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Graph theory is a useful tool for deciphering structural andfunctional networks of the
brain on various spatial and temporal scales. The clustering coef�cient quanti�es the
abundance of connected triangles in a network and is a major descriptive statistics of
networks. For example, it �nds an application in the assessment of small-worldness of
brain networks, which is affected by attentional and cognitive conditions, age, psychiatric
disorders and so forth. However, it remains unclear how the clustering coef�cient should
be measured in a correlation-based network, which is among major representations
of brain networks. In the present article, we propose clustering coef�cients tailored to
correlation matrices. The key idea is to use three-way partial correlation or partial mutual
information to measure the strength of the association between the two neighboring
nodes of a focal node relative to the amount of pseudo-correlation expected from indirect
paths between the nodes. Our method avoids the dif�culties of previous applications
of clustering coef�cient (and other) measures in de�ning correlational networks, i.e.,
thresholding on the correlation value, discarding of negative correlation values, the
pseudo-correlation problem and full partial correlation matrices whose estimation is
computationally dif�cult. For proof of concept, we apply the proposed clustering
coef�cient measures to functional magnetic resonance imaging data obtained from
healthy participants of various ages and compare them with conventional clustering
coef�cients. We show that the clustering coef�cients decline with the age. The proposed
clustering coef�cients are more strongly correlated with age than the conventional ones
are. We also show that the local variants of the proposed clustering coef�cients (i.e.,
abundance of triangles around a focal node) are useful in characterizing individual nodes.
In contrast, the conventional local clustering coef�cients were strongly correlated with
and therefore may be confounded by the node's connectivity.The proposed methods
are expected to help us to understand clustering and lack thereof in correlational brain
networks, such as those derived from functional time seriesand across-participant
correlation in neuroanatomical properties.

Keywords: network neuroscience, clustering coef�cient, fu nctional connectivity, partial correlation, partial mutua l
information, aging
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1. INTRODUCTION

Networks have been proven to be a useful language to understand
structural and functional properties of the brain. The research
�eld is collectively called network neuroscience (Bassett and
Sporns, 2017). Initial studies in network neuroscience revealed
that brain networks on various spatial scales have properties
common to other biological and non-biological networks, such as
the small-world property and community structure. More recent
studies tend to depend on the availability of new tools to record
data with, look at other properties of brain networks such as
network hubs, rich clubs and economic e�ciency, and endeavor
into the analysis of impaired brains (Bullmore and Sporns, 2009;
Sporns, 2011; Fornito et al., 2013; Stam, 2014; Bassett and Sporns,
2017).

In this article, we focus on a measure which has often been
applied to brain (and other) networks: clustering coe�cient
(Watts and Strogatz, 1998). The clustering coe�cient quanti�es
the abundance of connected triangles in a network. In network
neuroscience, the clustering coe�cient has been shown to bea
useful quantity for understanding function-structure associations
in the brain for at least the following two reasons. First, it
is one of the two building blocks with which to measure the
small-worldness of a network; small-world networks are those
having a large clustering coe�cient and a small shortest path
length between two nodes (such as regions of interest; ROIs)
on average (Watts and Strogatz, 1998; Bullmore and Sporns,
2009). Brain networks are usually small-world networks in this
sense (Achard et al., 2006; Bassett and Bullmore, 2006). Loss
of small-worldness is a signature of, for example, Alzheimer
disease (Supekar et al., 2008; Brier et al., 2014) and schizophrenia
(Liu et al., 2008). Second, the abundance of connected triangles
around a given node, which is measured by local variants of
the clustering coe�cient, informs us of other structure and
functions of networks, namely, community structure (Radicchi
et al., 2004; Palla et al., 2005) and local e�ciency (Latora and
Marchiori, 2001). Both community structure and local e�ciency
are often measured for brain networks (Achard and Bullmore,
2007; Bullmore and Sporns, 2009; Rubinov and Sporns, 2010,
2011); for example, community structure of functional brain
networks is less pronounced in childhood-onset schizophrenia
than controls (Alexander-Bloch et al., 2010).

However, the current measurement of the clustering
coe�cient can be easily fooled when it is applied to correlational
brain/neuronal networks, where the connectivity between two
nodes is de�ned by Pearson correlation and potentially some
other correlation indices. Such correlational brain networks
are often built on the basis of a correlation measure between
two ROIs such as the pairwise correlation between time-
dependent blood oxygen level-dependent (BOLD) signals
obtained from functional magnetic resonance imaging (fMRI)
or neural signals obtained from electroencephalogram (EEG)
and magnetoencephalogram (MEG) (Bullmore and Sporns,
2009; Bassett and Sporns, 2017). Correlational networks are also
employed to construct structural networks of the brain, where
an edge between two ROIs is calculated as the across-participant
correlation in the cortical thickness (Alexander-Bloch et al.,

2013; Evans, 2013). A naive application of network analysis tools,
including the clustering coe�cient, to such correlation networks
can go awry due to the following reasons.

First, a network derived from a correlation matrix tends to
have many triangles owing to the so-called indirect paths, i.e.,
a correlation between nodesi and j and one betweeni and
` result in a correlation betweenj and ` even when there is
no direct relationship betweenj and ` (Adachi et al., 2012;
Zalesky et al., 2012). This mathematical property raises the
clustering coe�cient values. The same pseudo-correlation e�ect
also automatically produces an in�ated correlation betweenthe
connectivity of nodei and the local clustering coe�cient (i.e.,
which refers to the abundance of triangles around a particular
node i and has been used for characterizing individual ROIs
Sporns and Zwi, 2004; Achard et al., 2006; He et al., 2007;
Alexander-Bloch et al., 2010; Lynall et al., 2010; Power et al., 2010;
van den Heuvel et al., 2010; van den Heuvel and Sporns, 2011;
Wee et al., 2011; Fornito et al., 2012; Tijms et al., 2013; Sala-
Llonch et al., 2014) as we will show (section 3.5). One remedy
is to use appropriate null models (Zalesky et al., 2012), which
respect the natural constraints imposed on correlation matrices
including a large clustering coe�cient value even in the case
of networks generated at random. Nevertheless, this solution
does not address the issue of the threshold value, which we
will discuss below. The partial correlation matrix is a method
of choice for removing pseudo-correlation between ROIs that
is present in networks based on the Pearson correlation matrix.
However, estimation of the partial correlation matrix is di�cult,
particularly when the number of image volumes is relatively small
as compared to the number of ROIs, which is typical of fMRI
experiments (Schäfer and Strimmer, 2005; Ryali et al., 2012; Brier
et al., 2015).

