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Abstract

Enteric methane (CH4) production from cattle contributes to global greenhouse gas

emissions. Measurement of enteric CH4 is complex, expensive, and impractical at

large scales; therefore, models are commonly used to predict CH4 production. How-

ever, building robust prediction models requires extensive data from animals under

different management systems worldwide. The objectives of this study were to (1)

collate a global database of enteric CH4 production from individual lactating dairy

cattle; (2) determine the availability of key variables for predicting enteric CH4 pro-

duction (g/day per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg

energy corrected milk) and their respective relationships; (3) develop intercontinen-

tal and regional models and cross-validate their performance; and (4) assess the

trade-off between availability of on-farm inputs and CH4 prediction accuracy. The

intercontinental database covered Europe (EU), the United States (US), and Australia

(AU). A sequential approach was taken by incrementally adding key variables to

develop models with increasing complexity. Methane emissions were predicted by

fitting linear mixed models. Within model categories, an intercontinental model with

the most available independent variables performed best with root mean square

prediction error (RMSPE) as a percentage of mean observed value of 16.6%, 14.7%,

and 19.8% for intercontinental, EU, and United States regions, respectively. Less

complex models requiring only DMI had predictive ability comparable to complex

models. Enteric CH4 production, yield, and intensity prediction models developed on

an intercontinental basis had similar performance across regions, however, inter-

cepts and slopes were different with implications for prediction. Revised CH4 emis-

sion conversion factors for specific regions are required to improve CH4 production

estimates in national inventories. In conclusion, information on DMI is required for

good prediction, and other factors such as dietary neutral detergent fiber (NDF)

concentration, improve the prediction. For enteric CH4 yield and intensity predic-

tion, information on milk yield and composition is required for better estimation.

K E YWORD S

dairy cows, dry matter intake, enteric methane emissions, methane intensity, methane yield,

prediction models

1 | INTRODUCTION

Emissions of greenhouse gases (GHG) have a considerable impact on

climate change, which is an ongoing threat for global food security.

Global food demand in the next 30 years is projected to increase by

over 60% compared to 2006, with more than 321 million people

worldwide at risk of hunger without implementation of climate

change mitigation policies (FAO, 2016). The GHG emissions from

livestock are estimated to be 7.1 Gt carbon dioxide (CO2) equiva-

lents per year accounting for 14.5% of global anthropogenic GHG

emissions (Gerber et al., 2013). Methane (CH4) is emitted from live-

stock mainly through enteric fermentation and manure

decomposition. Enteric CH4 is a natural by-product of microbial fer-

mentation of nutrients in the digestive tract of animals. Globally,

most attention has been directed to enteric CH4 emissions from

ruminants, particularly cattle because these farm species have been

shown to be the major contributors of total GHG emissions from

the livestock sector (Gerber et al., 2013; Tubiello et al., 2013).

Attempts to reduce the carbon footprint of animal agriculture

systems, primarily on-farm GHG emissions, will ideally involve imple-

mentation of mitigation strategies without compromising animal pro-

ductivity or social acceptability, and without endangering animal

health or welfare. To reduce the impact on the environment, the

amount of CH4 produced within a production system needs to be
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quantified accurately so that emission can be mitigated through

management. Direct measurement of enteric CH4 production from

cattle can be conducted using various techniques including several

bottom–up and some top–down approaches, i.e., based on national

or regional activity data and emission factors for different CH4

sources, or on atmospheric measurements, respectively. However,

measurements of CH4 production from individual animals, groups of

animals, or at a regional level is expensive and requires specialized

equipment (Hammond et al., 2016; Kebreab, Clark, Wagner-Riddle,

& France, 2006). Proxies (i.e., indicators or indirect traits) for CH4

emissions have also been qualitatively explored, but no single proxy

was found to accurately predict CH4 and combinations of proxies to

date are not sufficiently robust for general applicability (Negussie

et al., 2017). Therefore, quantitative approaches such as mathemati-

cal modeling have been used to estimate CH4 production in cattle

(Kebreab, Johnson, Archibeque, Pape, & Wirth, 2008). Both mecha-

nistic and empirical approaches have been used to predict enteric

CH4 emissions. However, mechanistic models are usually more

detailed and require numerous inputs that may not be readily avail-

able; therefore, their utility in practice is reduced. An empirical

prediction approach requires fewer inputs and can generally be

implemented by a much wider audience including scientists and pol-

icy makers. There are over 40 empirical prediction equations for

enteric CH4 production of lactating dairy cows in the literature

(Appuhamy, France, & Kebreab, 2016). The majority of these models

were based on measurements from relatively small numbers of ani-

mals in the same geographic region, which may limit their application

in other regions. Therefore, a more comprehensive database needs

to be collated to develop enteric CH4 production prediction models

at both global and regional scales. Furthermore, the performance of

global models in each geographic region should be evaluated and

compared with regional-specific prediction models.

The CH4 conversion factor (Ym) was introduced by the Intergov-

ernmental Panel on Climate Change (IPCC) to indicate the proportion

of the animal’s gross energy intake (GEI) converted to enteric CH4

energy, and it is widely used for national GHG emission inventories

and global research on mitigation strategies. However, it has been

consistently shown that CH4 emissions are related not only to feed

intake but also to feed nutrient compositions, which Ym-based mod-

els cannot adequately represent (Ellis, Bannink, France, Kebreab, &

Dijkstra, 2010). Therefore, identifying relationships between dietary

variables and CH4 production and their impacts on prediction and

model performance are critical. Several extant prediction models

require inputs that may not be commonly available in a commercial

dairy production system. Although predictive ability is likely to be

enhanced with model complexity (Moraes, Strathe, Fadel, Casper, &

Kebreab, 2014; Santiago-Juarez et al., 2016), the trade-off between

availability of variable inputs on farm and prediction accuracy of

enteric CH4 production of dairy cows must be carefully considered.

This is because more complex models may contain predictor vari-

ables that are expensive and not easy to obtain and thereby not

applicable, especially in developing countries. Therefore, a catego-

rization of model types which reflect different types and levels of

data availability (e.g., diet composition, milk production and composi-

tion, and animal characteristics) needs to be conducted. Evaluation

of model performance across various categories can be useful for

different groups (e.g., researchers, regulators etc.).

The objectives of this study were to: (1) collate a global database

of enteric CH4 production in individual lactating dairy cows; (2)

determine the availability of key variables for predicting enteric CH4

production (g/day per cow), yield [g/kg dry matter intake (DMI)], and

intensity [g/kg energy corrected milk (ECM)] and their respective

relationships; (3) develop intercontinental and regional-specific pre-

diction equations for CH4 production, yield, and intensity using a

large individual cow database and cross-validate their performance;

and (4) assess the trade-off between the availability of on-farm vari-

able inputs and prediction accuracy of enteric CH4 production, yield,

and intensity in lactating dairy cows.

