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ABSTRACT

The possibility of constructing Lorenz’s concept of available potential energy (APE) from a local principle

has been known for some time, but it has received very little attention so far. Yet the local APE density

framework offers the advantage of providing a positive-definite local form of potential energy, which, like

kinetic energy, can be transported, converted, and created or dissipated locally. In contrast to Lorenz’s

definition, which relies on the exact from of potential energy, the local APE density theory uses the particular

form of potential energy appropriate to the approximations considered. In this paper, this idea is illustrated

for the dry hydrostatic primitive equations, whose relevant form of potential energy is the specific enthalpy.

The local APE density is nonquadratic in general but can nevertheless be partitioned exactly into mean and

eddy components regardless of the Reynolds averaging operator used. This paper introduces a new form of

the local APE density that is easily computable from atmospheric datasets. The advantages of using the local

APEdensity over the classical LorenzAPE are highlighted. The paper also presents the first calculation of the

three-dimensional local APE density in observation-based atmospheric data. Finally, it illustrates how the

eddy andmean components of the local APE density can be used to study regional and temporal variability in

the large-scale circulation. It is revealed that advection from high latitudes is necessary to supplyAPE into the

storm-track regions, and that Greenland and the Ross Sea, which have suffered from rapid land ice and sea ice

loss in recent decades, are particularly susceptible to APE variability.

1. Introduction

The stored potential energy that is available to fuel

global circulation and the kinetic energy that quantifies

that circulation are two key diagnostics that summarize

the global state of the dynamical and thermodynamic

properties of the atmosphere and oceans. As a result,

these energies and the conversions between them are

commonly diagnosed in global climate change andmodel

verification studies (e.g., O’Gorman and Schneider 2008;

Mbengue and Schneider 2017).

It has long been recognized that energy budgets are

only useful if the potential energy (PE) is partitioned

into its available (APE) and background (PEr) com-

ponents, following Lorenz’s (1955b) pioneering work.

Indeed, this is because there is often no direct corre-

spondence between variations of potential energy and

variations of kinetic energy, as in the case of the

‘‘cooling paradox,’’ whereby cooling results in the cre-

ation of kinetic energy despite being a net sink of po-

tential energy. In contrast, variations in APE are a

much better predictor of variations in kinetic energy.

However, a major difficulty with Lorenz’s APE is that it

is only defined in a global and volume-integrated sense.

With an increasing emphasis of climate change research

on regional variability in high-resolution climate models,

there is an increasing need for locally definable diagnostics

that can summarize large amounts of data.

While the local character of kinetic energy is already

well established and widely used, the possibility to de-

fine APE from a local principle remains poorly known,

despite it being proved over 30 years ago in two seminal

papers by Andrews (1981) and Holliday and McIntyre

(1981) for a compressible nonhydrostatic fluid and an

incompressible fluid, respectively. This paper advocates

the use of this local APE framework and demonstrates

its applicability to the discussion of various aspects of

atmospheric energetics in the context of the hydrostatic

primitive equations for a dry atmosphere.

Available potential energy was first defined for-

mally by Lorenz (1955b) as the difference between the

total global potential energy of the actual state of theCorresponding author: Lenka Novak, l.novakova@reading.ac.uk
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atmosphere and its adiabatically rearranged reference

state. For a dry hydrostatic atmosphere viewed as a

perfect gas and in absence of orography, one possible

exact expression for Lorenz APE is as follows:

APE
Lor

5
c
p

gpk
0

1

(11 k)

ð‘
0

pk11 2 pk11 du , (1)

where the overbar denotes averaging over isentropic

surfaces; cp is the specific heat capacity at constant

pressure; g is the gravitational acceleration; p is the

pressure, with p0 being its mean surface value; k5R/cp,

where R is the gas constant for dry air; and u is the po-

tential temperature. Although Eq. (1) is exact, it is

generally regarded as computationally impractical so

that, in practice, amajority ofAPE studies have resorted

to using the so-called quasigeostrophic (QG) approxi-

mation, which depends on the temperature variance on

isobaric surfaces divided by static stability:
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u02 dp , (2)

with the bar here denoting an average over isobaric

surfaces [more detail on this derivation can be found, for

example, in Grotjahn (1993)].

This definition is a common diagnostic for global char-

acteristics of APE in climate models and observation-

based data (e.g., Hu et al. 2004; Schneider and Walker

2008; O’Gorman and Schneider 2008; Hernadez-Deckers

and von Storch 2010; Veiga andAmbrizzi 2013), as well as

for studying the evolution of individual eddies in idealized

life cycle experiments (Simmons and Hoskins 1978).

However, a limitation of the quadratic approximation in

Eq. (2) is that it assumes a small departure from the ref-

erence state, which may become potentially very inaccu-

rate in areas of substantial mixing and rapidly varying

static stability, such as the midlatitude storm tracks (e.g.,

Holliday and McIntyre 1981). Furthermore, Lorenz’s

definition is a global one and hence obscures regional

variability and can lead to misleading results. For exam-

ple, Novak et al. (2018, manuscript submitted to J. Atmos.

Sci.) showed that meridionally confined storm tracks

exhibit a spatially complex thermal equilibration, which

can be translated to a local APE decrease but a global

increase globally as a response to polar cooling. Such

spatially complex responses cannot be captured by

Lorenz’s global APE definition.

So far, most attempts at seeking a local view of en-

ergetics have relied on ‘‘localizing’’ Lorenz APE by

assuming that it is physically meaningful to study the

spatial distribution of the integrand of Eq. (2) (e.g., Li

et al. 2007) or Eq. (1) (e.g., Ahbe and Caldeira 2017).

Although these approaches appear to yield plausible

results, it goes without saying that it would be far more

satisfactory to base such analyses directly from a truly

local definition of APE. Other attempts of using the

Lorenz energetics locally include spatial integrations

over a local domain of an open system that is embedded

within a closed global system (Johnson 1970). Though

an exact framework, the precise spatial distribution of

the various energy, conversion and transport terms is

still obscure and the need for a different formulation of a

local definition is apparent.

One important concept introduced as an attempt to

resolve the difficulties associated with the global char-

acter of Lorenz APE is that of ‘‘exergy.’’ In the context

of atmospheric and oceanic sciences, exergy can be

viewed as essentially measuring the departure of a sys-

tem from its thermodynamic and mechanical equilibria.

Such equilibria can be identified by defining an iso-

thermal reference state, which was advocated by

many (e.g., Dutton 1973; Pearce 1978; Blackburn 1983;

Karlsson 1997). Although exergy is appealing because of

its simplicity and local character, it is nevertheless fun-

damentally different and in general excessively larger

than Lorenz APE [as stressed by Tailleux (2013a)]. This

is due to the exergy depending on the system being

brought to a maximum state of entropy when computing

the reference state, whereas Lorenz’s APE depends on

the system being adiabatically rearranged while con-

serving entropy. It means that, in contrast to APE, the

total exergy of a system includes a large chunk of the

background potential energy (PEr), which is a ‘‘heatlike’’

form of potential energy and hence strongly constrained

by the second law of thermodynamics.

