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Abstract 23 

Recent research has highlighted strong correlations between soil edaphic parameters 24 

and bacterial biodiversity. Here we seek to explore these relationships across the European 25 

Union member states with respect to mapping bacterial biodiversity at the continental scale.  26 

As part of the EU FP7 EcoFINDERs project, bacterial communities from 76 soil samples taken 27 

across Europe were assessed from eleven countries encompassing Arctic to Southern 28 

Mediterranean climes, representing a diverse range of soil types and land uses (grassland, 29 

forest and arable land). We found predictable relationships between community biodiversity 30 

(ordination site scores) and land use factors as well as soil properties such as pH. Based on 31 

the modelled relationship between soil pH and bacterial biodiversity found for the surveyed 32 

soils, we were able to predict biodiversity in ~1000 soils for which soil pH data had been 33 

collected as part of national scale monitoring. We then performed interpolative mapping 34 

utilising existing EU wide soil pH data to present the first map of bacterial biodiversity across 35 

the EU member states. The predictive accuracy of the map was assessed again using the 36 

national scale data, but this time contrasting the EU wide spatial predictions with point data 37 

on bacterial communities. Generally the maps were useful at predicting broad extremes of 38 

biodiversity reflective of low or high pH soils, though predictive accuracy was limited for Britain 39 

particularly for organic/acidic soil communities. Spatial accuracy could however be increased 40 

by utilising published maps of soil pH calculated using geostatistical approaches at both global 41 

and national scales. These findings will contribute to wider efforts to predict and understand 42 

the spatial distribution of soil biodiversity at global scales. Further work should focus on 43 

enhancing the predictive power of such maps, by harmonising global datasets on soil 44 

conditioning parameters, soil properties and biodiversity; and the continued efforts to advance 45 

the geostatistical modelling of specific components of soil biodiversity at local to global scales. 46 

 47 

1. Introduction 48 



Soil bacteria contribute the largest proportion of the soil genetic resource (Urich et al 49 

2008; Fierer et al, 2012), reflecting their ubiquity and high abundance across all soil systems. 50 

Given bacterial importance in the regulation of soil ecosystem services (Comerford et al, 51 

2013), increased understanding of the environmental controls of bacterial biodiversity is 52 

required from both scientific and policy perspectives in order to predict biodiversity change, 53 

and determine functional consequences of change due to future climatic or land use 54 

pressures. Attempts to characterise the bacterial communities in soils and understand 55 

ecological drivers have previously been hampered by methodological difficulties in assessing 56 

taxonomic diversity due to the limited culturability of many bacterial taxa coupled with vast 57 

taxonomic diversity (e.g Janssen et al, 2002). These problems have to some extent been 58 

overcome through the development of molecular technologies to assess the diversity of 59 

taxonomic marker genes (particularly the 16S rRNA gene) PCR amplified from extracted soil 60 

DNA (Hirsch et al, 2010).  61 

The application of molecular methods to wide ranging globally dispersed soil samples 62 

has revealed that soil bacterial communities are broadly structured along gradients of soil 63 

properties, with strong correlations between measures of bacterial biodiversity and key soil 64 

variables such as soil pH and organic matter, which are co-related with broader environmental 65 

parameters such as land use, climate, and parent material (Fierer et al, 2006; Lauber et al, 66 

2009; Griffiths et al 2011). Therefore, whilst the causal mechanisms underlying these 67 

relationships are complex it is apparent that the same pedogenic factors which determine the 68 

nature of soils (e.g Jenny, 1941) also determine the taxonomic characteristics and structure 69 

of the soil bacterial community. This new knowledge permits spatial forecasting of bacterial 70 

biodiversity at a range of scales and under change scenarios; which together with parallel 71 

developments in understanding microbial biodiversity-function relationships, may allow for 72 

enhanced prediction of soil processes under future environmental change. 73 



Molecular surveys permit the production of range maps of soil bacterial distributions 74 

at various spatial scales. Spatial distribution maps provide a visual representation of the 75 

forces shaping populations or communities and therefore provide the foundation for macro 76 

ecological understanding (Elton, 1927). Maps can also guide policy decisions with respect to 77 

land management, and can be useful visual resources guiding scientific experimentation and 78 

enquiry. Importantly, more recently rasterised maps provide georeferenced data which can 79 

feed wider ecological, climatic or biogeochemical models. Already there has been several 80 

attempts to map soil microbial properties at national and regional scales, using molecular 81 

methodologies applied to nationwide soil monitoring schemes (Bru et al, 2011; Griffiths et al 82 

