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Abstract. We study the Fredholm properties of Toeplitz operators with bounded symbols of

vanishing mean oscillation in the complex plane. In particular, we prove that the Toeplitz operator

with such a symbol is Fredholm on a standard weighted Fock space if and only if the Berezin

transform of the symbol is bounded away from zero outside a sufficiently large disk in the complex

plane. We also show that the Fredholm index of the Toeplitz operator can be computed via the

winding of the symbol along a sufficiently large circle. We finish by considering Toeplitz operators

with matrix-valued symbols.

1. Introduction

Toeplitz operators Tf form one of the most important classes of nonselfadjoint
operators and it is remarkable that so much can be said about their spectral prop-
erties. In Hardy spaces Hp of the unit circle, each Toeplitz operator has a simple
representation as an infinite matrix constant along the parallels to its main diagonal;
in particular, the (i, j)-entry of Ta is given by the Fourier coeffient ai−j of the measur-
able function a. In general, such representations do not exist for Toeplitz operators
acting on other function spaces, such as Bergman spaces Ap of the unit disk D and
Fock spaces F p

α of the entire complex plane C.
Our focus here is on the Fredholm properties of Toeplitz operators Tf on F p

α,
including the computation of the index formula and descriptions of the essential
spectrum in terms (of the Berezin transform f̃) of the bounded symbol f that gen-
erates Tf . In particular, we generalize the results of Berger and Coburn [3] and
Stroethoff [17] on the essential spectra of Toeplitz operators on the unweighted Fock
space F 2 with bounded symbols f for which the corresponding Hankel operator Hf

is compact; that is, we show that for f ∈ L∞ ∩ VMO1

(1) σess(Tf ) =
⋂

R>0

cl f̃(C \RD),

where clX denotes the closure of the set X and VMO1 stands for the functions of
vanishing mean oscillation defined below. We also observe that

(2) {f ∈ L∞ : Hf is compact} = L∞ ∩ VMO1,

which was proved in [3, 17, 19] for Hankel operators on the Fock–Hilbert spaces F 2
α.
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The importance of Fredholm theory, as a fundamental part of spectral theory,
stems from the role it plays in (global) analysis, many other parts of mathematics
and various applications. The study of the Fredholm properties of Toeplitz operators
dates back to the 1950s when Hartman and Wintner showed that the essential range
of a bounded symbol a : ∂D → C is contained in the essential spectrum of Ta acting
on the Hardy–Hilbert space H2. Since then there has been a steady increase in
the study of spectral properties of Toeplitz operators on Hardy spaces and Bergman
spaces, and in particular there is a good understanding of their spectral properties;
for example, geometric descriptions of the spectra and essential spectra of Toeplitz
operators have been obtained for several classes of symbols, such as continuous,
piecewise continuous, (locally) sectorial, (semi) almost periodic, and Fisher–Hartwig
symbols.

The situation regarding Toeplitz operators on Fock spaces is very different. While
in the last ten years a considerable effort has been devoted to the study of bound-
edness, compactness and Schatten class properties of Toeplitz and Hankel operators
on Fock spaces, see [10, 11, 12, 13, 14, 15, 16, 19], much less attention has been paid
to the other important properties of these operators in the setting of Fock spaces. In
fact, there are only two articles, both published more than two decades ago, which
deal with the Fredholm properties of Toeplitz operators acting on the standard Fock
space F 2, see [3, 17], and one recent work in the other (weighted) Fock spaces F p

α;
see [7]. The understanding of the Fredholm properties of Toeplitz operators in Hardy
and Bergman spaces is significantly superior and we only refer to [5] for Hardy spaces
and [18] for the Bergman space, which are the two leading monographs on the subject
of Toeplitz operators and their Fredholm properties in these two function spaces.

Our goal is to improve the level of understanding of Fredholm theory of Toeplitz
operators, review some known results that may be useful for further advances, and
list open problems. We hope this will stimulate further research into Fredholm theory
in Fock spaces and lead to discoveries of new symbol classes for which meaningful
criteria for Fredholmness can be established as in Hardy and Bergman spaces. Our
main results and their proofs are given in Section 4.

2. Preliminaries

For α > 0 and 1 ≤ p < ∞, we write Lp
α = Lp(C, dµpα/2) for the space of Lebesgue

measurable functions with respect to the Gaussian measure

(3) dµα(z) =
α

π
e−α|z|2dA(z),

where dA is the standard area measure on the complex plane. Obviously, we have
f ∈ Lp

α if and only if the function f(z)e−α|z|2/2 is in Lp(C, dA). Also observe that for
f ∈ Lp

α,

(4) ‖f‖pp,α =
pα

2π

ˆ

C

|f(z)|p dµpα/2(z) =
pα

2π

ˆ

C

|f(z)|pe− pα

2
|z|2 dA(z).

