Carbon isotope ratios of coccolith-associated polysaccharides of Emiliania huxleyi as a function of growth rate and CO2 concentration

It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing.
Published version at: https://www.sciencedirect.com/science/article/pii/S0146638018300251?via%3Dihub
To link to this article DOI: http://dx.doi.org/10.1016/j.orggeochem.2018.02.006

Publisher: Elsevier
www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online
Carbon isotope ratios of coccolith–associated polysaccharides of *Emiliania huxleyi* as a function of growth rate and CO$_2$ concentration

PII: S0146-6380(18)30025-1
DOI: https://doi.org/10.1016/j.orggeochem.2018.02.006
Reference: OG 3681

To appear in *Organic Geochemistry*

Received Date: 16 November 2017
Revised Date: 30 January 2018
Accepted Date: 8 February 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Carbon isotope ratios of coccolith-associated polysaccharides of *Emiliania huxleyi* as a function of growth rate and CO$_2$ concentration

Elise B. Wilkesa*, Renee B.Y. Leeb,c, Harry L.O. McClellandb,d, Rosalind E.M. Rickabyb, Ann Pearsona

aDepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA

bDepartment of Earth Sciences, University of Oxford, Oxford, UK

cSchool of Biological Sciences, University of Reading, Reading, UK

dDepartment of Earth and Planetary Sciences, Washington University in St. Louis, MO, USA

*Corresponding author: elisewilkes@fas.harvard.edu
ABSTRACT

The calcite plates, or coccoliths, of haptophyte algae including *Emiliania huxleyi* are formed in intracellular vesicles in association with water-soluble acidic polysaccharides. These coccolith-associated polysaccharides (CAPs) are involved in regulating coccolith formation and have been recovered from sediment samples dating back to ~180 Ma. Paired measurements of the carbon isotopic compositions of CAPs and coccolith calcite have been proposed as a novel paleo-pCO$_2$ barometer, but additional proxy validation and development are still required. Here we present culture results quantifying carbon isotopic offsets between CAPs and other cellular components: bulk organic biomass, alkenones, and calcite. *E. huxleyi* was grown in nitrate-limited chemostat experiments at growth rates (μ) of 0.20–0.62/d and carbon dioxide concentrations of 10.7–17.6 μmol/kg. We find that CAPs are isotopically enriched by 4.5‰ to 10.1‰ relative to bulk organic carbon, exhibiting smaller isotopic offsets at faster growth rates and lower CO$_2$ concentrations. This variability suggests that CAPs record a complementary signature of past growth conditions with different sensitivity than alkenones or coccolith calcite. By measuring the isotopic compositions of all three molecules and minerals of self-consistent origin, the ratio $\mu/\text{[CO}_2\text{(aq)]}$ may be reconstructed with fewer assumptions than current approaches.

Keywords: polysaccharide, coccolith, alkenone, isotope fractionation, chemostat, climate proxy, *E. huxleyi*, paleobarometry
1. Introduction

Emiliania huxleyi is a cosmopolitan, bloom-forming marine algal species that uses dissolved inorganic carbon (DIC) for calcification and photosynthesis (Westbroek, 1993). It is the dominant coccolithophore in modern oceans, capable of producing calcifying plates (“coccoliths”) that interlock around the cell (De Vargas et al., 2007; Henriksen and Stipp, 2009). The stable carbon and oxygen isotopic compositions of fossilized coccoliths have been used to reconstruct paleoclimatic and evolutionary events (Stoll, 2005; Rickaby et al., 2007; Hermoso et al., 2009; Bolton and Stoll, 2013). *E. huxleyi* and its ancestors within the family Noëlaerhabdaceae also synthesize long-chain unsaturated ketones called alkenones (Volkman et al., 1980) that are preserved in the geologic record and used as paleotemperature and paleobarometry (pCO_2) proxies (e.g., Marchal et al., 2002; Pagani et al., 2005; Zhang et al., 2013; Brassell, 2014). Although *E. huxleyi* only became dominant in the fossil record around 70 ka, alkenones first appear in Cretaceous sediments, and fossil coccoliths have been dated to the Late Triassic (Thierstein et al., 1977; Farrimond et al., 1986; Bown et al., 1987).

Coccolith precipitation occurs intracellularly in vesicles that maintain a controlled chemical composition (Henriksen and Stipp, 2009). Coccolithogenesis begins with the formation of precursor organic templates that provide a framework of binding sites for crystal nucleation and growth (Young et al., 2003). The calcite crystals grow to form complex units, with mineral expression regulated by acidic polysaccharides (Marsh, 2003). Completed coccoliths and coccolith-associated polysaccharides (CAPs) trapped within ultimately are expelled to the outside of the cell. *E. huxleyi* contains one type of CAP, consisting of a polymeric mannose backbone with sidechains of galacturonic acid.
and ester-bound sulfate groups (De Jong et al., 1976; Fichtinger-Schepman et al., 1981; Kok et al., 1986). Another coccolithophore species, Pleurochrysis carterae, contains three types of CAPs, with both galacturonic and glucuronic moieties (Marsh et al., 1994, 2002). CAPs interact with the carbonate chemistry of the coccolith vesicle through the carboxyl groups of the uronic acid residues, which can shed protons to preferentially bind calcium cations (Borman et al., 1982).

CAPs are increasingly being used to study the interplay between the ambient environment and the carbonate chemistry of intracellular carbon pools (Henriksen and Stipp, 2009; Lee et al., 2016; Rickaby et al., 2016). Lee et al. (2016) extracted intact CAPs from both modern cultures and fossil coccoliths dating back to ~180 Ma. The uronic acid contents of these extracts correlated with the predicted internal saturation state of the coccolith vesicle in modern cultures and approximately tracked Phanerozoic $p\text{CO}_2$ reconstructions obtained from other paleo-proxies (Lee et al., 2016).

The stable carbon isotopic composition of CAPs ($\delta^{13}\text{C}_{\text{CAP}}$) may provide further complementary information. $\delta^{13}\text{C}_{\text{CAP}}$ values, measured in conjunction with coccolith calcite $\delta^{13}\text{C}$ values, have been proposed as a novel paleobarometer for ancient $p\text{CO}_2$ (Hermoso, 2014; McClelland et al., 2017). Such application assumes that $\delta^{13}\text{C}_{\text{CAP}}$ values predictably track $\delta^{13}\text{C}_{\text{biomass}}$ values and can be used to calculate the isotope fractionation accompanying photosynthesis (ε_P values; Freeman and Hayes, 1992). Preliminary work shows that $\delta^{13}\text{C}_{\text{CAP}}$ values are measurable (R.B.Y. Lee, unpublished; McClelland et al., 2015), but no paired measurements of $\delta^{13}\text{C}_{\text{CAP}}$ values and bulk organic carbon have been reported. In this study we measure the $\delta^{13}\text{C}$ values of CAPs, bulk cellular organic carbon, calcite, and alkenones of *E. huxleyi* grown in nitrate-limited chemostat cultures. Results
are analyzed as a function of growth rate and CO₂ availability, with all other culture conditions held constant.

