winter

days presented in Vautard et al. (2018, manuscript

submitted to Climate Dyn.).

1) EVALUATION BASED ON ALL WINTER DAYS

The mean of the local temperatures over the winters

1960–2013 is relatively well modeled in the historical

HadGEM3-A ensemble (Fig. 7), with a bias that is small

(although statistically significant) except for the alpine

region and regions in northern Scandinavia. In these

FIG. 4. European mean winter temperatures (8C) as function of

time for (top) HadGEM3-A and (bottom) surrogates. Observa-

tions are blue curves, historical and perturbed ensembles are black

curves, and histnat and unperturbed ensembles are red curves.

Ensemble means are shown with thick curves. Straight lines in-

dicate linear trends.
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mountainous regions with complex orography the

model is up to 58C colder than the observations probably

because of a combination of model bias and inaccurate

observations. The long-term mean difference between

the historical and histnat models is positive everywhere

with the strongest warming in the northeastern part of

Europe, reaching 48C in Finland, and the weakest

warming in the southwestern part. For the surrogate

method (not shown) the long-term mean is by con-

struction almost indistinguishable from that of the

observations.

The linear trend of the local temperatures over the

winters 1960–2013 (Fig. 8) is positive nearly everywhere

in the observations with the largest trends in the north-

eastern regions. The trends are statistically significant in

large areas. The same pattern but of weaker strength

and lower significance is found in the historical

HadGEM3-A experiments (see also Vautard et al. 2018,

manuscript submitted to Climate Dyn.). The trends for

the perturbed surrogate have the same magnitude as in

observations. For the histnat and unperturbed ensem-

bles the trends are close to zero everywhere. The pattern

of the differences in the mean between HadGEM3-A

historical and histnat ensembles (Fig. 7, bottom right)

and the trends in observations and the HadGEM3-A

historical ensembles (Fig. 8, left) are in general agree-

ment with the expected Arctic amplification.

The standard deviation, the skewness, and the 5%

quantile of the local temperatures are shown inFigs. 9–11.

These quantities are calculated from winter anomalies

over the period 1960–2013 after removing the seasonal

cycle and the secular trend in the form of a third-order

polynomial fit. Figures 9–11 include the observations

(top panels), the historical HadGEM3-A and perturbed

surrogate (middle panels), the difference between the

historical HadGEM3-A and observations, and the dif-

ference between the historical and histnat HadGEM3-A

(bottom panels).

Compared to the observations, the standard deviation

in the historical HadGEM3-A is overestimated in the

FIG. 5. Local daily winter temperatures normalized by their seasonally varying standard deviation and pooled

over all grid points. (left) The distribution as function of time (contour levels are 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2,

0.3, 0.4, and 0.5) and (right) the distributions before (light shading) and after (dark shading) 1985 for (top)–(bottom)

observations (E-OBS), a HadGEM3-A historical, and a perturbed surrogate ensemble.
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mountainous regions (Fig. 9). The modeled skewness is

strongly overestimated compared to observations in

Scandinavia, while it is underestimated in northeastern

parts of Europe. Only small differences are found in

southern Europe (Fig. 10). The 5% quantile is over-

estimated in the model compared to observations in

parts of northern Europe while it is underestimated in

the mountainous regions (Fig. 11). This is a combination

of the differences in standard deviation and skewness.

Comparing the HadGEM3-A historical and histnat

experiments we find smaller differences. The standard

deviation in the historical version is larger everywhere

compared to the histnat version but the differences are

small. The 5% quantile has also increased everywhere,

although the differences are statistically significant only

in a few regions. The pattern of the changes in the 5%

quantile is largely in agreement with the patterns of the

changes in the long term means and the trends in the

historical HadGEM3-A.

The comparison above was done with a single ensem-

ble member. But the described results are robust across

the ensemble members and similar results are found for

the ensemble mean. For the perturbed surrogate the

long-term values of standard deviations, skewness, and

5% quantile are very well represented as expected.