Second, to create a network, we conventionally threshold on
the correlation value to dichotomize the presence or absence
of an edge between each pair of ROIs. However, the choice of
the threshold is arbitrary (Rubinov and Sporns, 2010, 2011; De
Vico Fallani et al., 2014; Garrison et al., 2015) and results of
graph-theoretical analyses often depend on the choice of the
threshold (Zalesky et al., 2012; Garrison et al., 2015; Jalili, 2016).
Speci�cally, clustering coe�cient values considerably depend
on the threshold value (Zalesky et al., 2012; Garrison et al.,
2015). One can avoid thresholding by using weighted networks,
i.e., networks with weighted edges (Rubinov and Sporns, 2010,
2011). There are several de�nitions of clustering coe�cient for
weighted networks (Barrat et al., 2004; Onnela et al., 2005; Zhang
and Horvath, 2005; Saramäki et al., 2007; Rubinov and Sporns,
2010, 2011; Costantini and Perugini, 2014; Wang et al., 2017).
However, it is unclear how the weighted network approach
should deal with negatively weighted edges; most network
analysis tools including the clustering coe�cient assume non-
negative edges (Newman, 2010). An interesting possibility is
to separately analyse networks composed of positive edges and
those composed of negative edges, and then to combine the
measurements obtained from the two types of networks (Rubinov
and Sporns, 2011). However, there seems to be no consensus
regarding the treatment of negatively signed edges (Sporns and
Betzel, 2016).
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In the present study, we develop two clustering coe�cients
tailored to correlation matrices. The �rst type of clustering
coe�cient is based on three-way partial correlation coe�cient.
The second type is based on partial mutual information. Partial
mutual information is a nonlinear correlation measure, which
is de�ned as the conventional mutual information between two
random variables but conditioned on other variables (Frenzel
and Pompe, 2007). These clustering coe�cients are expected to
overcome some of the aforementioned di�culties. First, they
discount the e�ect of indirect paths to quantify association
between two neighbors of a node given the activity of the focal
node. In this manner, we avoid both the problem of pseudo-
correlation in ordinary correlation matrices and computational
issues in the calculation of partial correlation matrices. Second,
as in the case of the clustering coe�cients for weighted networks,
our clustering coe�cients do not use thresholding on the
correlation value. Third, we measure how far the realized
pairwise correlation value is (no matter positive or negative)
from the correlation anticipated by the presence of indirect paths.
Although this treatment does not solve the problem of negative
edges, we intend to use the information contained in negative as
well as positive edges in this manner. For a proof of concept, we
apply the proposed clustering coe�cient indices to fMRI data
obtained from healthy subjects with a wide range of age. We
show that the clustering coe�cients are negatively correlated with
the age. This observation is in general less pronounced with the
conventional clustering coe�cient measures, although decline in
the clustering coe�cient with ageing should not be regardedas a
ground truth in light of the literature (Wang et al., 2010; Matthäus
et al., 2012; Zhu et al., 2012; Brier et al., 2014; Liu et al., 2014;
Sala-Llonch et al., 2014; Knyazev et al., 2015; Grady et al.,2016).
We also show that the local clustering coe�cients at speci�c
ROIs provide information orthogonal to the mere strength of
connectivity and that their association with the participant's age
is independent of brain systems.

2. METHODS

2.1. Functional Connectivity
We usedNROI D 30 regions of interest (ROIs) whose coordinates
were determined in a previous study (Fair et al., 2009). Note
that we excluded the four cerebellar ROIs out of the 34 ROIs.
The system of the 30 ROIs contained the default mode network
(DMN; 12 ROIs), cingulo-opercular network (CON; 7 ROIs) and
fronto-parietal network (FPN; 11 ROIs).

Denote by� (i, j) the Pearson correlation coe�cient between
the BOLD signals at two ROIsi and j (1 � i, j � NROI).
We primarily use� (i, j) as a measure of functional connectivity
between ROIs. However, we will discount the e�ect of indirect
paths, which is present when the edge between ROIsi and
j is solely determined by� (i, j), by de�ning new clustering
coe�cients (section 2.5).

For comparison purposes, we will also examine conventional
clustering coe�cients for networks (sections 2.3, 2.4),
which are applied to the Pearson correlation matrix and
the partial correlation matrix. The partial correlation
matrix, which we use as a benchmark, is an alternative

measure of functional connectivity (Salvador et al., 2005;
Marrelec et al., 2006), and its (i, j) element is estimated by
� partial(i, j) D � cov� 1(i, j)=

p
cov� 1(i, i)cov� 1(j, j), where cov

denotes the covariance matrix (Whittaker, 1990). It should be
noted that� (i, j) D � (j, i) and � partial(i, j) D � partial(j, i). We
interchangeably use node and ROI in the following.

2.2. Average Functional Connectivity
We used the following two indices of average functional
connectivity: the pairwise Pearson correlation coe�cient
averaged over all pairs of ROIs, denoted bys, and the same
average but only over the ROI pairs having the non-negative
� (i, j) values, denoted bysC . The introduction ofsC is motivated
by the observation that the interpretation of negative correlation
coe�cients remains di�cult ( Fox et al., 2009; Murphy et al.,
2009; Rubinov and Sporns, 2011; Fornito et al., 2013).

2.3. Clustering Coef�cients for Unweighted
Networks
In this section and the next, we explain the previously proposed
clustering coe�cients for unweighted and weighted networks
based on the Pearson correlation coe�cient,� (i, j). Those based
on the partial correlation coe�cient,� partial(i, j), are analogously
calculated.

To construct an unweighted functional network, we lay an
edge between nodesi and j (1 � i 6D j � N) if and
only if � (i, j) � � , where� is a pre-determined threshold. The
generated network is undirected. We denote the adjacency matrix
of the network byA D (aij ), where 1 � i, j � NROI. In
other words,aij D 1 if (i, j) is an edge andaij D 0 otherwise.
The clustering coe�cient represents the abundance of connected
triangles in a network (Watts and Strogatz, 1998). The local
clustering coe�cient of nodei is de�ned by

Cunw
i D

(Number of connected triangles including nodei)
ki(ki � 1)=2

D

P
1� j<` � NROI

j,̀ 6Di
aij ai` aj`

ki(ki � 1)=2
, (1)

whereki D
P NROI

jD1 aij D
P NROI

jD1 aji is the degree of node
i, i.e., the number of edges to which nodei is adjacent. The
denominator on the right-hand side of Equation (1) represents
the largest possible number of triangles to which nodei belongs.
Note that 0 � Cunw

i � 1 (1 � i � NROI) and that Cunw
i is

unde�ned if ki D 0 or 1. The global clustering coe�cient for
the entire network, denoted byCunw, is given by the average of
Cunw

i over all nodes. We exclude the nodes withki � 1 from
the calculation ofCunw. Note that 0 � Cunw � 1. Similar
to other types of networks, most brain networks, anatomical or
functional, have large values ofCunw as compared to randomized
networks (Bullmore and Sporns, 2009; Bassett and Sporns, 2017).