2011, Dequidet et al  2009; Dequidet et al  2011). These studies mapped point sampled 83 

microbial data using interpolative methods (e.g inverse distance weighting, kriging; see 84 

Bivand et al; 2008) to fit surfaces predicting the microbial properties at unsampled locations 85 

by weighted averages of surrounding measured values. These methods are useful to show 86 

large differences in microbial properties over large areas but local accuracy is limited by the 87 

spatial scale of sampling.  88 

More advanced geostatistical approaches can be used to predict a variable of interest 89 

at unsampled locations based on known relationships between the dependant variable and 90 

other predictor variables (e.g climate, soil type, land cover).  Such approaches are commonly 91 

used in wider ecology (sometimes termed environmental-, ecological-, or species- distribution 92 

modelling: Elith et al, 2006), and can be used to predict either species or communities at 93 

unsampled locations (Chapman and Purse, 2011). These environmental correlational 94 

approaches have so far been used to predict historical change in soil bacterial biodiversity 95 

due to land use at regional scales (Fierer et al, 2013); and also to improve on the interpolated 96 

maps of bacterial biodiversity across Great Britain (Griffiths et al, 2011) by modelling the 97 

observed relationships between bacterial communities and environmental variables, and then 98 

forecasting communities in unsampled locations using remote sensed land cover information 99 



and parent material maps (Henrys et al, 2015). This paper aside there are few studies which 100 

have examined in detail the predictive performance of such maps compared to simple 101 

interpolation. More widely, large scale spatial predictions of soil parameters are increasingly 102 

being disseminated through downloadable map resources (e.g soilgrids.org, ukso.org), and 103 

there is now a need to identify specific predictive limitations in order to further improve 104 

accuracy (Hengl et al, 2014). 105 

Here as part of this special issue reporting results from the EU FP7 EcoFINDERs 106 

project coordinated soil sampling campaign, we seek to assess the bacterial communities in 107 

76 soils sampled across Europe in order to produce a soil bacterial map at the European 108 

scale, which can be validated against national scale datasets. We predict that soil pH will be 109 

the strongest correlate with measures of community biodiversity, which will then allow us to 110 

predict and spatially interpolate communities based on publicly available European scale 111 

point data on soil pH (from the LUCAS survey: Tóth et al, 2013). The predictive accuracy of 112 

this map will be assessed by comparing predictions with observed point data on bacterial 113 

communities collected with similar methods from over 1000 soils across Great Britain (Griffiths 114 

et al, 2011). We will also explore whether the predictions from this simple interpolated map 115 

can be improved upon, by spatially predicting communities based on existing soil pH maps 116 

produced using more advanced environmental correlation approaches (from soilgrids.org and 117 

ukso.org). 118 

 119 

2. Materials and Methods 120 

2.1. Sampling 121 

Bacterial communities were examined in soils sampled across the EU member states 122 

as part of the EcoFINDERs project “transect” sampling campaign, full details of which are 123 

prodived elsewhere in this issue (Stone et al, 2015). Briefly, a range of sites spanning a 124 

gradient of soil properties (principally pH, organic matter and texture), climatic zones, and 125 



land uses (grassland, arable, forest) were targeted for sampling following examination of EU 126 

wide datasets (see supplementary material for site locations, S1). Samples were collected at 127 

the end of summer 2012 according to standardised protocols to 5cm depth, and sent to a 128 

central processing lab for homogenisation and distributing to various partner labs for further 129 

analyses. In total eighty-two soils from 11 countries encompassing Arctic to Southern 130 

Mediterranean climes of which 76 are assessed in this study. Soil chemical determinations 131 

were also conducted by a single laboratory to provide measures of volumetric moisture 132 

content, pH (in water), texture, and total/organic carbon (C) and nitrogen (N) contents.  133 

2.2. DNA extraction and community analyses 134 

Total genomic DNA was extracted from all soil samples using a previously described 135 

DNA extraction procedure (Plassart et al., 2012). Briefly, 1g of soil was mixed at 70°C with a 136 

extraction buffer containing 100 mM Tris-HCl (pH 8), 100 mM EDTA (pH8), 100 mM NaCl, 137 