The standard weighted Fock space F p
α is defined by

(5) F p
α = {f ∈ Lp

α : f is entire}.
We note that each Fock space F p

α is a closed subspace of Lp
α and hence itself a Banach

space. If 0 < p < q < ∞, then F p
α ⊂ F q

α and

(6) ‖f‖q,α ≤ (q/p)1/q‖f‖p,α
for f ∈ F p

α (see Theorem 2.10 of [19]).
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We write F p for the standard (unweighted) Fock spaces F p
1/2. We say that f ∈ L∞

α

if f is Lebesgue measurable on C and

(7) ‖f‖∞,α = ess sup
z∈C

|f(z)|e−α
2
|z|2 < ∞.

The Fock space F 2
α is a Hilbert space with inner product given by

(8) (f, g)α =

ˆ

C

f(z)g(z) dµα(z).

By the Riesz representation theorem, for w ∈ C, there is a unique function Kw in
F 2
α such that

(9) f(w) = (f,Kw) for all f ∈ F 2
α.

The function Kα(z, w) = Kw(z) is called the reproducing kernel of F 2
α. For z ∈ C,

we define

(10) kz(w) = kz,α(w) = kα(w, z) =
K(w, z)√
K(z, z)

,

which is called the normalized reproducing kernel function at z. It is well known
that ‖kz‖p,α = 1 for all z ∈ C and 1 ≤ p < ∞. Note that the reproducing kernel
Kα(z, w) of F 2

α has the explicit form

(11) Kα(z, w) = eαzw̄ and so kz(w) = eαz̄w−α
2
|z|2.

We denote by Pα the orthogonal projection of L2
α onto F 2

α . The projection Pα can
be expressed as the following integral operator

(12) Pf(z) =

ˆ

C

Kα(z, w)f(w) dµα(w)

for z ∈ C. For any α > 0 and 1 ≤ p ≤ ∞, the integral operator Pα is a bounded
projection of Lp

α onto F p
α; the boundedness in the endpoint cases is in stark contrast

with the situation in Hardy and Bergman spaces.
For f ∈ L∞, α > 0, and 1 < p < ∞, we define the Toeplitz operator Ta : F

p
α → F p

α

and the Hankel operator Ha : F
p
α → Lp

α by

(13) Taf = P (af) and Haf = (I − P )(af)

for f ∈ F p
α. Clearly, Ta and Ha are bounded linear operators, and

(14) Taf(z) =

ˆ

C

Kw(z)a(w)f(w) dµα(w)

for z ∈ C. We only deal with Toeplitz and Hankel operators with bounded symbols
and only consider them on the Fock spaces F p

α with 1 < p < ∞. Some references are
given for unbounded symbols and generalized Fock spaces in the next section.

In order to derive useful formulas for Toeplitz and Hankel operators at the kernel
function, we define three analytic self-maps of the complex plane. For λ ∈ C, set

(15) tλ(z) = z + λ, τλ(z) = z − λ, ϕλ(z) = λ− z.
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The mapping tλ is called the translation by λ, and clearly τλ = t−λ = t−1
λ and

ϕ−1
λ = ϕλ. The following useful formulas follow from a change of variables:

ˆ

C

|f ◦ tλ(w)|p dµpα/2(w) =
pα

2π

ˆ

C

|f(w + λ)|p e− pα

2
|w|2 dA(w)

=
pα

2π

ˆ

C

|f(z)|p e− pα

2
|z−λ|2 dA(z)

=
1

‖Kλ‖pp,α

ˆ

C

|f(z)|p |Kλ(z)|p dµpα/2(z)

=

ˆ

C

|f(z)|p |kα(z, λ)|p dµpα/2(z).

(16)

For λ ∈ C, using (11), we get

Kz(w) = Kz(λ)Kz(w − λ) = Kλ(z)Kz−λ(w − λ)
Kλ(w)

Kλ(λ)
,

and further, using (16),

TfKλ(z) =

ˆ

C

Kz(w)f(w)Kλ(w) dµα(w)

=

ˆ

C

Kλ(z)Kz−λ(w − λ)
Kλ(w)

Kλ(λ)
f(w)Kλ(w) dµα(w)

= Kλ(z)

ˆ

C

|kλ(w)|2Kz−λ(w − λ)f(w) dµα(w)

= Kλ(z)

ˆ

C

f(tλ(w))Kz−λ(w) dµα(w) = Kλ(z)P (f ◦ tλ)(z − λ)

and Tfkλ(z) = kλ(z)P (f ◦ tλ)(z − λ). Therefore, for f ∈ L∞ and λ ∈ C,

(17) Tf (Kλ) = KλP (f ◦ tλ) ◦ τλ
and

(18) Hf(Kλ) = Kλ(f − P (f ◦ tλ) ◦ τλ).
Similarly,

(19) Tfkλ = kλP (f ◦ ϕλ) ◦ ϕλ,

which will be used later together with the pointwise estimate

(20) |P (f ◦ ϕλ)(z)| ≤ const e
α
4
|z|2

for z ∈ C (see Lemma 6.25 of [19]).