2.4. Clustering Coef�cients for Weighted
Networks
One can de�ne a weighted functional network by regarding� (i, j)
as the weight of edge (i, j). Because we do not have established
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methods to deal with negatively weighted edges (but seeRubinov
and Sporns, 2011) and it is common to discard edges with a
negative� (i, j) value (Rubinov and Sporns, 2010; Kaiser, 2011),
the weighted adjacency matrix is given bywij D � (i, j) if
� (i, j) > 0 andwij D 0 otherwise. As benchmarks, we consider
three variants of weighted clustering coe�cient commonly used
in the literature (Saramäki et al., 2007; Rubinov and Sporns, 2010,
2011; Wang et al., 2017). We denote by (aij ) the adjacency matrix
of the unweighted network obtained by ignoring the edge weight
in the weighted network. In other words, we setaij D 1 if wij > 0
(equivalently,� (i, j) > 0) andaij D 0 otherwise.

The local clustering coe�cient of nodei proposed byBarrat
et al. (2004)is given by

Cwei,B
i D

1
si(ki � 1)

X

1� j,̀ � NROI
j,̀ 6Di

wij C wi`

2
aij ai` aj` , (2)

wheresi D
P NROI

jD1 wij is the node strength (i.e., weighted
degree). It should be noted thataij ai` aj` D 1 if and only if nodes
i, j and` form a triangle in the unweighted network;aij ai` aj` D 0
otherwise. The average ofCwei,B

i over all nodes de�nes the global
weighted clustering coe�cient denoted byCwei,B.

The local clustering coe�cient proposed byOnnela et al.
(2005), which is implemented in the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010), is given by

Cwei,O
i D

1
ki(ki � 1)

X

1� j,̀ � NROI
j,̀ 6Di

(wij wi` wj` )1=3

maxi0j0wi0j0
. (3)

Factor maxi0j0wi0j0 normalizes Cwei,O
i between 0 and 1 and

prevents it from scaling when the scale ofwij is changed (i.e.,
when wij for all 1 � i, j � NROI is multiplied by the
same constant). The corresponding global clustering coe�cient,
denoted byCwei,O, is given by the average ofCwei,O

i over all nodes.
The local clustering coe�cient proposed byZhang and

Horvath (2005)is written as (Saramäki et al., 2007)

Cwei,Z
i D

1
maxi0j0wi0j0

P
1� j,̀ � NROI

j,̀ 6Di
wij wi` wj`

P
1� j,̀ � NROI

j,̀ 6DiIj6D̀
wij wi`

. (4)

The corresponding global clustering coe�cient, denoted by
Cwei,Z, is given by the average ofCwei,Z

i over all nodes.

2.5. Our Proposal: Clustering Coef�cients
Tailored to Correlation Matrices
We propose two clustering coe�cient measures for correlation
matrices (Ccor,A and Ccor,M). Both of them discount correlation
between ROIsj and ` that is expected from the correlation
between ROIsi andj and that betweeni and` , i.e., indirect path
betweenj and ` through i (Figure 1) (Zalesky et al., 2012). One
measure uses the three-way partial correlation coe�cient and the
other measure uses the partial mutual information.

FIGURE 1 | Schematic of the indirect path between nodesj and ` through
node i.

The three-way partial correlation coe�cient between ROIs
j and ` controlling for the in�uence of ROI i, denoted by
� partial(j, ` j i), is de�ned byWhittaker (1990)

� partial(j, ` j i) D
� (j, ` ) � � (i, j)� (i, ` )

p
1 � � 2(i, j)

p
1 � � 2(i, ` )

. (5)

Equation (5) indicates that ROIsi and j would be correlated
with an amount� (i, j)� (i, ` ) by default owing to the indirect path
betweenj and` through i (e.g.,Zalesky et al., 2012). Deviations
of � (j, ` ) from � (i, j)� (i, ` ) quantify the tendency thatj and` are
more strongly or weakly connected than is expected from the
presence of an indirect path betweenj and ` through i. Based
on this observation, we de�ne a �rst variant of the clustering
coe�cient as follows.

It is di�cult to interpret negative correlation values in
functional connectivity data (Fox et al., 2009; Murphy et al.,
2009; Rubinov and Sporns, 2011; Smith et al., 2011; Sporns,
2011; Fornito et al., 2013). Therefore, we assume that any
deviation of � (j, ` ) from � (i, j)� (i, ` ) caused by the e�ect ofi,
irrespective of whether it is positive or negative, contributes to
the local clustering coe�cient ati. We de�ne the local clustering
coe�cient for ROI i, denoted byCcor,A

i (superscript A standing
for the absolute value), as

Ccor,A
i D

P
1� j<` � NROI

j,̀ 6Di

�
�
� � (i, j)� (i, ` )� partial(j, ` j i)

�
�
�

P
1� j<` � NROI

j,̀ 6Di

�
� � (i, j)� (i, ` )

�
� . (6)

In other words,Ccor,A
i is a weighted average of the absolute value

of the partial correlation over pairs ofj and` . We have employed
the weight

�
�� (i, j)� (i, ` )

�
� for averaging because a high clustering

around ROI i should imply strong association between ROIs
j and ` (in the sense of partial correlation) wheni and j are
strongly connected andi and ` are. We have used� partial(j, ` j
i) instead of� partial(j, ` ), i.e., the partial correlation betweenj
and ` controlling for the e�ect of the otherNROI � 2 ROIs, to
makeCcor,A

i a locally calculated quantity as is the case for the
clustering coe�cients for networks (e.g.,Cund

i , Cwei,B
i , Cwei,O

i and
Cwei,Z

i ). The corresponding global clustering coe�cient, denoted
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by Ccor,A, is given by the average ofCcor,A
i over all nodes. Note

that 0 � Ccor,A
i � 1 (1 � i � NROI) and 0� Ccor,A � 1.

We also use another de�nition of the clustering coe�cient
based on the partial mutual information, which is a nonlinear
correlation measure (Frenzel and Pompe, 2007). By de�nition,
the mutual information is nonnegative and invariant under
�ipping of the sign of the random variable. We use the partial
mutual information between ROIsj and` conditioned on ROIi
in place of� partial(j, ` j i) to de�ne the second variant of the local
clustering coe�cient for correlation matrices, denoted byCcor,M

i
(superscript M standing for the mutual information).

The partial mutual information is de�ned as

I(Xj ,X` j Xi) D h(Xj ,Xi) C h(X` ,Xi) � h(Xi) � h(Xj ,X` ,Xi), (7)

where Xi , Xj and X` are the random variables on ROIsi, j
and ` , respectively, andh is the (joint) entropy. For example,
h(Xi) D �

P
x p(x) log2 p(x), wherep(x) is the probability that

Xi D x, and h(Xj ,Xi) D �
P

x,x0p(x,x0) log2 p(x,x0), where
p(x,x0) is the probability that (Xj ,Xi) D (x,x0). By assuming that
the BOLD signals at ROIsi, j and` obey a multivariate Gaussian
distribution, one obtains the entropy values in Equation (7)as
follows (Rieke et al., 1999; Cover and Thomas, 2006; Frenzel and
Pompe, 2007):

h(X� 1, : : : ,X� d) D
d
2

(1 C ln 2� ) C
1
2

ln det cov0, (8)

whered is the number of random variables and cov0 D (cov0
ij )

is thed � d covariance matrix constructed byX� 1, : : :, X� d , i.e.,
cov0

ij D E
�
X� i X� j

�
, where E[�] represents the expectation. By

substituting Equation (8) in Equation (7) and setting cov0
ij D

� (i, j), we obtain

I(Xj ,X` j Xi) D
1
2

�
ln

�
1 � � 2(i, j)