2% (w/v) polyvinylpyrrolidone (40 g mol-1) and 2% (w/v) sodium dodecyl sulphate. Proteins 138 

were precipitated from the supernatant with 1/10 volume of 3 M sodium acetate, before 139 

nucleic acid precipitation with isopropanol. DNA was further purified through 140 

polyvinylpolypyrrolidone (PVPP) Microbiospin minicolumns (BIORAD, Marnes-la-Coquette, 141 

France) and finally using the Geneclean Turbo kit (MP-Biomedicals, NY, USA).  142 

Bacterial communities were examined using TRFLP as described by Griffiths et al 143 

(2011) using the forward primer 63F (5′-CAGGCCTAACACATGCAAGTC-3′) labelled at the 144 

5′ end with D4 blue fluorescent dye and reverse primer 530R (5′-GTA TTA CCGCGG CTG 145 

CTG-3′). Amplifications were performed in 50 µl reactions under the following conditions: 146 

94⁰C for 90 s, followed by 35 cycles of 94⁰C for 45 s, 55⁰C for 1 min and 72⁰C for 3 min, 147 

followed by a final extension of 72⁰C for 10 min. Amplicons were then purified using the ZR-148 

96 DNA clean-up kit (Zymo research, Freiburg, Germany), prior to enzymatic digestion. 149 

Purified bacterial DNA was digested with MspI restriction enzyme (New England Biolabs Inc., 150 

Ipswich, MA, USA) at 37⁰C for 3 h. Fragment analysis was performed with a Beckman Coulter 151 



CEQ 2000XL capillary sequencer (Beckman Coulter Corporation, California, USA). Peak 152 

height data were analysed using GeneMarker software (Softgenetics, LLC, PA, USA). 153 

Relative abundances were calculated as the ratio between the fluorescence of each terminal 154 

restriction fragment (T-RF) and the total integrated fluorescence of all T-RFs. 155 

2.3. Statistical Analyses 156 

A site by taxon (TRF) relative abundance table derived from the TRFLP analyses was 157 

used to explore community relationships with environmental variables, and calculate 158 

community scores (ordination site scores and diversity estimates) using standard routines in 159 

the vegan library within the R package (R Core Development Team, 2005). Geostatistical 160 

calculations, manipulations and plots were also performed within R using the maptools, gstat, 161 

raster, and RColorBrewer libraries. Specifically, to produce the bacterial map we used the 162 

inverse distance distance weighted (IDW) interpolation method, on account of it’s simplicity 163 

and widespread application (Lam, 1983). The IDW method predicts a value at an unsampled 164 

location based on the weighted average of values at sampled point locations, with weights 165 

decreasing linearly with distance from that location. We used the idw function of the R library 166 

gstat to perform the interpolation, using leave one out cross validation to establish the 167 

optimum power parameter value (determining how much the weightings decrease with 168 

distance) and evaluate the overall performance of the interpolation with respect to predictive 169 

power. For both the IDW interpolative mapping, and the prediction contrasts with observed 170 

data from a national scale dataset, predictive power was evaluated by assessing the 171 

coefficient of determination (R2) and root mean square error (RMSE) between observed and 172 

predicted values. 173 

 174 

 175 

3. Results and Discussion 176 

3.1 Continental scale patterns of soil microbial communities 177 



NMDS ordinations revealed distinct clustering of sampled communities according to 178 

land use type (Figure 1). This was further confirmed following multivariate permutation tests 179 

using the anosim statistic (R = 0.28, P = 0.0001). Pairwise comparisons further revealed that 180 

bacterial communities in forest soils were most distinct from to arable and grass communities 181 

(R=0.54, and R=0.41 respectively, p<0.0001) with the largest differences in community 182 

structure consistently observed between forest and arable soils. Arable and grass 183 

communities were more similar, yet significant differences were still apparent despite the wide 184 

dispersion at the continental scale of sampling units (R=0.08, p<0.05). Bacterial communities 185 

were found to differ between countries (R = 0.13, P < 0.01). However, this effect could be 186 

predominantly attributed to the Swedish soil communities which were all sampled from forest 187 

sites and formed a distinct outgroup in the ordination (Figure 1b). When Swedish samples 188 

were excluded country of origin had no significant effect (bacteria R = 0.001, P = 0.46).  189 