3. Boundedness and compactness

In this section we study the fundamental properties of Toeplitz and Hankel oper-
ators that are needed in the study of their Fredholm theory. In particular, we recall
some results on their boundedness and compactness in F 2

α, and then generalize some
of the results to the other Fock spaces F p

α.
First, it is clear that if the symbol f is in L∞, then both the Toeplitz operator

Ta and the Hankel operator Ha are bounded on F p
α , and it is easy to see that

‖Tf‖ ≤ ‖P‖‖f‖∞ and ‖Hf‖ ≤ ‖P‖‖f‖∞.

For unbounded symbols and measures as symbols, see [15].
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The following result of [2] provides a complete characterization of compact Toeplitz
operators on F p

α with bounded symbols. The characterization is given in terms of

the Berezin transform f̃ of the symbol f defined by

f̃(z) =

ˆ

C

|kz(w)|2f(w) dµα(w) =
α

π

ˆ

C

f(w)e−α|z−w|2 dA(w)

=

ˆ

C

f(z ± w) dµα(w).

(21)

For Toeplitz operators on the Fock space F 2 with symbols in BMO1, see [6], and for
operators on unweighted Fock spaces F p with 0 < p < ∞, see [9].

Theorem 1. Let f ∈ L∞, 1 < p < ∞ and α > 0. Then Tf is compact on F p
α if

and only if f̃ vanishes at infinity.

Proof. See [2]. �

The following alternate characterization for Toeplitz operators on F 2 was proved
in [17]. We generalize it to the other values of p.

Theorem 2. Let f ∈ L∞, 1 < p < ∞ and α > 0. Then the following conditions

are equivalent:

(a) Tf is compact on F p
α;

(b) ‖P (f ◦ tλ)‖p,α → 0 as |λ| → ∞.

Proof. Suppose that Tf is compact on F p
α. If g is a polynomial, then

(g, kλ) =

ˆ

C

g(z)kλ(z) dλα(z) = Kλ(λ)
−1/2

ˆ

C

g(z)Kλ(z) dλα(z) =
g(λ)

e
α
2
|λ|2

→ 0

as |λ| → ∞. Therefore, since the polynomials are dense in F p
α (see [19, Proposi-

tion 2.9]), it follows that kλ → 0 weakly as |λ| → ∞, and hence ‖Tfkλ‖p → 0 as
|λ| → ∞. Using (17), we get

‖Tfkλ‖pp,α =

ˆ

C

|kα(z, λ)|p|P (f ◦ tλ)(τλ(z))|p dµαp/2(z)

=

ˆ

C

|P (f ◦ tλ)(w)|p dλαp/2(w) = ‖P (f ◦ tλ)‖pp,α,

where we also used a change of variables according to (16). Thus, ‖P (f ◦ tλ)‖p,α → 0
as |λ| → ∞.

Suppose that (b) holds. Then, using (17), we have

|f̃(λ)| = |〈Tfkλ, kλ〉α| ≤ ‖Tfkλ‖p,α‖kλ‖p′,α = ‖P (f ◦ tλ)‖p,α → 0,

where 1/p+ 1/p′ = 1. By the previous theorem, Tf is compact on F p
α . �

A similar result holds for Hankel operators as seen in the following theorem,
which was proved in [17] for Hankel operators from F 2 to L2 and in [19] for Hankel
operators on F 2

α to L2
α.

Theorem 3. Let f ∈ L∞ and α > 0. Then the following conditions are equiva-

lent:

(a) Hf : F
2
α → L2

α is compact;

(b) ‖f ◦ tλ − P (f ◦ tλ)‖2,α → 0 as |λ| → ∞.
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As mentioned in [17], when Hankel operators are acting on F 2, the equivalence
of (a) and (b) in the following theorem was obtained in [3], while condition (d) was
proved in [4]. An elementary proof of the theorem was given in [17].

Theorem 4. Let f ∈ L∞ and α > 0. Then the following statements are equiv-

alent:

(a) Hf : F
2
α → L2

α is compact;

(b) Hf̄ : F
2
α → L2

α is compact;

(c) ‖f ◦ tλ − f̃(λ)‖2,α → 0 as λ → ∞;

(d) |̃f |2(λ)− |f̃(λ)|2 → 0 as λ → ∞.

