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Summary 23 

Bumblebees are ecologically and economically important as pollinators of crop and wild plants, 24 

especially in temperate systems. Species, such as the buff-tailed bumblebee (Bombus terrestris), are 25 

reared commercially to pollinate high value crops. Their highly specific gut microbiota, characterised 26 

by low diversity, may affect nutrition and immunity and are likely to be important for fitness and colony 27 

health. However, little is known about how environmental factors affect bacterial community structure. 28 

We analyzed the gut microbiota from three groups of worker bumblebees (B. terrestris) from distinct 29 

colonies that varied in rearing and foraging characteristics: commercially reared with restricted 30 

foraging (RR); commercially reared with outside foraging (RF); and wild-caught workers (W). Contrary 31 

to previous studies, which indicate that bacterial communities are highly conserved across workers, 32 

we found that RF individuals had an intermediate community structure compared to RR and W types. 33 

Further, this was shaped by differences in the abundances of common OTUs and the diversity of rare 34 

OTUs present which we propose results from an increase in the variety of carbohydrates obtained 35 

through foraging.  36 

 37 

  38 
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Introduction 39 

Insects and other pollinators provide a vital ecosystem service to 87.5% of the world’s plant species 40 

(Ollerton et al., 2011) and demand for pollination services in crops is high (estimated global value of 41 

€153 billion; Gallai et al., 2009). As a consequence, there is an increasing awareness of the 42 

ecological and economic importance of such organisms. However, whilst demand for pollination 43 

services continues to rapidly increase, there is growing evidence for declines in pollinator populations 44 

(Biesmeijer et al., 2006; vanEngelsdorp et al., 2008; Aizen and Harder, 2009; Potts et al., 2010a; 45 

Potts et al., 2010b). Declines are likely driven by multiple factors including disease, pesticide use, 46 

host plant loss and changes in land management (Cameron et al., 2011; Dicks et al., 2013; Scheper 47 

et al., 2014). A link between the reduction of plant pollination, and a drop in pollinator diversity and 48 

abundance is also well established (Memmott et al., 2004; Biesmeijer et al., 2006; Albrecht et al., 49 

2012). An increasing human population will only intensify demands on wild and managed pollinator 50 

populations to meet future food security needs (Klein et al., 2007; Aizen et al., 2008). 51 

 52 

In temperate systems, eusocial bumblebees (Bombus spp.) are important and prolific plant 53 

pollinators. Some species are commercially managed to pollinate high value glasshouse and fruit 54 

crops (Klein et al., 2007; Leonhardt and Blüthgen, 2012). This practice is increasingly common, with 55 

between 30,000-60,000 bumblebee colonies per year being imported into the UK alone (Lye et al., 56 

2011). Ensuring the production of healthy bumblebee colonies will be vital to sustain the growing 57 

demand for their services (Pettis et al., 2012). There is therefore interest in how commercially reared 58 

bees may differ from wild types in terms of physiology, and how interactions between them may affect 59 

fitness (Otterstatter and Thomson, 2008). 60 

 61 

The insect gut is known to harbour a microbial community which is thought to aid host fitness through 62 

enhanced nutrition, immunity and colony health (Dillon and Dillon, 2004; Warnecke et al., 2007; 63 

Cariveau et al., 2014; Pernice et al., 2014). Recent studies suggest the Bombus gut bacterial 64 

community is predominately comprised of members from: Orbaceae (Gammaproteobacteria), 65 

Lactobacillaceae (Firmicutes), Neisseriaceae (Betaproteobacteria), Acetobacteraceae 66 

(Alphaproteobacteria), Bacteroidetes and Actinobacteria (Koch and Schmid-Hempel, 2012; Koch et 67 

al., 2013; Kwong and Moran, 2013; Cariveau et al., 2014). While much of the evidence suggests that 68 
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the gut microbiota of bumblebees are highly conserved and of relatively low diversity (Koch and 69 

Schmid-Hempel, 2011b; Martinson et al., 2011) it has been shown that detectable shifts in bumblebee 70 

gut bacterial diversity may occur in response to infection (Koch et al., 2012; Cariveau et al., 2014). 71 