2. Materials and methods

2.1. Chemostat culture methods

A coccolith-bearing strain of *E. huxleyi* (CCMP3266, isolated from the South Pacific in 1998) was grown in a nitrate-limited chemostat at a constant temperature of 18 °C. Experimental conditions were selected to mimic the cultures of Bidigare et al. (1997) and employed the chemostat system described in Wilkes et al. (2017). Cool-white fluorescent light was supplied continuously with a saturating photon flux density of ~150 μmol photons/m²s (400–700 nm radiation). The vessel was stirred at 50 rpm. The growth medium consisted of 0.2 μm filtered and autoclaved Gulf of Maine natural seawater enriched with metals and vitamins according to L1 medium (Guillard and Hargraves, 1993). Initial nitrate and phosphate concentrations were adjusted to approximately 100 μM and 36 μM, respectively. Four different growth rates (μ; 0.20–0.62/d; Table 1) were achieved by adjusting the dilution rate.

Cell densities were monitored daily by OD₆₀₀ and by cell counts using a hemocytometer counting chamber and a light microscope, yielding reasonable correlation between approaches ($r^2 = 0.72$, all experiments). Residual nitrate and phosphate concentrations were determined spectrophotometrically on 0.22 μm filtered and refrigerated samples using the resorcinol (Zhang and Fischer, 2006) and mixed molybdate (Strickland and Parsons, 1968) methods, respectively. Daily sample removal never exceeded 4% of the culture volume to minimize perturbations to steady state
conditions. Cell size measurements were not performed in this study. By analogy with other nitrate-limited chemostat studies of *E. huxleyi* over relevant CO$_2$ ranges, we assume that cell diameter changed minimally between experiments and is not a primary control on our isotopic results (Popp et al., 1998; Müller et al., 2012).

2.2. Carbonate system chemistry

Four CO$_2$ concentrations from 10.7 to 17.6 µmol/kg (Table 1) were maintained by bubbling with mixtures of tank CO$_2$ (δ^{13}C$_{CO2} = -38.58 \pm 0.03$‰) and 4:1 N$_2$:O$_2$. pH was monitored continuously using an in-process pH probe (EasyFerm Plus, Hamilton) and ranged from 8.0 to 8.2 across all four experiments. Total dissolved inorganic carbon (DIC) and alkalinity samples were taken daily during the steady state phase of each experiment (final 3–6 days). Samples for DIC were collected without headspace, poisoned with 0.2 w/w % sodium azide, and stored in darkness at 4 °C. DIC was converted to CO$_2$ by acidification with H$_3$PO$_4$, purified on a vacuum line, and quantified manometrically, yielding a range of 1740–1880 µmol/kg. Total alkalinity was determined by Gran titration with 0.01 N HCl solution prepared in a 0.7 M NaCl background (Gran, 1952; Dickson et al., 2007), using certified reference materials supplied by A.G. Dickson (Scripps Institution of Oceanography) to monitor precision. The carbonate system was calculated from DIC, pH, phosphate, temperature, and salinity using CO2SYS (Lewis and Wallace, 1998; van Heuven et al., 2011; Supplementary Table S1) and the dissociation constants of Mehrbach et al. (1973), as refitted by Dickson and Millero (1987), and Dickson (1990). The combined uncertainties in calculated inorganic carbon speciation were estimated numerically following Bevington and Robinson (2003).
2.3. Isotopic Analysis

Cells were pelleted by centrifugation and stored at –80 °C. Values of δ^{13}C$_{\text{biomass}}$ were measured on thawed, acidified by wet HCl addition (1N), and dried (60 °C) samples using an elemental analyzer interfaced to a continuous flow isotope ratio mass spectrometer (EA-IRMS; UC Davis Stable Isotope Facility). Alkenone δ^{13}C values were measured from total lipid extracts (Bligh and Dyer, 1959) using gas chromatography–isotope ratio mass spectrometry (GC–IRMS: Thermo Scientific Delta V Advantage interfaced to a Trace GC Ultra via a GC Isolink). Alkenones were separated on a 60 m DB1-MS capillary column using the following oven ramp program: ramp from 65 to 110 °C at 40 °C/min and hold 2 min, ramp to 270 °C at 40 °C/min, ramp to 320 °C at 2 °C/min and hold 36 min. Values of δ^{13}C were measured and averaged for C$_{37:3}$ and C$_{37:2}$ alkenones (peak sizes, 0.5V–5V, m/z 44; peak areas 8–131 Vs) using n-C$_{32}$, n-C$_{38}$, and n-C$_{41}$ alkane external standards.

CAPs were isolated from freeze-dried biomass pellets according to the protocol described in Lee et al. (2016). Briefly, cells were cleaned with 1% v/v Triton X-100, 4.5% v/v NaOCl in 0.05 M NaHCO$_3$. The coccoliths were centrifuged through a gradient of Ludox TM-50 colloidal silica (Sigma-Aldrich) layered with 20% w/v sucrose. After additional rinses with NH$_4$HCO$_3$, the pellet was decalcified with 0.5 M EDTA (pH 8.0, 12 h) and sonicated. Insoluble residues were removed by centrifugation and the supernatant was diafiltered with an Amicon Ultra-4 centrifugal filter unit to remove all molecules less than 14 kDA (Millipore). The CAP was isolated by anion exchange liquid chromatography using a HiTrap DEAE FF (GE Healthcare). CAP extracts were subjected
to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and PAGE, followed by staining with Alcian Blue to verify the presence of CAP and its existence as a single polysaccharide (Supplementary Fig. S1). CAP identity was also confirmed through reverse-phase high performance liquid chromatography (RP-HPLC) with apple pectin (polygalacturonic acid) as a positive control. Extracts were shown to be free of any contaminating proteins by performing a Bradford assay and by staining PAGE gels with Coomassie Blue. CAP δ13C values were analyzed by spooling wire micro-combustion isotope ratio mass spectrometry (SWiM–IRMS, Harvard University) using a pectin standard; full process blanks were assessed using both MilliQ water and the pectin standard.

δ13C values of DIC were measured at Woods Hole Oceanographic Institution on CO2 gas samples collected in Pyrex tubes following purification and DIC quantification on a vacuum line. Carbon isotope compositions of coccolith calcite were measured using a Thermo Delta V Advantage isotope ratio mass spectrometer fitted to a Kiel IV carbonate device (University of Oxford). All measured isotope values are reported on the international V-PDB scale. Carbon isotope fractionations between different cellular constituents are reported as simple linear differences (Δδi(A−B) = δ13CA−δ13CB) and as epsilon values (following Freeman and Hayes, 1992; Zeebe and Wolf-Gladrow, 2001):

εi(A−B) = (δ13CA−δ13CB)/(1 + δ13C/103).

3. Results

3.1. Chemostat cultures
Each experiment reached steady state for all measured variables 7–12 days after setting the initial conditions (dilution rate and CO₂ combination). Multiple samples from the stable steady state were collected over the subsequent 3–6 days, treated as replicates, and averaged. Final cell densities were approximately 3×10^6 cells/mL across experiments (Supplementary Table S2), as expected based on the low half-saturation constant for nitrate ($K_M = 0.35 \mu M$; Perrin et al., 2016) relative to the initial concentration in the growth medium (100 μM). Routine monitoring of residual nitrate concentrations indicated at least a 25-fold reduction from the concentration in the feed media, yielding residual molar N:P ratios of less than 0.2 in all experiments (Supplementary Table S2). Dissolved CO₂ concentrations (Table 1) were within the ranges of both the modern ocean (~8–30 μmol/kg) and prior chemostat culture investigations of E. huxleyi (9.6–274.1 μmol/kg; Bidigare et al., 1997; Popp et al., 1998a,b). Growth rates (μ, Table 1) were between 16 and 51% of the maximum growth rates achieved in nutrient-replete batch cultures ($\mu_{max} = 1.22/d$; Hermoso et al., 2016a).