So far, the only satisfactory approaches to construct

Lorenz APE from a local principle appear to be those

stemming from the two studies by Holliday and McIntyre

(1981) for an incompressible fluid, and Andrews (1981)

for a fully compressible stratified one-component fluid.

Recently, these theories were extended to the case of a

multicomponent fluid by Tailleux (2018). For all types of

fluid, the authors were able to construct a locally defined

positive form of potential energy density that can be in-

terpreted as the work necessary to bring a parcel from its

reference position Zr to its actual position Z. Thus in the

case of an incompressible fluid, the APE density (Jkg21)

takes the following simple form:

E
a
5

g

r
0

ðZ
Zr

r2 r
r
(Z0, t)

� �
dZ0, (3)

where r is the density and the subscript r indicates the

reference variables. We note that Ea is positive definite

and its volume integral reduces to Lorenz APE when
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rr(Z, t) coincides with Lorenz’s adiabatically sorted

state of minimum potential energy (Andrews 1981). If a

different kind of reference state is chosen, the volume

integral of Ea will in general be larger than but still

comparable with Lorenz APE if rr is defined in terms

of a horizontal or isobaric average (Tailleux 2013b). By

assuming a small departure from the reference state,Ea can

also be reduced to the APE of small-amplitude internal

waves (Holliday and McIntyre 1981): (1/2)N2z2, where N

is the buoyancy frequency and z5Z2Zr is the vertical

displacement from the reference position. Note that al-

thoughEa is local in the sense that it can be defined at every

point of the fluid considered, it possesses some degree of

nonlocality because the reference state is in general a

globally defined quantity. In this respect, Ea is of the same

nature asmost statistical quantities defined relative to some

mean value, such as ‘‘anomaly’’ or ‘‘variance.’’

Aside from its local nature, other advantages of this

formulation over Lorenz APE are that it is exact, valid

for finite-amplitude departures from the reference po-

sition, computationally easy to implement, and defin-

able for a wider range of reference states (such as

horizontally or isobarically averaged ones, as discussed

later on). For ‘‘nonsorted’’ reference states, the refer-

ence position of a fluid parcel is then obtained as the

implicit solution of the so-called level of neutral buoy-

ancy (LNB) equation, r5 rr(Zr, t), which holds the key

to the mathematical study of the reference-state prop-

erties, even when the reference state is not explicitly

known (e.g., Tailleux 2013b; Saenz et al. 2015).

Shepherd (1993) showed that the local APE density

frameworks of Andrews (1981) and Holliday and

McIntyre (1981) could be naturally explained in the

context ofHamiltonian theory by a suitable introduction

of ‘‘Casimirs.’’ He introduced the term ‘‘pseudoenergy’’

to refer to the sum of kinetic energy plus APE density,

allowable in principle to account for momentum con-

straints as well, which was later explored by Codoban

and Shepherd (2003). Shepherd’s pseudoenergy was in

turn connected to the concept of extended exergy by

Kucharski (1997) as measuring the departure from a

state of mechanical equilibrium with a vertically varying

temperature profile (instead of the uniform temperature

T0 characterizing global thermodynamic equilibrium),

thus establishing the formal equivalence between the

different concepts. Using this definition, Kucharski and

Thorpe (2000) then presented the local distributions of

the zonal-mean-based APE and conversion terms in a

primitive-equation model. However, use of the exact lo-

cal APE density framework for the study of atmospheric

energetics has remained limited so far.

This paper aims to advocate the use of the local APE

density framework in the atmosphere as a useful tool for

interpreting regional dynamics. It will 1) summarize the

advantages of the local framework [Eq. (3)] over the

Lorenz definition [Eq. (2)] and 2) present the first three-

dimensional view of the distribution and budgets of the

eddy and mean APE density components in observation-

based data. More specifically, section 2 introduces the

precise formulation of the APE density, its mean and

eddy components and their evolution equations. Section 3

uses ERA-Interim data for December–February (DJF)

(Kållberg et al. 2005) to compare the Lorenz APE and

its approximations to the exact locally derived APE

density when globally integrated. Section 3 also re-

veals the three-dimensional spatial distributions and

budgets of mean and eddy local APE density com-

ponents, which, to the authors’ knowledge, has not

been shown before. Section 4 summarizes and dis-

cusses the findings and their significance to the ener-

getics community. The following analysis is limited to

the dry (one component) atmosphere, which still pre-

serves the general features of the large-scale dynamics

(Pavan et al. 1999).

2. Local APE density for a hydrostatic dry
atmosphere

The derivation of a local principle for the APE

density of a dry hydrostatic atmosphere was pre-

viously addressed by Shepherd (1993) in the context

of Hamiltonian theory. His Eq. (8.1) (using his nota-

tions) for the pseudoenergy is given by

A5

ð�
(1/2)g21jv

h
j2 2ðu2u0

0

c
p
fP P u

0
1 û

� �� �
2P P(u

0
)

� �gdû�dx
h
dp ,

(4)

where P(p) is the Exner function, and P(u) is his nota-
tion for the reference pressure profile viewed as a

function of potential temperature u.

The main aims of this section are 1) to present an al-

ternative and arguably simpler approach that is more

directly connected to the work of buoyancy forces,

similar to the expressions for APEdensity obtained for a

fully compressible nonhydrostatic fluid by Andrews

(1981) and Tailleux (2018) and for Boussinesq fluids by

Holliday and McIntyre (1981) and Tailleux (2013b);

and 2) to show how to obtain an exact and rigorous

partition of the APE density into mean and eddy com-

ponents for arbitrary Reynolds averaging operators for

the study of eddy–mean flow interactions, which extends

and refines previous related work by Scotti and White

(2014) derived in the context of the Boussinesq equa-

tions for a fluid with a linear equation of state.
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a. Construction and basic properties

In the following, we use a pedagogical approach to

construct the local APE and show its connection to the

kinetic energy. To do so, we use an elementary manip-

ulation of the horizontal momentum, hydrostatic, mass

conservation, and thermodynamic equations written in

the following form:

DV

Dt
1 f k3V1=

p
(F2F

r
)5F , (5)

›(F2F
r
)

›p
52fa(u,p)2a[u

r
(p, t), p]g, (6)

=
p
�V1

›v

›p
5 0, (7)

c
p

Du

Dt
5

u

T
Q , (8)

whereV5 (u, y) is the horizontal velocity, v5Dp/Dt is

the vertical pressure velocity,F is the geopotential, f is the

Coriolis parameter, F is a horizontal frictional force, and

ur(p, t) is a time-dependent reference potential tempera-

ture profilewhose computation is described in appendixA.