Fitting of environmental variables to the ordination scores also confirmed that 190 

microbial communities sampled across Europe were strongly correlated with environmental 191 

gradients. The dominant five environmental conditions most strongly associated with 192 

microbial community structure differences are presented in Table 1. Generally, bacterial 193 

community differences were highly correlated with change in soil chemistry and nutrient 194 

status, with soil pH showing the strongest relationship, confirming that across large spatial 195 

scales the structuring of soil bacterial communities is largely predictable by common soil 196 

physicochemical parameters.  197 

These findings further highlight the difficulty in separating direct effects of land use on soil 198 

biota versus indirect effects, mediated by changes in soil abiotic properties. It is becoming 199 

increasingly apparent that none of these parameters are independent. Human land use is 200 

generally influenced by the local pedo-climatic context which determines the economic 201 

suitability of different land management options. The baseline pedo-climatic state will naturally 202 

create topsoils of distinct properties, which can be further modified by land use depending on 203 



the specific intervention. Different land uses are therefore often accompanied by distinct 204 

abiotic soil properties and consequently bacterial biodiversity, given the strong relationships 205 

between edaphic properties and soil bacterial communities. For instance, Scandinavian 206 

regions are characterised by cold conditions and acidic soils giving rise to more forest and 207 

less arable suitability. This in itself does not mean that soil bacterial communities are 208 

inherently geographically structured, nor that they are fundamentally driven by the land use 209 

of forestry, but is more a reflection of the natural pedo-climatic state which determines both 210 

the human land use and the soil biotic and abiotic properties. With respect to contrasts 211 

between arable and grassland habitats; whilst arable soils are generally defined by a relatively 212 

narrower set of soil properties (e.g high pH and low organic matter) it is possible for grasslands 213 

to possess similar properties, particularly if the grassland is part of a arable rotation. Such 214 

historical data is not available in this study and such specific contrasts are better addressed 215 

in locally focused long term experimental contrasts.   216 

3.2 Predictability and mapping of soil bacterial communities 217 

The site scores for bacterial communities were clearly strongly aligned along the first 218 

axis of the NMDS ordination which corresponds with a gradient of soil pH. This afforded the 219 

opportunity to extrapolate and predict communities over larger spatial scales using wider soil 220 

pH datasets. Such datasets are available across 23 EU member states from the LUCAS 221 

topsoil survey (Toth et al, 2013), which provides data on the percentage of coarse fragments, 222 

particle size distribution, pH, organic carbon, carbonate content, phosphorous content, total 223 

nitrogen content, extractable potassium content, cation exchange capacity and multispectral 224 

properties from approximately 20000 soils. We therefore sought to model the relationships 225 

between soil pH and bacterial communities from the present survey, and then predict 226 

community NMDS scores for the 20000 data points across the EU of soil pH to enable the 227 

production of EU wide maps of predicted soil biodiversity using simple interpolative 228 

approaches. 229 



The first step was to reliably model relationships between soil pH and the bacterial 230 

NMDS scores. Figure 2 shows the relationship observed between soil pH and the first axis 231 

bacterial community NMDS scores for the 76 soils assessed in this study. The relationship 232 

was visually assessed to be curvilinear and could be modelled with a simple second-degree 233 

polynomial (R2 = 0.93) of the equation:  234 

bacterial NMDSaxis1= -3.748 + 0.9188pH – 0.04954pH2 235 

To test the predictive power of the regression equation, we predicted the bacterial 236 

community NMDS axis 1 scores from a nationwide survey of over 1000 point measurements 237 

conducted across Great Britain using only the measured pH values as predictors 238 

(countrysidesurvey.org.uk/). Uniquely, this dataset also comprises bacterial TRFLP profiles 239 

(Griffiths et al 2011) therefore allowing us to independently test the predictive power of the 240 

regression equation on a different dataset. Despite several differences in methodologies (soil 241 

sampling depth, DNA extraction, taxonomic binning) the modelled relationships between soil 242 

pH and bacterial community ordination scores from less than 100 soils across Europe 243 

provided a reasonable prediction of the bacterial scores in over 1000 soils across Britain 244 

(Figure 3). It is noteworthy that the ordination axis scores are themselves arbitrary, and only 245 

denote the (dis)similarity between samples analysed at any one time. This fact makes the 246 

strong correlations between the EU wide and national scale datasets all the remarkable, and 247 

is perhaps testament to the strength and global ubiquity of the relationships between soil pH 248 

and bacterial communities, provided a sufficient range of soils are sampled.   249 