3.2. Carbon isotopic compositions of cellular constituents and DIC

Coccolith calcite was the most ^{13}C-enriched cellular component, with $\delta^{13}C$ values ranging from -15.4 to -8.3% (Table 1). CAPs were the most enriched organic component (-39.5 to -38.2%), followed by bulk biomass (-48.2 to -39.5%) and alkenones (-51.5 to -42.4%) (Table 1). The strongly negative absolute values of $\delta^{13}C$ in all carbon pools reflect the influence of the tank CO₂ ($-38.58 \pm 0.03\%$) used to adjust the seawater carbonate chemistry.
δ\(^{13}\)C\(_{\text{DIC}}\) values were measured for five consecutive sampling days at steady state during Experiment #1, with a mean value of δ\(^{13}\)C\(_{\text{DIC}}\) = −18.3 ± 0.2‰. The isotopic composition of the dissolved CO\(_2\) (−27.8‰) was calculated from δ\(^{13}\)C\(_{\text{DIC}}\) and carbonate speciation (Zeebe and Wolf-Gladrow, 2001), using the fractionation factors of Mook et al. (1974) and Zhang et al. (1995). Unfortunately, due to a technical malfunction, δ\(^{13}\)C\(_{\text{DIC}}\) measurements are unavailable for the remaining three experiments. However, the measurements from Experiment #1 confirm that the fractionations expressed between DIC, biomass, and coccolith calcite are consistent with literature ranges. Photosynthetic carbon isotope fractionation (ε\(_P\)) was 21.4 ± 1.5‰, calculated relative to CO\(_2\) as the inorganic carbon source, or 31.4‰ calculated relative to total DIC. This result agrees with Bidigare et al. (1997; Supplementary Fig. S2a), and falls within theoretical bounds established for eukaryotic phytoplankton (Goericke et al., 1994; Popp et al., 1998a; Wilkes et al., 2017). Interestingly, coccolith calcite is enriched by 2.9‰ relative to DIC in Experiment #1 (and 1.9‰ relative to thermodynamic predictions for inorganically precipitated calcite, Romanek et al., 1992). This nearly 3‰ enrichment is at the upper end of the range reported from prior batch cultures of E. huxleyi (Δδ\(^{13}\)C\(_{\text{calcite-DIC}}\) = −4.2 to 3‰; Rost et al., 2002; Ziveri et al., 2003; Hermoso et al., 2016b; Katz et al., 2017; McClelland et al., 2017), likely reflecting differences in nutrient conditions and carbonate system manipulation between studies (see Section 4.1).

3.3. Isotopic sensitivities to changing growth rate and [CO\(_2\)\(_{\text{aq}}\)]

The δ\(^{13}\)C values of bulk cellular biomass, calcite, and alkenones are influenced by the ratio \(\mu/[CO_{2(aq)}]\) (Bidigare et al., 1997; Popp et al., 1998a,b; Riebesell et al., 2000;
Rost et al., 2002; Tchernov et al., 2014; Hermoso et al., 2016b; Holtz et al., 2017). These three cellular components, as well as CAPs, display strong linear relationships with respect to $\mu/[\text{CO}_2(\text{aq})]$ in this study ($r^2 > 0.90$, $p < 0.05$, Fig. 1a; Supplementary Fig. S2b). The δ^{13}C values for each cellular pool grow increasingly 13C-enriched with increasing $\mu/[\text{CO}_2(\text{aq})]$, although not all pools have the same slope (Fig. 1a). δ^{13}C$_{\text{biomass}}$ and δ^{13}C$_{\text{alkenone}}$ values display the greatest sensitivity to $\mu/[\text{CO}_2(\text{aq})]$, with nearly identical slopes of 190 and 202 ($\% \mu\text{mol d})/\text{kg}$, respectively. δ^{13}C$_{\text{calcite}}$ values display slightly less sensitivity with a slope of 157, which corresponds to a 25% slope difference relative to δ^{13}C$_{\text{biomass}}$. δ^{13}C$_{\text{CAP}}$ values respond least sensitively to $\mu/[\text{CO}_2(\text{aq})]$, with a slope of 75 ($\% \mu\text{mol d})/\text{kg}$. When the δ^{13}C values of alkenones and CAPs are compared to the bulk phases (calcite and biomass) the slopes of the cross-plots are approximately 1 and 0.5, respectively (Fig. 1b,c).

The differences in isotopic sensitivities to $\mu/[\text{CO}_2(\text{aq})]$ are apparent by examining $\Delta \delta$ values, the isotopic differences between any two cellular carbon pools (Fig. 2). $\Delta \delta^{13}$C$_{\text{calcite-CAP}}$ and $\Delta \delta^{13}$C$_{\text{CAP-biomass}}$ values both display robust linear relationships: with increasing $\mu/[\text{CO}_2(\text{aq})]$, $\Delta \delta^{13}$C$_{\text{calcite-CAP}}$ values increase from 22.7 to 26.7$\%$ (Fig. 2a) while $\Delta \delta^{13}$C$_{\text{CAP-biomass}}$ values decrease from 10.1 to 4.5$\%$ (Fig. 2b). These opposing trends are also evident in Fig. 1: δ^{13}C$_{\text{CAP}}$ values approach δ^{13}C$_{\text{biomass}}$ values and diverge from δ^{13}C$_{\text{calcite}}$ values at the limit of faster growth or lower [CO$_2$(aq)].

Consistent with prior work, $\Delta \delta^{13}$C$_{\text{biomass-alkenone}}$ values are constant within error across all four experiments, with a mean value of 3.5 ± 0.5$\%$ (Table 2), and display no significant linear dependence on $\mu/[\text{CO}_2(\text{aq})]$ ($r^2 = 0.20$, $p > 0.05$, Fig. 2c). Prior E. huxleyi chemostat cultures under analogous conditions ($\mu = 0.2–0.6/d$, 18 $^\circ$C, nitrate-limited)
similarly exhibited $\Delta \delta^{13}C_{\text{biomass-alkenone}}$ values (3.5–5.2‰) with no clear dependence on growth rate (Popp et al., 1998b). $\Delta \delta^{13}C_{\text{calcite-biomass}}$ values also do not display a statistically significant response to $\mu/[\text{CO}_2(\text{aq})] (p > 0.05, \text{Fig. 2d; mean } 32.3 \pm 0.7‰)$. By analogy, therefore, the difference $\Delta \delta^{13}C_{\text{calcite-alkenone}}$ would also be statistically constant over the range of the experiments; and collectively, the $\Delta \delta$ values indicate that biomass, alkenone, and calcite $\delta^{13}C$ values all effectively respond similarly to $\mu/[\text{CO}_2(\text{aq})]$ (Fig. 1, 2). Only $\delta^{13}C_{\text{CAP}}$ values have a different $\mu/[\text{CO}_2(\text{aq})]$ sensitivity.