For a good representation of the extremes it is not

only necessary that the long-term values of the variance

and skewness are well represented; also, the year-to-

year variations of these quantities should be correctly

represented. The spatial averages of the winter means

of temperature, the variance, and the skewness are

shown as a function of the year in Fig. 12 for observa-

tions, for a historical HadGEM3-A ensemble member,

and for a perturbed surrogate. It is obvious that the

observed temporal variability of these quantities are

well represented by both the HadGEM3-A and the

surrogate. The main deviation is the cold bias in

HadGEM3-A mentioned earlier. The anticorrelation

between winter means and variances was also observed

in Yiou et al. (2009).

2) EVALUATION OF THE COLDEST WINTER DAYS

Fitting a generalized extreme value (GEV) distribu-

tion to the coldest winter days Vautard et al. (2018,

manuscript submitted to Climate Dyn.) found that the

historical HadGEM3-A experiments underestimate the

location parameter in the mountainous regions. This is

in agreement with the results for the 5% quantile pre-

sented in the previous subsection. The scale parameter is

reasonably well represented but in eastern Europe the

model overestimates the shape parameter (too long cold

tail). Again, this is in agreement with the results for the

skewness shown in the previous subsection.

Here we use a Kolmogorov–Smirnov test to see if

observed and modeled distributions of the temperatures

of the coldest winter days are equal. We also show how

different forms of bias correction change the results of

the test. This is important when choosing the form of

correction usedwhen calculating the risk ratios (section 5).

The test is applied to each grid point and for each grid

point the observed sample consists of 53 numbers (one

value for each winter) and the modeled sample of 53 3
15 numbers (as we have 15 ensemble members). As a

measure of the overall similarity of the observed and

modeled coldest days we use the fraction of grid points

for which we can reject the null hypothesis of identical

distributions at the 5% level.

For the raw data from the HadGEM3-A historical

experiments we can reject the null hypothesis at the 5%

level in 71%of the grid points. The p values from the test

are shown in Fig. S3 of the supplemental material. For

the perturbed surrogate ensembles the corresponding

fraction is only 7.5%, indicating that the cold extremes

are well represented by the surrogate approach.

If we perform a bias correction with the difference

between the means over all winter days (not just the

coldest) a small improvement is seen; now the null hy-

pothesis is rejected for a smaller fraction, 61%, of the

grid points. If we also scale with the standard deviations

of all winter days (so the observations and model both

have same mean and same variance in each grid point)

we get a drastic improvement to 26%. However, bias

correction with the mean of only the coldest winter days

brings the fraction of grid points where we can reject the

null hypothesis down to 5.4%. Thus some differences

in the distributions are particular to the extremes; the

FIG. 6. Return periods of the blob index (largest continuous

area) for winter: observations are black, surrogates are blue, and

HadGEM3-A is red. Thin curves are individual ensemble mem-

bers; thick curves are pooled ensembles. Only historical and per-

turbed ensembles are shown.
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differences cannot just be described as differences in the

mean and standard deviations of winter days.

Fortunately, although the different corrections have

different—and in some cases substantial—influence on

the distributions themselves, we find that for the risk

ratios the influence of the corrections is rather small

(section 5).

5. The risk ratios

The distributions of the temperatures of the coldest

winter days and of the blob index have been calculated for

both the HadGEM3-A ensembles (historical and histnat)

and the surrogate ensembles (perturbed and unperturbed).

The significance and error bars have been calculated

by bootstrapping the values contributing to each distri-

bution. For the temperature of the coldest day this

amounts to 15 3 53 values: one value for each winter in

each of the 15 ensembles. For the blob index it is 15 3
53 3 90 values as we have 90 values each winter. Note

that the resulting significance and error bars only include

the effects of finite ensemble size.

For the temperatures of the coldest winter days the

distributions are calculated for each grid point. Two

examples are shown in Fig. 13; a grid point near Oslo,

Norway, and a grid point near Utrecht, Netherlands.