How other environmental changes affect gut microbial community structure remains unexplored. 72 

 73 

Here, we utilized 16S rRNA gene targeted next generation sequencing techniques to analyze the gut 74 

microbiota from three groups of individual adult female bumblebees (Bombus terrestris) from distinct 75 

colonies that were: commercially reared with no outside (restricted) foraging (RR, n = 6), commercially 76 

reared but released for outside foraging (RF, n = 10) and field-caught workers collected from 77 

Buckinghamshire and the Isle of Wight, UK (W, n = 7).  Given the low diversity and highly specific 78 

microbiota reported previously, we adopted a null hypothesis that diversity and composition of B. t. 79 

audax host gut microbiota would not be influenced by rearing and foraging conditions. The current 80 

study aimed to establish whether gut microbiota responded to host foraging, i.e. does a commercially 81 

reared host, with controlled food resources (within colony standardised pollen and nectar solution) 82 

have a detectably different gut microbiota from that of wild populations. 83 

 84 

 85 

  86 
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Results and discussion 87 

Bacterial diversity and composition from whole gut samples was assessed using 16S rRNA gene 88 

targeted high-throughput sequencing. From 23 bee gut samples, a total of 2,465,708 sequence reads 89 

(mean ± SD per sample, 107204.7± 59212.6) were included in the final analysis and 373 distinct 90 

operational taxonomic units (OTUs) identified. The average numbers of bacterial sequence reads per 91 

sample were similar among the three groups: commercially reared but restricted to colony (RR), 92 

96,484 ± 55,741 (n = 6); commercially reared but with outside foraging (RF), 100,533 ± 53,812 (n = 93 

10); and wild-caught workers (W), 125,924 ± 64,867 (n = 7). The number of OTUs we identified is 94 

higher than that in studies applying traditional culture independent techniques - ranging from 9 to 146 95 

sequenced OTUs (Koch and Schmid-Hempel, 2011b; Martinson et al., 2011).Thus, the increased 96 

sampling depth through the application of next generation sequencing (NGS) appears to have 97 

captured more of the inherent gut microbial diversity. When compared to other insects guts (e.g up to 98 

726 OTUs were identified in the termite hind gut alone, Köhler et al., 2012), an overarching richness 99 

of 373 OTUs is relatively low, although comparable to that of the honey bee (Moran et al., 2012), 100 

suggesting that the bumblebee gut microbiome does indeed represent a low diversity, specialized 101 

community. 102 

 103 

It is expected that a microbial metacommunity would display a positive relationship between 104 

frequency and abundance of individual taxa (OTUs) from within its constituent communities (van der 105 

Gast et al., 2011). Consistent with this prediction, the abundance of individual bacterial OTUs, across 106 

all samples (Figure 1a), was significantly correlated with the number of individual gut sample 107 

communities that they occupied. Separating component taxa within a host microbiota into common 108 

and rare groupings reveals important aspects of taxa-abundance distributions (van der Gast et al., 109 

2011; van der Gast et al., 2014).  Here, we partitioned the OTUs into ‘common’ (defined as those 110 

present in the upper quartile of sample occupancy with >75% across all samples) and ‘rare’ 111 

groupings.  The 28 common OTUs accounted for 97.4% of the total sequence abundance while the 112 

rare group comprised the majority of the diversity (345 ‘rare’ OTUs). Similarly, Cariveau et al. (2014) 113 

determined that high abundance OTUs represented 98.9% of sequences from B. bimaculatus and B. 114 

impatiens gut microbiota samples.  115 

 116 
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Mean OTU richness in the whole microbiota was significantly higher within the RF group (121.5 ± 117 

10.4, mean ± SD) when compared to the other samples (RR, 97.2 ± 18.7; and W, 83.0 ± 2.1; Figure 118 

1b and Table S1).  The same significant pattern was reflected in the rare microbiota (RR, 71.2 ± 18.1; 119 

