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Abstract 

Gum acacia (GA) is a soluble dietary fibre derived from acacia trees. It is widely used in 

African countries and in the Middle East as a traditional medicine. Recently, the consumption 

of GA has been related to potential health benefits in terms of its potential prebiotics 

properties, this may be particular relevant in elderly people. Elderly are experiencing negative 

changes in their gut microbiota and their immune system. Therefore, in this study GA was 

assessed in in vitro models, and resulted in increased Bifidobacterum spp., which can be 

important for a targeted population such as elderly. Further evaluation of GA looked at the 

potential to induce cytokines production with PBMC cells from elderly volunteers. Promising 

increases in IL-10 were observed.  

 

The bacteria able to utilise GA, whilst possessing anti-microbial potential were further studied 

using enrichment culture techniques. Here Lactobacillus spp. were isolated and shows anti-

pathogenic activity against known pathogens. The antimicrobial activity was related to the 

lowering pH regards to organic acid production.  Finally, further investigation to evaluate the 

probiotic bacteria and the associated synbiotic was evaluated in the presence of E. coli. within 

in vitro mixed batch cultures. The synbiotic combination led to increases lactobacilli and 

inhibition in C. histolyticum group, this effect was more apparent than with the GA, or 

probiotic alone treatments.  

Overall, the potential of GA as a prebiotic has been explored, furthermore, a possible 

synbiotic combination has been developed. These products could show great potential to an 

ageing population. 
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1. Chapter (1) Introduction   

1.1 General background on the gut microbiota  

The human gastrointestinal (GI) tract harbours a complex and diverse bacterial community 

[2]. Some studies suggest that the colonisation of the gastrointestinal (GI) tract begins before 

birth and subsequently develops over the first 2 years to resemble that of an adult microbiota 

[3], [4]. At this point, there are many factors that could influence the diversity of bacterial 

composition, such as environmental factors, birthing regime and feeding. The bacterial 

inhabitants exist in different numbers through the GI tract, stomach, with the small intestine 

having less than the large intestine, this might be due to the gastric acidity and rapid transit 

time that influence the growth of bacteria. The large intestine, however, contains complex 

bacterial groups with up to 10
11

 or 10
12

 cells per gram [5]. It is dominated by four phyla: 

Firmicutes, Bacteroidetes followed by Proteobacteria and Actinobacteria, with minor 

contributors, including Verrucomicrobia and Fusobacteria [6]. The most copious human 

anaerobic bacterial genera are Bacteroides, Eubacterium, Bifidobacterium, Clostridium, 

Peptococcus, Peptostreptosus and Ruminococcus  [2]. The gut microbiota can be affected by 

many factors, including, amount of fermentable substrates (diet), exogenous bacteria, ionic 

and pH conditions and transit time [7, 8]. Through fermentation of non-digestible 

carbohydrates the gut microbiota serves different functions to the host, these include: 

i. Metabolic activity, providing energy to the host 

ii. Trophic function, control of epithelial cell proliferation and differentiation; 

development of homeostasis of the immune system 

iii. Protective properties, as the barrier function prevents invasion by pathogens [2].  
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1.2 Probiotics, prebiotics and synbioitcs  

1.2.1 Probiotics  

The term probiotic refers to “live microorganisms which when administered in adequate 

amounts confer a health benefit on the host” [9]. A probiotic has been recommended to have 

the following attributes:   

 Must be safe 

 Be viable and stable under storage conditions 

 Be viable to be prepared in wide manner 

 Resist the host digestion and survive in the large intestine 

 Should lead to beneficial effects to the host [10, 11]. 

Most probiotics used belong to the genera lactobacilli (Lactobacillus acidophilus, L. casei, 

L. delbruckii) or bifidobacteria (Bifidobacterium adolescentis, B. bifidum, B. longum, B. 

infantis). Gibson and Roberfroid (1995) reported that bifidobacteria and lactobacilli possess 

health promoting properties  [5]. These probiotics could be used as single species or in mixed 

with other bacteria. There is evidence that probiotics play a crucial role in regulating human 

health, including reducing diarrhoea [12], alleviating constipation [13], [14] 

immunostimulation [15], [16] and reducing hypercholesterolemia [17].  

1.2.1.1 Probiotics, mechanisms of action  

Probiotics exert their effects in a number of ways. Some of these mechanisms are outlined 

below:  

i. The production of antimicrobial substances [18] and end products such as SCFA, 

which can lower colonic pH, making an environment less favourable for pathogenic 

bacteria [19], [20], [21]. 

ii. Out-competing other bacteria for nutrients, possibly reducing substrate availability for 

non-desirable bacterial groups [22].     
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iii. Modulating the immune system, probiotics could promote gut barrier function and 

anti-inflammatory response through several mechanisms, including modulating 

dendritic cells [23].  

1.2.2 Prebiotics  

Prebiotics were redefined at the 6th International Scientific Association meeting of 

probiotics and prebiotics (ISAPP, 2008) as ”selectively fermented ingredients that result in 

specific changes, in the composition and/or activity of the gastrointestinal microbiota, thus 

conferring benefit(s) upon host health” [24]. A prebiotic has been recommended to have the 

following attributes:  

i. Be resistant to gastric acidity and hydrolysis by host enzymes and GI absorption 

ii. Selectively stimulate the growth and /or activity of limited microorganisms in the gut 

iii. Be fermented by intestinal microbiota [25]. 

There are several types of common prebiotics including inulin, fructo –oligosaccharides 

(FOS) and galacto-oligosaccharides (GOS) [26], while other oligosaccharides show  potential 

prebiotic activity, such as soya-oligosaccharides [27], xylo-oligosaccharides [19], 

isomaltooligosaccharides [28]. Traditional dietary sources of inulin include soya beans, 

banana, Jerusalem artichoke, garlic, wheat, asparagus, rye, and chicory root. In order to 

obtain a recommended prebiotic dose of inulin, however, large quantities of these foods 

would be required (e.g. 10 bananas), this may not be so practical.  

Recently, extracts of gum, such as Tragacanth gum, with arabinogalactan and 

fucoxylogalacturonans, have been considered as potential prebiotics [29]. Tragcanth gum is 

obtained from small shrubs of the Astragalus and grow widely in Pakistan to Greece, and in 

particular, in Iran and Turkey (Whistler, 1993). Moreover, partly hydrolysed guar gum has 

been demonstrated to have a positive effect on IBD patients in a human study [30]. From this 
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view gum acacia (GA), made up of arabinogalactan, could possess health promoting prebiotic 

potential. There is a great interest in developing new prebiotics with the aim of modulating 

the gut microbiota in the distal colon, as most commercial prebiotics are fermented in the 

proximal colon, in order to induce a positive health effect. As the protolytic fermentation end 

products might be responsible for the differ disorders occur in the left part within the colon 

[31]. Proteolytic fermentation within the colon, is also increased with aging [32, 33]. 

Moreover, the polyamines and ammonia production are increased, which have been linked to 

colon carcinogenesis [34]. 

1.2.3 Synbioitcs  

Synbiotics as defined by Gibson and Roberfroid (1995) “are mixtures of pro- and pre-

biotics that beneficially affect the host by improving the survival and implantation of live 

microbial dietary supplements in the gastrointestinal tract” [5]. The addition of prebiotics 

could improve growth of probiotics by offering a food source. Prebiotics could also act to 

increase both the numbers of probiotics and beneficial bacteria such as bifidobacteria and 

lactobacilli. The combination may be able to optimise the manipulation of the gut microbiota 

composition towards a healthy gut.  

1.3 Diet and elderly persons 

The World Health Organisation reported that the population of those aged 60 years or 

older is rapidly increasing [35] and over one-third of the UK population will be aged over 65 

years by 2050. Ageing is defined as “the regression of physiological function accompanied 

by the development of age” [36]. Diet is a major influencing factor on the gut microbiota, and 

the high-fat, sugar-rich Western diet contributes to Bacteroidetes dominating the microbiome, 

whereas a high-fibre diet results in Firmicutes dominating the microbiome [37].  
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1.3.1 Changes in GI tract in elderly  

Gastrointestinal function is essential for sustaining good nutrition. Therefore, age-related 

changes in GI tract are important considerations in elderly populations. The increased 

threshold for taste and smell, resulting in foods tasting bland and uninteresting. Furthermore, 

masticatory dysfunction caused by loss of teeth and muscle bulk [38] is combined with 

swallowing difficulties, resulting in an imbalanced diet. Subsequently low levels of nutrients 

and micronutrients could cause problems in elderly populations, such as constipation.  Aging 

is subject to a number of physiological changes that impact on food digestion, absorption and 

immune function [39] these changes correlate with alterations to the colonic microbiota and 

increased occurrence of disease. There is a growing body of evidence indicating that 

Bifidobacterium spp. numbers are lower notably in aged populations (Claesson 2012). It is 

well established that reductions in this beneficial bacterial group can impair immune function 

[40]. Additionally, a decline in the genus Bacteroides has been observed in the elderly when 

compared to younger adults [41]. Faecal impaction and constipation, are symptoms 

associated with elderly gut function [42]. The dietary changes are able to effect diversity and 

numbers of  the bacterial colon inhabitants, and subsequently  influence metabolites and 

immune function [41].  

1.3.2 Changes in immune function when age 

Immunosenescence  is defined by a decline in the immune response to exogenous infections 

agents as well as an increase in endogenous signals, observed in elderly population [43], [44]. 

During aging, a decline in immune function and response has also been observed [45, 46].  

Additionally, increased levels of pro-inflammatory cytokines, including interlukin 6 (IL-6) , 

IL-1 β, and tumour necrosis factor α (TNF-α) occur [41, 47, 48]. The percentage of natural 

killer (NK) cells are increasing due to decline in T cells associated with aging [49].  In 

addition, during aging,  the apoptotic cells decline, as a result of necrotic cells accumulate 



 Chapter 1:Introduction &litreture review  

 
6 

due to impaired of clearance of autoantigen producing cells [48]. Moreover, naïve B cells, 

generated in bone marrow, also decrease with aging resulting in impaired defence against 

infections and intrinsic B cell dysfunction or declined CD4-T cell helper function [50].  

1.3.3 Changes in gut microbiota when age 

The diversity of species comprising the gut microbiota changes with age. Zwielehner et al. 

(2009) observed less Bifidobacterium spp. and Clostridium cluster IV in elderly subjects 

compared to those seen in middle aged subjects [51]. In another study, Marathe et al., (2012), 

reported that within an Indian cohort, the changes in the gut microbiota associated with age 

reflected a gradual decrease in Firmicutes and an increase in Bacteroidetes [52]. Claesson, 

2012,  found an association between diet, host health, environment, and gut microbiota; in 

particular, there was an association between a lower diversity in the diet and decreased gut 

diversity, subsequently there were increased inflammatory markers [53]. Additionally, 

individuals living in a community had more diverse microbiota than those in residential care. 

Ageing is associated with a decrease in probiotic bacteria such as bifidobacteria, which can 

act to inhibit pathogens such as Escherichia coli (E. coli) and Salmonella [54]. As such these 

changes in the intestinal bacteria may increase susceptibility to infections and diseases [38]. 

1.3.4 How could the microbiota impact on the immune system? 

With ageing elderly experience a potentially negative shift in their gut microbiota, as well 

as significant increases in inflammation and dysfunction of the immune system, hence a 

relationship between the gut and immune system can be observed [51]. These changes are 

thought to result in increased risks for development of chronic disease such as diabetes, 

colorectal cancer (CRC) and inflammatory bowel disease (IBD).  Furthermore, a decline in 

mucin production is observed within this population, such a change increases the potential for 
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pathogenic adhesion to the gut epithelial barrier [51]. Figure (1) shows the relationship 

between shifting in the gut microbiota in elderly and the impaired immune function.  

 

1.3.5 Modulation of intestinal microbiota with prebiotics, probiotics and 

synbiotics, in elderly  

The relationship between prebiotics and elderly gut microbiota has been widely 

investigated, Table 1shows in vivo studies on the modulation of gut microbiota. Walton et al 

(2012) found that GOS (4 g/d in juice) increased bifidobacteria in a crossover study when 

compared with placebo twice daily for 3 weeks [52]. In another human trial, Vulevic and 

others demonstrated that a prebiotic could modulate the elderly gut microbiota and modulate 

the immune responses [41]. These changes are relevant for an elderly population undergoing 

microbial changes and  increased inflammatory status.  

Moreover, a human study used prebiotic scFOS 8g/d for 4 weeks Bounhink et al ( 2007) 

led to significant increases in bifidobacteria in healthy elderly people [53]. Not all studies 

give a rise to positive reults as a study of Maukonen et al (2008) showed that after daily 

consuming GOS 10g/d for three weeks no changes in the elderly gut microbiota occured. The 

discrepancy results could be due to the short period of wash out during the study which make 

it difficult to return to baseline  [54]. 
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Figure 1: This figure indicates that elderly are at risk  for inflammation and infections. With ageing there is 

an increase in inflammation and a decline in bifidonbacteria and diversity of bacterial numbers and mucin 

production. Figure adapted from [55]. 

 

Another approach to modulate the elderly gut microbiota composition is by probiotics,  a 

range of studies have shown probiotics can modulate the microbiota in this population group.  

Most research investigating the gut microbiota has utilised traditional culture methods to 

assess the changes in the bacterial microbiota, in a study of  Lahtnen et al (2009) B. longum 
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2C + B. longum 46 was used for 6 months by elderly people and resulted in a significant 

increase in bifidobacteria [56]. While other researchers have used molecular methods, a study 

on B. lactis Bb-12;B. longum 2C+B.longum46 was  administered at a dose of 10
9 

CFU/daily, 

and resulted in enhancing Bifidobacterium [57], most of these studies used polymerase chain 

reaction  (PCR) techniques to analyse the bacterial changes [58].   

Additionally, synbiotics may be a good approach to modulate the gut microbiota 

composition an in elderly population. In in vitro studies, a batch culture of Lactobacillus 

combined with FOS and Bifidobacterium longum with isomaltoligosacchrides (IMO-BL) led 

to antimicrobial activity against enterohaemorrhagic Escherichia coli O157:H7 and 

enteropathogenic E. coli O86 [59]. Also in two human intervention studies it has been shown 

that synbiotics alter the gut microbiota which is relevant to elderly health improvement. The 

synbiotic Bifidobacterium bifidum BB-02 and Bifidobacterium lactis BL-01 with inulin in 

elderly volunteers using PCR to determined the changes in the bacterial composition, 

additionally another study used Lactobacillus acidophilus with lactitol in a synbiotic 

combination in a double blind randomized trail in healthy elderly, the beneficial bacteria i.e 

bifidobacteria utilise the selected prebiotic and subsequently increases in the bifidobacteria 

and lactobacilli and reduction to the pathogens, these studies used culturing and molecular 

techniques to quantify the microbiota [42, 60-63]. 
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Table 1:  Studies in vivo on the modulation of probiotics, prebiotics and synbiotics on the elderly gut microbiota 

Subjects  Substrates  Dose   Duration  Results  Reference  

39 elderly people GOS 4g twice daily 3 weeks Significant increase in bifidobacteria (quantitative 

PCR) 

[52] 

44 healthy elderly 

people 

B-GOS 
5.5g/d 

(Bimuno) 

10 weeks  Significant increase in beneficial bacteria 

(bifidobacteria, lactobacilli, and the C. coccoides-E. 

rectale group), and decrease in less beneficial bacteria 

(bacteroides, the C. histolyticum group, E. coli, and 

Desulfovibrio spp.) (FISH) 

[41] 

12 healthy elderly 

people 

scFOS 8g/d 4 weeks Significant increase in bifidobacteria (microbiological 

culture techniques) 

[53] 

41 elderly people GOS 10g/d 3 weeks No significant difference (DGGE) [54] 

66 elderly people B. longum 2C + Drink containing 6 months Significant increase in bifidobacteria, [56] 
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B. longum 46 10
9
 CFU/ml especially, B. catenulatum, B. Bifidum and B. 

breve  

55 elderly nursing 

home people  

B. lactis Bb-12; B. 

longum 2C + B. 

longum 46 

10
9
 CFU/d of B. lactis Bb-

12; 10
9
 CFU/d of both B. 

longum 2C and B. longum 

46 

6 months B. lactis Bb-12 led to significant increase in B. 

animalis. B. longum 2C + B. longum 46 led to 

significant increase in B. adolescentis and B. 

catenulatum (PCR) 

[57] 

25 elderly constipated 

people 

Inulin  20g/d from days 1 to 8, 

increased to 40g/d from 

days 9 to 11, kept at this 

dose from days 12 to 19  

19 days Significant increase in bifidobacteria for both doses. At 

40 g/day, significant reduction in enterococci 

(analytical profile index system) 

[42] 

19 elderly nursing 

home people 

scFOS 4g twice daily 3 weeks Significant increase in bifidobacteria (microbiological 

culture techniques) 

[64] 

80 elderly people B. lactis HN019 5 x 10
9
 CFU/d, 1.0 x 10

9
 

CFU/d and 6.5 x 10
7
 

CFU/d 

4 weeks All the three doses caused a significant increase in 

bifidobacteria, lactobacilli and enterococci and a 

decrease in Enterobacteriaceae (microbiological culture 

techniques) 

[62]  
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66 elderly nursing 

home people 

B. longum 2C + B. 

longum 46 

Drink containing 

10
9
 CFU/ml 

6 months Significant increase in bifidobacteria, especially, B. 

catenulatum, B. bifidum and B. breve (quantitative 

PCR and microbiological culture techniques) 

[56] 

10 elderly people Probiotic-fermented 

milk containing 

L. casei 

4 x 10
10

 cells/80 ml bottle, 

one bottle per day 

2 months Significant increase in Bifidobacterium and 

Lactobacillus and decrease in Enterobacteriaceae 

(PCR) 

[58] 

18 healthy elderly 

people 

Synbiotic containing 

B.bifidum, B. lactis 

and the inulin-based 

prebiotic (Synergy) 

 

3.5 x 10
10

 CFU of each 

probiotic plus 6 g/d 

Synergy 

4 weeks Microbiological culture techniques revealed a 

significant increase in bifidobacteria and lactobacilli. 