These grid points are typical for mountainous and non-

mountainous regions, respectively. Considering first

HadGEM3-A, we see that for both locations the distri-

butions for the historical ensemble have moved toward

warmer values compared with the histnat ensemble. For

the grid point nearUtrecht themodeled distribution and

the observations (gray vertical lines) agree well. For this

location the risk ratio of winter 2009/10 is 0.44 but it

FIG. 7. (top) Long-term winter means of gridpoint temperatures (8C) in (left) observations

and (right) a historical HadGEM3-A ensemble. (bottom left) Differences in long-term mean

between HadGEM3-A historical and observations, and (bottom right) differences in long-

term mean between HadGEM3-A historical and histnat (8C). Large dots indicate where

differences are estimated to be statistically significant at the 5% level.
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FIG. 8. Linear trends of gridpoint temperatures in winter (8C decade21) for (top) observations,

(middle) a historical and a histnat HadGEM3-A ensemble, and (bottom) a perturbed and an un-

perturbed surrogate ensemble. Large dots indicate where trends are estimated to be statistically

significant at the 5% level.
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FIG. 9. Standard deviation of winter anomalies of gridpoint temperatures (8C) for (top) observa-
tions, (middle) a historical HadGEM3-A and a perturbed surrogate ensemble, and (bottom) differ-

ences between the historical HadGEM3-A ensemble and observations and between a historical and

a histnat HadGEM3-A ensemble. Large dots indicate where differences are estimated to be statis-

tically significant at the 5% level.
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FIG. 10. As in Fig. 9, but for skewness of winter anomalies of gridpoint temperatures (unitless).
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FIG. 11. As in Fig. 9, but for the 5% quantile of winter anomalies of gridpoint temperatures (8C).
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should be noted this winter was not extreme at this lo-

cation. Recall that a risk ratio less than one indicates a

reduced probability for an event colder than the ob-

served. For the grid point near Oslo the modeled dis-

tribution and the observations do not agree (see

discussion of model bias in section 4). The observed

winter of 2009/10 (vertical green line) is a cold winter at

this location but falls in the middle of the modeled dis-

tributions. Correcting the observed temperature for the

mean winter bias (orange vertical line) improves the sit-

uation significantly. Without the bias correction the risk

ratio is 0.44 and with the bias correction it is 0.05. Nor-

way is the region where the bias correction has the

largest impact followed by the Alpine region. Outside

these areas the effect of the bias correction on the

risk ratio is typically less than 0.15. Considering the

surrogate method we find as expected that the changes

in the modeled distributions are smaller and that the

distributions compare well with the observations. Now

the risk ratios are 0.71 for both locations.

The geographical distribution of the risk ratios for

the coldest winter day is shown in Fig. 14. We see that

the probability for a 2009/10 event has been reduced

over almost all of Europe. This holds for both the

HadGEM3-A based analysis and the surrogate method

although most values are moderate. The HadGEM3-A

based analysis in general gives larger changes (and

more significant grid points) than the surrogate method,

which can be understood from the fact that the histnat

ensemble with HadGEM3-A represents preindus-

trial conditions while the corresponding unperturbed

ensemble with the surrogate method represents the

1960s. The mean risk ratio over Europe is 0.69 for

HadGEM3-A. Although, as we saw in section 4b(2),

bias correction will influence the distributions them-

selves, it has a smaller effect on the risk ratios outside

the mountainous regions. Correcting with the mean of

all winter days gives a mean risk ratio of 0.65, while

correcting with the mean of the coldest days gives a

mean risk ratio of 0.69.

Using only data since 1985 (Fig. 14, bottom) we find

lower risk ratios for both the HadGEM3-A and the

surrogate methods. This should be expected as this

period is warmer than the period 1960–85 in the histnat

and perturbed ensembles. However, the lower risk ra-

tios may also be partly due to the smaller number of

degrees of freedom in the shorter period (see the

appendix).

The risk ratio of the 2009/10 event measured with the

blob index—which combines the spatial coherence and

the intensity of the cold spell—is shown Fig. 15. When

the whole period is considered the risk ratio of the

2009/10 event is not significantly different from 1 for

either HadGEM3-A or the surrogate method. However,

FIG. 12. Time development for spatial mean of temperature (8C), standard deviation (8C), and
skewness for observations (green), aHadGEM3-Ahistorical ensemble (orange), and a perturbed

surrogate ensemble (cyan). Standard deviation and skewness are calculated from anomalies.