To map bacterial communities across the EU member states we then predicted the 250 

NMDS axis 1 ordination scores for the ~20000 soils sampled in the LUCAS survey based on 251 

pH measurements and the equation outlined above. The LUCAS datasets were downloaded 252 

subject to agreements from the JRC European Soil Portal (http://eusoils.jrc.ec.europa.eu/) 253 

and a map showing the sampled locations is provided in the supplementary material (S2). 254 

Predicted community scores were then mapped using inverse distance weighting 255 



interpolation. We firstly compared interpolative performance using different integer powers 256 

parameters (1-5), and the accuracy of predictions assessed by comparing the deviation from 257 

the measured data using a leave one out cross-validation procedure. The best performing 258 

interpolated map is shown in Figure 4. This was made using an IDW power parameter of 2 259 

which yielded the lowest root mean square error (RMSE) for predicting bacterial NMDS1 260 

scores (0.28), together with the highest precision with respect to the relationship between 261 

observed and predicted values (R 2=0.58). 262 

3.3 Features of the map 263 

The map reveals the broad types of bacterial communities found across Europe based 264 

on the strong relationships between soil bacterial biodiversity and soil pH. The low (negative) 265 

NMDS axis 1 scores reflect communities found in areas such as Scandinavia where acidic 266 

and organic rich soils develop due to climatic factors; whereas high values indicate 267 

communities found in more productive Southern circum-neutral pH soils, typically with lower 268 

organic matter. Areas of contrasting local variability can also be seen in certain regions, where 269 

geological factors such as differences in underlying parent material or topography cause local 270 

change in communities. 271 

To taxonomically interpret the features of the map we must firstly consider the 272 

“meaning” of the first axis ordination scores. The axis 1 ordination scores summarise 273 

differences in the broad taxonomic composition and relative abundance of taxa between 274 

samples. Additionally, in this study, the scores correlated positively with indices of diversity 275 

(Figure 5), with lower scores reflecting low taxonomic diversity. The specific change in 276 

abundance of different bacterial taxa across soil pH/diversity gradients has been well studied 277 

using sequencing (e.g see Lauber et al 2009; Rousk et al 2010; Griffiths et al, 2011) and can 278 

also be inferred to some extent from TRFLP analyses (some illustrative responses of 279 

dominant TRFLP peaks are shown the supplementary material, S3). To summarise these 280 

responses briefly, acidic and organic rich soils are notably dominated by distinct lineages of 281 



acidophilic acidobacteria, as well as alphaproteobacterial taxa. As pH increases over soil 282 

environmental gradients, the alphaproteobacteria become dominant, followed by other broad 283 

taxonomic groups such as other proteobacteria and the actinobacteria as pH nears neutrality.  284 

Neutral soils typically comprise a wider variety of different bacterial taxonomic groups 285 

of higher evenness (Griffiths et al, 2011); a phenomena which is at odds with the notion that 286 

agricultural soils (often neutral pH) are depauperate with respect to biodiversity (Spurgeon et 287 

al, 2013). Potential explanations for higher soil bacterial biodiversity in agricultural soils could 288 

be: i) more bacterial taxa exist at neutral pH, due to the requirements of intracellular pH 289 

homeostasis (Booth, 1985); ii) soil physical properties in mineral agricultural soils provide 290 

more microhabitats promoting evenness (e.g spatial isolation theories, Zhou et al, 2002); and 291 

(iii) mineral agricultural soils have less active populations meaning a high diversity of 292 

sensescent cells, or even extracellular DNA are being detected. We note also that several 293 

studies have reported increased dominance of certain lineages, despite higher phylogenetic 294 

diversity, in neutral soils resulting in declines in indices of diversity at higher pH (e.g Fierer et 295 

al, 2006). This is apparent to some extent in certain arable and grassland soils in Figure 5 296 

which appear to have a marked dominance of alphaproteobacterial TRF peaks, though the 297 

underlying causes of this have yet to be fully elucidated. Given the importance of these soils 298 

for agricultural production together with recent concerns over soil and food security, the 299 

specific controls of neutral-soil taxon abundances, and functional consequences of alterations 300 

in abundance, represents a key current knowledge gap. 301 

 302 

3.4 Map validation and contrasts with other mapping approaches 303 

In order to assess the accuracy of the EU bacterial map wide we contrasted the spatial 304 

predictions with observed national scale data from the British Survey. The interpolated map 305 

was firstly converted to a raster, and then the predicted NMDS1 scores extracted using the 306 

sample locations of the British dataset, prior to correlation with the observed scores (figure 307 