One remarkable difference between Fock, Bergman and Hardy spaces is that the
equivalence of (a) and (b) in the preceding theorem is only true in Fock spaces. This
is often explained by the lack of bounded analytic functions in F 2

α.
We will study the Fredholm properties of Toeplitz operators with bounded sym-

bols that satisfy an additional condition on their (mean) oscillation at infinity. These
types of conditions are intimately related to the boundedness and compactness prop-
erties of Hankel operators. For r > 0, define the local oscillation of a continuous
function f : C → C at z ∈ C by

ωr(f)(z) = sup
w∈B(z,r)

|f(z)− f(w)|.

We say that f is of bounded oscillation and write f ∈ BOr if f is continuous and
ωr(f) is bounded on C.

We define the mean average f̂r(z) of a locally integrable function f over B(z, r)
by

f̂r(z) =
1

πr2

ˆ

D(z,r)

f(w) dA(w),

and say that f is of bounded average and write f ∈ BAp
r if |̂f |pr(z) is bounded on C;

that is, if

(22) sup
z∈C

1

πr2

ˆ

B(z,r)

|f(w)|p dA(w) < ∞.

We say that f is of vanishing oscillation and write f ∈ V Or if f ∈ BOr and

(23) lim
z→∞

ωr(f) = 0.

Similarly, we say that f is of vanishing average and write f ∈ V Ap
r if

(24) lim
z→∞

1

πr2

ˆ

B(z,r)

|f(w)|p dA(w) = 0.

Finally, we say that a locally integrable function f is of bounded mean oscillation
and write f ∈ BMOp

r if

sup
z∈C

ˆ

B(z,r)

|f(w)− f̂r(z)|p dA(w) < ∞.

Similarly, we say that f ∈ BMOp
r is of vanishing mean oscillation and write f ∈

VMOp
r if

lim
z→∞

ˆ

B(z,r)

|f(w)− f̂r(z)|p dA(w) = 0.



Fredholm theory of Toeplitz operators on standard weighted Fock spaces 775

The spaces BOr, BAp
r, V Or, V Ap

r , BMOp
r , V MOp

r are all independent of r and we
often omit the subscript. However, they do depend on the value p, unlike in the
setting of Hardy spaces; in particular, for 1 ≤ p < q, we have BMOq ⊂ BMOp and
VMOq ⊂ VMOp with proper inclusions.

It is also well know that for p ≥ 1,

(25) BMOp = BO +BAp and VMOp = V O + V Ap

and each f in BMOp can be decomposed as the sums

(26) f = f̃ + (f − f̃) or f = f̂ + (f − f̂),

where f̃ , f̂ ∈ BO and f − f̃ , f − f̂ ∈ BAp. Analogous decompositions hold for
functions in VMOp (see, e.g., [13] or [19]).

Proposition 5. For 1 < p < ∞,

(27) L∞ ∩ BMOp = L∞ ∩ BMO1 and L∞ ∩ VMOp = L∞ ∩ VMO1.

Proof. Let f ∈ L∞ ∩ VMO1. Then

|f(w)− f̂r(z)| ≤ 2‖f‖∞

for all w, z ∈ C. Thus,
ˆ

B(z,r)

|f(w)− f̂r(z)|p dA(w) ≤ (2‖f‖∞)p−1

ˆ

B(z,r)

|f(w)− f̂r(z)| dA(w) → 0

as |z| → ∞, which implies that f ∈ VMOp. The other case is analogous. �

The following theorem characterizes simultaneous boundedness (and compact-
ness) of Hankel operators Ha and Hā; see [13]. It was first proved for Hankel oper-
ators on F 2 in [1]; see also [4]. Further generalizations to other Fock spaces F p

φ can
be found in [10]. The requirement that fKw ∈ Lp

α for all w ∈ C in the theorem is
natural because linear combinations of the kernel functions Kw form a dense subset
of F p

α. Observe that this condition is satisfied for all p ∈ (1,∞) and α > 0 if we have
f ∈ L∞.

Theorem 6. Let 1 < p < ∞, α > 0 and suppose that fKw ∈ Lp
α. Then

(a) Hf and Hf̄ are both bounded F p
α → Lp

α if and only if f ∈ BMOp;

(b) Hf and Hf̄ are both compact F p
α → Lp

α if and only if f ∈ VMOp.

Proposition 7. For α > 0,

{f ∈ L∞ : Hf ∈ K(F 2
α, L

2
α)} = L∞ ∩ VMO2.