1 MAY 2018 CHR I S T IAN SEN ET AL . 3401



when only data from 1985 are considered the risk ratio

is 0.47 (95% confidence interval is [0.36, 0.58]) for

HadGEM3-A and 0.65 ([0.50, 0.82]) for the surrogate

method, and is significantly different from 1 in both

cases. Again HadGEM3-A gives larger and more

significant changes than the surrogate method. Note

that for the largest values of the blob index the 95%

confidence intervals are based on few events and are

therefore not robust.

Although the result that risk ratios differ more from 1

when calculated from the period after 1985 than when

calculated from the whole period is in agree-

ment with a stronger warming, there might also be an

effect of the selection problem. In the longer period

there are more events to choose from (i.e., it includes

more independent degrees of freedom) and the lon-

ger period will therefore favor risk ratios closer to 1

(see section 6 and the analytic explanation in the

appendix).

6. Conclusions

We have investigated the possibility of attributing the

cold European winter of 2009/10 to anthropogenic

changes. Two different methods for event attribution

have been included: one based on HadGEM3-A en-

sembles and one based on the statistical surrogate

method described in Christiansen (2015). The surrogate

method is based on a simple algorithm to produce en-

sembles of surrogate fields for both the unperturbed cli-

mate and the perturbed climate. These ensembles differ

locally by the observed secular low-frequency variability.

The method is based on observations and the surrogate

fields by construction have the same spatial and temporal

structure as the original observedfield. TheHadGEM3-A

ensembles differ in applied forcings, with the histnat

ensemble including only natural forcings and the his-

torical ensemble also including the effects of anthro-

pogenic changes.While the histnatHadGEM3-Aensemble

FIG. 13. The distributions of the temperatures (8C) of the coldest day in winter for grid points near (left) Utrecht

and (right) Oslo based on 15 3 53 winters. Historical or perturbed climate are indicated with light shading, and

histnat or unperturbed climate are indicated with dark shading. Thin vertical gray lines are the observed winters,

green vertical line is the observed winter of 2009/10 and orange vertical line is the winter of 2009/10 corrected with

mean bias. Risk ratios are provided at the top right of the panels. For HadGEM3-A, the second number includes

bias correction.
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represents preindustrial (1850) conditions the unperturbed

surrogate ensemble represents 1960 conditions.

Focusing the evaluation on HadGEM3-A, we found

that the trend in winter means over 1960–2013 is in

general underestimated by a factor of 2/3, although there

is a considerable spread among the ensemble members.

HadGEM3-A also has a mean cold bias dominated by

the mountainous regions. The modeled winter standard

deviation compares well to observations except for the

Norwegian coast and the Alpine region where it is

somewhat overestimated. In observations the skewness

is negative almost everywhere. The model underesti-

mates the strength of the negative skewness in Scandi-

navia and many of the western parts of Europe while it

overestimates the strength of the negative skewness

in central Europe. Together this results in the cold 5%

quantile being overestimated in many regions of Europe

except in the mountainous areas. For the extremes—

such as the coldest day in winter—we do find some dif-

ferences between the HadGEM3-A ensemble and the

observations. Fortunately, the risk ratios are not sensi-

tive to these deficiencies.

For the attribution we considered two diagnostics;

the coldest day in winter for each grid point and the

largest continuous area with temperatures more than

two local standard deviations below the mean. The

results for the risk ratio were presented using both

the whole period 1960–2013 and the later period 1985–

2013 to build the distributions. For the largest con-

tinuous area no significant change in the risk was

found for either the HadGEM3-A or the surrogate

method when the whole period was included. When

only the shorter period was included both methods

gave statistically significant (different from 1 at the

FIG. 14. Maps of the risk ratios of the temperature of the coldest day in the winter 2009/10.

Densities calculated over all winter days for (left) HadGEM3-A and (right) the surrogate

method based on (top) the full period 1960–2013 and (bottom) 1985–2013. Large dots indicate

where the ratio is estimated to be significantly different from 1 (5% level).
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5% level) risk ratios for the 2009/10 event of around

0.5. For the temperature of the coldest day in winter,

values less than 1 were found over most of Europe.