6a). Despite a lack of a good linear fit and a tendency for the spatial predictions to cluster 308 

near the overall mean, the interpolation performed reasonably well at predicting the NMDS 309 

community scores across Britain (RMSE=0.41, R2 = 0.29). Despite a lack of strong correlative 310 

relationships for lower pH communities, there was evidence that higher scoring (higher pH) 311 

community scores could be predicted to some extent. This map of bacterial biodiversity 312 

therefore gives a very broad overview of the extreme types of communities likely to be found 313 

in different geographic locations across Europe, but for Britain it is of limited use in spatially 314 

predicting more subtle differences in communities. Its predictive power is limited by its reliance 315 

on the locations of the sampled LUCAS topsoil data points, the design of which has an 316 

inherent bias towards agricultural lands (Toth et al 2013). Few samples were taken from large 317 

areas of Scottish uplands in the LUCAS survey which may be explain the poor relationships 318 

between predicted and observed community scores across Britain. The lack of comparable 319 

national scale “test” datasets comprising bacterial data, means we are unable to assess the 320 

predictive accuracy of the map for other countries.  321 

To assess whether the predictive accuracy could be enhanced by drawing on more 322 

advanced geostatistical predictions of soil pH, we next applied the pH-biodiversity transfer 323 

function to two existing soil pH maps: a recently published predictive map at the global scale 324 

(SoilGrids: soilgrids.org, Hengl et al 2014) and freely available maps of soil pH at the national 325 

scale from Britain (Countryside Survey data from ukso.org). Both these maps were 326 

constructed using geostatistical models applied to surveyed pH data to predict unknown 327 

values using wider landscape level datasets, using information such as land cover, parent 328 

material, climate etc. Maps were downloaded and rasterized where necessary, prior to 329 

extracting of pH values based on the GB survey coordinates.  330 

Using the detailed 1km resolution SoilGrids soil pH map offered some small 331 

improvements in predicting the national scale bacterial data (RMSE=0.39,  R2 = 0.36)  332 

particularly with respect to the acidic habitat scores (Figure 6b). However the predictions 333 



again were focused around the mean, and extreme scores were not particularly well 334 

estimated. It was notable that in inspecting the range of soil pH values predicted across the 335 

UK and comparing with known UK level data that the extreme values were particularly 336 

underestimated in the SoilGrids predictions (e.g predictions of pH 4 or pH 8 soils were over 337 

or underestimated respectively). Possible explanations could be related to i) difference in pH 338 

determination between the Countryside survey and EU wide LUCAS datasets; ii) 339 

undersampling of certain habitats at the EU scale; and iii) geo-statistical artefacts. It is 340 

impossible to entirely discount (i) as comparable samples are not available from both surveys, 341 

but a cursory inspection of the range of pH values for both datasets indicated there were no 342 

systemic differences in the range of pH measurements. With respect to ii) as already 343 

discussed, part of the reason for the poor fit on the negative side of the interpolated map is 344 

the lack of upland areas sampled in the Lucas survey – meaning the predicted pH for under 345 

sampled upland areas such as in Scotland would be higher than in reality. Whilst the SoilGrids 346 

predictions utilise global soil pH data in the model, the LUCAS dataset is also a large 347 

contributory dataset which could have a significant influence on the predictions. Finally with 348 

respect to geostatistical artefacts (iii), the predictive maps of pH provide a mean prediction 349 

based on a global model, which will always under or overestimate the higher or lower 350 

extremities of the pH range respectively. This could explain why the full range of NMDS1 351 

scores was not adequately reflected in the model predictions.  352 

The 1km resolution national scale pH map performed considerably better in predicting 353 

the range of community scores across the Britain (Figure 6c), with better coverage of the 354 

extreme ends of the scale, and a much better fit overall (RMSE=0.31, R2=0.60). However the 355 

entire gradient of scores was not well reflected, since here the predictive map was calculated 356 

based on modelled relationships between soil pH and categorical variables denoting land 357 

cover, along with continuous variables related to parent material. Therefore only a limited 358 

number of predicted pH categories are available in this map, constrained by the number of 359 



land cover classes. Again we observed larger predictive error for lower pH soil communities, 360 

which could relate to potentially weaker relationships between pH and available land cover 361 

classes in these habitats, or less influence of parent material in these generally more organic 362 

soils. Another possible reason for the larger relative error for lower scoring communities form 363 

acidic habitats could relate to landscape patchiness and the resolution of the maps. For 364 

instance, intensively managed parcels of land in the Britain are likely to comprise areas of 365 

greater than 1km2 which is the scale of the UKSO pH map. Human intensified landscapes will 366 

typically be more homogenous and of approximately neutral soil pH to favour plant production 367 