RF, 96.8 ± 9.8; and W, 57.4 ± 2.0), but not in the common microbiota which did not significantly differ 120 

between groups (RR, 26.0 ± 1.2; RF, 24.7 ± 1.11; and W, 25.6 ± 0.8; Figure 1b and Table S1). We 121 

therefore assert that observed patterns in richness are driven by compositional changes in the rare 122 

microbiota. This was confirmed by pair wise comparisons of turnover rates (number of taxa/OTUs 123 

eliminated and replaced; Figure 1c), where whole microbiota turnover between groups followed that of 124 

the rare microbiota comparisons. No turnover was observed between the common microbiota (Figure 125 

1c), however the common microbiota did contribute most to patterns of whole microbiota composition 126 

(Figure 1d). Bray-Curtis quantitative index similarity (SBC) revealed the whole microbiota to be highly 127 

similar to the corresponding common microbiota (mean SBC = 0.99 ± 0.01, n = 3 pair wise 128 

comparisons). Conversely, the rare microbiota was highly dissimilar between whole microbiota and 129 

corresponding rare microbiota (mean SBC = 0.04 ± 0.03), and were divergent between rare microbiota 130 

groups (mean SBC = 0.23 ± 0.15; Figure 1d).  131 

 132 

Analysis of the uniqueness and sample group allocation of OTUs (Figure 2) demonstrated that, in 133 

addition to the 28 common OTUs,  a further 102 OTUs (taxa) were shared across all treatments. 134 

These appear to be an integral part of the wild B. t. audax gut microbiota, and therefore likely to be 135 

retained across generations.  Interestingly, when looking at the allocation of rare OTUs the reared 136 

foraging group had the highest number unique of OTUs (75) when compared to the other sample 137 

group types (RR = 9, W =13). Further, none of the OTUs detected were shared solely between the 138 

RR and W groups, suggesting that although gut microbiota from commercially reared populations are 139 

distinct from wild populations, when allowed to forage a shift in microbiota from a commercially reared 140 

to wild pattern occurs. As such the RF group would represent a population with microbiota in flux, 141 

showing a pattern which shares both commercially reared and wild attributes. If this is the case it 142 

would be interesting to consider whether the RF gut microbiota population would fully transition to a 143 

wild type and how long such a transition would take.  Analysis of similarity (ANOSIM) tests give further 144 

weight to the patterns observed. While the microbiota (whole, common and rare) from RR and W 145 
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samples were significantly divergent (Table 1), the RF microbiota shared attributes with both the RR 146 

and W groups’ microbiota. 147 

 148 

In order to determine which OTUs contributed most to the observed shift in community abundance 149 

and composition similarity percentage (SIMPER) analysis was performed (Table 2). Representative 150 

OTUs commonly found within insect and hymenopteran guts were prevalent within the bumblebees 151 

studied here - including members of the Neisseriaceae, Orbaceae, Enterobacteriaceae, 152 

Lactobacillaceae, Pseudomonadaceae and Bifidobacteriaceae (Kosako et al., 1984; Babendreier et 153 

al., 2007; Novakova et al., 2009; Killer et al., 2010; Wilkes et al., 2011; Koch et al., 2013; Duron, 154 

2014; Engel et al., 2014; Killer et al., 2014b; Killer et al., 2014a). Two common microbiota group 155 

OTUs, identified as Snodgrassella alvi and Gilliamella apicola, contributed the most to the dissimilarity 156 

between groups.  Both have previously been found to be dominant members within honeybees and 157 

other bumblebee species (Koch and Schmid-Hempel, 2011a; Kwong and Moran, 2013). S. alvi had a 158 

higher relative abundance in the RR samples (52.1%) than both the RF (29.5%) and W (22.4%) 159 

samples. Conversely, G. apicola was more abundant in the wild samples (30.9%) than the reared (RR 160 