Lower values were found for HadGEM3-A compared

to the surrogate method. Smaller and more significant

values were found when only the later period was con-

sidered. For this period the HadGEM3-A and the sur-

rogate method agree on the general pattern with the

FIG. 15. The risk ratio (black curve) for the blob index (i.e., the largest continuous area with temperature

anomalies less than22s). Vertical green line is the observed value for winter 2009/10, gray curves are bootstraps,

and black dashed curves are the 95% confidence intervals. Values are shown for (left) HadGEM3-A and (right) the

surrogate method based on (top) the full period 1960–2013, (middle) 1985–2013, and (bottom) 2007–12.
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lowest values in western Europe (except the Norwegian

coast).

In the perturbed surrogates any low-frequency effect

of retreating sea ice would automatically be included

while, as mentioned in section 3a, there are no signifi-

cant correlations between the Arctic autumn sea ice and

the winter NAO in the HadGEM3-A historical ensem-

ble. The latter observation does not completely rule out

an influence of sea ice on the temperatures in the

HadGEM3-A ensemble. However, the fact that we get

comparable results about the risk ratios in both the

surrogate method and the HadGEM3-A approach sug-

gests that the effect of retreating sea ice is not very im-

portant for the risk ratios.

In the appendix we address some issues of attribution

of single events. We saw that the counterintuitive be-

havior found for the fractional attributable risk (FAR)

in Christiansen (2015) also holds for the risk ratio and

the simple ratio of probabilities; these measures do not

increasemonotonically with the strength of the event for

heavy-tailed distributions. As shown in Vautard et al.

(2018, manuscript submitted to Climate Dyn.), cold ex-

tremesmight actually have distributions that are difficult

to distinguish from heavy-tailed distributions (shape

parameters of GEV distributions close to 0). Note also

that the risk ratios found with the surrogate approach

(Fig. 15) do not show a clear decrease with the strength

of the event. We also saw that all three measures are

sensitive to the ‘‘selection problem’’; they depend on the

number of degrees of freedomand therefore on the choice

of region and period used when counting the events that

are similar to the observed extreme event. In agreement

with the analytical results we found in section 5 that the

risk ratios for the whole period were larger than the risk

ratios for the period after 1985. Although some of the

explanation can be found in the increased warming in

the later period, it further demonstrates that the attri-

bution of single events contains some amount of sub-

jectivity. This point is emphasized by the very low risk

ratios found when only the period 2007–12 is considered

(Fig. 15, bottom). In fact, even lower risk ratios are

found when only the winter of 2009/10 is considered (not

shown). Finally we saw that the issues described in

Christiansen (2015) also exist when the event under

consideration becomes less frequent in the changed

climate as for the cold events of the present study.

However, we take some comfort in the fact that the

two very different methods in general agree on the risk

ratio. As mentioned above, the somewhat larger

changes found for HadGEM3-A compared to the sur-

rogate approach are because the histnat and the un-

perturbed ensembles represent different periods. As

mentioned in Christiansen (2015) the surrogate method

has both advantages and disadvantages, the main ad-

vantages being that it is fast and does not require ex-

tensive computer resources. The results in the present

paper confirm that the surrogate method can be used as

an alternative for dynamical methods when considering

event attribution. It is also reassuring that the two very

different diagnostics in general agree on a reduced risk

of cold spells.
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APPENDIX

Framing Issues in Attribution of Single Events

There is an ongoing debate about the interpretation

and usefulness of the attribution of single events to cli-

mate change (Bindoff et al. 2013; Hansen et al. 2014;

Hannart et al. 2016; Otto et al. 2015; Christiansen 2015;

National Academies of Sciences, Engineering, and

Medicine 2016). In particular, Christiansen (2015)

studied the influence of heavy tails and the ‘‘selection

problem’’ (i.e., the consequence of the fact that the

event under consideration is not independent but se-

lected precisely because it is an extreme). While

Christiansen (2015) focused on the fractional attribut-

able risk we here expand the study to include other

measures. We will also include the situation where the

event under consideration becomes more rare in the

changed climate (as expected for cold spells).

The situation and notation are briefly described as

follows. For an observation x we denote the probability

density in the unperturbed climate as puc(x) and the

cumulative density as Puc(x). In the perturbed climate

the corresponding quantities are ppc(x) and Ppc(x).