Real-time PCR revealed significant increase in 

numbers of copies of the 16S rRNA genes of B. 

bifidum, B. lactis and total bifidobacteria 

[60] 

47 healthy elderly 

people 

Synbiotic containing 

lactitol and L. 

acidophilus 

5.0-5.5g synbiotic per day. 

2 x 10
9
 CFU/g 

2 weeks Real-time PCR revealed significant increase in L. 

acidophilus and bifidobacteria. Final bifidobacteria 

numbers similar to that of healthy adults 

[61] 
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1.3.6 Modulation of immune function using prebiotics, probiotics, synbiotics, in 

elderly  

Probiotic and prebiotic intakes have shown potential for immune stimulation in elderly 

populations. One interesting finding is that probiotic Bifidobacterium longum bv. infantis 

CCUG 52486 has been seen to modulate immune function in older populations [65]. Other 

probiotics are well documented as they have the ability to stimulate the immune system in 

elderly, such as Bifidobacterium lactis HN019 and Lactobacillus rhamnosus HN001 [66], 

[67], [68], [69], [57], [70], [71] Table 2 shows in vivo studies on the modulation of immune 

function of using pre, pro and synbiotics on elderly people.   

Prebiotics also can regulate the pro and anti-inflammatory cytokines in elderly, scFOS is 

an example of a prebiotic that promote a positive effect on immune system by down-

regulating pro-inflammatory cytokines [72],[63]. Vulevic et al (2008) reported that B-GOS 

treatment 5.5g/d for 10 weeks in a double-blind, placebo –controlled crossover study in 

elderly subjects B-GOS increased beneficial bacteria and IL-10, whilst reducing 

proinflammatory cytokines IL-6, IL-1 β, thus it was concluded that B-GOS can have a 

positive effect on elderly gut composition and immune responses [41]. Also in a human study 

on elderly (Bacillus coagulans GBI-30),  led to an increase in Faecalibacterium prausnitzii 

which has a potential antiinflammatory properties [73].  

More recent attention has focused on the provision of synbiotics on immune function in 

elderly populations, Przemska-Kosicka et al (2016) compared young and elderly seasonal 

influenza vaccination response by using a novel probiotic Bifidobacterium longum bv. 

infantis CCUG 52,486 combined with prebiotic glucooligosaccharides (B. longum + Gl-OS) 

there was a significant increase in the vaccine anti-body in both young and elderly and the 

changes in young group were greater, however, no differences were seen in the immune 
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markers, this could be due to the differences in baseline immunosenscence between 

randomised groups  [74]. Similarly, in another study, a synbitoic (lactitol+ L. acidophilus) led 

to an increase in prostaglandin E2 (PGE2) levels which are important in elderly immune 

function [61]. The Lactobacillus strains tended to promote T helper 1 cytokines, whereas 

bifidobacterial strains tended to produce a more anti-inflammatory profile [16].  
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1.4 Gum acacia (GA)  

The natural plant exudate GA is obtained from the Acacia Senegal trees [75]. These trees 

are harvested predominantly in Sub Saharan Africa [76]. The production of gum, in a process 

known as gummosis, is a natural response of the tree to injury of bark. The gum exudes as 

nodules which are then removed by farmers as a raw product. Generally there are two 

varieties of the acacia tree that gum is harvested from, these being Acacia senegal and Acacia 

seyal [77]. Figure (2) shows the form of GA once it is picked from trees.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Raw GA pre and post-harvest. 
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1.4.1 GA in  foods 

The Federation of American Societies for Experimental Biology prepared a report for the 

United States Food and Drug Administration in March 1973, looking at the safety profile of 

gum acacia (GA) (Food and Agricultural Agency FDA). This committee looked at the safety 

of GA when used in foods. GA is “Generally Regarded as Safe” – GRAS and accepted as a 

food additive in the European Union (E414) (Directive 99/77/EC) and by Codex 

Alimentarius (INS414). GA is now also officially recognised as a dietary fibre in the EU 

directive 2008/100/EC [78].  
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Table 2: Studies in vivo on probiotic, prebiotic and synbiotic effect on immune function modulation in elderly populations. 

Subjects  Substrates   Dose Duration Results Reference 

30 healthy 

elderly people 

B. lactis HN019 5×10
10

 CFU/d; 5×10
9
 CFU/d 3 weeks Both doses increased proportions of 

total, helper (CD4(+)), and activated 

(CD25(+)) T lymphocytes and NK 

cells 

[66] 

13 healthy 

elderly people 

L. rhamnosus HN001 1.25×10
8
 CFU/ml, 200ml twice 

daily 

3 weeks Significant increase in 

phagocytosis, enhanced 

natural immunity 

[68] 

19 elderly 

nursing home 

people 

FOS 8g/d 3 weeks Reduced IL-6 mRNA expression  [64] 
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74 elderly 

people 

oligosaccharides 1.3 g/250 ml/d 12 weeks Reduced TNF-α mRNA and IL-6 

mRNA 

[72] 

25 healthy 

elderly people 

B. lactis HN019 1.5x10
11

 CFU twice daily 6 weeks Significant increases in interferon-

alpha and phagocytosis, enhanced 

natural immunity 

[71] 

44 healthy 

elderly people 

B-GOS 5.5g/d 10 weeks  Significant increase in 

phagocytosis, NK cell activity, IL-

10 and decreases in IL-6, IL-1β, and 

TNF-α 

[41] 

27 healthy 

elderly people 

L. rhamnosus HN001; B. lactis 

HN019 

5×10
9
 CFU/d of each probiotic 3 weeks Both strains increased the 

proportion of CD56-positive 

lymphocytes, tumouricidal activity. 

Enhanced cellular immunity 

[67] 

55 heathy people 

(median 60, 

B. lactis HN019 B. lactis in LFM (group A) or 

B. lactis in lactose-hydrolysed 

3 weeks Both groups significantly enhanced 

polymorphonuclear cell 

[69] 
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range 41-81) LFM (B) phagocytosis and NK cell activity 

55 elderly 

people 

B. lactis Bb-12; B. longum 2C 

+ B. longum 46 

10
9
 CFU/d of B. lactis Bb-12; 

10
9
 CFU/d of both B. longum 2C 

and B. longum 46 

6 months Reduced inflammatory status [57] 

36 healthy 

elderly people 

Bacillus coagulans BC30  (1×10
9
) capsule per day 28 days Significantly increased IL-10 [79] 

47 healthy 

elderly people 

Synbiotic containing lactitol 

and L. acidophilus 

5.0-5.5g synbiotic per day. 2 x 

10
9
 CFU/g 

2 weeks Significantly increased PGE2 levels [61] 

52 people 

(median age 

63.5, range 44-

80) 

L. rhamnosus HN001 25 g/200 mL reconstituted low-fat 

milk powder, twice 

daily,10
9
CFUs/g L 

3 weeks Increased phagocytic activity and 

NK cell activity 

[70] 
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There are a number of benefits accrued to the GA, and it is widely known in food industry 

as thickening agent, emulisifer and as a stabilising agent in the pharmaceutical industry [80].  

1.4.2 Bioactive compounds present in GA 

According to Williams and Philips (2000), GA consists of polysacchrides with a high 

molecular weight (approximately 350-850kDa) containing galactose, rhamnose, glucoronic 

acid and arabinose residues, Table (3) indicates to the sugar content in GA but also minerals 

like calcium, potassium and magnesium. The total amount of protein is limited to less than 

3% [75].   Figure (3) shows the GA structure.  

 

 

 

 

 

 

 

 

 

  

Figure 3: Structure of GA adapted from Dauqan and Abdullah (2013)  [1] 
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Table 3: Characteristics of GA (Bhatti et al, 1970). 
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1.4.3  Health benefits associated with GA  

GA is a major area of interest within the field of improving health, Traditionally, GA have 

been attributed to anti-obesity, anti-chronic renal failure, anti-diarrhoea properties [81] [82]. 

Additionally, a considerable amount of literature has been published on the effect of GA on 

the lipid metabolism and glucose level in human and murine studies [78] [81]. GA is resistant 

to digestion in the upper gastrointestinal tract and passes through to the colon where it can 

interact with gut microbiota [83, 84].[85-87].  

1.4.4 Modulation of the intestinal microbiota by GA in vitro  

Table (4) shows the effect of GA on the gut microbiota composition in vitro. Several  

studies have used traditional culture to determined changes in specific bacterial groups, 

Michels et al. (1998) demonstrated in an in vitro 24 h batch culture that GA (Fibergum) 

fermentation led to increases in lactobacilli and decreases in clostridia  this study was 

enumerated using plate cultivation methodologies [88]. 

Previous studies have used molecular methods, Kishimoto et al (2006) reported a 

fermentation study of 2.5% GA enrichment culture to extract the predominant bacteria using 

porcine inoculum, resulting in Prevotella ruminicola like bacterium being predominant 

species, these might be responsible for propionate production observed. Temperature gel 
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electrophoresis (TGGE) was used to determine the gut composition, further studies are 

needed to acertain the microorganisms responsible for utilising GA anaerobically within the 

human colon  [89].  

Furthermore, in vitro studies indicate that GA could have a potential effect on the distal 

colon, Quantitative polymerase chain reaction (qPCR) and Denaturing gradient gel 

electrophoresis (DGGE) has been used to determined the changing numbers of bacterial 

groups, Terpend et al (2013) carried out a continuous culture experiment using 

arabinogalactan (AG), derived from GA, as a substrate, compared with fructo-

oligosaccharides FOS. The apparatus consisted of five reactors simulating different parts of 

the human gastrointestinal tract:stomach, small intestine, and ascending, transverse and 

descending colon. After three weeks with a daily dose of 5 g the results showed that AG was 

mainly fermented in the distal colon while FOS was mainly fermented in the proximal colon. 

AG fermentation led to an increase in the phylum bacteroides and the genera bifidobacteria, 

along with an increase in F. prausnitzii which have been seen to possess anti-inflammation 

effects, these results were combined with an increase in butyrate and propionate in the distal 

colonic region and an increase in lactate and a decrease in ammonia in the descending colon. 

It was concluded that long term administration of AG derived from GA has potential benefits 

through increasing the saccharolytic metabolism distally in the colon and might play a key 

role in maintaining the gut by producing SCFA  [90].  

 A study of Marzorati et al (2015) highlights that blending a blend of GA and FOS can help 

to extend the time of selective fermentation to latter colon regions, 16S rRNA-targeted 

Illumina sequencing, DGGE and qPCR has been used to determined the diversity of gut 

microbiota and changing in specific numbers of bacteria [91]. However, investigation of GA 
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alone is required to understand the fermentation characteristics and whether AG alone may 

function as a prebiotic that is distally fermented.  

SCFAs are an end-product of dietary fibre fermentation in the human large intestine. In 

vitro batch studies allow SCFA production to be monitored in the absence of absorption [92]. 

In in vitro batch cultures inoculated with faeces from healthy adults GA led to a gradual 

increase in the amount of SCFA, such an effect was thought to be due to the complexity of the 

AG structure [93]. Faecal SCFA reflect the amount of SCFA left after microbial production 

with subsequent utilisation and coloncyte absorption [94]. Through the colonic epithelial 

absorption SCFA stimulate sodium dependent fluid absorption that is associated with 

improvements in diarrhoea [95].  

Bourquin et al showed that in human subjects, ingestion of different dietary fibre rich 

substrates produced different quantities of SCFAs in the faeces [96]. The fibre rich substrates 

that they tested, in three human volunteers, were two varieties of oat hull fibre, gum arabic, 

carboxymethylcellulose (CMC), soy fibre, psyllium, and six blends containing oat fibre, gum 

arabic, and CMC in various proportions. Production of SCFA was directly proportional to the 

content of GA in the substrates and overall, proportions of the SCFAs were acetate, 

propionate, and butyrate, produced in the molar proportion of 64:24:12 [97].  Wyatt et al 

(1986) observed using human faecal inoculum in basal medium with 2% of GA resulted in 

isolation of Bifidobacterium longum and Bacteroides ovatus, Bacteroides oris, Bacteroids 

buccae and prevotella ruminicola-like bacterium [98].  
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Table 4: In vitro studies on the modulation of gut microbiota by GA 

Subjects  Substrates   Dose Duration Results Reference 

Healthy 

adult  

GA 10 g/day 18 days Increase in bacteroides, 

bifidobacteria, 

lactobacilli 

[98] 

19 healthy 

adults 

GA 10, 15 

g/d 

 

10 days  increase in  bifidobacteria, 

lactobacilli 

 

[84] 

Healthy 

elderly 

41%GA , 18% 

inulin). 

serving 

as 3.3g  

Gut model 

SHIME 

Increase bif and lab 

significantly  

[91] 

Healthy 

elderly  

Arabinogalact

an  

 Gut model 

SHIME 

distal fermentation and 

bifidogenic effect; increased 

in lactobacilli. 

[90] 

 

1.4.5 Modulation of the intestinal microbiota by GA in vivo  

Table (5) shows the effect of GA on the gut microbiota composition in vivo. Although in 

vitro studies have found GA to stimulate the growth of bacterioides and bifidobacteria, in vivo 

human studies have found them to increase bifidobacteria and lactobacilli predominantly, 

using PCR [83].  

A human study of Cherbuit et al (2003) used a traditional culture techniques to study a 

specefic numbers of bacterial groups in healthy adults following GA intervention [84] found 
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that Bifidobacterium and Lactobacillus selectively fermented GA, with no effect on 

bacteroides. A part double blind human trail, the healthy volunteers ingested sucrose 10 g or 

GA (10g) and after that the dose was increased to 15 g; stools were taken by day 5-10 of each 

period for bacterial enumeration, and in the same study after 2 months another human double 

blind randomised cross-over study was conducted to assess the bowel performance after GA 

consumption using (10-70 g/day) for 18 days and comparing to SUC and FOS and the results 

show that volunteers experienced excessive flatulence, this indicates that at higher doses may 

not alter the gut microbiota efficiently. Human studies have indicated that GA can be 

tolerated at higher doses than FOS Cherbuit et al (2003) [84] Babaker et al (2012) [99].  