The equation of state for the specific volume can be

written as a5RT/p5RuP/p, whereP5 (p/p0)
R/cp is the

Exner function. For reasons that will be clarified below,

it is also useful to regard the specific volume as the

partial derivative of specific enthalpy h5 cpT5 cpPu at

constant u; that is,

a5
›h

›p

����
u

5 c
p
u
›P

›p
.

An evolution equation for kinetic energy can be ob-

tained in the usual way by multiplying the horizontal

momentum equation [Eq. (5)] byV, and adding it to the

hydrostatic equation [Eq. (6)] multiplied by v:

D

Dt

V2

2
1=

h
� (F0V)1

›(vF0)
›p

52fa(u, p)2a[u
r
(p, t), p]gDp

Dt
1F �V . (9)

The term responsible for the conversion between kinetic

energy and available potential energy is the first term on

the right-hand side that is proportional toDp/Dt. Here, the

key is to recognize that this term can be naturally expressed

in terms of the total derivative of the following quantity:

E
a
(u, p, t)5

ðp
pr

fa(u, p0)2a[u
r
(p0, t), p0]gdp0, (10)

which we will take as our definition of local APE den-

sity, where the reference pressure pr 5 pr(u, t) is defined

to satisfy the LNB equation fa(u, pr)5a[ur(pr, t), pr]g,
similar to Tailleux (2013b). It is easy to verify that the LNB

equation is equivalent to the equation ur(pr, t)5 u because

of the special form of the equation of state for a perfect gas.

Next, the total derivative of Ea can be written as

DE
a

Dt
5 (a2a

r
)
Dp

Dt
1

ðp
pr

›a

›u
dp0 Du

Dt
2

ðp
pr

›a
r

›t
dp0

5 dav1YQ2x , (11)

where we defined ar 5a[ur(p, t), t] for convenience.

Using the fact that a5RuP/p5 cpu›P/›p, it follows that

we can writeðp
pr

›a

›u
dp0 Du

Dt
5 c

p
[P(p)2P(p

r
)]
Du

Dt

5 c
p

�
T2T

r

u

�
Du

Dt
5

�
T2T

r

T

�
Q , (12)

which defines the thermal efficiency Y as

Y5
P(p)2P(p

r
)

P(p)
5 12 [p

r
(u, t)/p]k 5

T2T
r

T
, (13)

which is the same as was previously derived by Lorenz

(1955a), and is generally denoted by N in the atmo-

spheric APE literature.

We also defined an additional diabatic term due to

temporal changes in the reference state:

x5

ðp
pr

›a
r

›t
dp0 5

ðp
pr

RP(p0)
p0

›u
r

›t
(p0, t) dp0. (14)

Note that x5 0 when the reference state is chosen to be

independent of time. By combining Eqs. (11) and (9),

the following evolution equation for the total mechani-

cal energy (kinetic energy plus available potential en-

ergy) is obtained:

D(E
k
1E

a
)

Dt
1=

p
� (F0V)1

›(vF0)
›p

5F �V1

�
T2T

r

T

�
Q2

ðp
pr

›a
r

›t
dp0 . (15)

We make the following remarks:

d Our Eq. (10) for the local APE density has a clear

interpretation in terms of the work against buoyancy

forces, as in Holliday and McIntyre (1981), Andrews

(1981), Tailleux (2013b), and Tailleux (2018). In fact,

its expression is identical to that used for estimating

the convective available potential energy (CAPE) in

conditionally unstable soundings (e.g., Emanuel 1994),
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the only difference being the use of an arbitrary reference

profile ar(u, p) instead of one defined by a sounding;
d Eq. (10) is positive definite. Its expression in the small

amplitude ismost conveniently expressed by regarding the

reference potential temperature profile ur as a function of

the Exner function rather than of pressure. By using the

LNB equation [u5 ur(pr, t)], it is easy to establish that

E
a
5

ðp
pr

c
p

›P

›p
(p0) u

r
(p

r
, t)2 u

r
(p, t)

� �
dp0

52c
p

ðP
Pr

ðP0

Pr

›u
r

›P
(P00, t) dP00 dP0

’2c
p

›u
r

›P
(P

r
, t)

(P2P
r
)2

2
. (16)

This small-amplitude limit forEa appears to be new as

well and is simpler than the ones obtained previously

(e.g., Shepherd 1993).
d An important feature of Eq. (11) is the presence of a

nonlocal term proportional to ›ur/›t that is absent

from Lorenz global construction but can occasionally

be important locally.
d As in Shepherd’s (1993) expression, Eq. (10) does not

require the temperature reference profile to be nec-

essarily obtained from an adiabatic rearrangement of

fluid parcels.

EVOLUTION OF THE REFERENCE TEMPERATURE

PROFILE

As discussed above, the reference temperature profile

is linked to the actual temperature through the LNB

equation [ur(pr, t)5 u]. This property can be exploited

to derive an evolution equation for ur(p, t) in terms

of the isentropic-averaged diabatic heating. Indeed,

the relation implies Dur(pr, t)/Dt5Du/Dt5 uQ/T. Ex-

panding the latter relation yields

c
p

D

Dt
u
r
(p

r
, t)5 c

p

�
›u

r

›t
1v

r

›u
r

›p
r

�
5

Q

P(p)
5
uQ

T
5 u

r
(p

r
, t)

Q

T
,

where vr 5Dpr/Dt. It follows that by averaging on

constant-pr surfaces, one obtains

c
p

›u
r

›t
(p

r
, t)5Q/P

pr 5 u

�
Q

T

�pr

,

where the overbar denotes averaging along a constant-pr
surface, which at constant time coincideswith an isentropic

surface. This shows that the x term in Eq. (14) is diabatic,

and relates to the heating of the reference state.

b. Separation into mean and eddy components

The separation of energy reservoirs into mean and

eddy components traditionally relies on the introduction

of a Reynolds average, denoted by an overbar, satisfying

the properties for any scalar quantityQ: 1)Q5Q1Q0,
2)Q0 5 0, and 3)Q 5Q. In the context of studies of the

atmospheric and oceanic energy cycles, zonal averaging

has been primarily used for atmospheric studies (e.g.,

Lorenz 1955b), whereas temporal averaging is more

characteristic of oceanic studies (e.g., von Storch et al.

2012; Zemskova et al. 2015). Other important forms of

averaging are the ensemble average and Lanczos filter-

ing (although the latter does not fully satisfy the classical

properties of a Reynolds average).