= 22.9% and RF = 17.9%). 161 

 162 

Analysis of the genomes of these organisms has suggested that they perform complementary roles 163 

within the bee gut. Kwong et al. (2014b) suggest that G. apicola is a saccharolytic fermenter, 164 

possessing the genes for pathways associated with carbohydrate metabolism, whereas S.alvi shows 165 

no evidence of these, instead possessing pathways involved in the metabolism of carboxylates. It 166 

appears that increases in G. apicola mean relative abundance in the wild bees represents a biological 167 

response to increased foraging (i.e, a wide range of pollen and nectar types) which contrasts with 168 

commercially reared bees, fed upon a single nectar source and restricted (irradiated) pollen. This is 169 

further supported by the presence of other OTUs which exhibited increases in relative abundances 170 

related to foraging. The common OTU identified as Arsenophonus nasoniae demonstrated an 171 

increase in abundance in favour of foraging ability (RR=0.02%, RF=6.1%, and W= 15.8%, Table 2).  A 172 

genomic study based upon Arsenophonus nasoniae indicated that this species contains intact 173 

pathways for carbohydrate metabolism (Darby et al., 2010). A common OTU identified as 174 

Fructobacillus also increased with foraging (RR = 0.02%, RF = 0.29%, W = 12.5%).  The genus 175 
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Fructobacillus is a group of fructophilic lactic acid bacteria that prefer fructose as a growth substrate 176 

and inhabit fructose-rich habitats, including bumble (Koch and Schmid-Hempel, 2011b) and honey 177 

bee guts (Endo and Salminen, 2013). Interestingly, there appeared to be role differences occurring 178 

within related taxa.  Members of the Lactobacillus genus are able to metabolise multiple carbohydrate 179 

types (Killer et al., 2014a; Kwong et al., 2014a); here a common OTU identified as Lactobacillus 180 

kunkeei increased in relative abundance with the ability to forage, whereas another common and 181 

distinct Lactobacillus OTU decreased (Table 2). Overall, wild foraging represents an increase in the 182 

range and diversity of pollen/nectar sources and therefore the bacteria able to process these 183 

additional carbohydrate types. 184 

 185 

Finally, canonical correspondence analysis revealed that variance in microbiota was explained by 186 

foraging, rearing and host weight (Table 3 and Figure S1). Undetermined variation could be explained 187 

by factors not measured here, for example infection with microbial parasites (e.g. Crithidia and Nosema) 188 

and colony age; both previously associated with differences in Bombus spp. gut communities (Koch et 189 

al., 2012; Cariveau et al., 2014).     190 

 191 

In eusocial bees common bacteria are often considered to be synonymous with indigenous/core host 192 

gut microbes and are most likely acquired through vertical transmission or within colony interactions 193 

(Powell et al., 2014).  In contrast, rare/non-core microbiota often contain members which are 194 

associated with non-host environments, and are most likely acquired though horizontal transmission 195 

(Cariveau et al., 2014). Within our study the rare bacteria shaped observed patterns in diversity. We 196 

suggest these detected changes are likely to be through low abundance organisms which have 197 

changed in response to host bees foraging on more diverse food resources, in addition to the 198 

horizontal acquisition of bacteria from the environment. In a recent study in honey bees it was found 199 

that the majority of transmission of gut bacteria was through within hive interactions, rather than 200 

environmental exposure (Powell et al., 2014). If this pattern holds true for bumblebees it would 201 

suggest that,  although the environment does undoubtedly serve as an important and variable 202 

reservoir for bacterial immigration, the existing gut microbiota has the capacity to adapt to new 203 

foraging resources.  204 

 205 
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Overall, we have shown that significant variation in microbiota can result from intraspecific differences 206 

in bumblebee rearing and foraging. Given the vital ecosystem services bumblebees provide in 207 

pollination of crop and native plants future work should focus on the temporal and functional 208 

significance of these shifts in bacterial diversity and composition, and any subsequent effect upon 209 

host health and fitness.  210 



10 
 

Experimental procedures 211 

Bumblebee samples  212 

Commercially reared (Biobest N.V., Westerlo, Belgium) mature female worker individuals of Bombus 213 

terrestris audax (Table S2) were collected after 26 days into the experiment from distinct colonies that 214 

were restricted to colony (RR, n = 6) or allowed to forage (RF, n = 10) in agricultural land near to the 215 