2 | MATERIALS AND METHODS

2.1 | Database

The “GLOBAL NETWORK” project (Global Network for the Develop-

ment and Maintenance of Nutrition-Related Strategies for Mitigation

of Methane and Nitrous Oxide Emissions from Ruminant Livestock;

2014–2018) is an international collaborative initiative of animal sci-

entists from all continents, except Africa (http://animalscience.psu.ed

u/fnn; accessed May 16, 2017). The dairy CH4 database, developed

in the frame of the “GLOBAL NETWORK” project, contains 5,233

individual dairy cow records from 154 published and unpublished

studies conducted from 1962 to 2016 by researchers and research

institutes from 15 countries in Europe (EU; n = 3,015 from 82 stud-

ies), the United States of America (US; n = 1,916 from 64 studies),

Chile (CL; n = 108 from 3 studies), Australia (AU; n = 64 from 1

study), and New Zealand (NZ; n = 130 from 4 studies). The database

includes records of enteric CH4 production along with corresponding

DMI, dietary concentration of gross energy (GE), crude protein (CP),

ether extract (EE), neutral detergent fiber (NDF), and ash. It also

includes milk yield (MY), concentrations of milk fat (MF) and crude

protein (MP), and body weight (BW) records. The EU studies were

conducted in the United Kingdom (n = 930 from 38 studies), Den-

mark (n = 512 from 12 studies), Switzerland (n = 483 from 9 stud-

ies), Sweden (n = 357 from 5 studies), the Netherlands (n = 188

from 5 studies), Finland (n = 170 from 2 studies), Belgium (n = 104

from 4 studies), Ireland (n = 90 from 1 study), Norway (n = 88 from

4 studies), Germany (n = 61 from 1 study), and France (n = 32 from

1 study).

Energy corrected milk (3.5% fat) was calculated based on an equa-

tion derived from Tyrrell and Reid (1965): ECM (kg/day) = 12.95 9 fat

yield (kg/day) + 7.65 9 true protein yield (kg/day; i.e., crude pro-

tein 9 0.93) + 0.327 9 milk yield (kg/day). The majority of studies

had measured GE. If the feed ingredients and proportions in the diets

were known, the GE was calculated from book values (about 6%).

Methane yield (CH4 production divide by DMI) and intensity (CH4

production divide by ECM) were calculated for all records.

NIU ET AL. | 3

http://animalscience.psu.edu/fnn
http://animalscience.psu.edu/fnn


The majority of the studies in the database had investigated the

impact of diet composition on enteric CH4 production. However,

about 20% of the studies tested the effect of feed additives or pure

nutrient supplementation, so data from these studies were either

completely excluded or only the control treatments were retained.

These feed additives included nitrate (Olijhoek et al., 2016), 3-

nitrooxypropanol (Hristov et al., 2015), and intragastric infusion of

acetate, propionate, glucose, and cis- or trans-fatty acids. Measure-

ments of enteric CH4 production were conducted using various

approaches although the observations from a given research group

were usually measured using the same approach. To ensure data

quality, only enteric CH4 measurements from respiration chambers,

the GreenFeed system (C-Lock Inc., Rapid City, SD), and sulfur hex-

afluoride (SF6) tracer technique were retained for the analysis.

The variable selection and model evaluation approaches required

complete data for all predictor and response variables. Therefore,

records missing any predictor or response variable information were

removed before being screened for outliers. Outliers in the database

were screened using the interquartile range (IQR) method (Zwillinger

& Kokoska, 2000) based on CH4 yield and intensity records for each

region. In this study, a factor of 1.5 for extremes was used in

constructing markers to identify outliers, as shown in the

Equations (i–iii):

IQR ¼ Third Quartile (Q3)� First Quartile (Q1); (i)

Lower Fence ¼ Q1� ðIQR� 1:5Þ; (ii)

Upper Fence ¼ Q3þ ðIQR� 1:5Þ: (iii)

As a result, a refined complete data set (n = 2,566), containing

complete information on CH4 production, DMI, GEI, dietary concentra-

tions of GE, CP, EE, NDF, and ash, MY, MF, MP, ECM, and BW were

used for variable selection and comparison of prediction model perfor-

mance for lactating dairy cows as described below. Summary statistics

for EU, the United States, and intercontinental records (combination of

EU, US, and AU data) are shown in Table 1. Overall, the data set com-

prised individual observations from Holstein (68%; n = 1,732), Ayrshire

(19%; n = 497), Jersey (3%; n = 88), as well as Brown Swiss, Simmen-

tal, and crossbred dairy cattle (a total of 10%; n = 249). The breakdown

of observations in the complete intercontinental data set was 1,423

from EU (42 studies), 1,084 from the United States (45 studies), and 59

from AU (1 study). Ninety-one percent of the US observations were

TABLE 1 Summary statistics of the refined complete data set in different regions

Itema

Intercontinentalb (n = 2,566) EU (n = 1,423) US (n = 1,084)

Mean Minc Max SD Mean Min Max SD Mean Min Max SD

DMI (kg/day) 18.5 3.9 35.4 4.60 18.5 8.0 33.5 3.84 18.8 3.9 35.4 5.48

GEI (MJ/day) 347 75 644 89.3 345 137 606 73.5 354 75 644 103.1

Diet composition (% of DM)

CP 16.5 8.1 25.3 2.43 16.5 8.1 25.3 2.58 16.5 9.8 23.5 2.18

EE 3.5 0.7 7.7 1.14 3.6 1.5 7.7 1.06 3.3 0.7 7.0 1.23

ash 7.3 3.4 19.5 1.76 7.9 3.7 19.5 1.89 6.4 3.4 12.1 1.07

NDF 35.4 13.4 70.0 7.66 36.6 13.4 57.0 7.83 33.3 14.9 70.0 6.77

GE (MJ/kg DM) 18.7 16.1 22.8 0.69 18.6 16.1 22.8 0.75 18.8 17.3 20.7 0.56

Yield

MY, kg/day 27.0 4.3 62.7 9.76 26.4 7.6 51.4 7.92 28.4 4.3 62.7 11.50

ECM, kg 29.2 5.5 64.6 9.78 29.8 11.4 56.3 8.05 29.0 5.5 64.6 11.55

Milk composition (%)

MF 4.1 1.4 9.0 0.85 4.4 1.8 9.0 0.80 3.6 1.4 7.6 0.68

MP 3.4 2.3 5.3 0.38 3.4 2.3 4.9 0.37 3.2 2.3 5.3 0.35

BW (kg) 611 283 939 88.1 614 283 939 89.3 611 302 854 86.4

Methane emissions

CH4 (g/day per cow) 369 79 729 100.7 392 169 701 88.8 340 79 729 109.3

CH4/DMI (g/kg) 20.1 9.0 30.4 3.87 21.4 12.3 30.4 3.39 18.2 9.0 28.0 3.71

CH4/ECM (g/kg) 13.5 3.0 36.0 3.92 13.6 5.1 22.3 3.07 12.8 3.0 24.8 4.25

Ym
d (% of GEI) 6.0 2.7 9.8 1.18 6.4 3.6 9.8 1.04 5.4 2.7 8.4 1.09

aDM, dry matter; DMI, dry matter intake; GEI, gross energy intake; CP, dietary crude protein concentration; EE, dietary ether extract concentration; ash,

dietary ash concentration; NDF, dietary neutral detergent fiber concentration; MY, milk yield; ECM, energy corrected milk; MF, milk fat concentration;

MP, milk crude protein concentration; BW, body weight.
bEU, Europe; US, the United States of America; AU, Australia; Intercontinental = (EU + US + AU).
cMin, minimum; Max, maximum; SD, standard deviation.
dMethane conversion factor (%) = energy of CH4 as a percentage of GEI.
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from Holstein cows, while the remaining were Jersey. Holstein, Ayr-

shire, Jersey, and other breeds provided 44, 35, 3, and 18% of EU data,

respectively, and AU data were from Holstein cows.