Research in human studies has indicated that a blend of fibres can modulate the gut 

microbiota and may provide additional health benefits. Goetze et al., (2008) compared FOS 

with a blend of GA  (50% FOS and 50% GA) and observed similarity between the substrates 

in bifidobacterial numbers concluding that GA additional to FOS could be important to 

different health aspects [100]. Additionally,  Glover et al (2009) investigated the effect of GA 

on Type 2 diabetes patients with normal renal function and observed improved function in the 

treatment group, however, in this study no analysis for intestinal bacteria composition and no 

measures for SCFA were made [78]. Min et al (2012) suggested that GA has therapeutic 

effects on IBS patients, thus suggesting that GA could give rise to positive effects within the 

gut [101]. GA have mainly been observed to support the growth of bifidobacteria and lactic 

acid bacteria with no changes in bacteroides and clostridia, indicating selectivity, which could 

result in positive health benefits [83, 84]. Calame et al (2008) explored the different doses on 

healthy adults in a double blind, double controlled trail where six parallel test groups and 

subjects consumed 5, 10, 20 or 40 g daily of substrates, (n=51). and found with higher doses 

of GA numbers of bifidobacteria were decreased while within the lower doses it increased, 
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suggesting that when higher doses are administered the specificity of the gum may be 

compromised due to cross-feeding. These two studies have not investigated this effect on 

older populations.  

Cherbuit et al (2003) claim that structure of GA mainly consists of polysaccharides, these 

can be used by bifidobacteria amongst others, which secrete enzymes to breakdown the sugars 

and glycosidec bonds to resulting in acetate production [84]. However, enzymatic analysis is 

needed to confirm these claims. In the case where they are broken down, especially their 

polysaccharide component, they yield sugars and uronic acids. These products are also inert 

and therefore do not pose any toxic threat to the body. GA is a water –soluble dietary fibre, it 

is a polysaccharide based on branched chains of (1-3) linked β-D galactopyranosyle units. 

Side chains, 2 to 5 units in length, are attached by (1-6) units to the main chain. Both main 

and side chains contain α-L-arabinofuranosyl, α-L-rhamnopyranosyl, β-D-

glucuronopyranosyl and 4-O-methyl-β-D-glucuronopyranosyl units [102]. In addition, the 

enzyme thought to involved in gum acacia breakdown is alpha-arabinofuranosidase, also the 

enzyme betagalactosidase also increased within GA fermentation which indicates that 

bifidobacteria should be able to utlise the sugars in GA [90]. 

1.4.6 Mechanisms of action of GA and prebiotic function 

GA like many  polysaccharides can be broken down by intestinal microorganisms but is not 

digestible within the human upper gastrointestinal tract due to the lack of appropriate 

enzymes. GA therefore has the potential to  support the growth of probiotics within the large 

intestine [103].  Selective abilities of GA may be due to the main polysaccharide in GA being 

arabinogalactan. Bifidobacteria and lactobacilli  secrete enzymes  such as and β-galactosidase 

and α- arabinofuranosidase that are thought to be involved in the break down of 



                                                         Chapter 1:Introduction &litreture review  

29 

 

arabinogalactan breakdown  [90]. Overall this mechanism could lead to the prebiotic potential 

of GA. 

1.4.7 Mechanisms of action of GA and immune function 

Much of the previous research on GA has focused on assessing the anti-inflammatory 

properties,table (6) presents some studies on GA effect on reduces inflammation and  figure 

(4) shows possible mechanisms of GA in reducing inflammation. In vitro study have observed 

GA can improve renal function by reducing the inflammation [104].  

Another study, Matsumoto et al (2006) examined the potential role of butyrate in regulating 

pro-inflammation in renal epithelial cells. Following 8 weeks of supplementation GA 25g/d in 

healthy human subjects, butyrate was increased (n=7, p=0.03) and in vitro work in the same 

study it was observed that butyrate could regulate the production of Transforming growth 

factor beta (TGF-β) [105], TGF-β is involved in pathphysiology and increases in circulating  

of TGF-β in blood vessels occurs in hypertention patients [78]. Butyrate production is very 

important as it can help to stimulate mucins which is important for mucous layers 

maintainance and epithelial protection [106], furthermore, butyrate is a key colonocyte energy 

source and involved in regulation and growth differentiation of cells [107], [108]. Therefore, a 

modulation of gut microbiota after GA fermentaion  and increases in SCFA production could 

associated with regulating in cytokine production and subsequnelty the immune system 

enhancement.  
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Table 5: In vivo studies on the modulation of gum acacia in human gut microbiota 

 

 

 

Table 6: Inflammation reduction by GA 

Subjects Substrates Dose Duration Results Reference 

Rats  GA Rats (0.75 

%, w/w in 

feed 

4 weeks Increase in  IL-10 [104] 

Dentric 

cells  

GA 

(khartom 

company) 

n/a n/a IL-10 enhanced , CD4+ 

enhanced. 

[109] 

10 healthy 

volunteers 

GA 25g  8 weeks Increase butyrate [110] 

 

 

 

 

Subjects Substrates Dose Duration Results Reference 

Healthy 

adult  

GA 10 g/day 18 days Increase in bif and bac [98] 

19 Healthy 

adults 

GA 10,15g/d 10 days Increase in bif, lab 

 

[84] 

54 Healthy 

adults 

GA 5,10,20,40 

g/d 

4 weeks Increase in bif, lab 

 

[83] 
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Figure 4: Pathway for gum acacia as a potential prebiotic that can modulate the immune function. 
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1.5 Methods of studying gut microbiota used in this study  

1.5.1 In vitro models 

In vitro models usually used to observe the effects of substrates such as probioics, 

prebioitcs, synbiotics. Such models do not alwayse provide an accurate model of what occurs 

in vivo, due the absence of mucosa colonocytes, absorption and immunological interactions. 

However, they can give a proper conditions to assess the metabolism and numbers of colonic 

gut microbiota.  

1.5.1.1 Enrichment culture   

An enrichment culture is a closed system used to isolate organisms that utilise a particular 

nutrient source from a complex microbial community. The enrichment sulture works on the 

basis that liquid growth medium replaced on a regular basis will provide optimal conditions 

for a key utilising organism, therefore enabling key substrate utilisers to be selected [111]. 

This allows microbes of interest to be isolated and further studied. 

1.5.1.2 Batch culture  

Batch cultures are a rapid method within a closed system in a pH controlled, stirred batch 

culture system. This system is maintained under anearobic conditions at 37Cº. the glass 

vessels contain a medium enable the growth of colonic bacteria, then the substrates is added 

before the addtion of faecal slurry 1%w/w total volume  which is used presenting the gut 

microbiota.  Batch cultures are a commonly used approach to determine the gut microbial 

activities, it where a substrate can be provided at the beginning of the fermentation.  It can be 

used to assess how different substrates affect the colonic microbiota. This method used was 
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described by Olano-Martin [112]. Also it can be used to have more detail of what happens to 

the colonic gut microbiota.  

1.5.1.3 Gut model 

This model is a complex continuous system with a three vessels representing the proximal, 

transverse and distal colon, the  three vessels linked to each other to sequentlly fed from a 

medium supply. The pH within the three vessels fed from 5.5 to 6.2 then 6.8 with an exit to a 

waste vessel [113]. The system is inoculated with faeces under anearobic conditions. The 

bacteria within the model are allowed to equilibrate before the addition of test substrates and a 

second equilibration stage will be reached before assessment of the changes. Continuous 

fermentation is an open system in which medium is continuously added to the bio-reactor and 

an equal volume of fermented medium is simultaneously removed  [114].  The three stages 

gut model it can be a time consuming so often used after preliminary screening in batch 

culture system. It can give an overview of long term repeated exposure to a specific substrate 

may effect on colonic bacteria. This method can provide comprehensive metabolite data 

without the absorption that occurs in vivo. Subsequently SCFA production can be measured, 

thus the likelihood of a substrate to lead to SCFA generation can be determined. It has been 

validated by the colonic content of a sudden death victims thus it provide a decent method for 

testing substrates of interests [115].  

1.6 Methods used in this study for detecting changes in colonic bacteria  

1.6.1 Traditional methods: microbiological culture techniques  

Over the last decade, methods used to quantify bacteria in the environment have changed 

dramatically. Traditional culture methods allow us to study the activity of bacteria to be 

studied under varying conditions, even when isolated from their natural ecosystem. However, 
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not all bacteria can be cultured. It is estimated that up to 70 % bacteria in the colon are 

unculturable [116]. Moreover, the cultural techniques does not give an indication of the 

changing in microbial anumbers.  

1.6.2 Molecular techniques  

1.6.2.1 In situ florescent hybridisation (FISH) 

16S rRNA differs between microbial species, by targeted molecular probes. Synthetic 

oligoneucoltide probes can be hybridised to the bacterial group sequence of interest. A 

florescent label is used which allows for enumeration via florescence microscopy [117]. 16S 

rRNA is an excellent molecule to distinguish between different unknown bacterial species. It 

is an accurate technique that does not require cuturing of bacteria. Probes can be created and 

can be used for species level or genus specific. However, FISH technique has limit detection 

of 1×10
6 

, enabling bacteria to be accurately enumerated above this point [118]. 16S rRNA 

contains regions with different degree of sequence variation. there are conserved regions, 

where the DNA sequence is similar even between distantly related bacteria, and variable 

regions, where the DNA sequence is uniqe to a particular bacterial species or group of closley 

related species. Thus 16S Rrna is an excellent molecule for distingushing between different 

unknown bacterial species and evolutionary relationships. 

1.6.2.2 Next generation sequencing (NGS) 

Another approach to find out the gut function, to date, culture-independent molecular-

based taxonomic assessment of microbiota has primarily relied on sequencing of PCR 

amplicons of targeted microbial genes at the deoxyribonucleic acid (DNA) level (DNA 

Amplicon-seq). Next generation sequencing (NGS) is a molecular method to sequence 

millions of fragments of bacterial genes. This method allows us to understand the diversity of 
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the environmental microbiome. Moreover, it can give information to the genus level.  

Previous data has used different methods to analyse the modulation in gut microbiota. 

However, searching more in depth about the species level to understand more about the 

interactions could aid in identifying the microorganisms that responsible for the fermentation 

of substrates. In order to achieve that NGS is provided as a new and comprehensive method, 

however, a limitation, might occur is that it is not fully quantitative as biased on primer 

selection [119] and it is also limited to discovering a new novel microbial phenotypes because 

the associated primers are designed based on known sequences [120]. 

Conclusion  

From the literature, the increasing population of elderly provides the challenge of 

improving the general health and reducing intestinal inflammation. There exists the possibility 

to target the health of an ageing population through gut microbial modulation. Novel 

substrates that could impact on the microbiota are of great interest. One such substrate is GA, 

this has been considered a potential prebiotic and  has been seen to possess anti-inflammatory 

properties in diabetes and renal failure patients. 

 

1.7 Future Aspects 

It must be stated that definitive proof of the modulation of gut microbiota by GA needs 

more research. Especially for elderly persons and improvements in systemic and mucosal 

immunity. Similarly, the science of in vitro fermentation offers the possibility of determining 

the more functional impacts of microbiota changes. The daily intake of GA as a supplement 

with different doses has shown a significant effect on human health, therefore, this study 
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indicates that there are other benefits of using GA worthy of investigation. It is essential to 

conduct further in vitro studies on the targeted population that have lower levels of beneficial 

bacteria such as the elderly. This group undergoes changes in the intestinal bacterial 

composition, due to various factors such as a slower GI transit time, which results in a 

subsequent increased inflammatory status and increased risk of pathogen infection. 

Furthermore, recent studies have indicated that prebiotics and probiotics play a role in 

improving the immune responses in elderly population, therefore, it is possible that GA can 

modulate the immune function via the microbiota in that target group. An in vitro approach 

could give a primary result that could base the knowledge to be the first step to continue the 

research in vivo studies. This study aims to assess systematically the fermentation 

characteristics and prebiotic potential of GA on elderly gut microbiota and their inflammation 

responses. Also to assess the bacterial profiles using modern molecular analysis, i.e. culture 

independent techniques such as bacterial analysis by fluorescent in situ hybridisation, 16S 

ribosomal ribonucleic acid (rRNA) gene sequencing, in addition to assess SCFA production 

using gas chromatography. Moreover, modulation of immune function will be assessed by 

using isolated peripheral blood mononeclear cells (PBMCs). The present research explores, 

for the first time, the effects of the immune modulation of the healthy elderly persons by 

using the fermentation metabolite of GA, and therefore, this could explain the therupatric 

properties of GA. 
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1.8 Aims and objectives  

The overall aim in this study was to investigate the impact of GA fermentation on  the gut 

microbiota and to assess if these changes if there offer potential to impact on health of elderly.  

Moreover, in order to produce a synbiotic of GA,  putative probiotics were isolated from 

elderly faecal sample in extracted GA enrichment culture to generate a product more potent 

than GA alone. Therefore, in the present work in vitro approaches have been used to 

investigate changes in gut microbiota and immune markers on elderly and SCFA production.  

The main objectives are:  

1- Assess impact of GA in vitro fermentation on the microbiota and SCFA production on 

the gut microbiota.   

2- Determine the likely impact of GA on inflammatory cytokines using in vitro models in 

elderly gut microbiota.  

3- Isolate a putative probiotic using  GA extract enrichment culture from elderly gut 

microbiota.   

4- Assess the anti-pathogenic properties of  isolated putative probiotic.   

5- Investigate the anti-pathogenic properties of a synbiotic in elderly gut microbiota 

against E. coli in mixed culture.  
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2. Chapter (2) In vitro fermentation of gum acacia - impact on the 

faecal microbiota 

Abstract  

Interest in the consumption of gum acacia (GA) has been associated with beneficial health 

effects, which may be mediated in part by prebiotic activity. Two doses of GA and 

fructooligosaccharide (FOS) (1% and 2%) were tested for their efficacy over 48 h in pH- and 

temperature-controlled anaerobic batch cultures inoculated with human faeces. Samples were 

taken after 0, 5, 10, 24, and 48 h of fermentation. The selective effects of GA (increases in 

Bifidobacterium sp. and Lactobacillus sp.) were similar to those of the known prebiotic FOS. 

The 1% dose of substrates showed more enhanced selectivity compared to the 2% dose. The 

fermentation of GA also led to SCFA production, specifically increased acetate after 10, 24, 

and 48 h of fermentation, propionate after 48 h, and butyrate after 24 and 48 h. Additionally, 

FOS led to significant increases in the main SCFAs. These results suggest that GA displays 

potential prebiotic properties.  
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2.1 Introduction  

The colon has the most abundant and diverse population of bacteria in the human body and is 

inhabited by around 1000 different bacterial species, which can reach 10
14 

colony-forming 

units  CFU [1]. The human microbiome is a complex and dynamic system that plays an 

important role in human health [2, 3]. By interacting with consumed material, colonic 

inhabitants ferment undigested food and secrete end products such as gases and SCFA [1]. 

Moreover, the composition of the bacterial population may shift, resulting in increases in 

bacteria associated with beneficial effects. Inulin and FOS are known prebiotics that are 

commercially used worldwide [4, 5]. A prebiotic is defined as ‘a selectively fermented 

ingredient that results in specific changes in the composition and/or activity of the 

gastrointestinal microbiota, thus conferring benefit(s) upon host health [6].  

GA is derived from acacia trees of the Leguminosae family. It is an arabinogalactan protein 

complex with an approximate molecular weight of 350-850 K Da [7, 8]. It is a polysaccharide 

consisting of branched chains of (1-3) linked β-D galactopyranosyl units. Side chains, 2 to 5 

units in length, are attached by (1-6) units to the main chain. Both the main and side chains 

contain α-L-arabinofuranosyl, α-L-rhamnopyranosyl, β-D-glucuronopyranosyl, and 4-O-

methyl-β-D-glucuronopyranosyl units [9]. GA is widely used in the pharmaceutical and food 

industries as an additive , a stabilising, thickening, and an emulsifying agent [10] [11].  