NERC Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK. Wild female worker individuals 216 

(W, n = 7) were collected in July 2009 from within agricultural landscapes on the Isle of Wight, UK (n 217 

= 3), and the Hillesden Estate, Buckinghamshire, UK (n = 4) as part of a previous study (Carvell et al., 218 

2012). Molecular microsatellite analysis data were examined, generated from a previous study 219 

(Carvell et al., 2012), to minimise probability of processing collected individuals from the same colony. 220 

Members of the reared restricted (RR) group were reared within laboratory conditions with a diet 221 

consisting of ‘Biogluc’ (a 66% commercial sugar solution) and fresh (frozen), gamma irradiated pollen, 222 

both supplied by Biobest N.V, Belgium. Members of the reared foraged group (RF) were treated 223 

identically to the lab reared group until introduction to the wild. At this point - in order to encourage 224 

foraging from the local agricultural landscape - no additional nutritional substitute was provided. RR 225 

and RF individuals were sampled during July and August 2013. 226 

 227 

DNA extraction and sequencing 228 

Whole guts from individual specimens (frozen at -80oC within 2 hours of collection) which had been 229 

commercially reared or captured in the wild, were used to extract microbiome DNA using the 230 

PowerSoil®-htp 96 Well Soil DNA Isolation Kit (Mobio Laboratories Inc., Carlsbad, CA), under the 231 

manufacturers recommended protocol.  In addition, PCR negative controls consisting of extraction 232 

and PCR blanks were also processed and likely kit contaminants removed from analysis (Salter et al., 233 

2014).  Approximately 20-30 ng of template DNA was amplified using Q5® high-fidelity DNA 234 

polymerase (New England Biolabs, Hitchin, UK) each with a unique golay barcoded primer. After an 235 

initial denaturation step at 98 ºC  for 2 min, individual PCR reactions employed 25 cycles of an initial 236 

30 sec, 98ºC denaturation step, followed by annealing phase for 30 sec at 53ºC, and final extension 237 

step lasting 90 secs at 72 ºC. All reactions employed a final extension step of 5 min at 72ºC. Primers 238 

based upon the universal primers 27F (5’- CCATCTCATCCCTGCGTGTCTCCGACTCAG) and 338R 239 

(5’- GCTGCCTCCCGTAGGAGT) were adapted to include ion torrent linker, golay barcode (Whiteley 240 
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et al., 2012) and spacer sequences (Table S2). An amplicon library consisting of ~400 bp amplicons 241 

spanning the V1-V2 hypervariable regions of the 16S rRNA gene was generated from gel purified 242 

pooled products of 4 replicate PCR reactions, per sample. Quantification was performed on an Agilent 243 

2200 TapeStation system and an equimolar mix of PCR products was prepared and diluted to 20pM 244 

in dH20. This library was sequenced using an Ion Torrent Personal Genome Machine (Life 245 

Technologies, Paisley, UK) with a 316 chip.  246 

 247 

Sequence analysis 248 

The Mothur sequencing analysis platform was used to analyse the resulting data (Schloss et al., 249 

2009; Schloss et al., 2011). Sequence quality checks included the removal of failed reads, low-quality 250 

ends, tags and primers. Further, sequences were aligned against the Mothur SILVA reference 251 

bacterial database and any unaligned sequences that included ambiguous base calls and/or 252 

homopolymers longer than 8 bases were also eliminated. Finally, chimeras were identified and 253 

discarded through Mothur using the UCHIME algorithm (Edgar et al., 2011).  The resultant alignment 254 

was used to assemble operational taxonomic unit (OTU) clusters at 96% identity, through distance 255 

measures (Schloss and Handelsman, 2005, 2006). Taxonomic identity of these OTUs was assigned 256 

using the default settings with the mothur RDP reference database. As an additional measure the 257 

identity of reference sequences from key OTUs was corroborated using the NCBI’s BLASTN program. 258 