Maximum isotopic offsets between substrates and carbon pools occur at the limit of infinite [CO$_2$(aq)] or zero growth (Goericke et al., 1994; Laws et al., 1995). For example, ε_{P} values ($\approx \Delta \delta^{13}C_{\text{CO}_2\text{-biomass}}$) have an expected intercept of approximately 25‰, inferred from prior chemostat cultures of eukaryotic algae including *E. huxleyi* (Popp et al., 1998a). This value has been interpreted as the maximum fractionation accompanying enzymatic carbon fixation (ε_{f}). Although we were unable to measure $\delta^{13}C_{\text{DIC}}$ values for three of our experiments and thus cannot directly solve the $\varepsilon_{P} = \varepsilon_{f} - \mu/[\text{CO}_2(\text{aq})]$ equation in this study, the analogous intercept values for other carbon pools may provide insight into the inherent isotope effects of the governing reactions. $\Delta \delta^{13}C_{\text{calcite-CAP}}$ approaches an intercept of approximately 22‰, $\Delta \delta^{13}C_{\text{CAP-biomass}}$ approaches 11‰, $\Delta \delta^{13}C_{\text{biomass-alkenone}}$ approaches 4‰, and $\Delta \delta^{13}C_{\text{calcite-biomass}}$ approaches 33‰.

4. Discussion

4.1. Intracellular carbon isotope patterns – bulk classes

The isotopic ordering among compound classes matches general expectations for photoautotrophs. Organic carbon is 13C-depleted relative to inorganic carbon (DIC and
coccolith calcite) in our samples due to kinetic discrimination against 13CO$_2$ during photosynthesis (e.g., Goericke et al., 1994). Within the organic carbon pools, typical intracellular isotopic ordering also prevails: carbohydrates are more enriched in 13C than total cellular biomass, while lipids are 13C-depleted (Wong et al., 1975; Sakata et al., 1997; Hayes, 2001). This consistent isotopic pattern (δ^{13}C$_{\text{CAP}} > \delta^{13}C_{\text{biomass}} > \delta^{13}C_{\text{alkenone}}$) can be explained by a biosynthetic reaction network in which simple carbohydrates, used to synthesize CAPs, are the first compounds generated, while downstream kinetic processes discriminate against 13C and produce relatively 13C-depleted products including alkenones (Hayes, 2001).

All $\Delta\delta$ values (Fig. 2) are also consistent with expectations. Our mean $\Delta\delta^{13}$C$_{\text{biomass-alkenones}}$ value of $3.5 \pm 0.5\%$ (equivalent to $\epsilon_{\text{biomass-alkenones}} = 3.7\%$; Supplementary Table S3) is within error, although on the lower end, of the $3.8–4.2\%$ corrections that have been implemented in paleobarometry studies (Jasper and Hayes, 1990; Jasper et al., 1994; Pagani et al., 2005; Bijl et al., 2010; Seki et al., 2010) and is typical of the expressed fractionation for acetogenic lipids relative to total biomass (e.g., Hayes, 2001).

Paired measurements of calcite and biomass δ^{13}C values from the same study are rare. Our mean $\Delta\delta^{13}$C$_{\text{calcite-biomass}}$ value of $32.3 \pm 0.7\%$ (equivalent to $\epsilon_{\text{calcite-biomass}} = 33.8 \pm 0.9\%$; Supplementary Table S3) exceeds the values measured in two nutrient-replete batch culture studies of *E. huxleyi* ($\Delta\delta^{13}$C$_{\text{calcite-biomass}} = 15.3–28.8\%$, Rost et al., 2002; McClelland et al., 2017), but the difference must partially reflect the larger ϵ_P values obtained in nitrate-limited chemostats ($\epsilon_P = 21.4\%$, Experiment #1; 17.2–24.9\% in Bidigare et al., 1997; Supplementary Fig. S2a) relative to those from the batch cultures.
(ε_P = 6.7–17.1‰, Rost et al., 2002; McClelland et al., 2017). The larger fractionations in our study may also result from the continuous, relatively high light conditions employed (associated with larger ε_P values: Rost et al., 2002; Holtz et al., 2017) and differences in carbonate system manipulation between studies (McClelland et al., 2017).

No prior investigations have characterized the carbon isotope fractionation between CAPs and other cellular pools; and interestingly, the Δδ values we observe for CAPs appear to be different from expectations for bulk carbohydrates. Bulk carbohydrates can be up to 3–4‰ enriched relative to total biomass for photoautotrophs, but more commonly are thought to be on average 1–2‰ enriched (Abelson and Hoering, 1961; Coffin et al., 1990; Macko et al., 1990; Hayes, 2001). However, analyses of individual monosaccharides indicate substantial isotopic heterogeneity within the bulk carbohydrate pool, with some being significantly enriched in 13C (van Dongen et al., 2002; Teece and Fogel, 2007). Our Δδ_13C_CAP-biomass values (4.5 to 10.1‰, Table 2) fall within ranges observed for individual monosaccharides in marine and freshwater algae (0–9‰ for unicellular algae, and up to 13‰ for the macroalgal species _Ulva lactuca_: van Dongen et al., 2002; Teece and Fogel, 2007). Teece and Fogel (2007) measured δ_13C values for glucose and galactose from a batch culture of _E. huxleyi_, finding enrichments of 5 and 7‰ relative to biomass, respectively, and leading to predictions of Δδ_13C_CAP-biomass values ~6‰ (Benthien et al., 2007; Boller et al., 2011). Yet the most prevalent monomers within the CAP structure (mannose, galacturonic acid, and rhamnose: Fichtinger-Schepman, 1981) have not to date been isotopically characterized for this species. In a field specimen of _Ulva lactuca_, these monomers were 13C-enriched relative to biomass by 10‰ (mannose), 13‰ (galactose), and 7‰ (rhamnose) (Teece and
Because our $\Delta \delta^{13}C_{\text{CAP-biomass}}$ values of 4.5–10.1‰ are broadly consistent with these existing measurements, it is likely that $\delta^{13}C_{\text{CAP}}$ values are more 13C-enriched than the mass-weighted average carbohydrate composition of the cells, perhaps to an even greater extent than predicted by Benthien et al. (2007) and Boller et al. (2011).