�
C ln

�
1 � � 2(i, ` )

�

� ln
�
1 � � 2(i, j) � � 2(i, ` ) � � 2(j, ` )

C 2� (i, j)� (i, ` )� (j, ` )
��

. (9)

Using the partial mutual information, we de�ne

Ccor,M
i D

P
1� j<` � NROI

j,̀ 6Di

�
� � (i, j)� (i, ` )

�
� I (Xj ,X` j Xi)

1Cln 2�
2

P
1� j<` � NROI

j,̀ 6Di

�
� � (i, j)� (i, ` )

�
�

. (10)

The denominator normalizes theCcor,M
i value to range between

0 and 1. The corresponding global clustering coe�cient, denoted
byCcor,M, is given by the average ofCcor,M

i over all nodes.
As a robustness test, we also examined variants of these

clustering coe�cients constrained to only positive triangles
or negative triangles. We de�neCcor,A,C by restricting the
enumeration of triangles in the calculation ofCcor,A to the
positive triangles. In other words, we restrict the summation
on the numerator and denominator of Equation (6) toj and `
satisfying� (i, j), � (i, ` ), � (j, ` ) > 0. We similarly de�neCcor,A,� ,
Ccor,M,C and Ccor,M,� . We removed six participants from the

calculation ofCcor,A,� and Ccor,M,� . This is because, for these
participants, there was at least one ROIi at which there was no
triangle with � (i, j), � (i, ` ), � (j, ` ) < 0, renderingCcor,A,� and
Ccor,M,� unde�ned.

We provided CCC code for calculating the proposed
clustering coe�cients on Github (https://github.com/naokimas/
clustering-corr-mat).

2.6. H-Q-S Algorithm
As a null model of the covariance matrix, we employed the
Hirschberger-Qu-Steuer (H-Q-S) algorithm (Hirschberger et al.,
2007). As recent fMRI data analysis has demonstrated, the H-
Q-S algorithm is a more suitable null model than conventional
null models in which the topology is randomized (Zalesky et al.,
2012; Hosseini and Kesler, 2013). The H-Q-S algorithm preserves
the mean of the diagonal elements, the mean of the o�-diagonal
elements and the variance of the o�-diagonal elements of the
given covariance matrix. From the fMRI data of each participant,
we obtained the covariance matrix in the course of calculating the
functional connectivity, which is the correlation matrix.Based on
this covariance matrix, we generated random covariance matrices
using H-Q-S algorithm. We then converted the generated
random covariance matrices into correlation matrices, which
were used as randomized functional connectivity matrices.We
did not implement a �ne-tuned heuristic variant proposed in
Zalesky et al. (2012).

Denote by � on the average of the diagonal elements
of the covariance matrix over the NROI diagonal
elements. Denote by� o� and � 2

o� the average and
variance of the o�-diagonal elements, respectively. We
set tmax D max

�
2,b

�
� 2

on � � 2
o�

�
=� 2

o� c
�
, where b�c is the

largest integer smaller than or equal to the argument.
Then, we generateNROI � tmax variables, denoted byxi,t
(1 � i � NROI, 1 � t � tmax) that independently
obey the normal distribution with mean

p
� o� =tmax and

variance � � o� =tmax C
q

� 2
o� =t2

max C � 2
o� =tmax. The H-Q-

S algorithm generates a randomized covariance matrix by

covij D
P tmax

tD1 xi` xj` (1 � i, j � NROI). In other words, the
algorithm assumes that the signal at ROIi is a white-noise time
series with a positive bias of lengthtmax, which is independent
across the time and ROIs.

2.7. White-Noise Signals
To generate another null model of the covariance matrix, we used
white-noise signals. For each ROI, we generated a time series
of length 200 in which the signal at each time step and ROI
independently obeyed the normal distribution with mean 0 and
standard deviation 1. Then, we calculated the covariance matrix
using pairs of theNROI time series and converted it into the
correlation matrix.

2.8. Participants
One-hundred thirty eight (n D 138) healthy and right-handed
participants (54 females and 84 males) were selected from the
Nathan Kline Institute's (NKI) Rockland Sample (Nooner et al.,
2012). The NKI's data that we used are publicly available. The age
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of the participants ranged between 18 and 85 years (meanD 41.7,
stdD 18.4).

For four of our participants, the H-Q-S algorithm did not
work because the average o�-diagonal element for the empirical
covariance matrix was negative, violating the preconditionfor
the algorithm (Hirschberger et al., 2007). Therefore, we removed
the four participants in the analysis that used the H-Q-S
algorithm.

2.9. fMRI Data Acquisition and
Preprocessing
The MRI data were recorded in a 3T scanner (MAGNETOM,
TrioTim syngo MR B15, Siemens). fMRI data were obtained
during rest with an echo planner imaging (EPI) sequence (TR
D 2500 ms, TED 30 ms, �ip angleD 80� , 38 slices, spatial
resolutionD 3� 3� 3 mm3, FOVD 216 ms, acquisition timeD
10 m 55 s). A total oftmax D 258 volumes was recorded from each
participant. Anatomical images were acquired with T1-weighted
sequence (MPRAGE) (TRD 2,500 ms, TED 3.5 ms, �ip angle
D 8� , spatial resolutionD 1� 1 � 1 mm3). During the EPI data
acquisition, the participants were asked to be relaxed with their
eyes open.

Data preprocessing was performed using FMRIB's Software
Library (FSL; www.fmrib.ox.ac.uk/fsl), including skull stripping
of structural images with BET and registration with FLIRT;
each functional image was registered to the participant's high-
resolution brain-extracted structural image and the standard
Montreal Neurological Institute (MNI) 2-mm brain. Functional
data were then preprocessed with motion correction with
MCFLIRT and smoothing with full-width half-maximum 5 mm.
We also applied additional preprocessing steps to the functional
data to remove spurious variance. First, we regressed out sixhead
motion parameters, the global signal, cerebrospinal �uid (CSF)
signal, and white matter (WM) signal with FSL FEAT. For each
participant, CSF, gray matter (GM) and WM were segmented
through FSL's FAST based on his/her T1. The signal averaged over
all voxels in GM, WM and CSF was used as global signal. We then
applied band-pass temporal �ltering (0.01–0.1 Hz).

2.10. Linear Mixed Model
To estimate the linear mixed model with a �xed e�ect and
random e�ects, we used thelmer function in lme4 package in
R (v. 3.4.1). The dependent variable in the linear mixed model
was the local clustering coe�cient. The �xed and random e�ects
were the node strength and the participant, respectively. To
obtain the P value, we used theF-test with Kenward-Roger
approximation implemented as theKRmodcompfunction in
pbkrtest package in R.