OTUs identified in negative controls were removed from further analysis (Salter et al., 2014). The raw 259 

sequence data reported in this study have been deposited in the European Nucleotide Archive under 260 

study accession number ERP007145 and sample accession number ERS557783. The relevant 261 

barcode information for each sample is shown in Table S2. 262 

 263 

Statistical analysis 264 

Operational taxonomic units (OTUs) were partitioned into common and rare microbiota groups using a 265 

modification of the method previously described (van der Gast et al., 2011; van der Gast et al., 2014). 266 

Based on a significant positive distribution-abundance relationship, the persistent and abundant 267 

common OTUs were defined as those in more than 75% of all samples, while all other OTUs falling 268 

outside of the upper quartile were considered to be rare. Richness (S*) was used as previously 269 

described (Rogers et al., 2013). It is known that pair wise comparisons will be affected by large 270 
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differences in sample size (Gihring et al., 2012). Therefore, S* was calculated with a uniform re-271 

sample size (to match the smallest sequence size in each microbiota group [whole, common, and 272 

rare]) following 1000 iterations in each instance and performed in R version 3.1.1 (Oksanen et al., 273 

2013; The R Development Core Team, 2013) 274 

 275 

Taxa turnover between consecutive samples was measured using the method described by Brown 276 

and Kodric-Brown (1977). Turnover was defined as: t = b+ c / S1 + S2.  Where b = the number of 277 

OTUs present only in the first sample; c = the number of OTUs present only in the second sample; S1 278 

= the total number of OTUs in the first sample; and S2 the total number of OTUs in the second 279 

sample (Brown and Kodric-Brown, 1977). Two-sample t-tests, regression analysis, coefficients of 280 

determination (r2), residuals and significance (P) were calculated using Minitab software (version 16, 281 

Minitab, University Park, PA, UK). The Bray-Curtis quantitative index of similarity and subsequent 282 

average linkage clustering of community profiles was performed using PAST (Paleontological 283 

Statistics, version 3.01) program, available from the University of Oslo 284 

(http://folk.uio.no/ohammer/past).  Analysis of similarity (ANOSIM) and similarity of percentages 285 

analysis (SIMPER) were performed using the PAST (version 3.01). The Bray-Curtis quantitative index 286 

of similarity was used as the underpinning community similarity measure for both ANOSIM and 287 

SIMPER analyses. Canonical correspondence analysis (CCA) was used to relate the variability in the 288 

distribution of microbiota between groups to environmental factors. Environmental variables that 289 

significantly explained variation in the gut microbiota were determined with forward selection (999 290 

Monte Carlo permutations; P<0.05) and used in CCA. CCA analyses were preformed in PAST 291 

(version 3.01) as previously described (Hazard et al., 2013). 292 

 293 

 294 
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Figure and Table legends 515 

Figure 1 Comparisons of community characteristics between bee groups. (a) Distribution and 516 

abundance of OTUs from bee gut microbiota samples.  Given is the number of samples for which 517 

each bacterial taxon was observed to occupy, plotted against the mean abundance across all 518 

samples (n = 23, r2 = 0.68, F1, 371 = 787.6, P < 0.0001).  Common OTUs were defined as those that 519 

fell within the upper quartile (dashed lines), and rare OTUs defined as those that did not. (b) Mean 520 

OTU richness of whole, common and rare microbiota within the reared restricted (RR), reared foraged 521 

(RF) and wild (W) bee groups. Asterisks denote significant differences in comparisons of diversity at 522 

the P < 0.05 level determined by two-sample t-tests (t-test summary statistics are given in Table S1). 523 

(c) Taxa turnover within whole (solid squares), common (solid circles) and rare (open circles) 524 

microbiota between sample groups. (d) Dendrogram of similarity between groups partitioned into the 525 

whole (W), common (C) and rare (R) microbiota. Metacommunity profiles were compared using the 526 

Bray-Curtis quantitative index of similarity and unweighted pair-group method using arithmetic mean 527 

(UPGMA).   528 

 529 

Figure 2 Unique and shared OTUs between groups. Values given within circles represent, unique 530 