Proof. Apply Theorems 4 and 6. �

Proposition 8. The space L∞∩VMO1 equipped with ‖·‖∞ is a Banach algebra.

Proof. Let f, g ∈ L∞ ∩ VMO1 = L∞ ∩ VMO2 (see Proposition 5). Then

Hfg = QMfg = QMf (P +Q)Mg = QMfPMg +QMfQMg

is compact from F 2
α to L2

α, and fg ∈ L∞. Therefore, by the previous proposition, it
follows that the function fg is in L∞ ∩ VMO1. �
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4. Fredholm theory

In this section we state and prove our main results. We start with the definition
of Fredholm operators. Let T be a bounded linear operator on a Banach space X.
We say that T is a Fredholm operator on X if

d1 = dimker T < ∞ and d2 = dim (X/T (X)) ,

in which case we define the index of T to be indT = d1−d2. The set of all Fredholm
operators on X is denoted by Φ(X). The definition of Fredholm operators immedi-
ately gives rise to the concept of the essential spectrum σess(T ) of a bounded operator
T on X defined by

σess(T ) = {λ ∈ C : T − λI /∈ Φ(X)},

where I is the identity operator on X. Clearly σess(T ) ⊂ σ(T ). A useful charac-
terization of Fredholm operators can be given in terms of invertibility in the Calkin
algebra; that is, T is Fredholm if and only if T +K(X) is invertible in B(X)/K(X).
We also recall that the index function is stable under small perturbations.

The following “approximation” result plays an important role in our analysis; cf.
[3]. We say that a function f : C → C is bounded away from zero if there is a R > 0
and an m > 0 such that

(28) |f(z)| ≥ m for |z| ≥ R.

Note also that in what follows, we only need the case of functions of vanishing oscilla-
tion. However, the other case may turn out to be of interest in further considerations
of the essential spectra of Toeplitz operators.

Proposition 9. Let f : C → C be a continuous function in A, where A =
L∞∩V O or A = L∞∩VMO1. Then f is bounded away from zero on C\B(0, R) for

some R > 0 if and only if there is a continuous function g ∈ A such that g(z)f(z) → 1
as z → ∞.

Proof. Suppose first that such a function g exists. Then gf − 1 vanishes at
infinity. If f is not bounded away from zero for any R > 0, then there are zk ∈ C

such that |zk| → ∞ and |f(zk)| → 0, and so |1 + g(zk)f(zk)− 1| ≤ ‖g‖∞|f(zk)| → 0,
which is a contradiction.

Conversely, suppose that there is an m > 0 such that |f(z)| ≥ m for |z| ≥ R.
Denote by κ the winding number of f along the circle CR = {|z| = R}. Consider the
function h defined by

h(z) = f(z)(z̄/|z|)κ

for |z| ≥ R. Since wind h = 0 along ∂B(0, R), the function extends to a bounded
continuous function on the whole complex plane which is bounded away from zero
on C.

We show that h ∈ A. Suppose first that A = L∞ ∩ V O. For |z − w| ≤ 1,

(29) |(z̄/|z|)κ − (w̄/|w|)κ| = O(1/|z|)

as z → ∞. Therefore, since f ∈ L∞ ∩ V O and

|h(z)− h(w)| = |f(z)| |(z̄/|z|)κ − (w̄/|w|)κ|+ |f(z)− f(w)|,
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it follows that h ∈ L∞ ∩V O. Suppose then that A = L∞ ∩VMO1. For w ∈ D(z, 1),

h(w)− ĥ(z) = |h(w)− 1

π

ˆ

D(z,1)

h(u) dA(u)

=
1

π

ˆ

D(z,1)

(
h(w)− f(w)(z̄/|z|)κ

+ f(w)(z̄/|z|)κ − f(u)(z̄/|z|)κ + f(u)(z̄/|z|)κ − h(u)
)
dA(u)

=
1

π

ˆ

D(z,1)

(
f(w)

(
(w̄/|w|)κ − (z̄/|z|)κ

)

+
(
f(w)− f(u)

)
(z̄/|z|)κ + f(u)

(
(z̄/|z|)κ − (ū/|u|)κ

))
dA(u).