Unlike variable selection and model evaluation approaches, the

construction of equations does not require data that contain a com-

plete set of all predictor variables. Therefore, to be able to maximize

the amount of data useful to construct prediction equations, subsets

of data that contain complete information of CH4 production and of

the selected corresponding predictor variables were screened for

outliers using the IQR method stated above and then used for the

construction of equations. The same approaches were done for CH4

yield and intensity models.

2.2 | Model development

Model development was conducted using a sequential approach, by

incrementally adding different levels (e.g., dietary composition, milk

production and composition, and animal traits) of variables to develop

models with increasing complexity. In total, 11 CH4 production predic-

tion models with different complexity categories were developed

(Table 2) using the following information: GEI only (GEI_C), DMI only

(DMI_C), DMI and dietary NDF concentration (DMI + NDF_C), DMI

and dietary EE concentration (DMI + EE_C), DMI and all dietary com-

position (DMI + Com_C), all available dietary composition only (Diet_-

Com_C), MY only (MY_C), ECM only (ECM_C), ECM and milk

composition (ECM + Com_C), all the available variables (Animal_C),

and all available variables except DMI (Animal_no_DMI_C). Within

each category, both intercontinental and regional models were devel-

oped; however, regional models were for EU and United States only

due to the limited number of observations from other regions

(Tables 3 and 4). Seven CH4 yield models with different complexity

levels were developed (Table 5) without predictors associated with

DMI (Table 5). The categories were: dietary NDF concentration

(NDF_C), dietary EE concentration (EE_C), Diet_Com_C, MY_C,

ECM_C, ECM + Com_C, and Animal_no_DMI_C. Similarly, 9 CH4

intensity models with different complexity levels were developed

(Table 6) without using either MY or ECM: GEI_C, DMI_C,

DMI + NDF_C, DMI + EE_C, DMI + Com_C, Diet_Com_C, milk com-

position only (Milk_Com_C), all the available variables except MY and

ECM (Animal_C), and all available variables except DMI, MY, and ECM

(Animal_no_DMI_C) (Table 6). As described above, the refined com-

plete data set (n = 2,566) that contains all predictor variables was used

for model selection and evaluation, and the final equation was con-

structed based on a complete data set that only contained the selected

predictor variables of the corresponding model for each category.

Therefore, the amount of data was maximized for the development of

equations at different complexity levels.

Methane production was predicted by fitting a mixed effect

model using the lmer (Bates, Maechler, Bolker, & Walker, 2015) pro-

cedure of R statistical language (R Core Team 2016; version 3.3.0).

The model was developed as shown in Equation (iv):

Y ¼ b0 þ b1X1 þ b2X2 þ � � � þ bnXn þ SiðRjÞ þ Rj þ �; (iv)

where Y denotes the response variable of CH4 production (g/day

per cow), CH4 yield (g/kg DMI) or CH4 intensity (g/kg ECM); b0

denotes the fixed effect of intercept; X1 to Xn denote the fixed

effects of predictor variables and b1 to bn are the corresponding

slopes; Si(Rj) denotes the random study effects nested in research

group; Rj denotes the random research group effects (research

groups that contributed data for analysis were used to capture

variations such as different regional weather conditions, CH4 mea-

surement methods used, research protocols etc.); ε denotes the

within-experiment error. Explanatory variables, which play a key

role in predicting CH4 production were selected for DMI + Com_C,

Diet_Com_C, ECM + Com_C, Animal_C, and Animal_no_DMI_C

using a comprehensive selection approach as follows: all of the

subset models were fitted to the complete data set (total of 2,566

observations) and the corresponding Bayesian information criterion

(BIC) scores were computed. The BIC was calculated as:

n log SSEp
n þ ðlog nÞ p, where p is the number of regression coeffi-

cients, n is the sample size, and SSEp is error sum of squares. A

model with a smaller BIC is preferred because it reaches a balance

between the goodness of fit and model complexity. In addition, the

presence of multicollinearity of fitted models was examined conser-

vatively based on variance inflation factor (VIF). A VIF in excess of

5 was considered an indicator of multicollinearity (Kutner et al.,

2005), and identified predictor variables with the largest VIF were

removed from the model one at a time. Similar variable selection

procedures as described above were adopted for CH4 yield (for

Diet_Com_C, ECM + Com_C, and Animal_no_DMI_C) and CH4

intensity (for DMI + Com_C, Diet_Com_C, Milk_Com_C, Animal_C,

and Animal_no_DMI_C).

2.3 | Cross-validation and model evaluation

The predictive accuracy of fitted CH4 prediction models at different

categories was evaluated using the revised k-fold cross-validation

method (James, Witten, Hastie, & Tibshirani, 2014), based on the

refined complete data set (total of 2,566 observations), with folds

composed of individual study (k = number of studies). Each individ-

ual fold was treated as a validation set. The prediction of CH4 pro-

duction of each fold was computed using the model that was fitted

from the remaining folds as described by Moraes et al. (2014). The

predictions of all folds were used to conduct model evaluation met-

rics as described below. Evaluation of all models developed at each

category was assessed on intercontinental, EU, and US complete

data sets.