OTUs to the reared restricted (RR) group, reared foraged (RF), and wild (W) groups. Values given in 531 

overlapping regions correspond to the number of OTUs shared between two given groups. Central 532 

overlapping region corresponds to OTUs shared across all group types inclusive of the 28 common 533 

OTUs. The arrow represents direction of proposed community transition from commercially reared to 534 

wild type microbiota. 535 

 536 
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Figure 1 539 

 540 

 541 



19 
 

Figure 2 542 

  543 



20 
 

Table 1 Analysis of similarity (ANOSIM) of whole, common, and rare microbiota between reared 544 

restricted (RR), reared foraged (RF), and wild (W) bee groups.  ANOSIM test statistic (R) and 545 

probability (P) that two compared groups are significantly different at the P < 0.05 level (denoted with 546 

asterisks) are given in the lower and upper triangles, respectively. ANOSIM R and P values were 547 

generated using the Bray-Curtis measure of similarity.  548 

 549 
 550 

Whole RR RF W 
RR - 0.990 0.008* 
RF -0.177 - 0.832 
W 0.295 -0.085 - 

Common RR RF W 
RR - 0.992 0.009* 
RF -0.177 - 0.869 
W 0.298 -0.092 - 

Rare RR RF W 
RR - 0.107 0.01* 
RF 0.219 - 0.266 
W 0.664 0.129 - 

 551 
 552 
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Table 2  Similarity of percentages (SIMPER) analysis of bacterial community dissimilarity (Bray-Curtis) between Reared Restricted (RR), Reared Foraged (RF), and 554 

Wild (W) sample group whole microbiota. Given is mean % abundance of sequences for operational taxonomic units across the samples each was observed to 555 

occupy and the average dissimilarity between samples ((RR vs. RF) = 58% and (RR vs. W) = 59%, (RF vs. W) = 67%). Percentage contribution is the mean 556 

contribution divided by mean dissimilarity across samples.  The list of OTUs is not exhaustive so cumulative % value does not sum to 100%. All OTUs listed belong 557 

to the common microbiota. Given the length of the ribosomal sequences analyzed, OTU identities should be considered putative. 558 

 559 

   % Mean abundance    
Class Family Taxon name RR RF W Av. dis. Cont% Cuml. % 
Betaproteobacteria Neisseriaceae Snodgrassella alvi 99% 52.1 29.5 22.4 16.16 26.19 26.19 
Gammaproteobacteri
a Orbaceae Gilliamella apicola 99% 22.3 17.9 30.9 9.50 15.38 41.57 
Gammaproteobacteri
a Enterobacteriaceae Arsenophonus nasoniae 99% 0.02 6.06 15.8 6.84 11.08 52.65 
Flavobacteriia Flavobacteriaceae Flavobacterium 83% 0.00 9.31 7.76 5.39 8.74 61.39 
Bacilli Lactobacillaceae Lactobacillus 91% 6.72 7.70 1.84 4.31 6.98 68.37 
Bacilli Leuconostocaceae Fructobacillus 100% 0.02 0.29 12.5 4.18 6.78 75.15 
Gammaproteobacteri
a Enterobacteriaceae Yokenella 98% 7.44 6.04 0.25 4.03 6.52 81.67 
Bacilli Lactobacillaceae Lactobacillus kunkeei 100% 0.17 4.63 3.78 2.86 4.63 86.31 
Bacilli Enterococcaceae Vagococcus 100% 4.47 3.66 0.05 2.50 4.04 90.35 
Gammaproteobacteri
a Streptococcaceae Lactococcus 98% 0.12 4.92 0.06 1.92 3.11 93.46 
Gammaproteobacteri
a Pseudomonadaceae Pseudomonas 100% 2.66 2.27 0.01 1.53 2.48 95.93 
Actinobacteria Bifidobacteriaceae Bombiscardovia coagulans 98% 1.06 1.73 0.87 0.94 1.52 97.46 
Bacilli Enterococcaceae Enterococcus 100% 0.98 1.29 0.04 0.68 1.11 98.56 
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Table 3 Canonical correspondence analyses (CCA) for determination of percent variation in the whole, 561 
common, and rare microbiota between the three subject groups by environmental variables significant at the 562 
P < 0.05 level.  CCA biplots are given in Figure S1. 563 