Here, the perturbed climate refers to the climate under

anthropogenic changes and the unperturbed climate to

‘‘the world that might have been’’ (i.e., the climate

without anthropogenic changes). An often used mea-

sure of the increased risk for x is the fractional attrib-

utable risk (FAR) defined as [ ~Ppc(x)2 ~Puc(x)]/ ~Ppc(x),
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where ~P5 12P (Allen 2003; Stott et al. 2004, 2013).Here,

we assume an event on the right tail of the distribution.

Other possible measures are the risk ratio ~Ppc(x)/ ~Puc(x)

and the simple ratio of probabilities ppc(x)/puc(x).

We first assume that climate change amounts to a simple

shift ppc(x) 5 puc(x 2 c), where c 5 0.3. This is a reason-

able first-order approximation as discussed in Christiansen

(2015). Also note that in a study of climate-model

FIG. A1. (top) Probability densities of the largest value xmax of n independent and identically

distributed variables for n 5 1 and 100. Cyan is the unperturbed case, puc
1 and puc

100; red is under

climate change, p
pc
1 and p

pc
100. The perturbed and unperturbed cases are related by p

pc
1 (x)5

puc
1 (x2 c), where c5 0.3. These curves are shown in logarithmic scale in Fig. S4 of the supplemental

material. (middle top) The ratio of probabilities ppc
n /p

uc
n , (middle bottom) the risk ratios

RR5 (12Ppc
n )/(12Puc

n ), and (bottom) the FAR [(12Ppc
n )2 (12Puc

n )]/(12Ppc
n )5 12 1/RR

as function of xmax. Results are shown for n 5 1 (blue), 10 (green), 100 (orange), 1000 (red), and

10 000 (black). At (left) puc
1 is Gaussian, and at (right) it is t-distributed with 5 degrees of freedom.
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simulations with future levels of greenhouse gases, de

Vries et al. (2012) find that changes in the frequency of

cold spells in western Europe can be explained by

changes in the mean and variance. Under this assump-

tion, Christiansen (2015) showed that while the FAR

increases monotonically with x when puc(x) is Gaussian,

this is not the case when puc(x) has a heavy tail. In this

case the FAR has a maximum for a finite value of x.

Christiansen (2015) also studied the effect of the selec-

tion problem defined above. In this case the rele-

vant probability is not puc(x) but rather puc
n (xmax): the

probability density of the largest value xmax of n vari-

ables. Note, that when the n variables are independent

and identically distributed we have the identity Pn 5 Pn

for the cumulative densities.

While Christiansen (2015) only considered the FAR,

we here show results also for the risk ratio and the

simple ratio ppc(x)/puc(x) (Fig. A1).We see that all three

measures behave similarly. Under Gaussianity (Fig. A1,

left) they all increase with x and approach infinity for

large x. However, for the distribution with the heavy tail

(Fig. A1, right), they all have a maximum after which

FIG. A2. As in Fig. A1, but with the perturbed climate given by p
pc
1 (x)5 puc

1 (x1 c), where c 5
0.3, indicating fewer positive extremes in the perturbed climate.
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they decrease. Also note, that for a given x all measures

decrease as the number of degrees of freedom increases.

The analysis above assumes that the event under con-

sideration becomes more frequent in the changed climate.

For the cold spells analyzed in the present paper—and a

few previous attribution studies (Christidis et al. 2013,

2014)—the situation is the opposite. The relevant as-

sumption is now ppc(x)5 puc(x1 c). Results for this case is

shown in Fig. A2. Now the FAR and the two other mea-

sures decrease monotonically under Gaussianity, whereas

for distributions with heavy tails they reach a minimum

for a finite value of x.We also see that allmeasures increase

as the number of degrees of freedom increases.

Thus, the conclusions of Christiansen (2015) based on

the FAR also hold for the other measures and when the

considered event becomes more infrequent. The selec-

tion problem cannot be avoided; all three measures

change drastically when the number of degrees of free-

dom increases. All three measures are sensitive to de-

viations from Gaussianity; for heavy-tailed distributions

the measures do not change monotonically so for the

most extreme events the measures report less changes in

the risk than for more intermediate values.
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