A combination of model evaluation metrics was used to assess

model performance including mean square prediction error (MSPE),

root MSPE (RMSPE), mean absolute error (MAE), and concordance

correlation coefficient (CCC). The MSPE was calculated according to

Bibby and Toutenburg (1977) as shown in Equation (v):
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MSPE ¼
Pn

i¼1 Yi � Ŷi

� �2

n
(v)

where Yi denotes the observed value of the response variable for

the ith observation, Ŷ i denotes the predicted value of the response

variable for the ith observation, n denotes the number of observa-

tions. The RMSPE was used to assess overall model prediction accu-

racy because its output was in the same unit as the observations. In

this study, RMSPE was reported as a proportion of observed CH4

production means in order to compare the predictive capability of

models developed from different data sets. The MAE was calculated

as shown in Equation (vi) to quantify the prediction error as sug-

gested by Chai and Draxler (2014):

MAE ¼
Pn

i¼1 Yi � Ŷi

���
���

n
(vi)

In both cases, smaller RMSPE or MAE implies better model per-

formance. The RMSPE to standard deviation of observed values ratio

(RSR) was calculated as shown in Equation (vii),

RSR ¼ RMSPE
So

(vii)

where So denotes the standard deviation of observations. It was

used to compare the performance of a single model based on data

from different regions accounting for the regional variability (Moriasi

et al., 2007). Similarly, smaller RSR indicates better model predictive

ability given the variability of data. MSPE was decomposed into

mean bias (MB) and slope bias (SB) deviations to identify systematic

biases. The MB and SB were calculated as shown in Equations (viii)

and (ix), respectively:

MB ¼ �P� �O
� �2

(viii)

SB ¼ Sp � r � Soð Þ2 (ix)

where �P and �O denote the predicted and observed means, Sp

denotes the standard deviation of predicted values, and r denotes

the Pearson correlation coefficient.

Furthermore, CCC was conducted that includes a bias correction

factor (Cb) and r, as measurements of accuracy and precision, respec-

tively (Lin, 1989). The CCC was calculated as shown in Equation (x),

CCC ¼ r � Cb (x)

where

Cb ¼ v þ 1=v þ u2
� �

=2
� ��1

v ¼ So=Sp

u ¼ �P� �O
� �	

SoSpð Þ1=2

where �P, �O, So, and Sp were defined above, and v provides a mea-

sure of scale shift, and l provides a measure of location shift. The

CCC evaluates the degree of deviation between the best-fit line and

the identity line (y = x), therefore, the CCC of a model that is closer

to 1, is an indication of better model performance. Similar evaluation
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approaches were conducted to test the performance of CH4 yield

and intensity models. Currently, most national enteric CH4 invento-

ries are based on models recommended by IPCC (1997, 2006).

Therefore, IPCC models were also evaluated on both intercontinen-

tal and regional data sets.

3 | RESULTS

3.1 | Database

A general description of the data set collated and summary statistics

of dietary composition, intake, milk production and composition, BW

and CH4 emissions are presented in Table 1. In general, EU and US

cows had similar DMI. However, DMI of US cows ranged from 3.9

to 35.4 kg/day, which was more variable than EU cows (8.0 to

33.5 kg/day). On average, US cows emitted less CH4 compared to

EU cows (340 vs. 392 g/day per cow; Table 1). The CH4 production

observations from the United States had a larger variability

[So = 109 g/day per cow and coefficient of variation (CV) = 33%]

than from EU [So = 89 g/day per cow and CV = 23%]. Milk produc-

tion of US cows was greater than that of EU cows, but MF and MP

were greater in EU than US cows. Increased MF and MP were the

primary factors causing daily ECM of EU cows to be 0.8 kg/day

greater than that of US cows. Methane yield (g/kg DMI) and CH4

intensity (g/kg ECM) in EU cows were greater than those of US

cows by 18% and 6%, respectively. The EU cows had a greater CH4

conversion factor (Ym) compared to US cows (6.4% vs. 5.4%).

Regardless of region, the majority of CH4 measurements were made

using respiration chambers (70%), while 23 and 6% of the observa-

tions were measured using the GreenFeed system and SF6 tracer

technique, respectively.

Most of the US experimental diets (over 91%) included corn

silage, alfalfa hay, alfalfa silage, or grass hay as a forage source, but

none included pasture. Frequently used concentrate ingredients in

TABLE 5 Intercontinental CH4 yield prediction (g/kg DMI) prediction equations and model evaluations across regions

Model development Model performanced

Equation Category Prediction equationa nb Regionc
RMSPE,
% RSR

MB,
%

SB,
% CCC

(36) NDF_C 13.8 (0.63) + 0.185 (0.0133) 9 NDF 3,116 Intercontinental 17.0 0.88 0.81 0.04 0.37

EU 15.1 0.95 3.31 1.04 0.26

US 20.1 0.99 0.14 2.21 0.13

(37) EE_C 21.8 (0.62) � 0.452 (0.0763) 9 EE 2,716 Intercontinental 17.8 0.93 1.38 0 0.27

EU 15.7 0.99 5.39 0.86 0.18

US 21.0 1.03 0.29 6.44 -0.01

(38) Diet_Com_C 15.4 (0.76) � 0.354 (0.0756) 9 EE + 0.173

(0.0145) 9 NDF

2,667 Intercontinental 17.0 0.88 0.88 0.05 0.38

EU 15.1 0.95 3.25 1.35 0.27

US 20.0 0.99 0.07 1.74 0.13

(39) MY_C 23.5 (0.53) � 0.123 (0.0076) 9 MY 3,384 Intercontinental 17.4 0.91 1.95 0.08 0.34

EU 15.7 0.99 5.85 1.74 0.21

US 20.3 1.00 0 3.21 0.11

(40) ECM_C 22.6 (0.55) � 0.082 (0.0079) 9 ECM 3,384 Intercontinental 17.8 0.92 1.73 0.03 0.29

EU 15.9 1.00 6.12 1.71 0.18

US 20.7 1.02 0.14 4.36 0.03

(41) ECM + Com_C 21.1 (0.77) � 0.105 (0.0081) 9 ECM + 1.30

(0.077) 9 MF � 0.952 (0.1667) 9 MP

3,384 Intercontinental 16.5 0.86 1.39 0 0.42

EU 15.1 0.95 4.17 1.90 0.30

US 19.1 0.94 0.01 0.01 0.21

(42) Animal_no_DMI_C 15.4 (1.08) � 0.291 (0.0733) 9 EE + 0.144

(0.0141) 9 NDF � 0.104

(0.0094) 9 ECM + 1.34 (0.087) 9 MF � 1.12

(0.187) 9 MP + 0.00330 (0.000729) 9 BW

2,566 Intercontinental 16.1 0.84 1.21 0.40 0.49

EU 14.7 0.93 2.86 2.99 0.37

US 18.7 0.92 0.15 0.23 0.30

aGEI, gross energy intake (MJ/day); DMI, dry matter intake (kg/day); NDF, dietary neutral detergent fiber concentration (% of DM); EE, dietary ether

extract concentration (% of DM); MY, milk yield (kg/day); ECM, energy corrected milk (kg/day); MF, milk fat concentration (%); MP, milk crude protein

concentration (%); BW, body weight (kg).
bn, number of observations used to construct equations.
cEU, Europe; US, the United States of America; AU, Australia. Number of observations used for model performance cross-validation: Intercontinental

(EU + US + AU; n = 2,566); EU (n = 1,423); US (n = 1,084).
dRMSPE, Root mean square prediction error, expressed as a percentage of observed CH4 yield means; RSR, RMSPE-observations standard deviation

ratio; MB, mean bias as a percentage of MSPE, SB, slope bias as a percentage of MSPE; CCC, Concordance Correlation Coefficient.
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the United States were soybean meal, ground corn, and canola meal.