For a quadratic quantity such as kinetic energy, re-

gardless the average chosen, yields a simple mean/eddy

decomposition of the form Ek 5Em
k 1Ee

k with Em
k 5V2/2

and Ee
k 5V02/2. What distinguishes APE density from

kinetic energy is that it is not naturally a quadratic

quantity. Thus it requires a different approach when

splitting it into mean and eddy components. To that end,

it is useful to introduce a nonconventional ‘‘mean’’

pressure p̂r 6¼ pr that differs from its Reynolds average,

but one that is nevertheless unaffected by the averaging

operator so that p̂r 5 p̂r. In this study, bpr is found using

ur(p̂r, t)5 u and is a function of time and the spatial

coordinates (mirroring the dimensions of u). Note here

that similar ideas enter the definition of various non-

standard ‘‘mean’’ fields in the theory of the so-called

thickness-weighted-averaged (TWA) equations (e.g.,

Young 2012). As a result, we can write

E
a
5

ðp̂r
pr

RP(p0)
p0 u2 u

r
(p0, t)

� �
dp0

1

ðp
p̂r

RP(p0)
p0 u2 u

r
(p0, t)

� �
dp0, (17)

so that taking the average enables the mean and eddy

terms (Ea 5Em
a 1Ee

a) to be written as

Em
a 5

ðp
p̂r

fa(u,p0)2a u
r
(p0, t), p0� �gdp0, (18)

Ee
a 5

ðp̂r
pr

fa(u, p0)2a u
r
(p0, t),p0� �g dp0. (19)

EVOLUTION EQUATIONS FOR THE MEAN AND

EDDY APE DENSITY

Evolution for the mean APE density is obtained by

taking the material (Lagrangian) derivative of Eq. (18):
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D

M
u
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(p0)

›u
r

›t
dp0 , (20)

where

D
M

Dt
5

›

›t
1 u

›

›x
1 y

›

›y
1v

›

›p
(21)

denotes the tendency plus advection by the mean flow.

The above equations depend on the Reynolds-averaged

thermodynamic equation for potential temperature,

which is easily shown to be

D
M
u

Dt
52= � v0u0 2 ›v0u0

›p
1

u

T

Q

c
p

. (22)

Note that the latter equation exploits the very special

property that P(p)5T/u5T/u. We can also define a

mean reference temperature as T̂r 5P(p̂r)u, which is

not a Reynolds average, and is hence denoted by a hat.

We can define a mean thermodynamic efficiency as the

following equivalent mathematical relations:

Ŷ5
T2 T̂

r

T
5 12

P(p̂
r
)

P(p)
5
pk 2 p̂k

r

pk
. (23)

The second term in Eq. (20) can therefore be re-

written as

c
p
P(p)2P(p̂

r
)

� �D
M
u

Dt
5 ŶQ2= � P(p)2P(p̂

r
)u0u0

h i
1 u0u0 � = P(p)2P(p̂

r
)

� �
,

where the quantity P(p)2P(p̂r)5 ŶT/u. The evolution

equation for the mean APE density can therefore be

written in the form

›Em
a

›t
5 2u � =Em

a|fflfflfflfflfflffl{zfflfflfflfflfflffl}
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a ]

2 c
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�
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C[Em
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Diabatic

,

(24)

where

x̂5

ðp
p̂r

›P

›p
(p0)

›u
r

›t
dp0 . (25)

Note that again x̂5 0 when the reference state is chosen

to be independent of time. The physical interpretation

of the terms on the RHS of Eq. (24) is indicated.

Namely, these terms are mean advection of the mean

APE, conversion between the mean APE and mean

kinetic energy (C[Em
k /Em

a ]), conversion between the

meanAPE and eddy APE (C[Em
a /Ee

a]), and a diabatic

heating term. TheC[Em
k /Em

a ] conversion is equivalent

to that of the QG Lorenz definition. The first of the

C[Em
a /Ee

a] terms vanishes under global integration.

The second term of the conversion is similar to the QG

Lorenz conversion, though it includes an additional

component that becomes important under large static

stability, as is demonstrated below:

C Em
a /Ee
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2
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Ŷ

�
5 c

p
u0u0 � = P(p)2P(p̂

r
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� �
.

To that end, note that from the defining relation of p̂r,

namely ur(p̂r, t)5 u, we can write

›u
r

›p
=p̂

r
5=u .

As a result, the C[Em
a /Ee

a]2 conversion term becomes
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This term is dominated by the second term that involves

the isobaric gradient of the mean temperature =pu.

The case where mean APE is converted to eddy APE

corresponds to the case where C[Em
a /Ee

a]2 , 0. This
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corresponds to the case where v0u0 52Ke=pu is down-

gradient, in which case,

C Em
a /Ee

a

� �
2
’K

e

Rp̂k21
r

pk
0

 
›u

r

›p

!21

=
p
u

��� ���2 , 0:

The resulting expression is somewhat different from the

classical Lorenz expression, in that there is now a con-

tribution from the vertical heat flux in the expression,

which is small for a stable stratification but can become

large when static stability of the mean profile ›u/›p. 0,

which avoids the cancellation. This new term was pre-

viously noted by Zemskova et al. (2015) and is one of the

novelties offered by the finite-amplitude framework.

We now turn to the derivation of an evolution equation

for the eddy APE density. This is obtained by subtracting

the evolution equation of the mean APE density from the

mean of the total APE density equation:

D
M
Ee

a

Dt
5

D
M
E

a

Dt
2

D
M
Em

a

Dt
, (26)

where

D
M
E

a

Dt
5

DE
a

Dt
2 u0 � =E0

a . (27)

Given that we can write the evolution equation for the

total APE density as

DE
a

Dt
5 dav1YQ2 x , (28)

it follows that the mean is given by
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which implies

D
M
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a 1Ee
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Note that we have

da5 c
p

›P

›p
(p) u2 u

r
(p, t)

� �
,

hence

da5 c
p

›P
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(p) u2 u

r
(p, t)

� �
.

A difficulty arises with the partitioning of the thermal

efficiency into mean and eddy components. Indeed, the

thermal efficiency is defined by

Y5
P(p)2P(p

r
)

P(p)
.

However, because

P(p
r
) 6¼P(p̂

r
) ,

subtracting the equation for the mean APE density

yields
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1 Y0Q0 1 (Y2 Ŷ)Q1 x̂2 x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Diabatic

. (30)

The nature of the terms is again indicated. In particular

we have the mean advection of the eddy APE, eddy

advection of the total APE, conversion between the

eddy APE and eddy KE (C[Ee
a /Ee

k]; equivalent in the

Lorenz formulation), the C[Em
a /Ee

a] conversion, and

diabatic terms due to the parcel heating and due to the

environmental heating. Note the presence of additional

small terms that arise from the difference between the

nonconventional mean and standard Reynolds mean of

some variables.

3. Basic illustrations

The main aim of this section is to illustrate the

usefulness of the local APE framework. The first part

focuses on the comparison between the local APE

framework and the classical APE formulations pro-

posed by Lorenz (1955b), in order to demonstrate

their equivalence and that the (globally integrated)

local APE density provides more accurate estimates

of the global APE than the commonly used QG

Lorenz approximation. Then, we present the three-

dimensional view of the local APE density, its eddy

and mean components, and the components’ budgets.