4.2. Linear isotopic responses to changing $\mu/[CO_2(aq)]$

The linear increase in $\delta^{13}C_{\text{biomass}}$ values with increasing $\mu/[CO_2(aq)]$ (Fig. 1) is consistent with predictions from simple algal models invoking primarily diffusive entry of CO_2 into the cell for photosynthetic fixation (e.g., Freeman and Hayes, 1992; Laws et al., 1995). Bidigare et al. (1997) showed similar linear increases in $\delta^{13}C_{\text{biomass}}$ values under analogous chemostat growth conditions (Supplementary Fig. S2b). While it is not necessary to invoke non-diffusive carbon supply to explain either chemostat study, $\delta^{13}C_{\text{biomass}}$ values cannot be used to rule out the use of carbon concentrating mechanisms (CCMs) in *E. huxleyi*. Laws et al. (2002) hypothesized that the $\delta^{13}C_{\text{biomass}}$ values of *E. huxleyi* should become insensitive to the ratio μ/CO_2 at values exceeding ~0.1 kg/(µmol/d) if an inducible carbon concentrating mechanism (CCM) is employed (assuming a cell radius of 2.6 µm and a permeability of 10^{-5} m/s). Neither Bidigare et al. (1997) nor the present study tested μ/CO_2 values larger than 0.07 kg/(µmol d). Indeed, substantial physiological evidence indicates that *E. huxleyi* uses a variety of CCMs to actively enhance intracellular CO_2 (e.g., Rost et al., 2006; Mackinder et al., 2011; Bach et al., 2013; Isensee et al., 2014). We also cannot rule out the possibility that changes in $\delta^{13}C_{\text{DIC}}$ contributed to the variation in $\delta^{13}C_{\text{biomass}}$ that we observe. Distinct CO_2 conditions were achieved by bubbling with varying amounts of isotopically depleted tank CO_2 and
N₂:O₂. Under higher [CO₂(aq)], δ¹³Cbiomass values may therefore be driven lighter, in part, by a depleted isotopic composition of DIC. Notably, the carbonate system chemistry in Bidigare et al. (1997) was manipulated in a similar manner and yielded linear responses of both δ¹³Cbiomass and εP values to µ/[CO₂(aq)] (Supplementary Fig. S2).

The parallel increase in δ¹³Ccalcite values with increasing µ/[CO₂(aq)] (Fig. 1) suggests that a common physiological mechanism governs the isotopic signature of both calcite and biomass. Photosynthesis discriminates against ¹³C in the chloroplast, producing depleted δ¹³Cbiomass values while simultaneously enriching ¹³C in the remaining intracellular DIC pool. If this enriched DIC is also used for calcification, δ¹³Ccalcite and δ¹³Cbiomass values might both be expected to increase in response to increasing µ/[CO₂(aq)], consistent with our observed constant value for Δδ¹³Ccalcite-biomass (32.3 ± 0.7‰; Table 2) and measurements of other lightly calcifying coccolithophores (Hermoso et al., 2016b; McClelland et al., 2017). In species with higher ratios of particulate inorganic to organic carbon (high PIC:POC ratios), δ¹³Ccalcite values would instead be expected to decrease with increasing δ¹³Cbiomass values since the Rayleigh-type fractionation associated with calcification within the coccolith vesicle would obscure the chloroplast-derived fraction of the signal (Hermoso et al., 2016b; McClelland et al., 2017).

Similar reasoning also explains the linear responses of the organic compound classes (alkenones and CAPs) to µ/[CO₂(aq)], but it cannot explain why the slope of the δ¹³C vs µ/[CO₂(aq)] signature is not conserved in the CAPs (Fig. 1). Under high utilization of CO₂ (larger values for µ/[CO₂(aq)]), δ¹³Ccap values appear to be approaching δ¹³Cbiomass values, while at very low utilization, the value of Δδ¹³Ccap-biomass has a predicted maximum of 11‰ (y-axis intercept, Fig. 2b). This changing signature specifically
indicates that $\delta^{13}C_{\text{CAP}}$ values are approximately half as sensitive as the other cellular components to the ratio $\mu/[\text{CO}_2(\text{aq})]$, and it points towards a more complex control on the isotopic composition of this polymer.

4.3. Physiological interpretation of $\delta^{13}C_{\text{CAP}}$ patterns

The fractionation between CAPs and biomass ($\Delta\delta^{13}C_{\text{CAP-biomass}}$) spans a 5.6‰ range without any compensatory change in $\Delta\delta^{13}C_{\text{alkenone-biomass}}$ values. This could occur if isotopically distinct carbohydrate pools exist within *E. huxleyi* and the relative amount of carbon flowing to these pools varies systematically with growth conditions. Simple assumptions about cellular composition are used to illustrate this hypothesis, following Hayes (2001).

$\delta^{13}C_{\text{biomass}}$ values can be decomposed into the fractional allocation of cellular carbon to the major organic compound classes, as well as the mass-weighted average isotopic composition of each class (Eqn. 1). The subscripts in Equation 1 correspond to proteins, carbohydrates, and lipids, respectively; f is the fractional flux of fixed carbon flowing to each compound class at steady state. We also assume that the bulk carbohydrate pool, denoted δ_{carb}, results from the balance of two distinct carbohydrate fractions: acidic polysaccharides (f_{CAP}) and other saccharides (f_{sacc}) (Eqn. 2).

$$\delta_{\text{biomass}} = f_{\text{prot}}\delta_{\text{prot}} + f_{\text{carb}}\delta_{\text{carb}} + f_{\text{lip}}\delta_{\text{lip}} \quad (1)$$

$$\delta_{\text{carb}} = f_{\text{CAP}}\delta_{\text{CAP}} + f_{\text{sacc}}\delta_{\text{sacc}} \quad (2)$$

Values of δ_{biomass} and δ_{CAP} correspond to the values listed in Table 1, and δ_{lip} values are estimated to be 4‰ 13C-depleted relative to biomass ($\delta_{\text{lip}} = \delta_{\text{biomass}} - 4‰$, Eqn. 3, Table 3) by analogy with our $\delta^{13}C_{\text{alkenones}}$ measurements and other consensus
observations (e.g., Schouten et al., 1998; Laws et al., 2001). Alkenones and total lipids are assumed to be isotopically equivalent because alkenones represent a significant fraction of the lipids synthesized in *E. huxleyi*. Quantitative analyses of carbon fluxes show that up to 18% of photosynthetic carbon is dedicated to alkenones in cells harvested from batch cultures (Tsuji et al., 2015). We further assume that proteins and biomass would be isotopically equal ($\delta_{\text{prot}} = \delta_{\text{biomass}}$), since proteins are expected to represent the majority of total cell carbon (e.g., Hayes, 2001; Tang et al., 2017). Finally, δ_{carb}, representing the total combined carbohydrate fraction in the cell, is assumed to be enriched by 4‰ relative to biomass ($\delta_{\text{carb}} = \delta_{\text{biomass}} + 4‰$; Eqn. 3, Table 3). This assumption is at the upper end of the range reported for bulk carbohydrates in other autotrophs (Wong et al., 1975; van der Meer et al., 2001; van Dongen et al., 2002).

$$\delta_{\text{biomass}} = f_{\text{prot}}(\delta_{\text{biomass}}) + f_{\text{carb}}(\delta_{\text{biomass}} + 4‰) + f_{\text{lip}}(\delta_{\text{biomass}} - 4‰)$$ (3)

Solving Eqn 3 requires an estimate of one fractional flux, so we estimate $f_{\text{lip}} = 0.25$ by considering how biosynthesis affects the carbon isotopic composition of *n*-alkyl lipids. Acetyl-coenzyme A (CoA) is produced from the decarboxylation of pyruvate by the enzyme pyruvate dehydrogenase. This step is accompanied by an isotope effect of ~23‰, generating a 13C-depleted carboxyl group relative to the methyl group in acetyl-CoA (Monson and Hayes, 1982; Hayes, 2001). This translates to a ~12‰ depletion for the overall acetyl-CoA molecule relative to pyruvate. However, the net isotopic composition of the resulting acetogenic lipids relative to biomass is controlled by the branching ratio of pyruvate destined for lipid synthesis vs that used directly, either for cellular biosynthesis or for carboxylation to oxaloacetate by anaplerotic reactions. In the absence of anaplerotic reactions, an expressed 4‰ depletion in lipids relative to biomass
would indicate allocation of ~33% of pyruvate to lipid synthesis, but accounting for additional anaplerotic fluxes (e.g., Tang et al., 2017) decreases this estimate to ~25%.