In the EU experimental diets, the major forage sources were grass

and corn silages, whereas the most frequently used concentrate

sources were soybean meal, barley, and wheat. All cows from AU,

NZ, and CL in the database were fed pasture-based diets. Dietary

CP concentration was similar for EU and US diets. The mean dietary

concentration of EE was slightly greater for EU compared to US

diets (3.6% vs. 3.3% of DM, Table 1), and the median of dietary con-

centration of EE was proportionally greater for EU than US diets

(3.5% vs. 3.0% of DM; data not shown). Experimental diets offered

to EU cows had greater NDF concentration compared to those

offered to US cows (36.6% vs. 33.3% of DM), which is consistent

with increased forage:concentrate ratio in EU diets (data not shown).

Similarly, the median of dietary concentration of NDF was propor-

tionally greater for EU than US diets (37.7% vs. 32.5% of DM; data

not shown).

3.2 | Models for methane production

3.2.1 | Intercontinental models

CH4 production prediction equations developed on intercontinental

data and model performance indicators are shown in Table 2. As

expected, GEI and DMI had a positive linear relationship with CH4

production and models based on these variables were of comparable

accuracy with negligible bias. Adding dietary NDF to DMI (Equation

3) performed slightly better than one-variable models or adding diet-

ary EE (Equation 4, Table 2). Although dietary compositions were

available for selection in diet based category, only dietary NDF and

EE concentrations along with DMI were selected as predictor vari-

ables (Equation 5, Table 2), which performed slightly better than

those that used only DMI and EE but slightly worse than using DMI

and NDF. Dietary NDF was positively correlated with CH4 produc-

tion, while dietary EE had a negative relationship with CH4 produc-

tion. When DMI was excluded, the resulting model (Equation 6)

performed worse than any of the previous models. Using ECM and

milk composition improved model performance compared with the

equation that used MY only. All models using only milk production

and composition variables tended to slightly under-predict at the

higher end of production and overpredict at the low end of produc-

tion (Figure 1). The best overall performance was when DMI, NDF,

EE, MF, and BW were selected as predictors (Equation 10;

RMSPE = 16.6%). Taking DMI out of the potential variables selected

showed reduced prediction performance indicating that DMI is a key

variable in predicting CH4 production. The error decomposition of

overall systematic bias remained negligible regardless of model com-

plexity. Evaluation through CCC and MAE across different model

categories was in agreement with RMSPE. Animal_C and

DMI + NDF_C models had the largest CCC (0.76 and 0.75, respec-

tively; Table 2) and the smallest MAE (47.5 and 48.5 g/day, respec-

tively; Figure 1).

The predictive ability of intercontinental models on regional data

set (EU and US) was also evaluated using RSR. The intercontinental

models had a larger RSR (averaging 0.73) on EU observations com-

pared to using all data (averaging 0.70). A greater amount of system-

atic biases (both MB and SB) was observed with CH4 prediction for

EU cows than for all cows when using intercontinental models (aver-

age 8% vs. 2%, respectively). The predictive ability of intercontinen-

tal models on US observations was similar to the overall evaluation,

and systematic biases were also similar (Table 2). The most recent

IPCC Tier 2 model (IPCC, 2006) performed well on EU data with a

low RMSPE (16.2%) and moderate SB (9.6%). The older IPCC Tier 2

model (IPCC, 1997) had a better performance on intercontinental

and US data compared to IPCC (2006), but was marginally worse on

EU data. Both IPCC models had a less favorable prediction perfor-

mance for US cows compared to almost all equations developed on

the intercontinental data, whereas it was marginally worse for EU

cows, in part because the equations were developed on the current

data.

3.2.2 | Regional models (EU)

Models developed on the EU database and model evaluations are

presented in Table 3. The internal EU model evaluations based on

EU observations and model comparisons across different categories

followed a trend similar to the intercontinental prediction models.

Adding NDF to DMI improved model accuracy compared to using

either DMI or GEI alone or adding EE to DMI (Table 3). A model

with dietary concentrations without DMI did not perform as well as

models in previous categories. Models using ECM and milk composi-

tion performed better than those using MY only. When all predictors

were available for selection, DMI, dietary EE, dietary NDF, MF, and

BW were selected and had a similar performance (RMSPE = 14.6%,

Equation 23) as the DMI + NDF. Once again, if DMI was taken out,

prediction accuracy became worse (RMSPE = 15.8%, Equation 24).

Similar to RMSPE, evaluation through CCC and MAE also indicated

that models using DMI + NDF and all variables had better prediction

accuracy compared to the other models (CCC = 0.72 and 0.72,

respectively; Table 3) and (MAE = 44.9 and 44.5 g/day, respectively;

Figure 2). In addition, the intercontinental and EU models had similar

overall performance for predicting enteric CH4 production of EU

cows (mean = 0.73 and 0.72, respectively). However, systematic

biases were proportionally smaller for EU models compared to inter-

continental models (4% vs. 8%, respectively). Furthermore, all cate-

gories of models based on the EU database had smaller RSR

(mean = 0.72) when used to predict CH4 production in EU cows

compared to prediction for US cows (mean = 0.80). There was sig-

nificant MB when EU models were evaluated against US data

(Table 3).

3.2.3 | Regional models (US)

Models developed on US data and model evaluations are shown in

Table 4. Single variable models using GEI (Equation 25) or DMI

(Equation 26) had similar predictive ability when evaluated using US

observations, and systematic biases were negligible in both models.

14 | NIU ET AL.



Only DMI and dietary NDF concentration were selected from all diet

composition, which provided the same prediction equation as the

DMI + NDF model (Equations 27 and 29). In contrast to interconti-

nental and EU based models, CH4 production prediction accuracy of

US cows was not improved by the addition of any dietary composi-

tion in the model. ECM and milk component based models had smal-

ler RMSPE (24.8% and 24.3%, respectively) compared to the MY

only based model (26.5%). Consistently, the model containing the

most variables also had the smallest RMSPE across all categories

(19.8%, Equation 34; Table 4), and had the greatest CCC (0.77) and

the smallest MAE (51.7 g/day; Figure 3). When DMI was not consid-

ered as a candidate in the prediction equation, ECM was selected

instead in the model (Equation 35). Models without DMI had greater

RMSPE compared to other categories with DMI in the model. The

intercontinental models had similar overall performance for predict-

ing enteric CH4 production of US observations compared to US

models (mean RSR = 0.71 vs. 0.71, respectively), as both were asso-

ciated with negligible systematic biases (Table 4). All categories of

US models performed better when predicting CH4 production from

US cows compared with predicting for EU cows (mean RSR = 0.71

vs. 0.82, respectively). Significant increment on both MB and SB

were observed when predicting CH4 production of EU cows using

models based on the US data.