This will reveal the zonally asymmetric distribution of

the APE components as well as its usefulness in

studying the spatiotemporal variability of the atmo-

spheric circulation.
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a. Global values and connection to Lorenz APE

This section compares the globally integrated local

APE density to the exact Lorenz APE [Eq. (1)] and its

QG approximations [Eq. (2)]. Two datasets from the

ERA-Interim (Kållberg et al. 2005) archive were used,

one with isobaric and one with isentropic vertical co-

ordinates, both 6 hourly and spanning the years 1979–

2016. For illustrative purposes, only data from 1 January

of each year were selected; therefore, these sets of data

samples are independent in time on daily to seasonal

time scales. The reference state of the local APE density

was calculated by adiabatically rearranging parcels in an

ascending order, that is, by sorting all parcels based on

their potential temperature using the ‘‘quicksort’’ algo-

rithm at each time step. This makes the reference state

equivalent to the reference state of Lorenz APE, so

theoretically the exact Lorenz APE should equal to the

globally integrated local APE density (Andrews 1981).

For comparison, local APE calculated using a refer-

ence state that is an average potential temperature on

isobaric surfaces is also displayed (see appendix A for

more detail). Computing the Lorenz APE is somewhat

more efficient. On a standard personal computer,

20 time steps took 6 s or less for the Lorenz APE di-

agnostics, 25 s for the local APE density using the

isobaric ur, and 2min for the local APE density using

the quicksort ur.

Figure 1 shows that the local APE on isobaric sur-

faces is slightly lower than the exact Lorenz APE

evaluated on isentropic surfaces. Because the mini-

mum and maximum values of the isobaric and isen-

tropic surfaces do not exactly match the maximum and

minimum values of the variable pressure and potential

temperature in the respective reanalysis datasets, an

exact match between the isobarically based local

APE and isentropically based exact Lorenz APE is

not necessarily expected. Nevertheless, the local

APE is the closest match to the exact Lorenz APE,

better than the QG Lorenz approximation on isen-

tropic surfaces and substantially better than the

QG Lorenz approximation on isobaric surfaces (the

latter being the most commonly used diagnostic for

the APE).

The QG approximation of Lorenz APE is often

studied with respect to the Lorenz cycle, where both

kinetic energy and QG APE on pressure surfaces are

split into their mean and eddy components. The four

resulting evolution equations (one for each Em
a , E

m
k , E

e
a,

and Ee
k) form a closed system in the absence of diabatic

and frictional processes, which makes the system (re-

ferred to as the Lorenz cycle) an attractive theory for

studying energy exchanges.

It is apparent from Eqs. (24) and (30) that the local

eddy and mean APE density equations can be used with

the mean and eddy kinetic energy equations (both of

which are already of a local nature) in order to obtain a

local and exact version of the Lorenz cycle (i.e., a system

of the four evolution equations that is closed under

adiabatic conditions). When globally integrated the two

energy cycles are equivalent, apart from small differ-

ences in formulation of three terms: mean APE, eddy

APE, and the C[Em
a /Ee

a] conversion. These three

terms are compared for the QG Lorenz and globally

integrated local frameworks in Fig. 2.

Both eddy and mean APE components are over-

estimated by the QG approximation, corresponding to

the total APE being larger. The conversion term is of a

similar magnitude with some spread, resulting from the

QG approximation being less accurate under large static

stability. However, we have found there is no simple

linear relationship between static stability and the dif-

ference between the two conversions.

b. Spatial distribution and variance of APE
components

This section focuses on the three-dimensional structure

of the eddy and mean APE density components and

FIG. 1. Globally integrated local APE (blue: calculated using the

quicksort ur ; gray: calculated using the isobarically averaged ur)

compared to the exact Lorenz APE on isentropic surfaces (x axis),

and the QG Lorenz approximations on isentropic (red) and

isobaric (green) surfaces. The dashed line is the 1:1 line. The data

are from 1 Jan (four time steps 6 h apart) of years 1979–2016 in

ERA-Interim.
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their interannual variability. We focus on the winters

(DJF) of years 1979–2016 in daily averagedERA-Interim

data. The winter season was selected because during

winter the midlatitudes are dominated by strong eddies

that are particularly interactive with the mean large-scale

circulation, and this interaction will be the focus of a

forthcoming paper.

For the same reason, we separate the APE density

into eddy and mean components using the 10-day

Lanczos filter (Duchon 1979). This way the eddy com-

ponent mainly corresponds to high-frequency baroclinic

transients that are associated with synoptic storms, and

the mean component corresponds to more slowly varying

circulations, such as the midlatitude jet (Hoskins et al.

1983; Novak et al. 2015). Another (more technical) ad-

vantage of this separation is that it also allows investigation

of APE in all three spatial dimensions (rather than only

two dimensions when the zonal mean is used for the sep-

aration), as well as in time (which would not be possible

had the time mean been used). Comparison between the

two separation methods (i.e., using the zonal mean versus

the Lanczos filter) is shown in appendix B.

We also use the isobaric average (instead of the

quicksort method) to compute the reference potential

temperature profile, because it avoids extremely high

APE density values at the surface due to extremely

high (and potentially badly constrained) potential

temperature values from the top of the atmosphere (see

appendix A).

The three-dimensional spatial distribution of the eddy

and mean APE density is displayed in Fig. 3, along with

their interannual standard deviations (i.e., based on the

departures of annual values from the long-term mean of

all winters). The mean APE density (top row; Jm22) is

most concentrated in the upper levels of high latitudes

and exhibits a minimum in the midlatitudes with a sec-

ondary maximum in the tropics. This zonally averaged

profile is expected because 1) it has been shown before

(Kucharski 1997; Kucharski and Thorpe 2000), and 2) by

definition (since u on average decreases continuously

with latitude) the high and low latitudes are character-

ized by the largest departures from the globally hori-

zontally constant reference state (and the high latitudes

are more extreme because they cover a smaller surface

area). Similarly, eddy APE density distribution (bottom

row) is as expected, peaking near the upper levels of the

midlatitudes andmirroring the eddyKE (e.g., Kucharski

and Thorpe 2000).

FIG. 2. Lorenz QGAPE compared to the globally integrated local APE, with both being evaluated on isentropic surfaces and split

into their (left) mean and (center) eddy components. (right) The conversion between the mean and eddy APEs for the two

frameworks is also shown. The dashed line is the 1:1 line. The data are from 1 Jan (four time steps 6 h apart) of years 1979–2016 in

ERA-Interim.
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The zonal asymmetries of the APE density compo-

nents are such that the mean APE density follows the

general structure of the mean temperature and PV fields

(not shown) with maxima extending more equatorward

over continents. This is especially apparent in the

Northern Hemisphere. Downstream of these regions of

enhanced mean APE density are maxima in eddy APE

density, which peak over the main storm-track regions

over the North Atlantic, the North Pacific, and the

Southern Oceans (e.g., Kaspi and Schneider 2013). In a

thought experiment where the atmosphere could be

brought to a state of zero baroclinicity (i.e., no meridi-

onal temperature gradients), the mean APE density

maxima can be seen as energy reservoirs that fuel the

midlatitude storm tracks between them (as is shown

more explicitly in the next section).