GA is not digestible in the small intestine and is fermented in the large intestine, and has been 

observed to lead to increases in Bifidobacterium spp.  [12] [13] [14]. Bifidobacterium spp. 

have been shown to inhibit the growth of pathogenic bacteria, modulate the immune system, 

and produce SCFAs, which reduce the pH in the colon, imparting antimicrobial activity 

against pathogens [1]. A variety of GA doses ranging from 5 to 40 g/d have been reported to 
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be effective in increasing Bifidobacterium spp.  and Lactobacillus spp. populations [12, 15]. 

These lines of evidence indicate that GA has bifidogenic potential in healthy humans. 

However optimal effective doses have not been defined. The results from most previous 

studies cannot be directly compared, as different methodologies, population groups, and types 

of GA have been studied. In addition, high daily doses of GA could result in the 

manifestation of adverse effects such as mild diarrhoea and bloating [16]. Therefore, 

following predigestion, we investigated the fermentation of two doses of GA over 48 h in pH-

controlled batch culture systems and compared the results with those of FOS. In vitro batch 

culture systems are used to simulate the main physiological and microbiological processes in 

the distal colon and can be combined with metabolic and molecular analyses. This approach 

should provide more information on the prebiotic potential of GA. 

 

2.2 Material and methods  

Substrates 

GA (KLTA-MF-Kerry Ingredients, U.K.) was in spray dried form as a water soluble, free-

flowing powder (food-grade). Table 7 shows the composition of GA used in this study, 

dietary fibre were analysed by Campden BRI Laboratories (AOAC method 991·43). The 

FOS used was Orafti® P95 (Beneo, Belgium) extracted from chicory root.  
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Table 7 Composition and nutritional profile of GA used in the present study 

Analysis Results 

Energy (kcal) 1205kJ/100g 

Protein 2.1g/100g 

Total carbohydrate (by 

difference) 
82.6g/100g 

Carbohydrate (avail) 56.5g/100g 

Total Suger* 0.6g/100g 

Fibre 26.1g/100g 

Fat 0.1g/100g 

Sodium 11.0mg/100g 

Moisture 11.8g/100g 

Ash 3.49g/100g 

* Total sugars are the sum of glucose, sucrose and fructose expressed as monosaccharides 

 

2.2.1 In vitro Upper Gut Digestion  

Upper gut digestion was performed according to the protocol of Mills et al.(2008) [17]. 

Briefly,  60 g of GA powder was added to 150 ml of distilled water and the solution mixed 

with  20 mg α–amylase in 6.25 ml CaCl₂ (1 mM) and incubated on a shaker at 37 °C  for 30 

minutes. This simulated the initial oral digestion. Subsequently, 2.7 g of pepsin in 25ml of 

HCl (0.1M) was used to facilitate gastric breakdown of the sample. The pH was then reduced 

progressively to 2 by adding 6 M HCl, before incubating on a shaker at 37°C for 2 hours. A 

further 560mg of pancreatin and 3.5g of bile in 125 ml of  NaHCO₃ solution was added to 

simulate the effect of the small intestine on the gum sample. The pH was increased to 7 by 
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adding NaOH (6M) and the resulting suspension incubated on a shaker at 37°C for 3 hours. 

Samples were transferred to cellulose dialysis membrane (1 KDa molecular weight), 

purchased from Cheshire biotech Cheshire, UK, and dialysed against 10Mm of NaCl solution 

at 5°C to remove low molecular mass digestion products. After 15 hours, the dialysis fluid 

was changed and dialysis continued for additional 2 h. The sample within the dialysis tubing 

was freeze dried (5 days) prior to use in batch culture systems. 

2.2.2 Faecal sample preparation  

Faecal samples were obtained from three healthy volunteers (31 35) years old, who had not 

been consuming antibiotics for at least 6 months before the study and had no history of 

gastrointestinal disease. Volunteers were not consumers of probiotic or prebiotic 

supplements. Samples were prepared on the day of the experiment and within 1 hour of 

production and were diluted to 1:10, w/v in anaerobic phosphate buffer (0.1 M; pH7.4). 

Samples were homogenised in a stomacher for 2 min, the resulting slurry was inoculated into 

batch culture fermenters.  

2.2.3 Batch cultures  

Three independent batch culture experiments were carried out using faeces from a different 

donor each time. Vessels were autoclaved and then aseptically filled with 135 ml of basal 

medium (peptone water (2 g/l), yeast extract (2 g/l), NaCl (0.1 g/l), K2HPO4 (0.04 g/l), 

KH2PO4 (0.04 g/l), NaHCO3 (2 g/l), MgSO4•7H2O (0.01 g/l), CaCl2•6H2O (0.01 g/l), tween 

80 (2 ml/l), hemin (50 mg/l), vitamin K1 (10 ml/l), L-cysteine (0.5 g/l), bile salts (0.5 g/l), 0.5 

ml/l of 10% cysteine –HCl, resazurin (1 mg/l)). Vessels were left overnight with nitrogen 

pumping (15mL/min) through the vessel to provide an anaerobic environment. Before 

addition of faecal slurry, temperature of basal medium was set at 37 °C and pH was 
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maintained at 6.7-6.9 using a pH meters (Electrolab pH controller, Tewksbury, UK) by the 

addition of 0.5 M HCl or 0.5M NaOH. The vessels were stirred using magnetic stirrers. 1.5g, 

3g (1% w/v) of FOS and 0.6 g and 0.3 g (1:10 w/v) of pre-digested GA (taking to account the 

intake daily 10g according to (Calame et al.,2008) of GA and reach the distal colon) were 

added to the vessel 1% and doubling the dose 2% just prior to the addition of 15 ml of faecal 

slurry (10%w/w). The vessels were left for 48h, with samples taken at 0, 5, 10, 24 and 48h. 

Samples were centrifuged in preparation for GC analysis, or prepared for microbial 

enumeration by FISH.  

2.2.4 Florescence in situ hybridisation (FISH) analysis 

To asses diffrences in bacterial population,  samples hybridised as described by Daims et al., 

1999 [18]. A sample of 375-µl obtained from each vessel was fixed for four hours 4˚C in 

1125 μ L (4% w/v) paraformaldehyde. Fixed samples were then centrifuged at 11,337g 

(Eppendorf centrifuge minispin, Eppendorf, UK) at room temperature for 5 minutes. The 

supernatant removed and discarded. The pellet was resuspended in 1 ml of cold 1×PBS by 

aspirating carefully using a pipette. This step was conducted twice. The washed cells were 

suspended in 150 µL of cold 1×PBS, then 150 µL of ethanol (99%) was added and the 

samples were stored at -20˚C.  

The oligonucleotide probes used were commercially synthesised and labeled with the 

fluorescent dye Cy3 (Sigma Aldrich Co. Ltd. UK). These were: Bif164 for Bifidobacterium 

spp. (BIF), Lab158 for Lactobacillus/enterococcus (LAB), Ato291 for Atopobium cluster 

(Atopobium, Coriobacterium, Collinsella spp.) (ATO), Chis 150 for Clostridium histolyticum 

group (CHIS) Erec 482 for  Eubacterium rectale – Clostridium coccoides group  (EREC), 

Bac 303 for  Bacteroides–Prevotella group (BAC). EUB 338 mixture consisting of EUB338, 
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EUB338II and EUB338III for total bacteria (Total) see Table 8. For the hybridisation 20 μ L 

of diluted sample was pipetted onto a teflon poly-L-lysine-coated six-well slide (Tekdon Inc., 

Myakka City, FL). The samples were dried onto the slides at 46-50˚C for 15 minutes and 

after that dehydrated in an alcohol series 50, 80, and 96%. The ethanol was allowed to 

evaporate from the slides before hybridisation buffer was added. A probe/hybridization buffer 

mixture (5 μL of a 50 ng/μL stock of probe plus 50 μL of hybridization buffer). To 

permeabilise the cells for use with probes Bif164 and Lab158, samples were treated with 20 μ 

L of lysozyme at room temperature for 15 min before being washed briefly for 2−3 seconds 

in water and then dehydrated in the ethanol series. Then slides were placed in hybridisation 

oven for 4 hours (ISO 20 oven, Grant Boekel). For the washing step, slides were placed in 50 

ml of washing buffer (0.9 M NaCl, 0.02 M Tris/HCl (pH 8.0), 0.005 M 

ethylenediaminetetraacetic acid (EDTA) solution (pH 8.0, Table 8, warmed at the appropriate 

temperature for each probe and 20 μL of 4;6-diamidino-2-phenylindole di hydrochloride 

(DAPI) was added to the washing buffer for 15 min. They were then briefly washed (2−3 s) 

in ice-cold water and dried under a stream of compressed air. Five microliters of ProLong 

Gold antifade reagent (Invitrogen) was added to each well and a coverslip applied. Slides 

were stored in the dark at 4 °C until cells were counted under a Nikon E400 Eclipse 

microscope. DAPI stained cells were examined under UV light, and a DM510 light filter was 

used to count specific bacteria hybridised with the probes. For each slide, 15 random different 

fields of view were counted. 
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Table 8 Hybridisation and washing conditions for oligonucleotide probes 

 

 

2.2.5 Preparation sample for short chain fatty acids  

Samples were extracted and derivatised as previously described [24]. Samples were defrosted 

and 1ml of each sample or standard solution was transferred into a labeled 100 mm × 16mm 

glass tube with the internal standard of 50µl of 2- ethyl butyric acid (0.1M). 0.5 ml 

concentrated HCl and 2 ml of diethyl ether was added to each glass tube and samples 

Probe name Sequence (5’ to 3’) 

Hybridisation 

pre-treatment 

Formamide 

(%) in 

hybridisation 

buffer 

Hybridisation 

temperature 

(°C) 

Washing 

temperature 

(°C) 

Reference 

Ato 291 GGTCGGTCTCTCAACCC Lysozyme 0 50 50 [19] 

Lab 158 GGTATTAGCAYCTGTTTCCA Lysozyme 0 50 50 [20] 

Bif 164 CATCCGGCATTACCACCC Lysozyme 0 50 50 [21] 

Erec 482 GCTTCTTAGTCARGTACCG None 0 50 50 [22] 

Chis 150 TTATGCGGTATTAATCTYCCTTT None 0 50 50 [22] 

Bac 303 CCAATGTGGGGGACCTT None 0 46 48 [23] 

EUB338* GCTGCCTCCCGTAGGAGT None 35 46 48 [18] 

EUB338II* GCAGCCACCCGTAGGTGT None 35 46 48 [18] 

EUB338III* GCTGCCACCCGTAGGTGT None 35 46 48 [18] 

* These probes are used together in equimolar concentrations (all at 50 ng l
1

) 
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vortexed for 1 min. samples were centrifuged at 2000 g for 10 min (SANYO MSE Mistral 

3000i; Sanyo Gallenkap PLC, Middlesex, UK). The diethyl ether (the upper layer) was 

transferred in a new glass tube. A second extraction was conducted by adding 1 ml of diethyl 

either to the sample followed by vortex and centrifugation. 400 µl of pooled ether extract and 

50 µl N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) was added in a 

GC screw-cap vial. Samples were heated at 80°C for 20 minutes and then left at room 

temperature for 48 hours to allow lactic acid in the samples to completely derivatise.  

A 5890 SERIES II Gas Chromatograph (Hewlett Packard, UK) using an Rtx-1 10m×0.18mm 

column with a 0.20μm coating (Crossbond 100% dimethyl polysiloxane; Restek, 

Buckinghamshire, UK) was used for analysis of SCFA. Temperatures of injector and detector 

were 275°C, with the column programmed from 63°C for 3 minutes to 190°C at 10°C min-1 

and held at 190°C for 3 minutes. Helium was the carrier gas (flow rate 1.2 ml min-1; head 

pressure 90 MPa). A split ratio of 100:1 was used.  The standard solution contained (mM): 

sodium formate, 10; acetic acid, 30; propionic acid, 20; isobutyric acid, 5; n-butyric acid, 20; 

iso-valeric acid, 5; n-valeric acid, 5; sodium lactate, 10; sodium succinate, 20. The sample 

was injected onto the column, which was maintained at 140 
o
C for the first 5 minutes, 

temperature of the column was increased over 5 minutes to 240 
o
C. To maintain appropriate 

calibration after injection of every 20 samples an external standard solution, with known 

concentrations of SCFAs was injected. Peaks and response factors within samples were 

calibrated and calculated using ChemStation B.03.01 software (Agilent Technologies, 

Cheshire, UK).  
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2.2.6 Statistical analysis  

GA and FOS both doses were tested in batch cultures inouculated with faecal samples 

collected from three individial donors in three separate experiments. The log 10 numbers of 

specific bacteria were expressed as mean values and standard diviation. Statistical tests were 

performed using SPSS, (SPSS Statistical Software, Inc., Chicago, IL, USA), version 18.0 A 

repeated measures one-way analysis of variance ANOVA to test the effect of time with the 

factor subjects, with five levels (0 h, 5 h, 10 h, 24 h and 48 h) and to assess the significant 

differences between the two subjects in the same time points. Significant differences between 

times point were represented by “*” p <0.05, “**” p<0.01 and “***” p < 0.001. 

2.3 Results  

2.3.1 Effects of different doses of GA and FOS on human faecal bacteria 

To assess the impact of GA on the intestinal microbiota composition, pH-controlled, 

anaerobic, faecal batch cultures were conducted using FOS as a positive prebiotic control. 

Samples were taken after 0, 5, 10, 24, and 48 h of fermentation. Bacteria were enumerated by 

FISH.  

The fermentation of GA at the 1% dose led to increased numbers of Bifidobacterium spp. 

after 5, 10, and 24 h of fermentation and of Lactobacillus spp. after 5 and 24 h compared with 

the levels at 0 h, as shown in Tables 9 and 10. However, a small but statistically significant 

drop in Bifidobacterium spp. compared with the negative control was seen after 24 h 

(7.53±0.10, 7.22±0.37 GA 1%) ( 7.46±0.21, 7.64±0.29 control). As shown in tables 9 and 10. 
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Fermentation of 2% GA a led to a significant increase in Bifidobacterium spp. after 5 and 10 

h compared with the baseline levels (time 0 h). Total bacteria increased after the fermentation 

of 2% GA for 48 h compared with the baseline levels.  

The 1% dose of FOS led to a significant increase in Bifidobacterium spp. after 5 h compared 

with baseline (7.39± 0.21, 7.83± 0.06). Lactobacillus spp. increased following fermentation 

of FOS at a dose of 1% at 5, 10, and 24 h. The 2% FOS dose significantly increased 

Bifidobacterium spp. numbers after 24 h compared with the negative control (8.12±0.16, 

7.78±0.17) and after 5 h compared with baseline levels (p = 0.03), whereas an increase in 

Lactobacillus spp. was observed after 5 h (7.75±0.14, 7.29± 0.07)  and 24 h (7.51± 0.10, 

7.29± 04) (p = 0.01 and 0.02, respectively) compared with the negative control.  

The number of bacteria in the C. histolyticum group decreased after fermentation of 1% FOS 

and 1% GA for 5 and 10 h, respectively, compared with the baseline levels. Additionally, GA 

and FOS enhanced the growth of Atopobium spp. after 5 h of fermentation compared with the 

baseline levels. The C. coccoides-Eubacterium rectale group did not change with any of the 

tested substrates. Additionally, Atopobium also increased after 5 h of fermentation of 2% 

FOS.  