(either “naturally” or agriculturally driven). This enhances the probability that a mean value 368 

per km2 will reflect a pH measurement at any given point within that square. Conversely, 369 

marginal 1km2 land patches unfavourable for intensive agriculture will have a greater variety 370 

of habitats and so the predictive accuracy with respect to point measures is likely to be 371 

reduced.  372 

 373 

Conclusions 374 

This study characterised bacterial biodiversity and explored environmental correlates 375 

in a range of soils sampled across continental Europe. In agreement with previous global 376 

studies land use, climate and soil abiotic properties were strongly associated with changes in 377 

bacterial communities, with soil pH being the best single correlate. Ultimately these findings 378 

point to the general conclusion that broad characteristics of soil bacterial communities can be 379 

considered as a dependent soil state variable related to other soil properties (and to some 380 

extent human land use); which are ultimately controlled by the independent soil forming 381 

factors of climate, relief, parent material, and time (Jenny, 1941). These relationships 382 

therefore allow the global prediction of soil bacterial community features over large scales, 383 

and we present the first attempt to map bacterial communities across Europe along with a 384 

detailed evaluation of the predictions against observed data from national scale surveys of 385 



one of the EU member states. The map performed adequately in predicting community 386 

characteristics (ordination axis scores) albeit for opposing ends of the soil biotic/abiotic 387 

gradient, and we further  demonstrate how the map can be improved by making use of 388 

available predictive maps of soil pH, previously calculated using correlations with 389 

georeferenced data on  wider soil forming factors. In doing so we highlight the current 390 

limitations in soil property maps at different geographic scales, with national scale predictions 391 

outperforming global scale maps. 392 

 To avoid misinterpretation there are some notable caveats which we must stress with 393 

respect to the findings of this study and other large surveys of bacterial taxa utilising 16S 394 

rRNA amplicon approaches. Firstly when conducting such large scale studies, one 395 

necessarily focusses on broad patterns and, particularly in this study using a community 396 

profiling technique, broad taxonomic resolution. We therefore do not propose that the map in 397 

any way represents similarities between soils in terms of clonal or even species level 398 

composition, which may be more governed by local ecological or evolutionary processes (Cho 399 

and Tiedje, 2000). Additionally, it is be stressed that soil pH is not the sole driver of differences 400 

in bacterial communities, nor should any form of causation be inferred. For instance the role 401 

of plant inputs can also affect the relative abundances of taxa over relatively short timescales, 402 

with potentially important functional consequences for processes such as carbon cycling 403 

(Thomson et al, 2013).  404 

Ultimately these taxonomic limitations will be overcome with wider global adoption of 405 

sequencing approaches in soil monitoring networks which will likely enable environmentally 406 

driven predictive models of individual taxon abundances (Fierer et al, 2013), rather than using 407 

multivariate community estimates and relationships with well characterised soil biotic 408 

variables. Whilst field-scale resolution was not the purpose of this mapping exercise, we feel 409 

this should be a future ambition of global efforts to characterise soil biodiversity. Our study 410 

highlights the benefits of using advances geostatistical approaches for soil biodiversity 411 



mapping using high resolution remote sensed data. It is possible that similar approaches can 412 

be applied to other elements of soil biodiversity, including eukaryotes, given enhanced 413 

understanding of controlling environmental parameters. Such knowledge can be gained both 414 

by efforts to harmonise existing soil biodiversity datasets, but also by increased eukaryotic 415 

sampling in national surveys - a realistic possibility now with the availability of rapid molecular 416 

tools for eukaryotes (e.g Ramirez et al, 2014). Finally to conclude, our map identifies that 417 

predictions are only as good as the surveyed “real” data used to build models. Predictive 418 

accuracy will vary depending on the scale of the surveyed data (model inputs) and the spatial 419 