The standard deviations of the mean and eddy APE

density components are shown in colors in Fig. 3. The

highest interannual variability in the mean APE density

of the Northern Hemisphere is above Greenland, with

secondary maxima in the North Pacific and over central

northern Siberia. The Southern Hemisphere in DJF

exhibits a dipole centered over the South Pole, with the

stronger maximum being above the Ross Sea. Some

enhanced variability is also apparent in the tropical

central Pacific, where ENSO operates. The variability of

the eddy APE density is generally most pronounced

near the central and end parts of the storm tracks.

c. Thermal efficiency

It is of interest to investigate the thermal efficiency

defined in Eq. (23), because it is the factor that de-

termines the sign and magnitude of the effect of 1) di-

abatic heating on the APE generation and dissipation

and 2) the APE conversion into eddy energy. This effi-

ciency is identical to that discussed by Lorenz (1955a)

and several other authors (e.g., Siegmund 1994), and its

magnitude and distribution, as shown in Fig. 4, is com-

parable to the previously published estimates. However,

here we additionally show the full horizontal structure,

as well as the interannual variability.

Since the thermal efficiency is defined as the de-

parture of the actual thermal state from a reference

state, it is apparent that the QG Lorenz assumption of

this being of small amplitude is a poor one. The QG

Lorenz APE and C[Em
a /Ee

a] terms are defined using

the thermal efficiency. It is therefore unsurprising that

these terms are of a somewhat different magnitude, as

shown in the previous sections.

The thermal efficiency also displays high annual var-

iability, as shown by the standard deviation in colors.

The most variable regions are in the northwestern

FIG. 3. (top)Mean and (bottom) eddyAPE distributions (black contours), (left) zonally averaged, and vertically integrated (using mass

weighting) of the (center) Northern and (right) SouthernHemispheres. The shading refers to the annual standard deviation. The split into

mean and eddy components is based on the Lanczos filter, and the units are scaled to be 105 Jm22.
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Pacific, over Greenland, and near the coast of West

Antarctica. A cross-hemispheric wave train–like pattern

emerges in the central Pacific. Some of these features

mimic those of the mean APE density variability, and

are relevant for climate sensitivity studies.

d. Mean and eddy local APE density budgets

The mean and eddy local APE density budgets [i.e.,

terms in Eqs. (24) and (30)] are plotted for both hemi-

spheres in Figs. 5 and 6, respectively. The sum of the

diabatic terms is calculated as a residual of the non-

diabatic terms in the two evolution equations. Again, we

use the 10-day Lanczos filter to separate into mean and

eddy terms, but this separation produces a small leakage

because of the noncommutability of the mean (i.e.,

X 6¼X if the overbar represents a mean derived from

the Lanczos filter). This leakage is included in the re-

sidual diabatic terms. However, its magnitude was found

to be small and the associated eddy and mean heating

rates are comparable to those derived in previous works

using different methods (e.g., Kållberg et al. 2005). Note

that the conversion term (C[Em
a /Ee

a]) is not displayed

in Fig. 6 of the eddy APE density budget, because it is

already shown in Fig. 5 (only the sign would change in

the eddy APE density equation). The conversion and

heating terms were checked against existing estimates

(Oort 1964; Kållberg et al. 2005; Li et al. 2007) to ensure

that the obtained values are plausible.

Turning to the first terms in both budgets, the re-

spective tendencies of the mean and eddy APE den-

sities are nonzero, even though they are averaged over

time. The reader is reminded that these averages are

limited to the winter season, so the nonzero values

represent changes throughout that season. Though

small, these changes are such that both APE density

components increase in the Northern Hemisphere

and decrease in the Southern Hemisphere throughout

the season.

FIG. 4. Thermal efficiency Y (black contours), (left) zonally averaged, and horizontally averaged (using mass weighting) of the (center)

Northern and (right) Southern Hemispheres. The shading refers to the annual standard deviation. The efficiency is dimensionless.

FIG. 5. LocalmeanAPEbudget [Wm22; Eq. (24)] for the (top)Northern and (bottom) SouthernHemispheres. All terms are vertically integrated.
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The mean APE density budget is dominated by the

C[Em
k /Em

a ] conversion and the diabatic generation of

the mean APE density. The diabatic term is almost en-

tirely dominated by the YQ component (not shown),

which itself follows observed diabatic heating and

cooling rates (e.g., Kållberg et al. 2005). More specifi-

cally, the tropics are the main diabatic generation re-

gions of mean APE density, though there is a secondary

maximum over the poles, corresponding to the large

observed radiative heating and cooling rates in those

regions. Both tropical heating and polar cooling increase

the large-scale meridional temperature gradients, and

thus the local departures from the global reference state,

that is, the mean APE density. On the other hand, dia-

batic mean APE density dissipation corresponds to

these large-scale temperature gradients being reduced.

This happens in the subtropics where cooling occurs

over the return flow of the oceanic subtropical gyres, and

within the midlatitude storm tracks where (mostly) la-

tent heating reduces the large-scale temperature gradi-

ents (Hoskins and Valdes 1990; Kållberg et al. 2005).

A large part of the diabatic contributions is compen-

sated for by the C[Em
k /Em

a ] conversion, especially in

the tropics. This term is relatively weak in the mid-

latitudes because the circulation there is dominated by

eddy motions, and the dipole in the central Pacific mir-

rors the change in sign of the vertical motion of the

Walker circulation.

This conversion is often interpreted as representing

the mean overturning circulation (James 1994). How-

ever, one needs to consider that this term is defined with

relation to the global reference state in this study (as it is

in the Lorenz framework). For example, at the poleward

edge of the Hadley cell the buoyancy difference

[equivalent to da in Eq. (24)] with respect to the global

reference state is positive, but the difference with re-

spect to the immediate surroundings is negative (as is

the case for parcels in thermally direct circulations, such

as the Hadley cell). Since this region is characterized by

descending motion (positive v), the C[Em
k /Em

a ] con-

version in this region is positive, whereas it would be

negative for a more local reference state. This demon-

strates the importance of choosing the correct reference

state for the study of interest. In this and Lorenz’s case,

the sign of the C[Em
k /Em

a ] conversion does not reflect

the sign of the overturning circulation. Rather, it in-

dicates how the local vertical motions contribute to the

large-scale baroclinicity. The freedom to choose a ref-

erence state that is appropriate for the study of interest

is only possible with the local framework, but not the

Lorenz framework.

The mean APE density is converted into eddies

(C[Em
a /Ee

a]) predominantly poleward of all storm

tracks, with some weak conversions on their equator-

ward side. This is despite the predominant diabatic

generation of APE density being in the tropics, sug-

gesting that eddies preferably tap into theAPE reservoir

poleward of the storm track. The mean advection of the

mean APE density is the only term that is positive at the

beginning of storm tracks, indicating that advection is

crucial for supplying the mean APE density to fuel

storm tracks.