In the current study both substrates led to increases in Bacteroides spp.; these changes 

occurred after 5 h of fermentation of GA and FOS at the 1% dose (p = 0.01 and p = 0.02, 

respectively) and with the 2% dose of GA and FOS compared with the baseline levels (p = 

0.02 and p = 0.00, respectively). Moreover, 1% FOS increased Bacteroides spp. after 24 h (p 

= 0.01). On the other hand, the prebiotic FOS at the 1% dose enhanced the growth of total 

bacteria, achieving statistical significance after 10 h and 24 h. Additionally, total bacterial 

growth was enhanced with 2% FOS after 5 h compared with the negative control. 
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Table 9 changes in the bacterial composition figures are presenting the mean bacterial populations in pH-controlled batch cultures at 0, 5, 10, 24, and 

48h.Values are mean ± SD.*, significant differences  from the 0 h value within the same treatment, p<0.05. small letters differences from the negative control. 

1% faecal batch culture inoculated with vessel 1 negative control, vessel 2 FOS 1%, vessel 3 FOS 2%, vessel 4 GA 1%, vessel 5 GA 2%. 

 Bif164 Lab158 Ato291 Bac303 Erec482 Chis150 EubI-II-III 

 mean SD mean SD mean SD mean SD mean SD mean SD mean SD 

Control 0h 7.46 0.21 7.24 0.09 7.40 0.18 7.85 0.24 7.96 0.20 6.91 0.24 8.26 0.35 

Control 5h 7.76 0.20 7.29 0.07 7.60 0.15 8.04 0.20 7.36 0.07 6.42 0.38 8.45 0.08 

Control 10h 7.75 0.24 7.47 0.07 7.56 0.02 8.25 0.28 7.51 0.07 6.99 0.16 8.44 0.04 

Control 24h 7.78 0.16 7.29 0.04 7.54 0.14 8.12 0.21 7.54 0.08 5.73 0.47 8.53 0.36 

Control 48h 7.64 0.29 7.14 0.50 7.50 0.61 7.76 0.17 7.51 0.06 5.68 0.73 8.42 0.18 

FOS 0h 7.39 0.21 7.31 0.08 7.52 0.09 7.80 0.11 7.72 0.2 6.62 0.53 8.21 0.14 

FOS 5h 7.83 * 0.06 7.78  ** 0.04 7.83  * 0.10 8.16  * 0.09 7.41 0.16 5.71  * 0.55 8.78  0.11 

FOS 10h 8.00 0.07 7.53  ** 0.09 7.77 0.30 8.30 0.10 7.83 0.29 6.23 1.09 8.72 * 0.08 

FOS 24h 8.17 0.23 7.75 * 0.14 7.79 0.31 8.24  * 0.01 7.50 0.12 6.27 0.88 8.83 * 0.14 

FOS 48h 7.82 0.15 7.44 0.15 7.58 0.18 7.93 0.18 7.28 0.19 5.65 0.69 8.57 0.17 

GUM 0h 7.53 0.10 7.00 0.16 7.43 0.05 7.70 0.22 7.81 0.37 6.08 0.50 8.29 0.22 

GUM 5h 7.92  * 0.11    7.32  * 0.05 7.80 ** 0.06 7.97 * 0.19 7.42 0.11 6.64 0.42 8.54 0.18 

GUM 10h 7.90  * 0.14    7.46 0.11 7.60 0.26 8.01 0.35 7.44 0.166 5.87  * 0.82 8.79 0.71 

GUM 24h 7.93  * 0.06    7.59  ** 0.22 7.66 0.22 8.08 0.52 7.65 0.17 5.87 0.82 8.53 0.25 

GUM 48h 7.22  a 0.37 7.39 0.11 7.53 0.40 8.20 0.24 7.39 0.49 6.28 0.86 8.49  0.56 

B B 
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Table 10 changes in the bacterial composition figures are presenting the mean bacterial populations in pH-controlled batch cultures at 0, 5, 10, 

24, and 48h.Values are mean ± SD.*, significant differences  from the 0 h value within the same treatment, p<0.05. small letters differences from 

the negative control. 1% faecal batch culture inoculated with vessel 1 negative control, vessel 2 FOS 1%, vessel 3 FOS 2%, vessel 4 GA 1%, 

vessel 5 GA 2%. 

 Bif164 Lab158 Ato291 Bac303 Erec482 Chis150 EubI-II-III 

 mean SD mean SD mean SD mean SD mean SD mean SD mean SD 

Control 0h 

Control 5h 

Control 10h 

Control 24h 

Control 48h 

7.46 

7.76 

7.75 

7.78 

7.64 

0.21 

0.20 

0.24 

0.16 

0.29 

7.24 

7.29 

7.47 

7.29 

7.14 

0.09 

0.07 

0.07 

0.04 

0.50 

7.40 

7.60 

7.56 

7.54 

7.50 

0.18 

0.15 

0.02 

0.14 

0.61 

7.85 

8.04 

8.25 

8.12 

7.76 

0.24 

0.20 

0.28 

0.21 

0.17 

7.96 

7.36 

7.51 

7.54 

7.51 

0.20 

0.07 

0.07 

0.08 

0.06 

6.91 

6.42 

6.99 

5.73 

5.68 

0.24 

0.38 

0.16 

0.47 

0.73 

8.26 

8.45 

8.44 

8.53 

8.42 

0.35 

0.08 

0.04 

0.36 

0.18 

FOS 0h 

FOS 5h 

FOS 10h 

FOS 24h 

FOS 48h 

7.4 

7.93 * 

8.02 

8.12  a 

7.88 

0.1 

0.15 

0.11 

0.17 

0.11 

7.24 

7.75  a 

7.58 

7.51 a 

7.43 

0.24 

0.14 

0.14 

0.1 

0.15 

7.57 

7.98 ** 

7.89 

7.81 

7.67 

0.10 

0.12 

0.18 

0.19 

0.10 

7.89 

8.38 * 

7.8 

8.07 

7.95 

0.17 

0.02 

0.32 

0.3 

0.34 

7.84 

7.74 

7.88 

7.82 

7.62 

0.27 

0.3 

0.19 

0.19 

0.18 

6.44 

6.45 

6.25 

5.88 

5.87 

0.51 

0.40 

0.94 

0.85 

0.15 

8.35 

8.89  a 

8.76 

8.56 

8.69 

0.29 

0.083 

0.26 

0.08 

0.29 

GUM 0h 

GUM 5h 

GUM 10h 

GUM 24h 

GUM 48h 

7.33 

7.78  ** 

7.98  * 

7.93 

7.69 

0.05 

0.06 

0.13 

0.28 

0.149 

7.38 

7.32 

7.6 

7.67 

7.34 

0.14 

0.13 

0.31 

0.27 

0.12 

7.58 

7.67 

7.70 

7.66 

7.78 

0.18 

0.29 

0.25 

0.26 

0.27 

7.73 

8.01 ** 

8.21 

8.17 

8.2 

0.22 

0.23 

0.54 

0.3 

0.25 

7.77 

7.6 

7.58 

7.68 

7.46 

0.2 

0.16 

0.2 

0.29 

0.3 

6.39 

6.31 

6.09 

6.57 

6.04 

0.58 

0.67 

0.75 

0.73 

0.91 

8.11 

8.44 

8.74 

8.72 

8.66  * 

0.17 

0.16 

0.47 

0.18 

0.17 
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2.3.2 Impact of GA and FOS on SCFA production 

Table 11 shows that within 1% GA, the concentration of acetate significantly increased after 

24 h of fermentation (p ≤ 0.05) and exhibited an increasing trend after 5, 10, and 48 h (p = 

0.06, 0.06, and 0.08, respectively). Acetate levels were elevated at all time points after FOS 

fermentation compared with the levels at 0 h (p = 0.00, 0.00, 0.04, and 0.00, respectively), 

and 1% FOS led to an increase after 5 h compared with the negative control (p = 0.01). 

Butyrate production was significantly enhanced following the fermentation of FOS between 0 

and 24 h (p = 0.02) and following GA 1% fermentation after 24 and 48 h (p = 0.03, 0.02); 

this was also the case at 24 h when compared with the negative control (p = 0.04). Compared 

with the levels at 0 h, propionate production increased following the fermentation of GA1% 

for 48 h (p = 0.03) and the fermentation of 1% FOS for 24 h (p = 0.01). 

Additionally, with 2% FOS, acetate increased after 24 and 48 h (p = 0.00 and 0.01, 

respectively), and with 2% GA, acetate increased after 48 h compared with the baseline levels 

(p = 0.02). Butyrate production increased following the fermentation of 2% GA for 10 and 48 

h compared with the levels at 0 h (p= 0.01 and 0.03, respectively). In addition, propionate 

increased after 10 h of fermentation of 2% FOS compared with the negative control (p = 

0.04) and the baseline values (p = 0.01).  

 

 

 

 

 

* 

* 

* 
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Table 11:  changes in the SCFA concentration are presenting in table 3 in pH-controlled 

batch cultures at 0, 5, 10, 24, and 48h.Values are mean ± SD.*, significant differences from 

the 0 h value within the same treatment, p<0.05. small letters differences from the negative 

control. 1% faecal batch culture inoculated with vessel 1 negative control, vessel 2 FOS 1%, 

vessel 3 FOS 2%, vessel 4 GA 1%, vessel 5 GA 2%. 

 

 

 

 ACETATE PROPIONATE BUTYRATE 

Control 

0 h 1.68 ± 1.16 0.19± 0.12 0.15 ± 0.09 

5 h 4.49 ± 0.99 a 0.82 ± 0.86 2.15 ± 3.19 

10 h 6.47 ± 1.34 2.51 ± 1.19 a 1.47 ± 0.35 

24 h 8.88 ± 1.71 4.50 ± 2.29 1.73± 0.85 a 

48 h 10.57 ± 3.57 5.40 ± 3.11 3.10 ± 2.41 

FOS 1% 

0 h 0.98 ± 0.04 0.10 ± 0.03 0.08 ± 0.02 

5 h 8.84 ± 3.53 ** a 1.86 ± 0.31 0.66 ± 0.24 

10 h 13.12 ± 2.02 ** 8.45 ± 6.98 4.42 ± 2.02 

24 h 11.89 ± 4.22 * 8.13 ± 2.10 * 8.26 ± 2.98 * 

48 h 10.00 ± 1.11 ** 4.32 ± 3.42 1.21 ± 1.58 

FOS 2% 

0 h 1.35 ± 0.26 0.19 ± 0.10 0.13 ± 0.06 

5 h 14.28 ± 4.93 4.24 ± 3.54 2.32 ± 2.10 

10 h 15.08± 2.93 5.80 ± 1.04 * a 5.93± 4.34 

24 h 13.00 ± 7.81 ** 5.44 ± 2.56 6.21 ± 4.05 

48 h 8.80 ± 0.32 * 2.31 ± 1.85 3.66± 1.52 

GUM 1% 

0 h 2.01 ± 1.73 0.18± 0.10 0.16 ± 0.12 

5 h 5.36 ± 0.37 4.79 ± 4.76 4.99 ± 7.61 

10 h 12.72± 4.79 6.77 ± 4.78 6.96 ± 7.79 

24 h 10.78 ± 8.27 3.28 ± 2.61 4.59 ± 1.49 * a 

48 h 11.64 ± 4.10 * 4.79 ± 1.46 * 4.01 ± 0.88 * 

GUM 2% 

0 h 2.37 ± 2.29 0.19±0.12 0.16 ± 0.12 

5 h 5.24 ± 0.56 5.13 ± 5.93 0.73 ± 0.42 

10 h 16.67 ± 7.59 12.03 ± 8.32 2.40 ± 0.51 

24 h 11.41 ± 9.15 3.28 ± 2.51 3.09 ± 2.49 * 

48 h 13.63 ± 3.17 * 6.15 ± 2.24 6.24± 2.22 * 
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2.4 Discussion  

Prior studies have noted the importance of the effect of GA on improving human health [13]. 

GA is not digestible in the upper gastrointestinal tract, therefore it can reach the large 

intestine where it is fermented by intestinal bacteria [25],[26], [27]. Therefore this study 

aimed to determine the effects two doses of GA on human intestinal bacteria and to assess 

prebiotic potential as compared to prebiotic FOS. As such pH-controlled batch culture 

fermentation systems were used to evaluate the selectivity of GA when fermented with 

healthy human gut microbiota compared with FOS at two different doses.  

Several studies have shown that GA can undergo a slow fermentation, specifically a more 

distal fermentation, whereas existing prebiotics typically undergo proximal fermentation [28], 

as proteolytic fermentation develops in the distal colon; therefore, this substrate may be able 

to be saccharolytically fermented in this part of colon. In this present study GA fermentation 

shows selectivity in bifidobacteria and Lactobacillus spp at time 10 h and continues to 24 h 

which could indicate slower fermentaion and is inline with others work [15]. However, it is 

worth noting that the bifidogenic effect of the 1% was not maintained at 48 hours in current 

study. 

In the present study, GA significantly enhanced the growth of Bifidobacterium spp.. 

Bifidobacterium is considered an important group related to human health, having a 

favourable impact in the large intestine [29],[30]. These results are consistent with those of 

Calame et al (2008) in which the consumption of 10 g of GA daily by healthy adults had a 

beneficial effect on the gut microbial composition, and increases in bifidobacteria [12]. 

Furthermore, the 1% dose also led to increases in lactobacilli. Lactobacilli has long been 

considered a positive microbial group; as such, stimulation of this genera offers potential 
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benefits to the host [31]. The 2% dose did not lead to the same lactobacilli impact. The use of 

a higher doasge could have impacted on selectivity through a cross feeding network [32]. 

Furthermore, after 10 h, the numbers of bacteria in the C. histolyticum group decreased 

following the fermentation of  1% GA, which also agreed with results of in vivo studies [33], 

[12], [15]. This group of bacteria has sometimes been associated with inflammation and large 

bowel disease [34], [35]. It is thought that increased numbers of beneficial bacteria could 

lower the pH within the colon, therefore making the environment unfavourable for 

pathogenic groups; the results of the present study indicate that the fermentation of GA 

selectively increased the number of beneficial bacteria and reduced the number of harmful 

bacteria. This result further suggests the lower dose to offer improved selective potential. 

In the current study GA fermentation resulted in a similar bacterial profile to FOS. Several 

in vivo and in vitro studies have confirmed that FOS can regulate the gut through the selective 

stimulation of the gut microbiota [36], [37], [38], [39], therefore, GA could has potentially 

prebiotic properties. GA can be incorporated into baked goods, therefore could provide an 

alternative prebiotic source for inclusion in the diet. 

Moreover, an increase in Bacteroides spp. was observed with in GA and FOS,  this group is 

associated with a range of colonic activities [40], [41]. Bacteroides spp. constitute a large 

proportion of the microbial population in the healthy adult gastrointestinal tract [42]. In 

previous in vivo and in vitro studies on GA fermentation, increased propionate levels were 

associated with Bacteroides spp. and Prevotella spp. which has relevance to the improving in 

lipid metabolism [43],[44].  

The results show that both doses of GA were selectivly fermented. The higher dose was 

arguably less selective as the impact on lactobacilli and C. histolyticum groups were no 
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longer apparent. In fact Calame et al (2008) noted that an increase in the concentration of 

substrates results in less selectivity [12]. This might be explained by competiton for substrate, 

at higher dose other bacterial strains have easier access to the substrate and subsequently, 

become less selevtively than the lower dose.  

GA fermentation induced modulation of the colonic microbiota, with increased levels of 

acetate, propionate, and butyrate. The best-known metabolic pathway for acetate and 

propionate production by gut bacteria involves the metabolism of polysaccharides. Acetate is 

produced mainly through the fructose-6-phosphate phosphoketolase pathway by 

bifidobacteria, and the increased production of this acid could be related to increased 

numbers of this group [45]. Furthermore, according to Hosseini et al (2011), propionate can 

be produced from fermentable carbohydrates by two pathways [46]. The first involves 

decarboxylation of succinate by the action of Bacteroides fragilis and Propionibacterium 

spp., and the second is the acrylate pathway, in which pyruvate is first reduced to lactate by 

lactate dehydrogenase by the action of the Cluster IX Clostridia groups; an increase in these 

bacterial groups was observed during GA fermentation. Butyrate is often used as an energy 

source by epithelial cells, and acetate plays an important role in controlling inflammation and 

resisting invasion by pathogens [47]. Furthermore, acetate and propionate may have a direct 

role in central appetite regulation. The propionate mechanism involves stimulating the release 

of the anorectic gut hormones peptide YY (PYY) and glucagon-like peptide-1 (GLP-1). 