extent of the area we seek to predict. Global predictions at high spatial accuracy should 420 

therefore be the ultimate goal, which requires increased efforts to standardise and conduct 421 

soil biotic and abiotic surveillance at global scales. These advances will be facilitated by better 422 

spatial integration of distributed datasets (e.g. global harmonisation of localised climate, 423 

geological, remote sensed land cover, and soil datasets) and continued development and 424 

validation of mapping predictions against local surveyed data.  425 
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Soil Property r2 p  
       
pH 0.9054 0.001 *** 
Clay (%) 0.4173 0.001 *** 
organic  C_N_ratio 0.3596 0.001 *** 
Bulk density (g/cm3) 0.3501 0.001 *** 
moisture (ml/g) 0.2681 0.001 *** 
Organic C (%) 0.2624 0.001 *** 
WHC (ml/g) 0.2521 0.001 *** 
C (%) 0.2316 0.001 *** 
Total C_N ratio 0.1961 0.003 ** 
Silt (%) 0.1372 0.004 ** 
N (%) 0.1255 0.009 ** 
Sand (%) 0.0405 0.202  

 

 



Table 1. Relationships between soil microbial community ordination axis scores and soil 

physicochemical properties. Correlations between the NMDS ordination and environmental 

variables are denoted by r2 values. Significance (p) was determined by 999 permutations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. NMDS ordination of soil bacterial communities sampled across Europe. Soil pH was 

found to be the best linear fit to the NMDS ordination scores, and is identified in the plots by 

a colour gradient denoting the pH for each sample. Centroids are also shown representing 

the mean score per land use type. 

Figure 2. Relationship between soil pH and bacterial community NMDS first axis ordination 

scores from the 76 sampled soils. The second-degree polynomial fit is also displayed together 

with 95% prediction intervals. 

Figure 3. Using the pH-NMDS1 model determined from 76 soils across Europe to predict 

NMDS1 scores from >1000 soil pH measurements across Britain. The value for the 

predictions is shown on the y axis, whereas the x axis denotes the actual observed bacterial 

community scores from the study of Griffiths et al, 2011. The line shows the fitted least 

squares regression between the observed and predicted values (R2 = 0.8). 

Figure 4. Interpolated map showing predicted bacterial community ordination scores across 

EU member states. Colour scale indicates predicted first axis NMDS scores, with negative 



scores indicating acidic soils (bogs, acid grassland, upland woods etc) and positive scores 

indicating communities from more neutral pH soils (productive grassland, arable etc) 

Figure 5. Relationship between NMDS first axis scores for bacterial communities and 

univariate indices of diversity (line denotes a loess fit). Increases in NMDS scores are 

generally indicative of an increase in bacterial diversity. 

Figure 6. Validating spatially mapped predictions of bacterial NMDS scores against national 

scale survey data for Britain. In all plots the observed data are the actual community scores 

reported from over 1000 soils sampled across Great Britain (Griffiths et al 2011). Predicted 

community scores are based on the modelled relationships between bacterial communities 

and pH from the EcoFINDERs transect sampling fitted to different spatial estimates of soil pH: 

a) spatial interpolation of community scores predicted from EU wide point data on soil pH (this 

study); b)  geostatistical predictions of topsoil pH values at the global scale (soilgrids.org, 

Hengl et al, 2014); c) geostatistical predictions of topsoil pH values at the national scale 

(ukso.org, and see Henrys et al; 2014). Solid red lines show the fitted least squares regression 

between the observed and predicted values (with associated R2 displayed in the top right of 

each plot); and dashed lines display loess fits to illustrate deviations from the linear fit.  
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Figure 1. NMDS ordination of soil bacterial communities sampled across Europe. 
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Figure 3. Using the pH-NMDS1 model determined from 77 soils across Europe to predict NMDS1 scores from >1000 soil pH measurements across Britain.



−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

rig
Text Box
Figure 4. Interpolated map showing predicted bacterial community ordination scores across EU member states. 
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Figure 5. Relationship between NMDS first axis scores for bacterial communities and univariate indices of diversity 
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a) Mapped point data (this study)
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b) Global soil map (SoilGrids)
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c) UK soil map (UKSO)
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Figure 6. Validating the spatially mapped predictions of NMDS scores against national scale survey data for Britain. 


	Pages from N511260PPFront cover
	Pages from N511260PPTEXT