Moving on to the eddy APE density budget, it is ap-

parent that conversions from mean APE (C[Em
a /Ee

a])

and into eddy kinetic energy (C[Ee
a /Ee

k]) are the dom-

inant terms, in agreement with observations of preferred

FIG. 6. Local eddyAPE budget [Wm22; Eq. (30)] for the (top) Northern and (bottom) SouthernHemispheres. All terms are vertically integrated.
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energy flows of global energy [e.g., analysis of the Lorenz

cycle in Oort (1964)]: Em
a /Ee

a /Ee
k(/Friction). The

C[Em
a /Ee

a] and C[Ee
a /Ee

k] conversions are located

poleward of and at the location of the storm tracks,

respectively.

As for the remaining terms, eddies advect the total

APE density to the equatorward flank of the storm

tracks. A small amount of eddy APE density is advected

by the mean flow farther downstream of the storm

tracks, and a small amount is generated by sensible

and latent heating from preexisting eddies within the

storm tracks (since the largest contributor is the Y0Q0

component).

In summary, it is evident that the classical Lorenz

cycle of global energy flows is more complicated re-

gionally. In particular, the conversion between themean

energies (C[Em
k /Em

a ]) is the dominant term regionally,

though it is near zero if integrated globally. It is evident

that energy advection into the midlatitudes is essential for

fueling the storm tracks and that this energy is mainly

supplied fromhigh latitudes, perhaps because that is where

themeanAPEdensity has to bemore concentrated than in

the tropics because of the spherical geometry.

4. Discussion and conclusions

In this paper, we have developed and extended

Holliday and McIntyre’s (1981) and Andrews’s (1981)

local APE density theory to the case of a dry hydrostatic

atmosphere, and illustrated its usefulness using ERA

interim data. The main new advances are 1) a simpler

mathematical expression for the APE density that

is physically more revealing than that previously de-

rived, 2) accounting for diabatic effects, 3) an exact

separation between mean and eddy components valid

for any form of Reynolds averaging, and 4) a demon-

stration of the feasibility of defining reference position

for fluid parcels even for nonsorted reference states.

Because this formulation has seldom been used on di-

agnostic studies, we advocate its use by presenting its

new form on isobaric coordinates, by comparing it to the

classical global definition suggested by Lorenz (1955b),

and by presenting an illustration of its usefulness for

understanding the spatiotemporal variability of the

large-scale circulation.

Although the LorenzAPE definition is by far themost

commonly used measure of the observed APE, we have

found the following advantages if the local APE density

is used instead:

d Computational feasibility versus accuracy: Lorenz’s

exact APE definition is based on averaging on isen-

tropic surfaces, but datasets are rarely available in

isentropic coordinates. Additionally, Lorenz APE is

the difference between two large terms (the potential

energy of an actual state and that of a reference state),

which makes the calculations highly sensitive to small

numerical errors. The Lorenz APE is therefore most

commonly diagnosed as its QG approximation on

isobaric surfaces, but this easily computable approxi-

mation comes at the cost of accuracy. On the other

hand, one does not have to compromise with the local

APE density, which is both exact for finite-amplitude

departures from Lorenz reference state and easily

computable from isobarically based data. Addition-

ally, the globally integrated local APE density is a sum

of small positive-definite values (instead of a differ-

ence between two large terms), which is always

preferable from the computational viewpoint. Al-

though the computation time of the local APE density

is four times as large as that for the Lorenz diagnostics

(though the exact computation time depends on the

method to calculate ur), this remains manageable and

seems a small price to pay in view of the considerably

greater accuracy achieved.
d Energy conservation: It is important to note that the

hydrostatic primitive equations conserve the quantity

V2/21 h rather than the full energy U2/21 gz1 e,

where U is the full velocity field while V is its isobaric

component. As for the respective forms of potential

energy, only their volume-integrated values are com-

parable, since specific enthalpy h differs from gz1 e at

all points of the fluid. Indeed, it is well known that for a

hydrostatic atmosphere, the volume integrals of each

quantity are equal up to a boundary term that vanishes

in absence of orography, namely,

ð
V

(gz1 e) dm5

ð
V

h dm1Boundary term. (31)

The differences in energy conservation principles

satisfied by the hydrostatic primitive and full

Navier–Stokes equations are important, because they

are necessary to realize that Lorenz definition of APE

relies on the ‘‘true’’ form of potential energy, whereas

local APE theory builds upon the particular form of

energy conservation relevant to the particular system

of equations considered. As a result, the volume in-

tegral of the APE densityð
V

E
a
dm5

ð
V

(h2 h
r
) dm1

ð
V

F
r
(p)2F

r
(p

r
)

� �
dm ,

(32)

is not necessarily equal to Lorenz APE in presence of

orography, as the latter generally causes the last term
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on the right-hand side of Eq. (32) to be nonzero in

general.

d Local diagnosis: Some studies use the Lorenz QG

approximation locally, which gives physically plausi-

ble results (e.g., Li et al. 2007). However, the Lorenz

APE definition formally relies on the APE being

defined as a global integral. This is not the case for

the local APE density, which can be formally and

exactly defined locally. In combination with the

kinetic eddy and mean energies (which are already

of a local nature), the local APE can also be used to

derive a local version of the Lorenz energy cycle.
d Local reference state: As opposed to the Lorenz

definition, which requires the reference state to be

an adiabatic rearrangement of the actual global state,

the local APE framework accommodates other refer-

ence states that can be locally defined (much like

buoyancy).

As predicted theoretically, using reanalysis data we

confirmed that the globally integrated local APE density

is more comparable to the exact Lorenz definition than

the QG Lorenz approximation. A rather surprising

discrepancy was found between the QGAPE computed

on isentropic surfaces and the QG APE computed on

isobaric surfaces, which are often assumed to be closely

related (Lorenz 1955b).

We also demonstrated how the mean and eddy com-

ponents of APE vary both in space and in time in 35DJF

seasons in both hemispheres, so both the winter and

summer seasons were studied. We used the 10-day

Lanczos filter to separate the APE density into its

eddy and mean components, so that eddy quantities had

the characteristics of synoptic-scale eddies. Althoughwe

were not restricted to using the global state to define the

local APE density, we chose to do so in order to stay in

the context of the existing literature. We defined the

global reference state as the isobaric average of poten-

tial temperature. The disadvantage of using a global

reference state is that (as in the Lorenz definition) the

atmosphere is assumed to be capable of equilibrating

itself to a state of zero baroclinicity, which is clearly not

something that is observed. Nevertheless, insightful re-

sults can be obtained, as long as the dependency of the

APE on its reference state is considered with care.