Therefore,

1

π

ˆ

D(z,1)

|h(w)− ĥ(z)| dA(z) = O(1/z) +
1

π

ˆ

D(z,1)

|f(w)− f̂(z)| dA(z) +O(1/z),

which shows that h ∈ VMO1. Finally, we define a function F on C by setting

F (z) =

{
(z̄/|z|)κ, |z| ≥ R,

(z̄)/R)κ, |z| < R

and let g = F/h. Then g ∈ A and g(z)f(z) = 1 for |z| ≥ R. �

In 1987 Berger and Coburn [3] characterized Fredholm Toeplitz operators on
the standard Fock space F 2 for bounded symbols of vanishing oscillation at infinity.
Their approach was based on heavy machinery employing Hilbert space and C∗-
algebra techniques, making use of the properties of the Weyl operator, of the Berezin
symbol, and of the Heisenberg group. These are by no means ideal techniques to be
used in the Banach space context. In 1992 Stroethoff [17] gave a more elementary
proof of Berger and Coburn’s result using ideas which are more applicable in the
setting of the standard weighted Fock spaces F p

α . Before we state our main result
we need the following results, which allows us to use the Berezin transform in our
analysis.

Lemma 10. If f ∈ V O ∩ L∞, then f(z)− f̃(z) → 0 as |z| → ∞.

Proof. Let ǫ > 0. By direct computation, there is an M > 0 such that

|f(z)− f̃(z)| ≤ α

π

ˆ

C

|f(z)− f(w)|e−α|z−w|2 dA(w)

=
α

π

ˆ

C

|f(z)− f(z + w)|e−α|w|2 dA(w)

≤ α

π
2‖f‖∞

ˆ

|w|≥M

e−α|w|2 dA(w)

+
α

π

ˆ

|w|<M

|f(z)− f(z + w)|e−α|w|2 dA(w)

≤ ǫ+
α

π

ˆ

|w|<M

|f(z)− f(z + w)|e−α|w|2 dA(w).

Since f ∈ V O, the last integral goes to zero as |z| → ∞, and the proof is complete.
�
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Corollary 11. Let f ∈ V O. Then f̃(z) → 0 as |z| → ∞ if and only if f(z) → 0
as |z| → ∞.

Proposition 12. Let f ∈ L∞ ∩ VMO1, 1 < p < ∞, and α > 0. Then Tf−f̃ is

compact on F p
α .

Proof. This follows from Theorem 1. �

We can now characterize Fredholmness of Toeplitz operators in terms of their
symbols.

Theorem 13. Let α > 0, 1 < p < ∞, and suppose that f is in L∞ ∩ V O. Then

the Toeplitz operator Tf is Fredholm on F p
α if and only the symbol f is bounded

away from zero; see (28).

Proof. Suppose that f is bounded away from zero. We use Proposition 9 to
construct a regularizer. Indeed, there is a function g in L∞∩V O such that f(z)g(z)−
1 → 0 as z → ∞. By Theorem 6, Hf and Hg are compact, and by Theorem 1, Tfg−1

is compact. Therefore,

TfTg = PMfPMg = PMf(I −Q)Mg = Tfg − PMfQMg

= Tfg − PMfHg = I + Tfg−1 − PMfHg = I +K1

for some compact operator K1. Similarly, TgTf = I + Tfg−1 − PMgHf = I +K2 for
K2 compact. Thus, Tg is a regularizer for Tf and hence Tf is Fredholm.

Conversely, suppose that there are λk ∈ C such that f(λk) → 0 when |λk| → ∞.

By Lemma 11, f̃(λk) → 0 as k → ∞. By (19), we have

(30) ‖Tfkλk
‖pp,α = ‖Pα(f ◦ tλk

)‖pp,α = const

ˆ

C

|P (f ◦ tλk
)(z)|p dµαp/2(z).

By Lemma 6.26 of [19], for z ∈ C, P (f ◦ϕλk
)(z) → 0 as k → ∞. Therefore, by (20),

|kz(λk − z)P (f ◦ ϕλk
)(z)e−

1
2
|λk−z|2| = e−

α
2
|z|2|P (f ◦ ϕλk

)(z)| ≤ const e−
α
4
|z|2,

and so by the Lebesgue dominated convergence theorem,

‖Tfkλk
‖pp,α = const

ˆ

C

∣∣∣kλk
(z)P (f ◦ ϕλk

)(λk − z)e
α
2
|z|2
∣∣∣
p

dA(z)

=

ˆ

C

∣∣∣kz(λk − z)P (f ◦ ϕλk
)(z)e−

1
2
|λk−z|2

∣∣∣
p

dA(z) → 0

as k → ∞. Thus, Tf +K is not invertible in the Calkin algebra L(F p
α)/K(F p

α), and
hence Tf is not Fredholm on F p

α . �

Corollary 14. Let f ∈ L∞∩V O. Then the essential spectrum of Tf on F p
α with

1 < p < ∞ and α > 0 is given by

(31) σess(Tf ) =
⋂

R>0

cl f(C \RD).

By using the result on the compactness of Toeplitz operators, we can consider a
slightly larger class of symbols.

Corollary 15. Let α > 0, 1 < p < ∞, and suppose that f is in L∞ ∩ VMO1.