3. RESULTS

We demonstrate the utility of the proposed clustering coe�cients
on fMRI data collected from participants of a wide range of the
age. We looked for associations of the clustering coe�cients with
the age and its dependence on the ROIs.

3.1. Comparison With Null Models
Statistically larger values of conventional clustering coe�cients
have repeatedly been observed in empirical brain networks as
compared to the null models (Bullmore and Sporns, 2009; Bassett
and Sporns, 2017). Motivated by these studies, we examined
whether the amount of clustering was di�erent between the
empirical data and these null models after we controlled
for the amount of correlation between two ROIsj and `
expected from an indirect path betweenj and ` through a
third ROI i. For each participant, we compared the proposed
clustering coe�cients between the fMRI data obtained from
all the participants, those calculated for the H-Q-S null model
(Hirschberger et al., 2007; Zalesky et al., 2012), and white-noise
signals.

The empirical correlation matrices yielded signi�cantly larger
values of the clustering coe�cient than the correlation matrices
for white-noise signals did. The results were consistent between
the two de�nitions of the clustering coe�cient, i.e.,Ccor,A

[empirical: 0.221� 0.029, white noise: 0.057� 0.002,t(137) D
66.0,P < 10� 6, d D 11.28] andCcor,M [empirical: 0.031�
0.008, white noise: 0.002� 0.000,t(137) D 40.3,P < 10� 6,
d D 6.89]. This result is consistent with the previous �ndings
with the conventional clustering coe�cients for networks,where
empirical functional networks tended to have large clustering
coe�cients than randomized networks (Eguíluz et al., 2005;
Salvador et al., 2005; Achard et al., 2006; Bassett and Bullmore,
2006).

In contrast, the two types of clustering coe�cient were smaller
for the empirical data than for the randomized data generated
by the H-Q-S algorithm [forCcor,A, H-Q-S: 0.281� 0.073,
t(133) D � 12.4,P < 10� 6, d D � 2.15; for Ccor,M, H-Q-
S: 0.056� 0.039,t(133) D � 8.59,P < 10� 6, d D � 1.49].
This result has probably arisen because the H-Q-S algorithm
generates a correlation matrix from short white-noise time series
assumed at each ROI. Then, the partial correlation (Equation 5)
calculated for the H-Q-S algorithm is distributed relatively widely
due to statistical �uctuations, whose distribution can be even
wider than that for the empirical data. This fact makesCcor,A and
Ccor,M, which more or less depends on the absolute value of the
partial correlation, large for the randomized data generated by
the H-Q-S algorithm.

3.2. Age-Related Differences in the
Clustering Coef�cients Tailored to
Correlation Matrices
Normal ageing was shown to adversely a�ect small-worldness
of brain networks (Achard and Bullmore, 2007). Because the
clustering coe�cient is a major index which is used to assess
the small-worldness of networks (Watts and Strogatz, 1998),
we examined whether our clustering coe�cients were able to
detect such age-related changes in network structure. We found a
negative relationship between each of the two types of clustering
coe�cients (i.e.,Ccor,A andCcor,M) and the age [Ccor,A: r(136) D
� 0.377,P < 10� 5; Ccor,M: r(136) D � 0.397,P < 10� 5;
Figures 2a,b, Table 1]. To explore whether the age is correlated
with an index that can be more easily calculated than the
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FIGURE 2 | Relationship between the age and network indices.(a) Ccor,A vs. age. (b) Ccor,M vs. age. (c) s vs. age. (d) sC vs. age. (e) Ccor,A vs. age, where the
effect of sC is regressed out.(f) Ccor,M vs. age, where the effect ofsC is regressed out. A symbol represents an individual. The lines represent the linear �t:(a) age
D � 237.0 � Ccor,A C 94.1, (b) age D � 857.5 � Ccor,M C 68.2, (c) age D 16.1 � s C 41.1, (d) age D � 296.8 � sC C 80.3, (e) age D � 229.2 � Ccor,A, (f) age
D � 882.0 � Ccor,M. In (e,f), the linear contribution ofsC to the variables plotted in(a,b) are subtracted from the original variables and the residuals are plotted. The
Pearson correlation coef�cient between the residuals givesthe partial correlation coef�cient.

clustering coe�cient, we examined the relationships between the
age and two indices of average functional connectivity. We found
that the age was uncorrelated withs[r(136) D 0.020,P D 0.82;
Figure 2c, Table 1] but negatively correlated withsC [r(136) D
� 0.311,P D 0.0002;Figure 2d, Table 1]. The two clustering
coe�cients were also strongly correlated withsC , whereas they
were not correlated withs(Table 2). Therefore, we suspected that
the negative correlation between the clustering coe�cients and
the age was caused by the combination of the negative correlation
betweensC and the age and the positive correlation between
sC and the clustering coe�cient. However, signi�cant negative
correlation persisted between the clustering coe�cients and the

age even after controlling for the e�ect ofsC [Ccor,A: r(136) D
� 0.224,P D 0.0076;Ccor,M: r(136) D � 0.259,P D 0.0019; see
Figures 2e,ffor the scatter plot between the clustering coe�cient
and the age after the linear e�ect ofsC has been regressed out
from both variables; also seeTable 1]. This result indicates that
the negative correlation between the clustering coe�cientsand
age is not completely explained bysC . Therefore,Ccor,A and
Ccor,M quantify e�ects of the age on fMRI signals beyond what
is revealed by the average functional connectivity.

Positive edges and negative edges may have distinct meanings
(Rubinov and Sporns, 2011). Therefore, we examined variants of
the proposed clustering coe�cients calculated only from positive

Frontiers in Neuroinformatics | www.frontiersin.org 7 March 2018 | Volume 12 | Article 7

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Masuda et al. Clustering Coef�cients for Correlation Networks

TABLE 1 | Correlation between the clustering coef�cient and age.

Index Unconditional Effect of sC controlled

r P r P

PEARSON CORRELATION MATRIX

Ccor,A � 0.377 < 10� 5 � 0.224 0.0076

Ccor,M � 0.397 < 10� 5 � 0.259 0.0019

Cunw, edge densityD 0.1 � 0.234 0.0058 � 0.104 0.23

Cunw, edge densityD 0.2 � 0.197 0.021 � 0.032 0.71

Cwei,B � 0.262 0.0019 0.018 0.83

Cwei,O � 0.240 0.0045 0.014 0.87

Cwei,Z � 0.229 0.0068 � 0.032 0.71

PARTIAL CORRELATION MATRIX

Cunw, edge densityD 0.1 � 0.001 0.99 0.037 0.67

Cunw, edge densityD 0.2 0.048 0.58 0.028 0.75

Cwei,B � 0.056 0.51 � 0.022 0.80

Cwei,O 0.057 0.50 0.094 0.27

Cwei,Z 0.057 0.51 0.076 0.37

AVERAGE CONNECTIVITY

s 0.020 0.82 – –

sC � 0.311 0.0002 – –

The correlation coef�cient is denoted by r. The degree of freedom is equal to n� 2 D 136.