Proteins and carbohydrates must together constitute the remaining biomass (75%) in Eqn. 3, allowing us to solve for the remaining unknowns. We find that bulk cellular carbon allocation remains invariant across our experiments: \(f_{\text{lip}} = 0.25, f_{\text{prot}} = 0.5, f_{\text{carb}} = 0.25 \) (Table 3, Fig. 3a,b). This finding is plausible but prescribed by the assumptions of the model: mass balance calculations with constant isotopic offsets between pools will result in constant allocation to \(f_{\text{carb}} \) and \(f_{\text{prot}} \) regardless of choice of \(f_{\text{lip}} \). For example, other reasonable choices for \(f_{\text{lip}} \) (ranging from 0.15–0.33) are explored in Supplementary Table S4, producing different fractional carbon allocations to \(f_{\text{prot}} \) (0.7–0.33) and \(f_{\text{carb}} \) (0.15–0.33).

The fractional allocation to CAPs (\(f_{\text{CAP}} \)) vs other saccharides (\(f_{\text{sacc}} \)) is calculated by assuming a net fractionation factor between the two pools (\(\Delta \delta_{\text{CAP-sacc}} \)) of 7‰ (Eqn. 4, Table 3). This value corresponds to the maximum \(\Delta \delta^{13}\text{C}_{\text{CAP-biomass}} \) value of 11‰ inferred from the y-intercept of Fig. 2b, corrected by 4‰ to account for our assumption that \(\delta_{\text{carb}} \) is 4‰ enriched relative to \(\delta_{\text{biomass}} \) (Eqn. 3).

\[
\delta_{\text{carb}} = \delta_{\text{biomass}} + 4\% = f_{\text{CAP}}\delta_{\text{CAP}} + (1-f_{\text{CAP}})(\delta_{\text{CAP}}-7\%) \quad (4)
\]

The \(f_{\text{CAP}} \) results (Table 3) indicate that the total cellular carbon allocation to CAPs increases from 3.5 to 22.8% from Experiment #1 to #4, in agreement with \(^{14}\text{C}\)-labeling experiments showing that ~15–20% of fixed carbon is used for the synthesis of acidic polysaccharides in \textit{E. huxleyi} (Kayano and Shiraiwa 2009; Tsuji et al., 2015; Taylor et al., 2017).
To test the sensitivity of our model results, other plausible choices of δ_{prot} and δ_{carb} inputs are evaluated in Table 3, Fig. 3b, and Supplementary Fig. S3; all cases suggest that *E. huxleyi* produces more CAPs relative to other carbohydrates as $\mu/[\text{CO}_2\text{(aq)}]$ increases (Table 3, Fig. 3a,b). It remains unknown whether this response in our cultures is a consequence of the faster growth rate or the relatively lower CO$_2$ concentrations under these conditions. Several studies imply that *E. huxleyi* regulates carbon flow among CAPs, neutral polysaccharides, and low molecular weight (LMW) metabolites in response to changing growth conditions (Kayano and Shiraiwa, 2009; Borchard and Engel, 2012; Chow et al., 2015). Most of these studies have been conducted with batch cultures or phosphorous-limited chemostat cultures, so as yet no corroborating evidence for nitrate-limited conditions exists. However, our estimates are consistent with 14C-labeling experiments with the green alga *Dunaliella tertiolecta* in nitrate-limited chemostat cultures (Halsey et al., 2011), which showed that at faster growth rates, proportionally more 14C is allocated to polysaccharides, and at slower growth rates, more 14C is allocated to LMW metabolites. For *E. huxleyi*, this may reflect a strategy by the cell to support calcification when the intracellular carbon pool is relatively depleted.

Alternatively, our data might imply that CAPs are synthesized from proportionally more recycled cellular carbon with increasing growth rates. If proteins are recycled for the synthesis of CAPs, and $\delta_{\text{prot}} \approx \delta_{\text{biomass}}$, then CAP and biomass δ^{13}C values would be expected to converge with enhanced recycling. However, such explanation requires that the recycled carbon be incorporated at a biosynthetic stage downstream of simple sugars and prior to the polymerization of CAPs. If the recycled carbon first passed through simple sugars, then no difference in slopes would result among organic
compound classes since simple sugars are precursors to proteins and lipids, as well as CAPs. One additional possibility is that the monosaccharide composition may have changed systematically with the changing growth conditions. Only one polysaccharide was detected per extract by PAGE, SDS-PAGE, and HPLC, but we did not explicitly verify that the monosaccharide composition of the CAP remained constant across experiments. Future studies could clarify this contribution by comparing the isotopic composition of CAPs with that of individual monomers from the same extract.

5. Conclusions: Implications for paleoceanography

Our findings indicate that alkenones have greater inherent sensitivity for paleobarometry applications than CAPs due to the steeper slope relating $\delta^{13}C_{\text{alkenones}}$ values to $\mu/[CO_2(aq)]$ (Fig. 1). The relatively constant isotopic depletion in alkenones compared to biomass across four growth conditions supports the conclusions of Popp et al. (1998b) that growth rate does not significantly or systematically influence the isotopic offset between bulk biomass and alkenones. This result upholds the fundamental assumption employed in alkenone-based pCO_2 reconstructions that sedimentary $\delta^{13}C_{\text{alkenone}}$ measurements can be used to estimate original $\delta^{13}C_{\text{biomass}}$ values.

In contrast, CAPs are not direct analogues or replacements for alkenone biomarkers in the reconstruction of $\delta^{13}C_{\text{biomass}}$ values, since $\Delta\delta^{13}C_{\text{biomass-CAP}}$ varies by 5.6‰ in our experiments. This is a large variation relative to the limited range of investigated growth and $[CO_2(aq)]$ conditions. However, assuming that our chemostat results are applicable to in situ processes in both ancient and modern environments, then alkenones, calcite, and CAPs all recovered from the same sedimentary deposit may
together be more useful than alkenones and calcite alone: isotopic measurements of all three cellular constituents would constrain \(\mu/\left[\text{CO}_2\right] \) with fewer assumptions than current approaches using the \([\text{PO}_4^{3-}]\)-derived “b” parameter (Rau et al., 1992; Bidigare et al., 1997). If the alkenones, calcite, and CAPs are related by \(\Delta \delta \) values that map onto Fig. 2a and 2b, this information reconstructs \(\mu/\left[\text{CO}_2\right] \) directly. One advantage of this approach is that it does not require seawater \(\delta^{13}\text{C}_{\text{DIC}} \) values, enabling reconstructions from sediments lacking coeval planktonic foraminifera. Another advantage is the potential to recover additional useful information about the coccolithophore community through parallel efforts. CAPs are extracted from fossilized coccoliths, so cell size and taxonomy information should be recoverable with coccolith calcite and CAP isotope values (Henderiks, 2008; Bolton et al., 2012; Bolton and Stoll, 2013; O’Dea et al., 2014; McClelland et al., 2016). The uronic acid contents of CAPs provide complementary information about the internal saturation state of the coccolith vesicle and, by extension, atmospheric CO\(_2\) levels (Lee et al., 2016; Rickaby et al., 2016). If \(\delta^{13}\text{C}_{\text{DIC}} \) can be estimated using independent measurements (e.g., mixed-layer foraminifera), then measurements of either \(\Delta \delta^{13}\text{C}_{\text{CAP}-\text{alkenone}} \) or \(\Delta \delta^{13}\text{C}_{\text{calcite-CAP}} \) could be used to reconstruct \(\delta^{13}\text{C}_{\text{biomass}} \). Together these strategies point to a way forward for paleobarometry: by analyzing a suite of geologically preserved constituents, including CAPs, it may be possible to reduce some of the uncertainties inherent to any single proxy approach. Thus, with additional proxy validation efforts, including cultures and field studies encompassing other species and CO\(_2\) conditions, the carbon isotopic composition of CAPs may provide an important biochemical window into ancient environments.
Acknowledgements