Then the Toeplitz operator Tf is Fredholm on F p
α if and only if f̃ is bounded away

from zero for some R > 0; see (28).
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Proof. Write f = f̃ + (f − f̃) as in (26). Then f̃ ∈ V O and f − f̃ ∈ V A1. Since
Tf−f̃ is compact, the standard Fredholm theory implies that Tf is Fredholm if and

only if Tf̃ is Fredholm, which is equivalent to f̃ being bounded away from zero by
the preceding theorem. �

Corollary 16. Let f ∈ L∞ ∩ VMO1. Then the essential spectrum of Tf on F p
α

with 1 < p < ∞ and α > 0 is given by

(32) σess(Tf ) =
⋂

R>0

cl f̃(C \RD).

Proof. This follows from Theorem 13 and the fact that σess(Tf) = σess(Tf̃), which
is easy to see using Proposition 12 and standard Fredholm theory. �

The description of the essential spectrum of Tf in terms of Berezin transform

f̃ above comes useful because f̃ is continuous and hence the sets cl f̃(C \ RD) are
compact and connected, which immediately proves the following result.

Corollary 17. Let f ∈ L∞∩VMO1, 1 < p < ∞, and α > 0. Then the essential

spectrum σess(Tf ) of Tf on F p
α is connected.

We reduce the computation of the index of Tf to that of Tz̄/|z|. To compute the
index of the latter simple operator, we use the following two lemmas on weighted
shift operators.

Lemma 18. Let α > 0 and 1 < p < ∞. The Toeplitz operator Tz/|z| is a

weighted shift operator on F p
α; that is, Tz/|z|ek = αkek+1, where ek =

√
αk

k!
zk and

αk 6= 0.

Proof. Set g(z) = z/|z| for z ∈ C. If w = reiθ, then dA(w) = rdrdθ and

Tgek(z) = P (gek)(z) =
α

π

ˆ

C

eαzw̄−α|w|2(eiθek) dA(w)

=
α

π

ˆ

C

eαzw̄−α|w|2 eiθ
√

αk

k!
zk dA(w)

=
α

π

√
αk

k!

ˆ ∞

0

rk+1e−αr2
[
ˆ 2π

0

eαzre
−iθ

eiθ(k+1) dθ

]
dr

=
α

π

√
αk

k!

ˆ ∞

0

rk+1e−αr2
[
ˆ

|λ|=1

(−i)eαzrλ
dλ

λk+2

]
dr,

where e−iθ = λ. By the residue theorem,
ˆ

|λ|=1

eµλ

λk+2
dλ =

2πiµk+1

(k + 1)!
.

Therefore,

Tgek(z) = 2α

√
αk

k!

1

(k + 1)!
αk+1 zk+1

ˆ ∞

0

r2k+2 e−αr2 dr = αkek+1(z),

where

αk =
αk

√
α

k!
√
k + 1

ˆ ∞

0

r2k+2 e−αr2 dr 6= 0

for k ∈ N. �
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Next we compute the index of Tz̄/|z| using the properties of the diagonal operator.

Lemma 19. Let α > 0 and 1 < p < ∞. Then indTz̄/|z| = 1.

Proof. Let g ∈ F p
α , then g(z) =

∑∞
k=0 λkek. Using Lemma 18, we get

T z
|z|
(g)(z) =

∞∑

k=0

λkT z
|z|
ek =

∞∑

k=0

λkαkek+1, αk 6= 0 for all k ≥ 0.

Thus, g ∈ ker T z
|z|

if and only if
∑∞

k=0 λkαkek+1 = 0. Hence, g ∈ ker T z
|z|

if and only

if λk = 0 for all k ≥ 0. This implies that ker T z
|z|

= 0. Moreover, if h(z) = ae0 then

h /∈ Range T z
|z|

, this means that CodimT z
|z|

= 1. Therefore, T z
|z|

is Fredholm with

index 1. This implies that T ∗
z
|z|

= T z
|z|

is Fredholm with index −1. �

We can now prove the index formula for Toeplitz operators on F p
α with continuous

symbols of vanishing oscillation.

Theorem 20. Let f ∈ L∞ ∩ V O, α > 0, and 1 < p < ∞. If f is bounded away

from zero, then

indTf = −wind(f ||z|=R),

where R is any positive number for which |f(z)| > m > 0 for |z| ≥ R and wind f |{|z|=R}

is the winding of the curve f({|z| = R}) around the origin.

Proof. By Theorem 13, Tf is Fredholm. Suppose wind(f ||z|=R) = n. By Propo-
sition 9 and its proof there is an H in L∞(C) ∩ V O such that H is bounded away
from zero on the whole complex plane and

lim
z→∞

[(z̄/|z|)nf(z)−H(z)] = 0.