triangles (denoted byCcor,A,C andCcor,M,C) or negative triangles
(denoted byCcor,A,� and Ccor,M,� ). These variants of clustering
coe�cients were negatively correlated with the age [Ccor,A,C :
r(136) D � 0.398,P < 10� 5; Ccor,A,� : r(130) D � 0.291,P D
0.0007;Ccor,M,C : r(136) D � 0.431,P < 10� 5; Ccor,M,� : r(130) D
� 0.304,P D 0.0004]. This negative relationship was signi�cant
even after controlling for the e�ect ofsC [Ccor,A,C : r(136) D
� 0.263,P D 0.0019;Ccor,A,� : r(130) D � 0.197,P D 0.024;
Ccor,M,C : r(136) D � 0.315,P D 0.0002;Ccor,M,� : r(130) D
� 0.196,P D 0.024]. The negative correlation was stronger for
the clustering coe�cients based on the positive triangles (i.e.,
Ccor,A,C andCcor,M,C) than those based on the negative triangles
(i.e., Ccor,A,� and Ccor,M,� ). We conclude that the age-related
di�erences in the clustering coe�cients observed withCcor,A and
Ccor,M are robust against the restriction of the method to the
positive or negative triangles. Note that the age-related decline of
Ccor,A,C andCcor,M,C was stronger than that ofCcor,A andCcor,M,
respectively.

The rationale behind our clustering coe�cients is that the
correlation between two neighbors of a focal ROI should be
discounted due to the e�ect of the indirect path. The clustering
coe�cients Ccor,A andCcor,M are not the only indices complying
with this rationale. To examine the robustness of our results
with respect to speci�c de�nitions of the clustering coe�cient,
we examined the relationship among two other variants of the
clustering coe�cient designed for correlation matrices and s, sC

and the age. Although the correlation between the clustering
coe�cient and the age was somewhat weaker than in the case
of Ccor,A and Ccor,M, the results with the other two variants of
the clustering coe�cient were qualitatively the same as those for
Ccor,A andCcor,M (Appendix A).

TABLE 2 | Correlation between the clustering coef�cient and the node strength.

Index s sC

r P r P

PEARSON CORRELATION MATRIX

Ccor,A � 0.096 0.26 0.812 < 10� 15

Ccor,M � 0.084 0.33 0.798 < 10� 15

Cunw, edge densityD 0.1 0.001 0.99 0.471 < 10� 8

Cunw, edge densityD 0.2 0.050 0.56 0.550 < 10� 11

Cwei,B 0.359 < 10� 4 0.869 < 10� 15

Cwei,O 0.022 0.80 0.798 < 10� 15

Cwei,Z � 0.080 0.35 0.664 < 10� 15

PARTIAL CORRELATION MATRIX

Cunw, edge densityD 0.1 0.021 0.81 0.115 0.18

Cunw, edge densityD 0.2 � 0.097 0.26 � 0.070 0.42

Cwei,B 0.080 0.35 0.113 0.19

Cwei,O � 0.006 0.94 0.100 0.24

Cwei,Z � 0.041 0.64 0.050 0.56

The degree of freedom is equal to n� 2 D 136.

3.3. Age-Related Differences in the
Conventional Clustering Coef�cients
We repeated the same analysis using the clustering coe�cients
previously proposed for unweighted networks (i.e.,Cunw)
and weighted networks (i.e.,Cwei,B, Cwei,O and Cwei,Z). For
unweighted networks, we used two edge density values, 0.1 and
0.2. Qualitatively, the clustering coe�cients for unweighted and
weighted networks behaved similarly toCcor,A andCcor,M did. In
other words, the clustering coe�cients were negatively correlated
with the age (Table 1), positively and strongly correlated withsC

and not withs with the exception ofCwei,B (Table 2). However,
the correlation with the age was weaker than in the case of
Ccor,A and Ccor,M (Table 1; see Appendix B for the statistical
results). In fact, the partial correlation between the conventional
clustering coe�cients (i.e.,Cunw, Cwei,B, Cwei,O, andCwei,Z) and
the age was not signi�cant when one controls the e�ect ofsC

(Table 1). These results suggest that these conventional clustering
coe�cients extract relatively similar information to thatextracted
bysC as compared toCcor,A andCcor,M do.

3.4. Age-Related Differences in the
Clustering Coef�cients for Networks
Derived From Partial Correlation Matrix
Functional networks are often de�ned in terms of the
partial correlation matrix (Salvador et al., 2005; Marrelec
et al., 2006; Smith et al., 2011). Therefore, as a benchmark,
we calculated the conventional clustering coe�cients (for
unweighted and weighted networks) for functional networks
de�ned by the partial correlation matrix. The clustering
coe�cients were not correlated withs or sC (Table 2). These
clustering coe�cients were also uncorrelated with the age
(Table 1).
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3.5. Relationship Between the Local
Clustering Coef�cients and the Node
Strength (Weighted Degree of the Node)
Local clustering coe�cients have been used for characterizing
individual ROIs (Sporns and Zwi, 2004; Achard et al., 2006; He
et al., 2007; Alexander-Bloch et al., 2010; Lynall et al., 2010;
Power et al., 2010; van den Heuvel et al., 2010; van den Heuvel
and Sporns, 2011; Wee et al., 2011; Fornito et al., 2012; Tijms
et al., 2013; Sala-Llonch et al., 2014). In this section we show
that, di�erently from the conventional clustering coe�cients,
the present clustering coe�cients do not confound the strength
of local clustering at an ROI and the magnitude of the ROI's
connectivity.

The clustering coe�cients Ccor,A
i and Ccor,M

i are plotted
againstQsi � si=(NROI � 1), i.e., the node strength normalized
between� 1 and 1, inFigure 3A, where a symbol represents a
combination of an ROI and an individual.Figure 3A suggests
that si and the local clustering coe�cient are uncorrelated. To
statistically prove this casual observation, we �tted a linear
mixed-e�ects model for each type of local clustering coe�cient.
In the linear mixed-e�ects model, the local clustering coe�cient
value for the combination of a participant and an ROI was the
dependent variable (n D 138 participants andNROI D 30
ROIs). The independent variable was the equivalent of the node
strength, i.e.,

P NROI
jD1Ij6Di � (i, j). We assumed random e�ects over

participants in�uencing the slope and intercept. We found that
Ccor,A

i and Ccor,M
i did not show strong positive correlation with

P NROI
jD1Ij6Di � (i, j) [Ccor,A

i : t(4139) D � 2.33,P D 0.023, Pearson

correlation coe�cient betweenCcor,A
i and

P NROI
jD1Ij6Di � (i, j), i D

1,: : : ,NROI for each participant, which is then averaged over
all the participants, as a measure of e�ect sizer(28) D � 0.023,
Ccor,A

i D � 0.013Qsi C 0.222;Ccor,M
i : t(4139) D � 3.20, P D

0.0019, r(28) D � 0.047, Ccor,M
i D � 0.0050Qsi C 0.031].

Note that the e�ect size as measured byr(28) was small,
although the e�ects were signi�cant owing to a large sample
size.