The local APE density calculated here represents

temperature deviations from the global isentropic av-

erage, so the APE density is especially abundant over

the poles and the tropics, as shown before by Kucharski

(1997) and Kucharski and Thorpe (2000). As far as we

are aware, the zonally asymmetric APE density distri-

bution is shown here for the first time, and it is partic-

ularly zonally asymmetric in the Northern Hemisphere,

following a similar structure to the large-scale mean

temperature or potential vorticity. The local APE den-

sity should not be seen as the growth rate for baroclinic

eddies, which depends on the meridional temperature

gradients (Eady 1949; Pedlosky 1992) rather than the

departures from the isobaric mean. The eddy growth

rate is maximum at the latitude of storm tracks (e.g.,

Hoskins and Valdes 1990), whereas APE density is

maximum in the polar and tropical regions.

Nevertheless, the budgets and the interannual vari-

abilities of the mean and eddy APE density components

provide useful insights on baroclinic eddy growth and

other aspects of the large-scale dynamics. For example,

the illustrations within this study show the following:

d The classical studies of baroclinic eddy life cycles (e.g.,

Simmons and Hoskins 1978) have shown that the

primary energy exchanges, as diagnosed by the Lorenz

framework, are.

Diabatic processes/Em
a /Ee

a /Ee
k(/Friction).

This energy pathway is also observed for global time-

mean observations of the atmosphere (e.g., Oort

1964), indicating that the global energetics are pri-

marily governed by baroclinic instability. While this

pathway also seems to exist locally within the storm

tracks, it is apparent that the conversion between the

mean energies often dominates despite its global av-

erage being near zero. The primary role of this con-

version, which reflects ageostrophic circulation, is to

compensate for a large part of the mean diabatic

heating. This is not obvious fromLorenz’s formulation.

d Advection terms of the mean and eddy APE are

obscured in the globally integrated framework. Nev-

ertheless, it is shown here that advection of the mean

APE is essential for providing APE into (and in-

creasing baroclinicity within) the storm tracks, rather

than APE being generated diabatically in situ by

processes, such as SST heating.
d The mean APE advection is primarily from lati-

tudes poleward of the storm tracks, which may have

implications on the latitudinal extent of storm

tracks. It was shown in Novak et al. (2015) that the

equatorward part of the North Atlantic storm track

is anchored near the latitude of the subtropical jet.

This can be explained by the Hadley cell edge being

anchored by a tropical energy balance (Mbengue

and Schneider 2018). However, Novak et al. (2015)

also find that the poleward edge of storm tracks

is much more transient, which may be because

the advection of cold temperatures determines the
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extent to which eddies can grow and propagate

poleward.
d The analysis above revealed an interesting variability

of APE density in the upper-level troposphere over

Greenland. The variabilities of meanAPE density and

thermal efficiency exhibit an interhemispheric wave

train that emanates from the ENSO region and

propagates into the higher latitudes. The wave train

in the SouthernHemisphere reaches theRoss Sea, and

the variability may be even more prominent in the

winter. With Greenland and Ross Sea being predicted

to experience large changes in their land ice and sea

ice coverage (Jacobs et al. 2002; Shepherd and

Wingham 2007; Jacobs et al. 2011), it is possible that

these regions of main supply of mean APE into storm

tracks will play an important role in midlatitude

dynamics in the future climate.

We are keen to emphasize that these are merely a few

illustrations of the usefulness of the local APE density as

an atmospheric diagnostic. For a thorough specific

analysis of storm tracks, one may wish to optimize the

choices of the reference state and separation methods

into eddy and mean quantities. The choices made here

are primarily to facilitate comparison with existing

studies. The APE density framework can be further

extended to a multicomponent fluid (Bannon 2005;

Tailleux 2013b; Peng et al. 2015; Tailleux 2018). How-

ever, the addition of moisture would introduce the

possibility of parcels possessing multiple reference states.

This would affect the magnitude of APE and most likely

increase it (Lorenz 1979; Pauluis and Held 2002; Bannon

2005). Peng et al. (2015) presented an application of a

positive-definite definition of the moist local APE based

on using the virtual temperature in an idealized atmo-

sphere and showed the marked difference between

using the classical exergy and their APE density. How-

ever, such considerations are beyond the scope of this

paper, which demonstrates the usefulness of this local

framework in analyzing large-scale dynamics and pro-

vides interesting directions for further focused research.
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APPENDIX A

Two Methods for Constructing the Reference
Potential Temperature

The first method uses parcel sorting. For each time the

global potential temperature is divided into parcels. For

example, the ERA-Interim dataset has a resolution of

512 longitude values, 256 latitude values, and 37 pres-

sure levels, giving 4 849 664 parcels. These parcels were

then sorted using the ‘‘quicksort’’ sorting algorithm for

higher numerical efficiency. In this sorted order each

parcel mass was then draped across Earth’s surface

yielding the height of each parcel. The result is ur as a

function of the cumulative parcel mass (which can be

readily converted to pressure). The ur profile for the

required pressure levels of the dataset was then obtained

using linear interpolation.

The second method is using the latitudinally weighted

isobaric averaging as was used by Lorenz (1955b) and

others. This method is faster, as discussed in the text.

The quicksort and isobaric averaging methods are

compared here for 1 January 2000 in ERA-Interim.

Their ur profiles and the zonally averaged APE and

thermal efficiencies are shown in Fig. A1. In the zonal-

mean plots, the quantities derived using the isobaric

averaging are shown as anomalies from those derived

using the quicksort method.

The ur two profiles are almost equivalent apart from

the very low levels and near the tropopause. Thismakes a

FIG. A1. Comparison of the quicksort [green line in (a) and black contours in (b) and (c)] to isobaric averaging [blue line in (a) and

shading in (b) and (c) displayed as difference from when using the quicksort method] methods to define (a) the reference potential

temperature profiles. The resultant effect on (b) the local APE (105 Jm22) and (c) thermal efficiency. Data used are from 1 Jan 2000.
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small difference in the APE, with the quicksort

yielding a lower APE in the tropics and low-level

polar regions and higher APE in the upper-level polar

regions. The quicksort method also produces a lower

thermal efficiency near the tropopause and higher

elsewhere.

One could argue the quicksort method is more ac-

curate. However, given the data resolution, we are

only interested in the larger-scale patterns in the en-

ergy and conversion terms. The smoother reference

potential temperature profile is therefore still ade-

quate, and it allows a more direct comparison with the

existing literature. In addition, the quicksort method

relies on all potential temperature values, including

those in the highest levels, which are often not well

constrained.

APPENDIX B

Eddy and Mean Local APE Using the Zonal-Mean-
and Lanczos Filter–Based Frameworks

It is noted that the zonal-mean-based framework is

qualitatively similar to the Lanczos-based framework, as

shown in Fig. B1. As expected, a part of the midlatitude

eddies (low-frequency and stationary eddies) is trans-

ferred from the eddy component to the mean compo-

nent in the Lanczos-based framework. The mean APE

mirrors closely the distribution of the total APE, so only

the former is presented here.
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