This work was supported by a National Science Foundation Graduate Research Fellowship [grant number DGE1144152, to EBW]; the Gordon and Betty Moore Foundation (to AP); and NASA-NAI CAN6 (to AP; PI Roger Summons, MIT). We thank Susie Carter, Katie Mabbott, and Alan Gagnon for assistance with laboratory analyses, Einat Segev for providing starter cultures and culturing advice, John Volkman and Bart van Dongen for editorial handling, and two anonymous reviewers for their thoughtful comments.

Associate Editor–Bart van Dongen

References

Dickson, A.G., 1990. Standard potential of the reaction: AgCl(s) + 1/2H2(g)=Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4- in synthetic seawater from 273.15 to 318.15 K. The Journal of Chemical Thermodynamics 22,113-127.

Table 1. Experimental conditions and isotopic data for *E. huxleyi*a,b

<table>
<thead>
<tr>
<th>Expt #</th>
<th>[CO\textsubscript{2(aq)}] (µmol/kg)</th>
<th>µc (/d)</th>
<th>δ13C\textsubscript{calcite} (%)</th>
<th>δ13C\textsubscript{biomass} (%)</th>
<th>δ13C\textsubscript{CAP} (%)</th>
<th>δ13C\textsubscript{alkenone} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.6 ± 1.2</td>
<td>0.20 ± 0.01</td>
<td>−15.44 ± 0.01 (1)</td>
<td>−48.2 ± 1.4 (9)</td>
<td>−38.2 ± 0.2 (2)</td>
<td>−51.5 ± 1.0 (7)</td>
</tr>
<tr>
<td>2</td>
<td>14.0 ± 0.4</td>
<td>0.40 ± 0.01</td>
<td>−12.90 ± 0.01 (1)</td>
<td>−45.7 ± 0.1 (5)</td>
<td>−37.3 ± 0.5 (2)</td>
<td>−49.8 ± 0.9 (2)</td>
</tr>
<tr>
<td>3</td>
<td>11.9 ± 0.5</td>
<td>0.48 ± 0.01</td>
<td>−10.44 ± 0.01 (1)</td>
<td>−42.9 ± 0.3 (4)</td>
<td>−35.4 ± 0.5 (3)</td>
<td>−46.4 ± 0.5 (7)</td>
</tr>
<tr>
<td>4</td>
<td>10.7 ± 0.6</td>
<td>0.62 ± 0.01</td>
<td>−8.26 ± 0.01 (1)</td>
<td>−39.5 ± 0.9 (7)</td>
<td>−34.9 ± 0.5 (3)</td>
<td>−42.4 ± 0.5 (4)</td>
</tr>
</tbody>
</table>

aValues reflect the mean of steady state conditions, ± 1σ. The number of replicate isotopic measurements is listed in parentheses.

Sampling of cells for isotopic analysis was not begun until at least four doublings were completed at a given dilution rate.

bThe order in which the experiments were performed is: 2, 3, 1, 4.

cValues and associated errors correspond to the dilution rates applied to the chemostat system, equaling µ at steady state.
Table 2. Isotopic offsets between cellular pools (‰).^a

<table>
<thead>
<tr>
<th>Expt #</th>
<th>$\Delta \delta^{13}C_{\text{calcite-CAP}}$</th>
<th>$\Delta \delta^{13}C_{\text{CAP-biomass}}$</th>
<th>$\Delta \delta^{13}C_{\text{biomass-alkenone}}$</th>
<th>$\Delta \delta^{13}C_{\text{calcite-biomass}}$</th>
<th>$\Delta \delta^{13}C_{\text{alkenone-CAP}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.7 ± 0.2</td>
<td>10.1 ± 1.4</td>
<td>3.3 ± 1.7</td>
<td>32.8 ± 1.4</td>
<td>−13.4 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>24.4 ± 0.5</td>
<td>8.4 ± 0.5</td>
<td>4.2 ± 0.9</td>
<td>32.8 ± 0.1</td>
<td>–12.6 ± 1.1</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>3</td>
<td>24.9 ± 0.5</td>
<td>7.5 ± 0.6</td>
<td>3.5 ± 0.6</td>
<td>32.5 ± 0.3</td>
<td>–11.0 ± 0.7</td>
</tr>
<tr>
<td>4</td>
<td>26.7 ± 0.5</td>
<td>4.5 ± 1.0</td>
<td>2.9 ± 1.0</td>
<td>31.2 ± 0.9</td>
<td>–7.4 ± 0.7</td>
</tr>
<tr>
<td>Mean</td>
<td>24.7</td>
<td>8</td>
<td>3.5</td>
<td>32.3</td>
<td>–11.1</td>
</tr>
<tr>
<td>SD</td>
<td>1.6</td>
<td>2</td>
<td>0.5</td>
<td>0.7</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Values are ± 1σ propagated error.
Table 3. Four carbon allocation scenarios consistent with δ\textsubscript{biomass} and δ\textsubscript{CAP} measurements.