We investigated the same linear relationship for the
correlation matrices generated by the randomization of the
original correlation matrices using the H-Q-S algorithm. We
generated one null model network per participant. For four
participants, the algorithm did not work because the average
o�-diagonal element of the covariance matrix for the empirical
covariance matrix was negative, violating the condition for
the algorithm to be used (Hirschberger et al., 2007). For the
remaining n � 4 D 134 participants, the dependence of the
local clustering coe�cient of ROIi on

P NROI
jD1Ij6Di � (i, j) remained

small [Ccor,A
i : t(4019) D � 1.93,P D 0.059,r(28) D � 0.021,

Ccor,A
i D � 0.0051Qsi C 0.28;Ccor,M

i : t(4019) D � 1.21,P D 0.23,
r(28) D � 0.019,Ccor,M

i D � 0.0016Qsi C 0.055]. Therefore, we
conclude thatCcor,A

i andCcor,M
i (and henceCcor,A andCcor,M) are

not a�ected by pseudo-correlation and provide measurements
orthogonal to the node strength.

In contrast, the previously provided local clustering
coe�cients for unweighted or weighted networks [i.e.,Cunw

i ,

FIGURE 3 | (A) Relationship betweenQsi and the local clustering coef�cients
for correlation matrices.(B) Relationship betweenQsi and the local clustering
coef�cients for weighted networks. The solid lines represent the �xed effect
estimated by the linear mixed model.

Cwei,B
i , Cwei,O

i , and Cwei,Z
i given by Equations (1), (2), (3), and

(4), respectively] should be correlated with the degree (i.e.,
the number of edges connected to a node),ki (in the case of
unweighted networks) or node strength, i.e., weighted degreesi
(in the case of weighted networks) when applied to correlation
matrices. Let us explain this point for weighted networks for
the sake of clarity. Because of indirect paths, ifwij and wi`
are large,wj` tends to be large, which increases the value of
the local clustering coe�cient of ROIi. At the same time,si is
large ifwij andwi` are. Therefore, we expect systematic positive
correlation betweensi and any of Cunw

i , Cwei,B
i , Cwei,O

i , and
Cwei,Z

i .
The three types of clustering coe�cient for weighted networks

(Cwei,B
i , Cwei,O

i , andCwei,Z
i ) are plotted againstQsi in Figure 3B. We

did not examine the local clustering coe�cient for unweighted
networks (i.e.,Cunw

i ) because it was unde�ned for many ROIs,
whose nodal degreeki was either 0 or 1; our network is relatively
small (i.e.,NROI D 30) and the edge density is not assumed to
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be too large. The three local weighted clustering coe�cients and
Qsi were strongly correlated [Cwei,B

i : t(4139) D 23.7 for the �xed
e�ects ofQsi , P < 10� 15, r(28) D 0.43, the estimated �xed e�ects:
Cwei,B

i D 0.960Qsi C 0.601;Cwei,O
i : t(4139) D 43.4,P < 10� 15,

r(28) D 0.70,Cwei,O
i D 0.950Qsi C 0.064;Cwei,Z

i : t(4139) D 10.8,
P < 10� 15, r(28) D 0.27,Cwei,Z

i D 0.382Qsi C 0.325].
Upon randomization of the original correlation matrices by

the H-Q-S algorithm, the positive relationship between the local
clustering coe�cient andQsi persisted for each weighted clustering
coe�cient index [Cwei,B

i : t(4019) D 13.1,P < 10� 15, r(28) D 0.27,
Cwei,B

i D 0.509Qsi C 0.595;Cwei,O
i : t(4019) D 37.0,P < 10� 15,

r(28) D 0.60,Cwei,O
i D 0.628Qsi C 0.100;Cwei,Z

i : t(4019) D 8.56,
P D 3.7 � 10� 13, r(28) D 0.17,Cwei,Z

i D 0.217Qsi C 0.355].
These results suggest that these local clustering coe�cients are
confounded by the e�ect of node strength, which could arise from
the pseudo-correlation due to indirect paths.

3.6. Dependence of the Local Clustering
Coef�cients on the Brain System
Previous studies found systematic regional di�erences (e.g.,
across di�erent lobes) in the local clustering coe�cient in
functional brain networks (Achard et al., 2006; Alexander-Bloch
et al., 2010; Lynall et al., 2010; Sala-Llonch et al., 2014). However,
this e�ect may be confounded by the e�ect of the node strength.
As a case study, in this section we show that we do not see
the association between previously de�ned brain systems (i.e.,
subsets of the ROIs constituting the entire network) and age-
related changes in conventional local clustering coe�cients if the
e�ect of the node strength is controlled.

We �rst calculated the Pearson correlation coe�cient
(r) between the age and a nodal index such as the local
clustering coe�cient at each ROI. Then, we examined
whether r was di�erent across three brain systems whose
functions and structures have been examined (Fair et al., 2009;
Power et al., 2011): the default mode network (DMN),
cingulo-opercular network (CON) and fronto-parietal
network (FPN).

The r values between various nodal indices and the age,
averaged over the ROIs in each of the DMN, CON, and FPN, are
shown in Figure 4. For the clustering coe�cients for weighted
networks (i.e.,Cwei,B, Cwei,O, and Cwei,Z), r was negative for
most ROIs, con�rming the results reported in section 3.2 that
the (global) clustering coe�cient was negatively correlated with
the age of the participant. Ther value was di�erent between
the three brain systems for each type of weighted clustering
coe�cient [ Cwei,B

i : F(2, 27) D 4.32,P D 0.023,� 2 D 0.24;Cwei,O
i :

F(2, 27) D 5.69,P D 0.0087,� 2 D 0.30;Cwei,Z: F(2, 27) D 6.87,
P D 0.0039,� 2 D 0.34; a one-way factorial analysis of variance
(ANOVA) [System: DMN/CON/FPN]].Post-hoctwo-samplet-
tests revealed that the e�ect of the age was larger in the DMN
than in the CON and FPN [Cwei,B

i , DMN � CON: t(17) D � 2.64,
P D 0.017,d D � 1.28;Cwei,B

i , DMN � FPN: t(21) D � 2.38,
P D 0.017,d D � 1.04;Cwei,O

i , DMN � CON: t(17) D � 2.86,
P D 0.011,d D � 1.39;Cwei,O

i , DMN � FPN: t(21) D � 2.95,
P D 0.00077,d D � 1.29;Cwei,Z

i , DMN � CON: t(17) D � 3.84,

FIGURE 4 | Pearson correlation coef�cient between a nodal index and the
age, averaged over the ROIs in the DMN, CON, or FPN. The circle represents
the correlation coef�cient value for a single node.