They, in turn, are involved in the short-term signalling of satiation and satiety to the appetite 

centres of the brain, increasing satiety and reducing food intake by the host [48],[49], 

[50],[51]. Acetate administration is associated with the activation of acetyl-CoA carboxylase 

and changes in the expression profile of regulatory neuropeptides favouring appetite 

suppression [52]. Thus these SCFA increases could offer benefits to the host. 
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The pH-controlled stirred batch culture systems enabled rapid analysis of the effects of 

GA on the faecal microbiota. In the absence of absorption, colonic secretions, and epithelial 

interactions, the system has limitations. However, processes such as SCFA production can 

still be monitored away from the impact of additionally dietary factors. Thus, batch culture 

systems provide an alternative way of assessing how bacteria ferment a substrate and the end 

products they produce [53].  

The comparisons of the substrates in the pH-controlled batch cultures indicated that GA 

has selective abilities that are at least similar to those of the known prebiotic FOS, as 

indicated by the bacteriology results and increased concentrations of acetate, butyrate, and 

propionate. These results could be relevant to improving host health by increasing the levels 

of the bifidobacteria group, especially in individuals with lower numbers such as elderly 

population. Tuohy et al (2001) reported that prebiotics can alter the gut microbiota in those 

with initially low numbers of bifidobacteria [39]. This may be particularly relevant in elderly 

people. Elderly are experiencing negative changes in their gut microbiota.  

2.5 Conclusion  

The aim of the current study was to use in vitro batch cultures to assess the effects of GA on 

the microbiota compared to FOS. Here, we showed that GA modulated the gut microbiota 

similarly to FOS, furthermore, the 1% dose showed additional selective potential. As such 

GA holds the potential to be used as a novel prebiotic source. 
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3. Chapter (3) Metabolite Production of gum acacia in a gut 

model system.  

 

Abstract  

Gum acacia (GA) is a soluble dietary fibre derived from acacia trees. It is widely used in 

African countries and in the Middle East as a traditional medicine. The consumption of GA 

has been related to potential health benefits. The aim of this study was to examine the 

influence of GA on the metabolic activity of the human gut microbiota. We used a validated 

in vitro three-stage continuous culture system (gut model) system. The fermentation of GA 

led to an increase in Bifidobacterium spp.  in vessel 2 and vessel 3, whereas FOS 

fermentation led to a significant increase in Bifidobacterium spp. in vessel 2 and decrease in 

Clostridium histolyticum in vessel 1. The fermentation of GA induced a significant increase 

in acetate in vessel 3 and propionate in vessel 2 in steady state 2 (SS2). We evaluated the 

fermentation of GA and FOS in a gut model system and the ability of the fermentation 

supernatants to modulate the activation and cytokine profile of PBMC subsets in vitro. FOS 

and GA led to an increase in IL-10 in vessel 1. In conclusion, GA shows an important factor 

to elderly inflammation, which could improve immune function.  
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3.1 Introduction  

The World Health Organization reported that the population of those aged 60 years or 

older is rapidly increasing [1]. In Saudi Arabia, health care expenditures are expected to 

increase between 2015 and 2050 due the increase in elderly individuals from 5.4% to 25% of 

the population, and over one-third of the UK population will be 65 years old or older by 

2050. Ageing is associated with an increased incidence of infectious diseases, which may be, 

in part, due to a decline in immune function [2]. Ageing is defined as “the regression of 

physiological function accompanied by the development of age” [3]. The process of ageing 

has a large impact on the physiology of the intestinal gastrointestinal tract due to effects on 

the gut microbiota. The reduction of intestinal motility results in a slower transit time that 

could lead to constipation [4]. As a result, the gut bacteria are altered so that the fermentation 

in the gut shifts to proteolytic fermentation [5],[6]. 

Immunoseescence is defined by a decline in the immune response to exogenous infections 

agents as well as an increase in endogenous signals [7],[8]. An intrinsic change occurs in T 

cells, which contributes to the decline in T cell function. Decreased innate and adaptive 

immune activities associated with ageing lead to different diseases [9] and exogenous 

infectious agents result in increased IL-6 levels [10]. Gomize et al (2005) and Bruunsgaard et 

al (2001) demonestrated that the inflammatory response produces increased levels of pro-

inflammatory mediators, including IL-6, IL-1 β, and TNF-α, in older individuals, and NK 

cells are impaired  [9], [11].  

Diet is a major influencing factor on the gut microbiota, and the high-fat, sugar-rich 

Western diet contributes to Bacteroidetes dominating the microbiome, whereas a high-fibre 

diet results in Firmicutes dominating the microbiome [12]. 
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The diversity of species comprising the gut microbiota changes with age. In their study, 

Zwielehner et al (2009)  observed less Bifidobacterium and Clostridium cluster IV in elderly 

subjects compared to those seen in middle age subjects [13]. Moreover,  in another study, 

Marathe et al (2012), reported that within an Indian cohort, the changes in the gut microbiota 

associated with age reflected a gradual decrease in Firmicutes and an increase in 

Bacteroidetes [14]. Claesson et al (2012)  found an association between diet, host health, 

environment, and gut microbiota; in particular, there was an association between a lower 

diversity in the diet and decreased gut diversity and, subsequently, health parameters and 

increased inflammatory markers [15]. Additionally, individuals living in a community had 

more diverse microbiota than those in residential care. Ageing is associated with a decrease 

in probiotic bacteria such as bifidobacteria, which inhibit pathogens such as E. coli and 

Salmonella [16]. These changes in the intestinal bacteria may increase susceptibility to 

infections and diseases due to the changes in diet and intestinal transit time [17].  

Gum acacia (GA) is a non-starch polysaccharide, and previous in vitro studies have shown 

that GA has an immunomodulatory effect on intestinal dendritic cells (DCs) [18]. 

Furthermore, a study carried out in rats with adenine-induced chronic renal failure (CRF) 

showed that drinking a GA solution (15%) resulted in reduced inflammation [19]. The 

significant contribution of anti-inflammatory properties may be mediated by short chain fatty 

acids (SCFAs) produced by the fermentation of GA [20], [21]. Nasir et al (2012) reported 

that GA could have a systemic effect and not just affect the gut. However, no study has 

investigated this effect in the elderly population [22].  

Several studies have shown that prebiotics can enhance the immune system in the elderly 

by increasing anti-inflammatory and decreasing pro-inflammatory cytokines. Vulvic et al 

(2008)  observed that treatment of subjects over 65 years of age with bimuno-galacto-
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oligosaccharide (B-GOS) had a positive effect on the gut microbiota while producing an anti-

inflammatory effect [23]. A prebiotic is a selectively fermented ingredient that produces 

specific changes in the composition and/or activity of the gastrointestinal microbiota, thus 

conferring benefit(s) upon the host’s health [24]. Thus, the microbiota tends to be enriched in 

bifidobacteria and lactobacilli, as opposed to other pathogenic genera such as Eubacterium, 

Faecalibacterium, or Clostridium, after treatment with prebiotics [25].  

The fermentation of GA produces several degradation products, including SCFA [26]. 

Accordingly, treatment with GA may enhance serum butyrate concentrations [27], [28]. 

Glover et al (2009) suggested that bacterial SCFAs increase SCFAs in the systemic 

circulation, which can impact immune function [27]. These studies indicate that systemic 

SCFAs resulting from the fermentation of GA by intestinal bacteria may reduce inflammation 

[28]. These previous studies used culture methods to assess changes in the gut microbiota of 

elderly individuals to investigate how the gut microbiota is modulated in the elderly after 

treatment with GA. This study aimed to determine the effect of GA on the elderly gut 

microbiota compared to FOS, a known prebiotic. Additionally, the effects of GA on 

cytokines induced in PBMCs obtained from elderly subjects were investigated.  

3.2 Materials and methods  

3.2.1 Materials  

The following materials were used in this study: Lympholyte (Cedarlane Lonza), RPMI 

1640 medium, L-glutamine (Bio-Whittaker), 24-well plates, 1% PBS, a centrifuge, an 

incubator, a counting chamber, a microscope, a balance, a gas chromatograph, and a 

fluorescent microscope. All nucleotide probes used for FISH were commercially synthesised 

and labelled with the fluorescent dye Cy3 at the 5ʹ-end (Sigma Aldrich). All chemicals, 
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unless otherwise stated, were from Sigma Aldrich. Media and instruments were sterilised by 

autoclaving at 121°C for 15 min.  

Substrates  

The following substrates were used in this study: GA (Kerry Ingredients, UK) and FOS 

(Beneo, Belgium) as mentioned in chapter 2.  

3.2.2 In vitro Upper Gut Digestion  

To mimic human digestion, a previous method Mills et al (2008) was used in this study 

[29]. First, 60 g of GA powder was added to 150 mL of distilled water, and the solution was 

mixed with 20 mg of α-amylase in 6.25 mL of CaCl₂ (1 mM) and incubated on a shaker at 

37°C for 30 min. This step stimulated the initial oral digestion. Subsequently, 2.7 g of pepsin 

in 25 mL of HCl (0.1 M) was used for stimulating the gastric digestion of the sample. The pH 

was then reduced progressively to 2 by adding 6 M HCl followed by incubation on a shaker 

at 37°C for 2 h. Next, 560 mg of pancreatin and 3.5 g of bile in 125 mL of NaHCO₃ solution 

was added to simulate the effect of the small intestine on the gum sample. The pH was 

increased to 7 by adding NaOH (6 M), and the resulting suspension was incubated on a 

shaker at 37°C for 3 h. The samples were transferred to a cellulose dialysis membrane (1 

KDa molecular weight, purchased from Cheshire Biotech, Cheshire, UK) and dialysed 

against a 10 mM NaCl solution at 5°C to remove low-molecular-weight digestion products. 

After 15 h, the dialysis fluid was changed, and dialysis was continued for an additional 2 h. 

Afterwards, the samples were freeze-dried (5 d) prior to use in the gut model.  

3.2.3 Medium for the three-stage continuous system (gut model)  

The medium for the three-stage continuous system contained the following (g/L) : soluble 

potato starch, 5; peptone water, 5; yeast extract, 4.5; NaCl, 4.5; KCl, 4.5; porcine mucin type 
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III, 4; milk casein, 3; pectin, 2; xylan from oat spelts, 2; arabinogalactan, 2; NaHCO3,1.5; 

MgSO4, 1.25; guar gum, 1; cysteine HCl, 0.8; KH2PO4, 0.5; K2HPO4, 0.5; bile salts, 0.4; 

CaCl2•6H2O, 0.15; FeSO4•7H2O, 0.005; and hemin, 0.05 in addition to 1 mL Tween80, 10 

μL vitamin K1, and 4 mL reasazurin. For V1, V2, and V3, 51.43, 66.67, and 82.50 mL, 

respectively, of culture medium was aliquoted into three Duran bottles and sterilised. Then, 5 

L of basal medium was sterilised in a 5-L glass bottle and used as a medium reservoir.  

3.2.4 Faecal sample preparation  

Faecal samples were obtained from three healthy volunteers (65 years and older, two 

males, one female) who had not been prescribed antibiotics for at least 3 months before the 

study, had not consumed pre- or pro-biotic supplements, and had no history of a 

gastrointestinal or metabolic disease. The samples were collected onsite and used directly 

after collection. A 20% (w/v) dilution of the faecal sample was made using sterile, reduced, 

phosphate buffered saline (PBS; 0.1 mol/l, pH 7.0) and homogenised in a stomacher 

(Stomacher 400, Seward, West Sussex, United Kingdom) for 2 min at normal speed. 

Three-stage continuous culture colonic model (gut model) system 

Gut models, each comprising a cascade of three glass fermenters connected in series that 

simulate the different physical and nutritional characteristics of the proximal (V1), transverse 

(V2), and distal colon (V3), were implemented under conditions previously detailed by 

Macfarlane et al (1997) [30]. V1 simulated the acidic conditions, rapid turnover, and high 

substrate availability that prevail in the proximal colon, whereas V3 was held at a neutral pH 

with a slower turnover and limited substrate availability, simulating conditions similar to 

those in the distal colon. Each vessel was inoculated with 28.57, 33.33, or 37.50 mL 

(corresponding to V1, V2, and V3, respectively) of a 20% (w/v) faecal slurry from a healthy 
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elderly donor. The pH set points (±0.1) for V1, V2, and V3 were 5.5, 6.2, and 6.8, 

respectively. Each vessel was stirred magnetically and sparged continuously with oxygen-

free nitrogen gas. The temperature (37°C) was maintained by a water jacket, and the culture 

pH was controlled (Electrolab, UK) by the addition of 0.5 M NaOH or HCl. Three 

independent models were inoculated with faeces from a different faecal donor for each acacia 

and FOS sample tested. 

The system was operated in batch culture mode in the gut model medium for 24 h to 

enable the microbial populations to adjust to their new environment. After the stabilisation 

period, the medium pump was started. The flow rate of the basal medium was controlled by a 

pump set to 2.5 mL/h, resulting in a system retention time of approximately 48 h. The 

medium for the gut model was pumped into vessel one (V1) and sequentially fed into V2, 

then V3, and ultimately a waste unit. The three-stage continuous culture system was run for 

35 d. Steady state 1 (SS1) was reached after eight full turnovers at 18, 19, and 20 d. SS1 was 

established by the stabilisation of SCFA concentrations, as assessed by gas chromatography 

(GC). Thereafter, the test product, pre-digested GA, or FOS was administered into V1 at a 1.6 

g dose each day until the second steady state (SS2) was reached at 33, 34, and 35 d. Samples 

(1 mL) were collected from all vessels of the colonic system and centrifuged at 13,000 x g for 

10 min to remove all particulate matter. Samples were stored at -20°C until analysed. 

3.2.5 Sample preparation  

Samples (375 µL) obtained from each vessel at each sampling time were fixed for 4 h at 

4°C in 1.125mL (4% w/v) paraformaldehyde. The fixed samples were then centrifuged at 

13,000 × g for 5 min at room temperature and washed twice in 1 mL of filter-sterilised PBS. 
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The washed cells were suspended in 150 µL of cold 1×PBS and 150 µL of ethanol (99%) at -

20°C for FISH analysis for bacterial counts.  

To measure the SCFA concentrations, we used the internal standard GC method. One 

millilitre of each sample was transferred to a labelled 100 mm × 16 mm glass tube. To 

prepare for the in vitro immunoassays, 1 mL of the gut model supernatant was sampled in 

triplicate, centrifuged for 10 min at 11337 x g, and then filtered through a 0.22-µm filter 

device (Millipore, Schwalbach, Germany). The cell-free supernatants were stored at -20°C.   

3.2.6 In situ florescent hybridization (FISH) analysis 

To assess the differences in bacterial number, FISH was used with oligonucleotide probes 

designed to target specific diagnostic regions of 16S rRNA. The probes were commercially 

synthesised and labelled with the fluorescent dye Cy3. The following probes were used: 

Bif164 for bifidobacteria (BIF), Lab158 for lactobacilli/enterococci (LAB), Chis 150 for the 

Clostridium histolyticum group (CHIS), Erec 482 for the Eubacterium rectale–Clostridium 

coccoides group (EREC), and Bac 156 for the Bacteroides–Prevotella group (BAC). The 

EUB 338 mixture consisting of EUB338, EUB338II, and EUB338III was used for total 

bacteria (Total). Samples were hybridised as described previously [31]. For the hybridisation, 

20 μL of a diluted sample was pipetted onto Teflon- and poly-L-lysine-coated six-well slides 

(Tekdon Inc., Myakka City, FL). The samples were dried on the slides at 46-50°C for 15 min 

and then dehydrated in an ethanol series (50, 80, and 96%). The ethanol was allowed to 

evaporate from the slides before the probes were applied to the samples. To permeabilise the 

cells for use with the Bif164 and Lab158 probes, samples were treated with 20 μL of 

lysozyme at room temperature for 15 min before being washed briefly for 2−3 seconds in 

water and then dehydrated in the ethanol series. A hybridisation mixture of 5 μL of probe 
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plus 50 μL of a mixture of 0.9 M NaCl, 0.02 M Tris/HCl (pH 8.0), formamide (if required – 

Table 5), and 10% (w/v) sodium dodecyl sulphate (for a final concentration of 4.55 ng/mL 

probe) was applied to the surface of each well. Then, the slides were placed in a hybridisation 

oven for 4 h (ISO20 oven, Grant Boekel). For the washing step, the slides were placed in 50 

mL of washing buffer (0.9 M NaCl, 0.02 M Tris/HCl (pH 8.0), 0.005 M 

ethylenediaminetetraacetic acid (EDTA) solution (pH 8.0, Table 2), H2O) warmed to the 

appropriate temperature for each probe, and 20 μL of 4,6-diamidino-2-phenylindole di 

hydrochloride (DAPI) was added to the washing buffer before the hybridisation was finished. 