<table>
<thead>
<tr>
<th>Relative δ</th>
<th>Expt #</th>
<th>δ\textsubscript{biomass}</th>
<th>δ\textsubscript{lip}</th>
<th>f\textsubscript{lip}</th>
<th>δ\textsubscript{prot}</th>
<th>f\textsubscript{prot}</th>
<th>δ\textsubscript{carb}</th>
<th>f\textsubscript{carb}</th>
<th>δ\textsubscript{CAP}</th>
<th>f\textsubscript{CAP}</th>
<th>δ\textsubscript{sacc}</th>
<th>f\textsubscript{sacc}</th>
<th>δ\textsubscript{sacc}</th>
<th>% carbon allocation to CAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prota</td>
<td>0</td>
<td>-48.2</td>
<td>0.25</td>
<td>-52.2</td>
<td>0.50</td>
<td>-48.2</td>
<td>0.25</td>
<td>-44.2</td>
<td>0.14</td>
<td>-38.2</td>
<td>0.86</td>
<td>-45.2</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Carba</td>
<td>4</td>
<td>-45.7</td>
<td>0.25</td>
<td>-49.7</td>
<td>0.50</td>
<td>-45.7</td>
<td>0.25</td>
<td>-41.7</td>
<td>0.37</td>
<td>-37.3</td>
<td>0.63</td>
<td>-44.3</td>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>Lipa</td>
<td>-4</td>
<td>-42.9</td>
<td>0.25</td>
<td>-46.9</td>
<td>0.50</td>
<td>-42.9</td>
<td>0.25</td>
<td>-38.9</td>
<td>0.50</td>
<td>-35.4</td>
<td>0.50</td>
<td>-42.4</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Δδ\textsubscript{CAP-sacc}a</td>
<td>7</td>
<td>-39.5</td>
<td>0.25</td>
<td>-43.5</td>
<td>0.50</td>
<td>-39.5</td>
<td>0.25</td>
<td>-35.5</td>
<td>0.91</td>
<td>-34.9</td>
<td>0.09</td>
<td>-41.9</td>
<td>22.8</td>
<td></td>
</tr>
<tr>
<td>Prot</td>
<td>1</td>
<td>-48.2</td>
<td>0.25</td>
<td>-52.2</td>
<td>0.63</td>
<td>-47.2</td>
<td>0.13</td>
<td>-45.2</td>
<td>0.13</td>
<td>-38.2</td>
<td>0.87</td>
<td>-46.2</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Carb</td>
<td>3</td>
<td>-45.7</td>
<td>0.25</td>
<td>-49.7</td>
<td>0.63</td>
<td>-44.7</td>
<td>0.13</td>
<td>-42.7</td>
<td>0.33</td>
<td>-37.3</td>
<td>0.67</td>
<td>-45.3</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Lip</td>
<td>-4</td>
<td>-42.9</td>
<td>0.25</td>
<td>-46.9</td>
<td>0.63</td>
<td>-41.9</td>
<td>0.13</td>
<td>-39.9</td>
<td>0.44</td>
<td>-35.4</td>
<td>0.56</td>
<td>-43.4</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Δδ\textsubscript{CAP-sacc}</td>
<td>8</td>
<td>-39.5</td>
<td>0.25</td>
<td>-43.5</td>
<td>0.63</td>
<td>-38.5</td>
<td>0.13</td>
<td>-36.5</td>
<td>0.80</td>
<td>-34.9</td>
<td>0.20</td>
<td>-42.9</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Prot</td>
<td>0</td>
<td>-48.2</td>
<td>0.25</td>
<td>-52.2</td>
<td>0.42</td>
<td>-48.2</td>
<td>0.33</td>
<td>-45.2</td>
<td>0.13</td>
<td>-38.2</td>
<td>0.87</td>
<td>-46.2</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>Carb</td>
<td>3</td>
<td>-45.7</td>
<td>0.25</td>
<td>-49.7</td>
<td>0.42</td>
<td>-45.7</td>
<td>0.33</td>
<td>-42.7</td>
<td>0.33</td>
<td>-37.3</td>
<td>0.67</td>
<td>-45.3</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>Lip</td>
<td>-4</td>
<td>-42.9</td>
<td>0.25</td>
<td>-46.9</td>
<td>0.42</td>
<td>-42.9</td>
<td>0.33</td>
<td>-39.9</td>
<td>0.44</td>
<td>-35.4</td>
<td>0.56</td>
<td>-43.4</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>Δδ\textsubscript{CAP-sacc}</td>
<td>8</td>
<td>-39.5</td>
<td>0.25</td>
<td>-43.5</td>
<td>0.42</td>
<td>-39.5</td>
<td>0.33</td>
<td>-36.5</td>
<td>0.80</td>
<td>-34.9</td>
<td>0.20</td>
<td>-42.9</td>
<td>26.4</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prot</td>
<td>1</td>
<td>1</td>
<td>-48.2</td>
<td>0.25</td>
<td>52.2</td>
<td>0.50</td>
<td>-47.2</td>
<td>0.25</td>
<td>46.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carb</td>
<td>2</td>
<td>2</td>
<td>-45.7</td>
<td>0.25</td>
<td>49.7</td>
<td>0.50</td>
<td>-44.7</td>
<td>0.25</td>
<td>43.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lip</td>
<td>-4</td>
<td>3</td>
<td>-42.9</td>
<td>0.25</td>
<td>46.9</td>
<td>0.50</td>
<td>-41.9</td>
<td>0.25</td>
<td>40.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δδ_{CAP-sacc}</td>
<td>9</td>
<td>4</td>
<td>-39.5</td>
<td>0.25</td>
<td>43.5</td>
<td>0.50</td>
<td>-38.5</td>
<td>0.25</td>
<td>37.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Scenario described in the body of the text.
Figure Captions

Fig. 1. The δ^{13}C values (‰) of coccolith calcite (black triangles), CAPs (grey circles), bulk biomass (white squares), and alkenones (black diamonds) (a) as a function of the ratio of growth rate (μ) to CO₂ concentration ([CO₂(aq)]), (b) comparing δ^{13}C_{alkenone} values to δ^{13}C_{biomass} and δ^{13}C_{calcite} values, with slopes of approximately 1, and (c) comparing δ^{13}C_{CAP} values to δ^{13}C_{biomass} and δ^{13}C_{calcite}, showing slopes of approximately 0.5.

Fig. 2. Isotopic fractionations (Δδ values, ‰) between compound classes, calculated as simple linear differences and plotted vs μ/[CO₂(aq)]: (a) Δδ^{13}C_{calcite-CAP}, (b) Δδ^{13}C_{CAP-biomass}, (c) Δδ^{13}C_{biomass-alkenone}, (d) Δδ^{13}C_{calcite-biomass}. Error bars represent ±1σ propagated error. Note: all vertical axes span 12‰ ranges, but with different values.

Fig. 3. Predicted cellular carbon allocation to major organic compound classes in *E. huxleyi*. Arrow widths correspond to calculated fractional fluxes (f). Relative shading intensities indicate the measured or predicted isotopic offsets between the organic carbon pools, including the bulk biomass. (a) Cells from Experiment #1 (left; lowest μ/[CO₂(aq)]) preferentially allocate carbon within the carbohydrate pool to saccharides other than CAPs. Cells from Experiment #4 (right; highest μ/[CO₂(aq)]) allocate more carbon to CAP synthesis. (b) Percentages of fixed carbon allocated to CAPs for each experiment, calculated for four plausible combinations of δ_{prot} and δ_{carb} model inputs. Regardless of choice, carbon allocation to CAPs is expected to increase from Experiment #1 to Experiment #4 (with increasing μ/[CO₂(aq)]). Abbreviations: *PDH* = pyruvate dehydrogenase, OAA = oxaloacetate.
Fig. 1.
Fig. 2.
Fig. 3.
Highlights
- $\delta^{13}C$ values of coccolith polysaccharides (CAPs) vary with growth rate and CO$_2$
- CAPs from *E. huxleyi* are ^{13}C-enriched compared to bulk biomass by 4.5 to 10.1‰
- CAP $\delta^{13}C$ values are less sensitive to growth rate/CO$_2$ than alkenones
- They are also less sensitive than biomass or coccolith calcite
- $\delta^{13}C$ values of alkenones, calcite, and CAPs may together reconstruct paleo-pCO$_2$