P D 0.0013,d D � 1.86;Cwei,Z
i , DMN � FPN: t(21) D � 2.78,

P D 0.011,d D � 1.21].
However, qualitatively the same association between the age

and the brain system was also found whenr was de�ned as
the correlation between the node strength (i.e.,si) and the
age [F(2,27) D 8.01,P D 0.0019,� 2 D 0.37] and whenr
was de�ned as the correlation betweensC

i , which was de�ned
as

P NROI
jD1I� (i,j)> 0 � (i, j), and the age [F(2,27) D 4.43, P D

0.022,� 2 D 0.25]. Because the local clustering coe�cients for
weighted networks (i.e.,Cwei,B

i , Cwei,O
i , andCwei,Z

i ) were positively
correlated with the node strength andsC

i , we takesi or sC
i as a

simpler signature of the system dependence of the age e�ect than
the local clustering coe�cient.

In contrast, the proposed local clustering coe�cients, which
were not correlated withsi or sC

i (Figure 3A), were not di�erent
across the brain systems [Ccor,A

i : F(2, 27) D 0.13,P D 0.88,
� 2 D 0.01;Ccor,M

i : F(2, 27) D 0.04,P D 0.96,� 2 D 0.003;
also seeFigure 4]. These observations suggest that the apparent
dependence of the clustering coe�cient on the brain system when
a conventional clustering coe�cient is used is explained by the
nodal measure,si or sC

i .
We found similar results in sensory-motor regions in the

brain (Appendix C). In other words, the association between
the clustering coe�cient and the age is more positive for the
ROIs in a somatosensory-motor system than for the ROIs in
an auditory system and a visual system when we used the
clustering coe�cients for weighted networks. Qualitatively the
same dependence on the brain system was also found when we
looked at the association between the node strength and the age.
In contrast, with the proposed local clustering coe�cients, the
auditory system showed the strongest association between the
clustering coe�cient and the age. These results bear robustness to
our suggestion that the proposed local clustering coe�cients are
not confounded by the node's strength, whereas the conventional
clustering coe�cients are.
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4. DISCUSSION

We proposed two clustering coe�cients tailored to correlation
matrices. They do not su�er from pseudo-correlation induced
by indirect paths between two ROIs through a third ROI,
do not require thresholding, do not discard negative pairwise
correlation, and do not su�er from the di�culty in estimating
partial correlation matrices. The proposed clustering coe�cients
were more strongly correlated with the participants' age thanthe
conventional clustering coe�cients, including those calculated
for partial correlation matrices, were. In addition, our clustering
coe�cients can be used as a local measure to characterize
nodes, whereas the counterparts for the conventional clustering
coe�cients were confounded with the (weighted) degree of the
node. These results hold true for two alternative de�nitions of the
clustering coe�cient for correlation matrices that we additionally
propose (Appendix A).

Previous research has produced incongruent results regarding
the changes in the clustering coe�cient along ageing. In an fMRI
study, both at rest and during tasks, the clustering coe�cient in
functional networks decreased with ageing (Grady et al., 2016),
which is consistent with the present results. This observation is
also consistent with results of an EEG study at rest (Knyazev et al.,
2015). In di�erent studies, however, no di�erence was found in
the clustering coe�cient between younger and older individuals
(Wang et al., 2010; Brier et al., 2014), or the clustering coe�cient
increased with ageing (Matthäus et al., 2012; Zhu et al., 2012;
Liu et al., 2014; Sala-Llonch et al., 2014). The diversity in these
results may owe to participant's heterogeneity, ine�ciency of the
conventional clustering coe�cients or other reasons. It should
be noted that the decrease in the clustering coe�cient found
in a recent study (Grady et al., 2016) and the present study is
consistent with the decline in small-worldness of brain networks,
which have been documented by using di�erent indices (Achard
and Bullmore, 2007; Gong et al., 2009). However, we do not
claim that the decline in the clustering coe�cient along ageing
is a ground truth. In fact, the coordinates of the ROIs in the
current data set were determined from participants aged 7–31
(Fair et al., 2009) so that they may not re�ect functional ROIs
in older adults (Chan et al., 2014; Geerligs et al., 2017). This issue
warrants further study.

We demonstrated the utility of the proposed correlation
coe�cients with fMRI data collected from individuals of
di�erent ages. They may also be useful in deciphering
functional brain networks collected from di�erent types of
individuals such as those with psychiatric or other disorders,
those under di�erent task conditions and children under
developments. Furthermore, the present method can be used
to any correlation or covariance matrix, thus promising their
applicability to other functional data of the brain, such as
EEG, MEG, correlation in the cortical thickness between
ROIs, where correlation is calculated across individuals (see
Introduction for references), and even correlation data outside
neuroscience.

The proposed clustering coe�cients are expected to �nd
immediate applications in the assessment of small-worldness.
In the small-world analysis, a major method is to combine the

clustering coe�cient and the average path length between a pair
of nodes, denoted byL. When L is small and the clustering
coe�cient is large, one says that the network is small-world
(Watts and Strogatz, 1998; Bullmore and Sporns, 2009) (but
seeAchard and Bullmore, 2007; Gong et al., 2009for di�erent
de�nitions based on the so-called network e�ciency indices). In
neuroscience, it is often the case to combine these two indices
to examine a single small-worldness index (Humphries et al.,
2006) (also seeMuldoon et al., 2016for a recent development).
The motivation behind the present study is that the de�nitionor
measurement of clustering is nontrivial for correlation matrices,
i.e., functional data.

The same caution applies to the path length. A common way
to calculate the path length in correlation data is to threshold
on the correlation matrix to generate an unweighted network
and then measure the path length. However, this method su�ers
from arbitrariness of thresholding, as discussed in Introduction.
Another common way is to de�ne a relationship between the
edge weight, i.e., correlation coe�cient value, and the costof
passing through the edge. Popular choices of the cost function
are the reciprocal of the edge weight (Rubinov and Sporns,
2010) and a constant subtracted by the edge weight (Achard
and Bullmore, 2007; Gong et al., 2009). However, the theoretical
basis of these decisions seems unclear. A more sensible de�nition
of the distance between ROIsi and j may be

p
2(1� � (i, j)),

which quali�es as a Euclidean distance (Mantegna and Stanley,
2000).

We used the three-way partial correlation coe�cient
controlling for a single ROI to de�ne the clustering coe�cients.
In contrast, some previous studies derived functional networks
from partial correlation matrices (Salvador et al., 2005; Marrelec
et al., 2006; Smith et al., 2011). Both types of methods intend
to remove the spurious correlation induced by indirect paths
between ROIs. While getting common, the methods based
on partial correlation matrices face a technical challenge that
the partial correlation matrix cannot be determined uniquely
from data in general (Schäfer and Strimmer, 2005; Ryali
et al., 2012; Brier et al., 2015). In addition, its calculation
for a single pair of nodes involves all the otherNROI � 2
nodes, contradicting the original premise of the clustering
coe�cient that it is a local quantity (Watts and Strogatz, 1998).
Our clustering coe�cients, which use the three-way partial
correlation coe�cient, do not su�er from the non-uniqueness
problem and is a local quantity. Furthermore, we showed
that the present clustering coe�cients were associated with
the age, whereas those calculated for the partial correlation
matrices were not. Generalization of this �nding to di�erent
ROIs, data sets and types of participants, such as those
with a particular brain-related disorder, warrants future
work.
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