Then, the slides were briefly washed (2−3 s) in ice-cold water and dried under a stream of 

compressed air. Five microliters of Pro Long Gold anti-fade re-agent (Invitrogen) was added 

to each well, and a coverslip was applied. The slides were stored in the dark at 4°C until the 

cells were counted under a NikonE400 Eclipse microscope. A DM510 light filter was used to 

count specific bacteria hybridised with the probes of interest. A minimum of 15 random 

fields of view were counted for each sample. The following formula was used to calculate 

numbers of bacteria: (0.8 × A1 × 6732.42 × 50 × Dilution factor), where A1 is the average 

count of 15 fields of view, 6732.42 is the area of the well divided by the area of the field of 

view, and multiplying by 50 takes the count back to millilitre of sample. The results are 

expressed as log10 (bacterial numbers per millilitre of batch culture fluid). 

3.2.7 Preparation of samples for short chain fatty acid analysis  

To determine the SCFAs, samples were extracted and derivatised as previously described 

[32]. Samples were defrosted, and 1 ml of each sample or standard solution was transferred to 

a labelled 100 mm × 16 mm glass tube with an internal standard of 50 µl of 2-ethyl butyric 

acid (0.1 M). Then, 0.5 ml of concentrated HCl and 2 ml of diethyl ether were added to each 

glass tube, and the samples were vortexed for 1 min. The samples were then centrifuged at 
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2000 x g for 10 min (SANYO MSE Mistral 3000i; Sanyo Gallenkap PLC, Middlesex, UK). 

The diethyl ether (the upper layer) was transferred to a new glass tube. A second extraction 

was conducted by adding 1 ml of diethyl ether followed by vortexing and centrifugation. 

Then, 400 µl of pooled ether extract and 50 µl N-(tert-butyldimethylsilyl)-N-

methyltrifluoroacetamide (MTBSTFA) were added to a GC screw-cap vial. The samples 

were heated at 80°C for 20 min and then left at room temperature for 48 h to allow the lactic 

acid in the samples to completely derivatise.  

A 5890 SERIES II gas chromatograph (Hewlett Packard, UK) with an Rtx-1 10 m × 0.18 

mm column and a 0.20-μm coating (Crossbond 100% dimethyl polysiloxane; Restek, 

Buckinghamshire, UK) was used for the SCFA analysis. The temperature of both the injector 

and detector was 275°C, with the column programmed from 63°C for 3 min to 190°C at 

10°C/min followed by holding at 190°C for 3 min. Helium was the carrier gas (flow rate, 1.2 

mL/min; head pressure, 90 MPa). A split ratio of 100:1 was used. The standard solution 

contained the following (mM): sodium formate, 10; acetic acid, 30; propionic acid, 20; 

isobutyric acid, 5; n-butyric acid, 20; iso-valeric acid, 5; n-valeric acid, 5; sodium lactate, 10; 

and sodium succinate, 20. The sample was injected onto the column, which was maintained 

at 140°C for the first 5 min, after which the temperature of the column was increased over 5 

min to 240°C. To maintain the appropriate calibration after the injection of each of the 20 

samples, an external standard solution with known concentrations of SCFAs was injected. 

The peaks and response factor within the samples was calibrated and calculated using 

ChemStation B.03.01 software (Agilent Technologies, Cheshire, UK).  
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3.2.8 Preparation of peripheral blood mononuclear cells 

Fasted blood samples were taken from six healthy donors aged 65 years and older in 

sodium heparin vacutainer tubes (Greiner Bio-One Limited, Gloucestershire, UK). The study 

was conducted according to guidelines laid down in the Declaration of Helsinki 1975 as 

revised in 1983. All procedures involving human subjects were approved by the Ethics 

Committee of the Reading University. Written informed consent was obtained from all 

subjects. Blood was layered over an equal volume of Lympholyte (Cedarlane Laboratories 

Limited, Burlington, Ontario, Canada) and centrifuged at 930 x g (Beckman Coulter Allegra 

TM X-I2 R centrifuge) for 15 min at room temperature. Cells were harvested from the 

interface, washed once, resuspended in Roswell Park Memorial Institute (RPMI) 1640 

medium (containing glutamine, Roswell Park Memorial Institute, Autogen Bioclear Ltd., 

Wiltshire, UK). In addition, the above steps were then repeated to achieve a lower degree of 

erythrocyte contamination. The pellet was finally resuspended in RPMI medium, and the cell 

number was adjusted to the required concentration using a cell counter (Z1 Coulter ® particle 

counter, Beckman Coulter) and trypan blue.  

3.2.9 Viability assays  

PBMCs were tested to determine the proper supernatant concentration. Trypan blue was 

used to count the cells. PBMCs were adjusted to 2 × 10
6
 cells/mL and then incubated in 24-

well plates in RPMI 1640 medium (containing glutamine, Roswell Park Memorial Institute, 

Autogen Bioclear Ltd., Wiltshire, UK). These steps were repeated to obtain low 

contamination levels of erythrocytes. Gut model medium and samples from established SS1 

and after treatment established SS2 were used, and supernatants were incubated with PBMCs 

for 24 h at 37°C in an air-CO2 (19:1) atmosphere incubator. The concentrations of the 

supernatant were 1%, 2%, 3%, and 4% (w/v) in 2 mL (final working volume). After 
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incubation, cells were counted using the trypan blue test, and 1% was determined to be the 

appropriate concentration, with over 50% of PBMCs viable for the different treatment 

supernatant. 

3.2.10 Cytokine stimulation and detection  

PBMCs were adjusted to a cell concentration of 2 × 10
6
 cells/mL and incubated for 24 h at 

37°C in an air-CO2 (19:1) atmosphere incubator in the presence of 1mg/mL 

lipopolysaccharide (LPS; L4516, Sigma) and 1% (w/v) of the supernatants from each steady 

state vessel and gut model medium. At the end of the incubation, cell culture supernatants 

were collected and stored at -20°C until used for the cytokine production analysis. Non-

stimulated cultures were used as a blank. 

3.2.11 Cytometric bead array immunoassay 

A BD Cytometric Bead Array (CBA) was used to quantitatively measure interleukin-8 

(IL-8), interleukin-6 (IL-6), interleukin-10 (IL-10), tumour necrosis factor α (TNF) protein 

levels in a single sample. Samples or standards were incubated with specific fluorescent 

beads and biotin conjugates for each analyte for 3 h at room temperature in the dark. Samples 

were washed and centrifuged at 200 × g for 5 min and then measured using a BD™ 

Cytometric Bead Array (CBA) Human Soluble Protein Master Buffer Kit (BD Biosciences, 

Oxford, UK) and the corresponding BD™ Cytometric Bead Array (CBA) Human Flex Set 

(BD Biosciences, Oxford, UK) with a BD Accuri™ C6 flow cytometer according to the 

manufacturer’s instructions. BDTM CBA analysis software FCAP Array v3.0.1 (BD 

Biosciences, Oxford, UK) was used to perform the data analysis. 
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3.3 Statistical analysis 

All statistical tests were performed using the SPSS software package. Repeated measures 

one-way ANOVA was used to compare the SS1 and SS2 data for bacterial counts and 

organic acid concentrations and the cytokine data. Statistical significance was accepted at p < 

0.05 for all analyses. 

3.4 Results  

3.4.1 Effect of GA and FOS on human faecal bacteria 

The average bacterial counts are displayed in Figures (5) and  (6) and expressed as log10 ± 

standard deviation, as enumerated by FISH. Following the administration of GA, a significant 

increase in Bifidobacterium was observed in vessel 2 and vessel 3 (p = 0.003, p = 0.009 

respectively). However, following the fermentation of FOS, Bifidobacterium increased 

significantly in vessel 2 (p = 0.02) and a trend to increase in vessel 3 (p = 0.08); furthermore, 

there was a significant decrease in Clostridium histolyticum in vessel 1. The total bacteria 

level also increased with FOS treatment in vessel 1, although it was not significant, as the p 

value shows (p = 0.08).  
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Figure 5: changes comparing SS1 (no treatment) and SS2 (treatment with  GA). Gut model system. 

Values are the bacterial counts Log10 number of cells / ml using FISH analysis using three healthy 

volunteers in total six gut models. 
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Figure 6 changes comparing SS1 (no treatment) and SS2 (treatment with FOS ). Gut model 

system. Values are the bacterial counts Log10 number of cells / ml using FISH analysis using 

three healthy volunteers in total six gut models. 
 

*

* 
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3.4.2 SCFA production 

The relative concentrations of organic acids, as determined by GC, are reported in Tables 

12 and 13 and are expressed as mM ± standard deviation. The fermentation of GA caused a 

significant increase in acetate in vessel 3 and propionate in vessel 2 at SS2. In addition, an 

increasing trend for propionate and butyrate was observed in vessel 1 and vessel 3 (p = 0.092, 

p = 0.1, p = 0.074, and p = 0.11 respectively). Additionally, GA fermentation resulted in a 

significant 21-mM increase in propionate (p ˂ 0.021) in vessel 2. 

FOS fermentation caused an increasing trend for acetate and butyrate in vessel 2 (p = 0.16 

and p = 0.08, respectively).  

Table 12: SFCA concentration. Changes comparing SS1 no treatment and SS2 treatment with FOS or GA. Gut 

model culture. vessel (ss1) no treatment, SS2 GA or FOS values are based on means and standard deviation of 

three gut models 

 

FOS Acetate Propionate Butyrate 

SS1 SS2 SS1 SS2 SS1 SS2 

Vessel 1 58.74±21.33 51.81±23.76 29.90±12.22 35.03±21.25 34.44±17.64 33.88±29.63 

Vessel 2 52.76±14.98 65.10±23.36 34.36±19.77 40.06±19.35 30.92±23.00 44.49±28.08 

Vessel 3 55.52±13.83 61.83±26.03 35.82±21.76 37.50±13.83 33.56±28.02 41.57±33.90 
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Table 13: SCFA concentration.  Changes comparing SS1 no treatment and SS2 treatment with FOS or GA. Gut 

model culture. vessel (ss1) no treatment, SS2 GA or FOS values are based on means and standard deviation of 

three gut models 

 

GUM Acetate Propionate Butyrate 

SS1 SS2 SS1 SS2 SS1 SS2 

Vessel 1 53.66±0.54 46.11±23.02 28.89±15.17 54.64±4.89 18.27±8.59 24.00±3.19 

Vessel 2 68.49±0.46 70.13±15.49 44.47±2.51 65.76±3.27 * 25.70±10.35 33.48±7.13 

Vessel 3 71.12±5.22 84.35±10.59 * 37.50±15.07 70.85±2.72 31.25±8.78 41.05±8.52 

 

3.4.3 Cytokine production  

Figure 7 shows the effects of the fermentation of GA and FOS on the cytokine responses 

of PBMCs in the in vitro model of the large intestine.  

The fermentation of GA resulted in increased in IL-10 activity in LPS-stimulated PBMCs 

(vessel 1, p ≤ 0.05); furthermore, an increasing trend for the activity of this cytokine was 

observed in the supernatants of vessels 2 and 3 (p = 0.19, p = 0.06). The TNF-α activities of 

the PBMCs showed a decreasing trend in the presence of fermentation supernatants from 

vessels 2 following GA fermentation (p = 0.18). FOS fermentation also resulted in increased 

IL-10 activities in LPS-stimulated PBMCs in vessel 1with p value (p ≤0.00).   
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Figure 7:  Shows the changes in the cytokines parameters comparison between SS1 steady state before 

treatment and SS2 steady state after treatment. GA gum acacia and FOS fructooligosaccrides both 1%. 

Supernatants from fermentation of GA and FOS in gut model system were incubated with PBMC cells.  
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3.5 Discussion  

To date, although several studies have investigated the impact of GA on the gut microbiota of 

young adults, this is the first study to assess the potential prebiotic effect of GA on the elderly 

gut microbiota and to determine whether it has anti-inflammatory properties, which are 

important because of the changes in immune function in the elderly leading to increased 

incidence of infectious diseases [31].  

The aim of this study was to investigate the fermentation properties and prebiotic potential of 

GA compared with FOS, a known prebiotic, using an in vitro continuous culture model of the 

human colon. Faecal samples from donors aged 65 years or older were used. The impact of 

the substrates on the modulation of immune function as assessed using inflammatory 

cytokines was determined using PBMCs stimulated with LPS. 

The fermentation of GA led to an increase in Bifidobacterium spp. Similarly, FOS 

fermentation was shown to have a bifidogenic effect. These results might indicate that the gut 

composition is modulated following treatment with GA. This result was in line with that from 

previous studies, indicating that GA is a potential prebiotic candidate  [32],[26]. An in vitro 

study using a gut model (SHIME) Marzorati et al (2015) reported that a blend of FOS, inulin, 

and GA (41% FOS, 41% GA, 18% inulin) and 3.3 g of fibre given twice daily with the faecal 

microbiota from a healthy 75-year-old volunteer increased the number of bifidobacteria 

significantly and subsequently increased the concentration of SCFAs [33]. However, this 

study involved one volunteer, and the effect could have been due to the volunteer’s 

microbiota; in addition, a blend of two substrates was used, hence the results do not indicate 

exactly which product was responsible. Another in vitro study used arabinogalactan from GA 

compared it with 5 g daily of FOS in a SHIME model, finding an enhancement of 

bifidobacteria and lactobacilli and F. prausnitzii, which is a microorganism that can exert 
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anti-inflammatory effects [34]. This positive effect was also observed in a human study by 

Calame et al (2008), demonstrating that the consumption of GA at 10 g daily by healthy 

adults for 4 weeks increased bifidobacteria and lactobacilli [26]. Moreover, human and 

animal studies are still the best way to evaluate the ultimate response to nutritional 

interventions; however, they do not allow the dissection of the individual processes that may 

lead to the identification of the potential mechanism of action of the tested products.  

 Overall, in this study, we were able to demonstrate the modulation of the elderly gut 

microbiota following the fermentation of GA, and this result was supported by the increase in 

SCFA production. The changes in the gut microbiota in the elderly, due to decreased 

carbohydrate consumption and as a result reduced levels of SCFA, might result in increased 

inflammation caused by enteric pathogens.  

SCFAs are end-products of the metabolism of gut microbiota; thus, the fact that in the current 

study we observed a modulation of SCFA levels is evidence of the potentially positive 

modulation of saccharolytic fermentation. SCFAs also can be assessed; normally, these 

would be absorbed in vivo. Acetate and propionate have been observed to enter the systemic 

circulation [35], and butyrate has an effect on colonocytes and plays a role in cell 

differentiation and proliferation [36]. Further more, butyrate has been observed to induce 

apoptosis in macrophages cells and regulate the immune cell activation and intestinal 

epithelium [37], [38], [39]. Thus this may relate to enhance the antiinflammatory cytokines in 

elderly people.  