It follows that T(z̄/|z|)nf−H is compact by Theorem 1. Therefore, since TH is Fredholm
(see Theorem 13), we have

ind
(
T(z̄/|z|)nTf

)
= indT(z̄/|z|)nf = indTH .

By the index theorem and Lemma 19,

indTf = −n+ indTH .

It remains to show that indTH = 0. Define

ht =
t

|H| + 1− t

for t ∈ [0, 1]. Then each Tht
is Fredholm and

‖Tht
− Ths

‖ ≤ const |t− s|‖|H|−1 − 1‖,
so

indT1/|H| = indTh1 = indTh0 = 0.

Therefore,
indTH/|H| = indTH + indT1/|H| = indTH ,

and hence we can assume that |H| = 1 and write H = ei argH . For any integer m > 0,
since H is a continuous function of no winding,

exp
(
i(argH)/m

)
∈ L∞ ∩ V O.

Thus,
indTH = ind Tm

exp(i(argH)/m) = m indTexp(i(argH)/m),

which implies that indTH = 0. �
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5. Matrix-valued symbols

Let N ∈ N, 1 ≤ p < ∞, and α > 0. We define

Lp
α,N = {(f1, . . . , fN)T : fk ∈ Lp

α}
and

‖f‖α,p,N =

N∑

k=1

‖fk‖pα.

The vectorial Fock space

F p
α,N = {(f1, . . . , fN)T : fk ∈ F p

α}
is a closed subspace of Lp

α,N .
Given a = (ajk)1≤j,k≤N , where ajk ∈ L∞, we define the block Toeplitz operator Ta

on F p
α,N by

Taf = P (af) = P




a11f1 + a12f2 + . . . + a1NfN
...

...
...

...
aN1f1 + aN2f2 + . . . + aNNfN




=




P (a11f1) + P (a12f2) + . . . + P (a1NfN)
...

...
...

...
P (aN1f1) + P (aN2f2) + . . . + P (aNNfN)




=

(
N∑

k=1

Tajkfk

)T

1≤j≤N

=



Ta11 Ta12 · · · Ta1N

...
...

...
TaN1

TaN2
· · · TaNN






f1
...
fN




for f ∈ F p
α,N . It is not difficult to see that Ta is bounded on F p

α,N .

Lemma 21. There is a compact operator K such that det Ta = Tdet a +K.

Proof. For an N ×N matrix A, we have

detA =
∑

σ∈SN

sgn(σ)
N∏

j=1

Ajσ(j),

where SN is the group of N -permutations and sgn(σ) is the sign of each permutation.
If f, g ∈ L∞ ∩ VMO1, then

TfTg = Tfg − PMfHg = Tfg +K

for some compact operator K since Hg is compact by Theorem 6. Therefore, there
is a compact operator K such that

det Taf =
∑

σ∈SN

sgn(σ)Ta1σ(1) · · ·TNσ(N) =
∑

σ∈SN

sgn(σ)Ta1σ(1)···aNσ(N)
f +Kf

= P

(∑

σ∈SN

sgn(σ)(a1σ(1)···aNσ(N)
)f

)
+Kf = P

(
(det a)f

)
+Kf

= Tdet af +Kf. �

Theorem 22. Let 1 < p < ∞ and α > 0. If a ∈ (L∞ ∩ VMO1)N×N for some

N ∈ N. Then Ta is Fredholm on F p
α,N if and only if d̃et a is bounded away from zero.

If a ∈ (L∞ ∩ V O)N×N for some N ∈ N. Then Ta is Fredholm on F p
α,N if and only if

det a is bounded away from zero
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Proof. In the first case, since the entries of Ta commute pairwise modulo compact
operators, Theorem 1.14 of [5] implies that Ta is Fredholm if and only if det Ta is
Fredholm. By the previous lemma and Corollary 15, Ta is Fredholm if and only if

d̃et a is bounded away from zero. The other case is analogous. �

We conjecture that if a ∈ (L∞∩V O)N×N and if det a is bounded away from zero
for some R > 0, then

(33) indTa = ind Tdet a = −wind
(
(det a)|{|z|=R}

)
.

Indeed, this true in some particular cases; e.g. when the entries of Ta commute modulo
trace class operators, which happens if and only if

ˆ

C

(
|̃f |2(z)− |f̃(z)|2

)1/2
dA(z) < ∞

(see Theorem 8.26 of [19]). Another particular case in which the index formula (33)
holds is provided by Theorem 7.6 of [8]. Analogous index formulas hold for Toeplitz
operators on Hardy and Bergman spaces.
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