3.3 | Models for methane yield

Intercontinental CH4 yield (g/kg DMI) prediction models of various

complexity levels and with evaluations based on different datasets

are shown in Table 5. Results for the regional based models of CH4

yield are given in Tables S1 and S2 for EU and US, respectively. In

both intercontinental and regional models, we observed positive

associations between dietary NDF concentration, MF, and BW with

CH4 yield and negative associations between EE, MY, MP, and ECM

with CH4 yield. Using only EE, MY or ECM had similar predictive

ability for CH4 yield (average of these three categories

RMSPE = 17.7%, 15.7%, and 20.7% for intercontinental, EU, and US

regions, respectively). When all variables were considered, the resul-

tant model had negligible systematic biases and the smallest RMSPE

F IGURE 1 Predicted vs. observed value plots based on Intercontinental CH4 production (g/day per cow) prediction equations at different
complexity levels of (a) GEI_C (gross energy intake), (b) DMI_C (dry matter intake), (c) DMI + NDF_C (dry matter intake and dietary neutral
detergent fiber concentration), (d) DMI + EE_C (dry matter intake and dietary ether extract concentration), (e) DMI + Com_C (DMI and all
dietary composition), (f) Diet_Com_C (all available dietary composition only), (g) MY_C (milk yield), (h) ECM_C (energy corrected milk yield), (i)
ECM + Com_C (energy corrected milk and milk composition), (j) Animal_C (all available variables), (k) Animal_no_DMI_C (all available variables
except DMI), and (l) IPCC Tier 2 (2006) models for lactating dairy cows based on Intercontinental (Europe + US + Australia; n = 2,566) data.
The corresponding mean absolute errors (MAE, g/day) are MAEa = 50.9, MAEb = 50.3, MAEc = 48.5, MAEd = 51.1, MAEe = 49.2,
MAEf = 73.2, MAEg = 62.8, MAEh = 58.9, MAEi = 57.5, MAEj = 47.5, MAEk = 55.1, and MAEl = 64.3. The gray and black solid lines represent
the fitted regression line for the relationship between predicted and observed values and the identity line (y = x), respectively
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across all categories (RMSPE = 16.1%, Equation 42; Table 5). The

CCC and MAE analyses also confirmed that it was the best perform-

ing model (Tables 5, S1, and S2). Such findings were also observed

in EU and US regional models (Equations 58 and 65,

RMSPE = 14.8% and 18.6%, respectively; Tables S1 and S2, respec-

tively). Using milk components as model variables resulted in the

second-best model in all regions. Furthermore, the intercontinental

models had a similar RSR while predicting EU or US observations

(mean = 0.97 and 0.98, respectively), compared to predicting CH4

yield using EU and US regional models (Figures S1–S3).

3.4 | Models for methane intensity

Intercontinental CH4 intensity (g/kg ECM) prediction models of vari-

ous complexity levels and with model evaluations based on different

datasets are shown in Table 6, and results for the regional models

for EU, and the US are shown in Tables S3 and S4, respectively. We

consistently observed negative relationships between GEI, DMI, and

dietary EE concentration with CH4 intensity, and positive

relationships between MP, BW and dietary NDF concentration with

CH4 intensity. However, models that were based on GEI, DMI, or

dietary composition did not predict CH4 intensity well. Substantial

improvement in prediction accuracy was observed when milk com-

ponent and animal variables were included in the model. Similar to

CH4 production and yield models, intercontinental models performed

well for both EU and US cows (Figures S4-S6). Models that included

the most variables had the greatest CCC and the smallest MAE com-

pared to all other categories in all regions.

4 | DISCUSSION

4.1 | Key predictor variables for methane emission

This study identified key predictor variables for CH4 production (g/

day per cow), yield (g/kg DMI), and intensity (g/kg ECM) in lactating

dairy cows from different regions of the world and evaluated the

trade-off between the availability of input variables and prediction

accuracy of models. The analysis confirmed that DMI is the most

F IGURE 2 Predicted vs. observed value plots based on European CH4 production (g/day per cow) prediction equations at different
complexity levels of (a) GEI_C (gross energy intake), (b) DMI_C (dry matter intake), (c) DMI + NDF_C (dry matter intake and dietary neutral
detergent fiber concentration), (d) DMI + EE_C (dry matter intake and dietary ether extract concentration), (e) DMI + Com_C (DMI and all
dietary composition), (f) Diet_Com_C (all available dietary composition only), (g) MY_C (milk yield), (h) ECM_C (energy corrected milk yield), (i)
ECM + Com_C (energy corrected milk and milk composition), (j) Animal_C (all available variables), (k) Animal_no_DMI_C (all available variables
except DMI), and (l) IPCC Tier 2 (2006) models for lactating dairy cows based on European (n = 1,423) data. The corresponding mean absolute
errors (MAE, g/day) are MAEa = 48.6, MAEb = 46.3, MAEc = 44.9, MAEd = 46.3, MAEe = 44.6, MAEf = 65.8, MAEg = 56.1, MAEh = 52.7,
MAEi = 51.6, MAEj = 44.5, MAEk = 50.0, and MAEl = 50.7. The gray and black solid lines represent the fitted regression line for the
relationship between predicted and observed values and the identity line (y = x), respectively
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important variable to predict enteric CH4 production in dairy cattle,

which agrees with previous research (e.g., Hristov et al., 2013; Kriss,

1930; Reynolds, Crompton, & Mills, 2011). There was a significant

positive relationship between DMI and CH4 production demonstrat-

ing that as a dairy cow consumes more feed, more CH4 is produced

due to greater availability of substrate for microbial fermentation.

The majority of extant prediction models for CH4 production included

DMI as a predictor variable, and evaluation of models developed in

this study across various complexity levels also indicated that DMI

had the greatest effect on the amount of CH4 produced. The slopes

of DMI to CH4 production ranged from 13.0 to 15.3 g of CH4/kg of

DMI for EU cows (Table 3) when other covariates were kept con-

stant. The corresponding values were smaller for US cows and ranged

from 11.3 to 12.3 g of CH4/kg of DMI (Table 4). This is probably due

to the difference in dietary composition between EU and US diets

and the digestibility of these diets, as EU diets contained proportion-

ally more forage. Practically, it is unlikely that one variable (e.g., diet-

ary NDF concentration) would be different while the rest remain

constant because of the associated exchange for other nutrients in

ingredients used to formulate diets. In addition, the slopes can only

be interpreted in combination with the intercept in all equations.