 564 

  Whole  Common  Rare  
  % variance P % variance P % variance P 
Foraging 8.44 0.001 8.45 0.001 6.55 0.001 
Rearing 7.93 0.002 7.93 0.001 10.74 0.001 
Host weight 3.10 0.002 2.76 0.001 10.25 0.001 
Undetermined 80.53 - 80.86 - 72.46 - 

 565 

  566 
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Figure S1 567 

 568 

 569 
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Table S1 Two-sample t-tests comparing mean whole, common, and rare microbiota richness between 570 
reared restricted (RR), reared foraged (RF), and wild (W) bee cohorts.  Two-sample t-test statistic (t) and 571 
significance (P) that richness between two compared groups is significantly different at the P < 0.05 level 572 
(denoted with asterisks) are given in the lower and upper triangles, respectively.  573 
 574 

Whole RR RF W 
RR - 0.027* 0.125 
RF 2.91 - 0.0001* 
W 1.85 11.45 - 

Common RR RF W 
RR - 0.054 0.499 
RF 2.18 - 0.07 
W 0.71 1.96 - 

Rare RR RF W 
RR - 0.019* 0.122 
RF 3.2 - 0.0001* 
W 1.86 12.33 - 

 575 
 576 

 577 
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Table S2 Sample details and barcodes used with their associated samples are given below. 579 

Sampl
e Origin 

Foraged (F) 
or 

 Restricted 
(R) Geography 

Total wet weight 
(g) 

Gut wet weight 
(g) Barcode Sequence 

RR1 
Commercially 
reared R n/a 0.175 0.01 GATCTGCGATCC 

RR2 
Commercially 
reared R n/a 0.194 0.017 AGTCGTGCACAT 

RR3 
Commercially 
reared R n/a 0.166 0.012 CGAGGGAAAGTC 

RR4 
Commercially 
reared R n/a 0.233 0.06 CAAATTCGGGAT 

RR5 
Commercially 
reared R n/a 0.207 0.017 AGATTGACCAAC 

RR6 
Commercially 
reared R n/a 0.1512 0.016 

AGTTTACGAGCT
A 

RF1 
Commercially 
reared F Wallingford 0.251 0.04 CAGCTCATCAGC 

RF2 
Commercially 
reared F Wallingford 0.308 0.036 CAAACAACAGCT 

RF3 
Commercially 
reared F Wallingford 0.277 0.042 GCAACACCATCC 

RF4 
Commercially 
reared F Wallingford 0.176 0.034 GCGATATATCGC 

RF5 
Commercially 
reared F Wallingford 0.192 0.032 GTATCTGCGCGT 

RF6 
Commercially 
reared F Wallingford 0.15 0.034 GCATATGCACTG 

RF7 
Commercially 
reared F Wallingford 0.148 0.028 CAACTCCCGTGA 

RF8 
Commercially 
reared F Wallingford 0.172 0.01 TTGCGTTAGCAG 

RF9 
Commercially 
reared F Wallingford 0.143 0.014 TACGAGCCCTAA 

RF10 
Commercially 
reared F Wallingford 0.286 0.025 ATCACCAGGTGT 

W1 Wild F Hillesden 0.187 0.017 CGAGCAATCCTA 

W2 Wild F Hillesden 0.196 0.011 TAATACGGATCG 

W3 Wild F Hillesden 0.261 0.029 CATTCGTGGCGT 

W4 Wild F 
Isle of 
Wight 0.339 0.03 TCCCTTGTCTCC 

W5 Wild F 
Isle of 
Wight 0.162 0.026 ACGAGACTGATT 

W6 Wild F 
Isle of 
Wight 0.22 0.022 GCTGTACGGATT 

W7 Wild F Hillesden 0.279 0.03 TGTGAATTCGGA 
 580 
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