Nevertheless, these results provide insights in assessing the impact of

explanatory factors on the variability of CH4 production among dif-

ferent regions. Increased intake may potentially increase passage rate

and shorten digesta retention time in the rumen, thus decreasing

rumen fermentation and organic matter digestibility, which ultimately

decrease CH4 production per unit of feed (Boadi, Benchaar, Chi-

quette, & Masse, 2004). Methane yield has been reported to have a

negative relationship with DMI (Moe & Tyrrell, 1979). Johnson and

Johnson (1995) reported that for every kg of increase in DMI, there

is, on average, a 1.6% decrease of feed GE lost through CH4. A more

recent study also confirmed 2.1% reduction on Ym per kg of DMI

increase from dairy cows (Warner, Bannink, Hatew, van Laar, & Dijk-

stra, 2017). Therefore, it is important to use different Ym values

depending on level of production, which accounts for intake and

digestibility of nutrients. In the present study, DMI was not consid-

ered as a predictor for CH4 yield, and MY or ECM was not used for

prediction of CH4 intensity because these variables already have

F IGURE 3 Predicted vs. observed value plots based on US CH4 production (g/day per cow) prediction equations at different complexity
levels of (a) GEI_C (gross energy intake), (b) DMI_C (dry matter intake), (c) DMI + NDF_C (dry matter intake and dietary neutral detergent fiber
concentration), (d) DMI + EE_C (dry matter intake and dietary ether extract concentration), (e) DMI + Com_C (DMI and all dietary
composition), (f) Diet_Com_C (all available dietary composition only), (g) MY_C (milk yield), (h) ECM_C (energy corrected milk yield), (i)
ECM + Com_C (energy corrected milk and milk composition), (j) Animal_C (all available variables), (k) Animal_no_DMI_C (all available variables
except DMI), and (l) IPCC Tier 2 (2006) models for lactating dairy cows based on US (n = 1,084) data. The corresponding mean absolute errors
(MAE, g/day) are MAEa = 55.1, MAEb = 56.4, MAEc = 55.1, MAEd = 56.9, MAEe = 55.1, MAEf = 78.3, MAEg = 72.5, MAEh = 67.6,
MAEi = 65.8, MAEj = 51.7, MAEk = 62.4, and MAEl = 83.6. The gray and black solid lines represent the fitted regression line for the
relationship between predicted and observed values and the identity line (y = x), respectively
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been used for the calculation of reported CH4 yield or intensity.

However, negative relationships between CH4 yield and MY (or

ECM), and between CH4 intensity and DMI were observed because

of the overall positive relationship between MY and DMI, which is in

close agreement with previous reports (e.g., Johnson & Johnson,

1995; Moe & Tyrrell, 1979; Warner et al., 2017).

In agreement with Kebreab et al. (2008) and Appuhamy et al.

(2016), IPCC (2006), the Tier 2 model overpredicted CH4 production

of US cows in our database by 22%, whereas it performed well on EU

cows mainly because the Ym in IPCC Tier 2 (6.5%) was similar to the

average Ym of EU cows (6.4%) in our database. There was a moderate

SB of the IPCC (2006) Tier 2 model for EU cows probably due to the

absence of an intercept in the IPCC model. The Ym for US cows in our

database (5.4%) was close to that reported by Kebreab et al. (2008)

and Appuhamy et al. (2016) for US cows. This illustrates that it is

important to either use a regional model or intercontinental model

that was developed using representative samples from each region.

Furthermore, the GEI-based models appear to perform better and are

associated with small systematic biases when they include an inter-

cept term as for the GEI_C models developed in the present study.

Dietary NDF concentration was selected previously as the key

dietary variable to predict enteric CH4 production of dairy cows

across regions (Moe & Tyrrell, 1979; Nielsen et al., 2013). Dietary

NDF, the majority of which is from forage, represents the amount of

structural carbohydrates in the diet. The type of carbohydrates (struc-

tural or non-structural) in the diet has been shown to influence vola-

tile fatty acid (VFA) profile in the rumen, and in turn, enteric CH4

production (Russell & Wallace, 1997; Van Soest, 1994). Studies

focused on the effect of type of carbohydrates indicate that diets rich

in non-structural carbohydrates such as starch and sugars are more

likely to favor propionate formation, resulting in less hydrogen (H)

and CH4 production, whereas diets rich in structural carbohydrates

generally favor acetate and butyrate production by net H producers

(Bannink et al., 2008; Johnson & Johnson, 1995; Moe & Tyrrell,

1979). Consistent with effects of digestion and fermentation kinetics

on CH4 emission, coefficients of NDF in all models developed were

significantly positive in the present study. Methane production ran-

ged from 2.80 to 3.42 g of CH4/% of dietary NDF for EU cows,

when the other covariates were kept constant. The corresponding

values were smaller for US cows and ranged from 2.30 to 2.59 g of

CH4/% of dietary NDF (excluding categories without DMI term). Such

findings could result from dietary differences between EU and US.

The forage quality in the diet, specifically fiber digestibility, plays an

important role in enteric CH4 production (Brask, Lund, Hellwing,

Poulsen, & Weisbjerg, 2013; Warner et al., 2016), and it has been

shown that CH4 production of cows tends to increase with increasing

diet organic matter digestibility (Ramin & Huhtanen, 2013). The EU

diets containing more forage have an inherently greater digestibility

of NDF than more concentrate-based US diets where the lower rumi-

nal pH in the high grain diets inhibits the growth of methanogens

and protozoa, in turn, hampering NDF digestion and CH4 production

in the rumen (Hegarty, 1999). In agreement with Ramin and Huhta-

nen (2013), Appuhamy et al. (2016) also reported that prediction

models for CH4 production with digestible dietary NDF concentration

had a better performance than the model with dietary NDF concen-

tration in US cows. This indicated that there is potential to further

enhance prediction accuracy if dietary acid detergent fiber concentra-

tion or apparent total-tract digestibility of NDF is known. Besides the

effect of dietary NDF concentration on total CH4 production, cows

fed high NDF concentration diets tend to produce more CH4 per unit

of DMI which can also result from the higher ruminal pH (Knapp,

Laur, Vadas, Weiss, & Tricarico, 2014; Pinares-Pati~no, Waghorn,

Hegarty, & Hoskin, 2009). Furthermore, substituting high-fiber forage

for the optimal amount of more digestible carbohydrate or low fiber

sources will increase milk production, and decrease ruminal pH and

fiber digestibility, and both lead to a reduction in CH4 intensity (Boadi

et al., 2004; Leng, 1993). Consistent with expectations, both enteric

CH4 yield and intensity declined as dietary NDF concentration

decreased in the present evaluation.

Dietary EE concentration was also identified as a key dietary pre-

dictor variable in EU and intercontinental enteric CH4 production pre-

diction models, but its impact on the predictive ability of US models

was minimal. Dietary EE concentration may be increased by using her-

bage in young, leafy stage rather than in more mature, stemmy stage

(Warner et al., 2016), or by lipid supplementation of the diet, and is an

indicator of the amount of lipid consumed relative to other dietary

components (Martin et al., 2016). The effect of lipid supplementation

on enteric CH4 production has been extensively studied and lipid sup-

plementation is a well-recognized mitigation strategy as reviewed by

several groups (e.g., Beauchemin, Kreuzer, O’Mara, & McAllister,

2008; Knapp et al., 2014; Martin, Morgavi, & Doreau, 2010). Lipids

reduce CH4 production by suppressing the protozoa and methanogen

population in the rumen, decrease NDF digestibility, and reduce the

total amount of organic matter fermented, resulting in lower CH4 pro-

duction (Guyader et al., 2014; Machm€uller & Kreuzer, 1999; Van

Nevel & Demeyer, 1996). Finally, lipids may cause a reduction in DMI,

due to their high energy density and effects on gut fill and appetite,

which could lead to less CH4 production (Allen, 2000; Hollmann et al.,

2012). Consistent with the above-mentioned studies and data summa-

rized by Grainger and Beauchemin (2011), slopes of the EE variable in

the EU prediction models were significantly negative. The absence of

dietary EE in US models, and small slope when EE was forced in US

models, might be due to the relatively lower EE concentration in the

US diets. In addition, the magnitude of reduction has not always been

consistent, with some studies reporting a 3.5% (Moate et al., 2011)

and a 5.6% (Beauchemin et al., 2008) decrease in CH4 yield for 1%

increase in dietary EE concentration and others reporting an almost

negligible CH4 reduction (Eug�ene, Masse, Chiquette, & Benchaar,

2008). As noted above, dietary lipids can have a negative effect on

fiber digestibility in the rumen, DMI, and potentially, MY in dairy cows

(Hristov et al., 2013). However, such effects may strongly vary among

studies, depending on the compensation of increased energy density

to the reduction in fiber digestibility and DMI.

Body weight was one of the variables selected for prediction of

CH4 production. As noted by Smith and Baldwin (1974) and Demment

and Van Soest (1985), ruminal volume and weight are proportional to
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BW of dairy cows. Consequently, smaller animals, with a lower mainte-

nance energy requirement, ingest less feed and have less CH4 produc-

tion (Hristov et al., 2013). In addition, simulations with a dynamic

mechanistic model indicated that the DMI/BW ratio is an important

factor for CH4 production; consuming same amount of feed intake,

smaller cows tend to produce less CH4 as ruminal passage rate is likely

to be faster due to greater DMI/BW ratio (Huhtanen, Ramin, & Cabe-

zas-Garcia, 2016; Huhtanen, Ramin, & Ud�en, 2015), which has been

shown to reduce CH4 yield (Goopy et al., 2014). Therefore, BW could

affect DMI and passage rate of ruminal digesta, which will lead to dif-

ferences in feed digestibility and VFA production, ultimately affecting

CH4 production. A positive relationship was observed between BW

and CH4 production in our evaluation, which agrees with previous

research (Hristov et al., 2013; Moraes et al., 2014).

4.2 | Selection of the best models

In the current study, the trade-off between model complexity and pre-

dictive ability has been evaluated. In general, improvement in model

goodness-of-fit has been reported as the model structure becomes

more complex (e.g., Moraes et al., 2014; Santiago-Juarez et al., 2016).

An evaluation of whole-farm CH4 production models demonstrated

poor performance and greater systematic biases when equations did

not include dietary variables (Ellis et al., 2010). In the present study,

models were categorized and different levels of potential predictor

variables were sequentially added during the model development pro-

cess. We observed that accuracy of prediction of CH4 production

improved in models that include DMI, dietary composition, milk pro-

duction and composition, and BW. In particular, complex models that

used all available variable information consistently improved predic-

tion performance compared to simpler models. Models using only MY

or dietary composition were the least accurate. When DMI was omit-

ted from the model to predict CH4 production, ECM was selected

instead due to its high correlation with DMI, but model predictive abil-

ity was reduced. Although intercontinental models were developed

based on a data set containing a slightly greater proportion of EU data

compared to US data (55% vs. 42%, respectively), the intercontinental

models seem to perform well on both regions without significant

biases. In addition, the variable inputs required to improve predictions

are not always available from commercial dairy farms, for example,

DMI and BW of individual dairy cows. Milk yield and milk components

are generally available in practice, but CH4 production was not pre-

dicted well by these input variables. Considering the number of vari-

ables required and prediction performance we recommend the

equation with DMI + NDF concentration to be used for enteric CH4

production. A recent evaluation of extant models using estimated DMI

vs. actual DMI measurements indicated enteric CH4 emissions could

be predicted satisfactorily without DMI measurements for North

America, but not for Australia and New Zealand, with accuracy of pre-

diction using Europe data in between (Appuhamy et al., 2016). How-

ever, estimation of DMI is still a challenge for dairy farmers in practice

because voluntary DMI prediction equations require individual animal

information and, in particular BW (Fox, Sniffen, O’Connor, Russell, &

Van Soest, 1992; NRC, 2001; Vazquez & Smith, 2000). In this respect,

using average or total intake from a group of cows or the whole herd

instead of individual measurements could be an alternative for whole-

farm enteric CH4 emission estimates, when cows are grouped by milk

production, BW, or parity in commercial dairy farms.

Model evaluations across various complexity levels indicated that

CH4 yield of lactating dairy cows could be predicted successfully

with milk production and composition or dietary composition based

models. The corresponding intercontinental models were able to

make comparable predictions for EU and US cows relative to the

regional EU and US models. The best prediction of CH4 intensity

could be achieved with the most complex model (Animal_C), with

the model for the intercontinental data set also able to make accu-

rate predictions for both EU and US cows. Although overall predic-

tive performance was similar, it should be noted that actual

predictions based on the model derived from intercontinental data

may differ from the model based on regional-specific data, because

the slopes of the variables included in these models differ.

Finally, it is important to note that the majority of data used in

this study was from temperate regions and there is a scarcity of dairy

cow data from tropical regions, which differ in breeds and the quality

of forage fed. Many developing countries are in the tropical regions,

and milk production rather than GHG emissions is still the top priority

in those countries (FAO, 2016). Therefore, further research on deter-

minants and predictors of CH4 emission applicable to animals in the

tropics is warranted. In addition, spatial auto correlations should also

be considered to incorporate the effects of environmental factors

once a broader database becomes available in the future.

In summary, our analysis based on a relatively large dataset from

the GLOBAL NETWORK project, indicated that the ability to predict

enteric CH4 production increases with increasing model complexity.

As observed previously, DMI is the key factor for enteric CH4 pro-

duction prediction. Although complex models that use DMI, NDF,

EE, MF, and BW had the best performance for predicting CH4 pro-

duction, models requiring only DMI or DMI + NDF had the second

best predictive ability and offer an alternative to complex models.

Milk production and composition variables are key factors to predict

CH4 yield, whereas milk composition and animal variables are key

factors to predict CH4 intensity. Model evaluation specific to individ-

ual regions compared with that of intercontinental based models

suggests that enteric CH4 production, yield, and intensity can be

accurately predicted from both intercontinental models and regional-

specific models with similar performance. Although prediction perfor-

mance was similar, intercepts and slopes of variables in optimal pre-

diction equations developed on intercontinental basis differed from

those developed on regional basis. Therefore, revised CH4 emission

conversion factors for specific regions are preferred to improve CH4

production estimates in national inventories.
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