Furthermore, increased acetate and propionate levels and an increasing trend for butyrate 

production were observed. Although the increase in butyrate was not significant, butyrate has 

been shown to have anti-inflammation properties related to cytokines by reducing the 
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expression of TNF-α and upregulating IL-10 in mice [40]. The possible mechanism of this 

effect is through the inhibition of the nuclear translocation of NF-Κb [41]. Propionate has 

previously been observed to increase following GA treatment. This result is in line with that 

of previous studies, indicating that GA could potentially play an important role as an anti-

obesity agent, due the possible mechanism that after 180 days of GA consumption (1%w/v), 

that a down regulation of TNF-α in β3-adrenergic stimulation of adipocytes and related to the 

modelation in the microbiotia which produce the organic acids that could contributes to a 

reduction in proinflammatory cytokines in adipose tissue [32].    

In the literature, there is evidence that elderly individuals exhibit a decline in immune 

function, as indicated by cytokine production; therefore, in the current study, we measured 

cytokine production in order to observe the modulation of immune function. The modulation 

of the immune cytokines IL-10 and TNF-α was observed following the fermentation of GA. 

In an ex vivo study, similar results were reported, where GA resulted in reduced inflammatory 

potential by increasing IL-10  Xuan et al (2010)  reported that GA fermentation  by mice led 

to the stimulation of DCs and increased IL-10 levels through the formation of SCFAs, in 

particular butyrate, which have been shown to inhibit the functional differentiation of DCs 

[18]. Several studies have shown that prebiotics can increase IL-10 production in cells 

exposed to LPS, and an effect of GA on IL-10 has been observed previously in Ali et al 

(2013) in plasma following GA treatment in chronic renal failure (CRF), and TNF-α 

inhibition has also been observed in plasma and urine [19]. Additionally, in the same study 

the researcher  reported that the daily intake of 15% GA in drinking water by rats up-

regulated their immune function. Additionally, Bliss et al (1996) performed a human trial on 

16 chronic renal failure CRF patients who consumed 50 g of GA daily and observed 

increased serum butyrate levels [42]. Further more, Glover et al (2009) in a (unblinded study 
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with a washout period and no placebo arm) study on type 2 diabetic subjects (n = 23 for 12 

weeks) found that GA led to increased SCFA plasma levels after supplementation with the 

fibre [27]. However, they did not perform a bacterial SCFA analysis, which could have 

confirmed that the production of serum SCFAs resulted from the SCFAs produced by 

intestinal bacteria. 

IL-10 is an anti-inflammatory cytokine mainly produced by monocytes and, to a lesser extent, 

by T cells [40], [43]. In the current study, both FOS and GA fermentation metabolites were 

shown to enhance IL-10 production induced by LPS. The up-regulation of IL-10 indicated 

that GA could positively modulate the immune response in the elderly population. Other 

fermentation metabolites have an inhibitory effect on TNF-α. GA induced anti-inflammatory 

effects by down-regulating pro-inflammatory cytokines and enhancing anti-inflammatory 

cytokines induced by LPS. Furthermore, the fermentation metabolites of the prebiotic FOS 

increased anti-inflammatory cytokines. Previously, Likotrafiti et al  reported that FOS can 

modulate the elderly gut microbiota in a three-stage gut model system, resulting in increased 

acetate production [44]. During the fermentation, bifidobacteria were stimulated by FOS and 

GA, and increased SCFA concentrations were observed. Matsumoto et al (2006)  evaluate the 

effect of GA consumption in an in vivo study on 10 healthy volunteers for 8 weeks at 25 

g/day resulted in increased serum butyrate levels, and in vitro in the same study results 

indicate that GA has beneficial effects on renal pro-fibrotic cytokine generation [28]. It has 

been proposed that butyrate production may exert an anti-inflammatory effect. Moreover, 

several studies have reported that butyrate inhibits pro-inflammatory cytokine production by 

inhibiting LPS-induced NF-kB activation in vitro [41]. NF-kB plays an important role in 

immune and inflammation responses including TNF-α. After LPS induction, IkB is 

phosphorylated and degraded, and transcription is induced. Acetate also can down-regulate 
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pro-inflammatory cytokine production by lipoxygenase activation without inhibition of NF-

kB. Murine studies have associated the increase in bifidobacteria with the increase in 

interleukin IL-10, which reduces inflammation [45].   

In the current study, FOS showed a prebiotic effect by enhancing bifidobacteria and 

inhibiting Clostridium histolyticum spp. FOS fermentation led to a bifidogenic effect in 

vessel 1, which was associated with modulation of the anti-inflammatory cytokine IL-10. 

Although there was no association between SCFA production in vessel 1 and FOS, in vessel 

2, an increasing trend for acetate and butyrate was observed. FOS also showed anti-

inflammatory properties in vessels 1 and 2. In addition, FOS has bifidogenic activity [46]. In 

this study, we demonstrated a direct immune modulatory effect of the end products of the 

fermentation of GA on PBMCs through the modulation of cytokine production in vitro. 

Capita ́n-Can ̃adas et al (2014) reported that prebiotics can enhance IL-10 production [25], 

this can be due to the enhancement of the numbers of the beneficial bacteria and the 

selectivity of prebtioics. 

Previous in vitro studies  focused on ageing as a possible target for prebiotic intervention [23, 

47]. Therefore,  in the current study, we demonstrated the modulation of cytokine secretion 

following the fermentation of GA and FOS. Additionally, although using a three-stage 

continuous culture gut model system is different from using a closed batch culture system, 

the current model allows changes in microbial groups to be approximated in different parts of 

the colon based on differences in pH and nutrient availability. 
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3.6 Conclusion  

In conclusion, GA modulated the immune response in vitro by affecting cytokine production 

in elderly monocyte cells induced with LPS. Although the gut microbiota was not affected, an 

increase for bifidobacteria was found following GA treatment. GA had a stronger anti-

inflammatory effect than FOS, even though FOS was shown to modulate the gut microbiota. 

Further studies are needed to investigate the effect of GA on immune markers in the elderly 

population in vivo. Additional investigations are also needed to determine which intestinal 

bacterial groups are responsible for this positive effect of GA. This study suggests that the 

interaction between the changes in the gut composition and the mucosal immune system in 

the gut is related to the fermentation of the potential prebiotic GA and FOS.  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Metabolite Production of gum acacia in a gut model system 

 

94 

 

3.7 References: 

1. WHO, http://www.who.int/ageing/publications/world-report-2015/en/. 2015. 

2. Ginaldi, L., et al., Immunosenescence and infectious diseases. Microbes and infection 

/ Institut Pasteur, 2001. 3(10): p. 851-7. 

3. Imahori, K., How i understand aging. Nutr Rev, 1992. 50(12): p. 351-352. 

4. Kleessen, B., et al., Effects of inulin and lactose on fecal microflora, microbial 

activity, and bowel habit in elderly constipated persons. Am J Clin Nutr, 1997. 65(5): 

p. 1397-402. 

5. Macfarlane, G.T., et al., Influence of retention time on degradation of pancreatic-

enzymes by human colonic bacteria grown in a 3-stage continuous culture system. 

Journal of Applied Bacteriology, 1989. 67(5): p. 521-527. 

6. Brocklehurst, J.C., The problems in old age. Proceedings of the Royal Society of 

Medicine, 1972. 65(1): p. 66-69. 

7. Goodwin, J.S., Decreased immunity and increased morbidity in the elderly. Nutr Rev, 

1995. 53(4 Pt 2): p. S41-4; discussion S44-6. 

8. Schiffrin, E.J., et al., The inflammatory status of the elderly: the intestinal 

contribution. Mutation research, 2010. 690(1-2): p. 50-6. 

9. Gomez, C.R., E.D. Boehmer, and E.J. Kovacs, The aging innate immune system. 

Curr Opin Immunol, 2005. 17(5): p. 457-62. 

10. Plowden, J., et al., Innate immunity in aging: impact on macrophage function. Aging 

cell, 2004. 3(4): p. 161-7. 

11. Bruunsgaard, H., et al., Decreased natural killer cell activity is associated with 

atherosclerosis in elderly humans. Experimental gerontology, 2001. 37(1): p. 127-36. 

12. Wu, G.D., et al., Linking long-term dietary patterns with gut microbial enterotypes. 

Science, 2011. 334(6052): p. 105-8. 

13. Zwielehner, J., et al., Combined PCR-DGGE fingerprinting and quantitative-PCR 

indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria 

and Clostridium cluster IV in institutionalized elderly. Experimental gerontology, 

2009. 44(6-7): p. 440-6. 

14. Nachiket, M., et al., Changes in human gut flora with age: an Indian familial study. 

BMC Microbiology, 2012. 12(1): p. 1-10. 

15. Claesson, M.J., et al., Gut microbiota composition correlates with diet and health in 

the elderly. Nature, 2012. 488(7410): p. 178-+. 

16. Walton, G.E., J.R. Swann, and G.R. Gibson, perbiotics 2013. 

http://www.who.int/ageing/publications/world-report-2015/en/


Chapter 3: Metabolite Production of gum acacia in a gut model system 

 

95 

 

17. Woodmansey, E.J., Intestinal bacteria and ageing. J Appl Microbiol, 2007. 102(5): p. 

1178-86. 

18. Xuan, N.T., et al., Stimulation of Mouse Dendritic Cells by Gum Arabic. Cellular 

Physiology and Biochemistry, 2010. 25(6): p. 641-648. 

19. Ali, B.H., et al., Comparative Efficacy of Three Brands of Gum Acacia on Adenine-

Induced Chronic Renal Failure in Rats. Physiological Research, 2013. 62(1): p. 47-

56. 

20. Noack, J., et al., Partial substitution of fructan fibers with acacia gum altered 

fermentation profile in an in vitro batch system fermentation. Faseb Journal, 2012. 

26. 

21. Klosterbuer, A., et al., A blend of acacia gum, fructan-type fibers, and outer pea fiber 

exhibits lower gas production compared to other fiber blends in vitro. Faseb Journal, 

2012. 26. 

22. Nasir, O., et al., Effects of gum arabic (Acacia senegal) on renal function in diabetic 

mice. Kidney & blood pressure research, 2012. 35(5): p. 365-72. 

23. Vulevic, J., et al., Modulation of the fecal microflora profile and immune function by 

a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. 

Am J Clin Nutr, 2008. 88(5): p. 1438-46. 

24. Gibson, G.R., et al., Dietary prebiotics: current status and new definition. Food 

Science and Technology Bulletin: Functional Foods, 2010. 7(1): p. 1-19. 

25. Capitan-Canadas, F., et al., Prebiotic oligosaccharides directly modulate 

proinflammatory cytokine production in monocytes via activation of TLR4. 

Molecular Nutrition & Food Research, 2014. 58(5): p. 1098-1110. 

26. Calame, W., et al., Gum arabic establishes prebiotic functionality in healthy human 

volunteers in a dose-dependent manner. Br J Nutr, 2008. 100(6): p. 1269-75. 

27. Glover, D.A., et al., Acacia(sen) SUPERGUM™ (Gum arabic): An evaluation of 

potential health benefits in human subjects. Food Hydrocolloids, 2009. 23(8): p. 

2410-2415. 

28. Matsumoto, N., et al., Butyrate modulates TGF-beta1 generation and function: 

potential renal benefit for Acacia(sen) SUPERGUM (gum arabic)? Kidney Int, 2006. 

69(2): p. 257-65. 

29. Mills, D.J.S., et al., Dietary glycated protein modulates the colonic microbiota 

towards a more detrimental composition in ulcerative colitis patients and non-

ulcerative colitis subjects. 2008. 

30. Macfarlane, G.T., S. Macfarlane, and G.R. Gibson, Validation of a three-stage 

compound continuous culture system for investigating the effect of retention time on 

the ecology and metabolism of bacteria in the human colon. Microbial Ecology, 1998. 

35(2): p. 180-187. 



Chapter 3: Metabolite Production of gum acacia in a gut model system 

 

96 

 

31. Duncan, S.H. and H.J. Flint, Probiotics and prebiotics and health in ageing 

populations. Maturitas, 2013. 75(1): p. 44-50. 

32. Ushida, a.K., et al., Effect of long term ingestion of gum arabic on the adipose tissues 

of female mice. Food Hydrocolloids, 2011. 25: p. 1344e1349. 

33. Marzorati, M., et al., Addition of acacia gum to a FOS/inulin blend improves its 

fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem 

(SHIME®). J Funct Foods, 2015. 16: p. 211-222. 

34. Terpend, K., et al., Arabinogalactan and fructo-oligosaccharides have a different 

fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem 

(SHIME®). Environ Microbiol, 2013: p. n/a-n/a. 

35. Peters, S.G., E.W. Pomare, and C.A. Fisher, Portal and peripheral-blood short chain 

fatty-acid concentrations after cecal lactulose instillation at surgery. Gut, 1992. 33(9): 

p. 1249-1252. 

36. Roediger, W.E., Utilization of nutrients by isolated epithelial cells of the rat colon. 

Gastroenterology, 1982. 83(2): p. 424-9. 

37. Ramos, M.G., et al., Butyrate induces apoptosis in murine macrophages via caspase-3, 

but independent of autocrine synthesis of tumor necrosis factor and nitric oxide. Braz 

J Med Biol Res, 2002. 35(2): p. 161-73. 

38. Kurita-Ochiai, T., K. Ochiai, and K. Fukushima, Butyric Acid-Induced T-Cell 

Apoptosis Is Mediated by Caspase-8 and -9 Activation in a Fas-Independent Manner. 

Clinical and Diagnostic Laboratory Immunology, 2001. 8(2): p. 325-332. 

39. Bailon, E., et al., Butyrate in vitro immune-modulatory effects might be mediated 

through a proliferation-related induction of apoptosis. Immunobiology, 2010. 215(11): 

p. 863-73. 

40. Saemann, M.D., et al., Anti-inflammatory effects of sodium butyrate on human 

monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB 

journal : official publication of the Federation of American Societies for 

Experimental Biology, 2000. 14(15): p. 2380-2. 

41. Segain, J.P., et al., Butyrate inhibits inflammatory responses through NFkappaB 

inhibition: implications for Crohn's disease. Gut, 2000. 47(3): p. 397-403. 

42. Bliss, D.Z., et al., Supplementation with gum arabic fiber increases fecal nitrogen 

excretion and lowers serum urea nitrogen concentration in chronic renal failure 

patients consuming a low-protein diet. Am J Clin Nutr, 1996. 63(3): p. 392-8. 

43. Cavaglieri, C.R., et al., Differential effects of short-chain fatty acids on proliferation 

and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life 

sciences, 2003. 73(13): p. 1683-90. 

44. Likotrafiti, E., et al., An in vitro study of the effect of probiotics, prebiotics and 

synbiotics on the elderly faecal microbiota. anaerob, 2014. 27(0): p. 50-55. 



Chapter 3: Metabolite Production of gum acacia in a gut model system 

 

97 

 

45. McCarthy, J., et al., Double blind, placebo controlled trial of two probiotic strains in 

interleukin 10 knockout mice and mechanistic link with cytokine balance. Gut, 2003. 

52(7): p. 975-980. 

46. Steer, T.E., et al., Metabolism of the soyabean isoflavone glycoside genistin in vitro 

by human gut bacteria and the effect of prebiotics. B J Nutr, 2003. 90(3): p. 635-642. 

47. Ahmed, M., et al., Impact of consumption of different levels of Bifidobacterium lactis 

HN019 on the intestinal microflora of elderly human subjects. J Nutr Health Aging, 

2007. 11(1): p. 26-31. 

 

 



Chapter 4 Gum acacia enrichment culture to extract probiotic microorganisms 

98 

 

4. Chapter (4) Gum acacia enrichment culture to extract probiotic 

microorganisms 

Abstract  

The aim of this study was to determine key utilisers of gum acacia (GA) and isolate putative 

probiotics using GA enrichment culture experiment for 14 days from healthy elderly faeces 

then investigate the antimicrobial activity of the isolated probioitcs in vitro using agar spot 

test. The putative probiotics were then assessed for their probiotic potential via 

antipathogenic activities against pathogenic strains of Escherichia coli, Salmonella 

Typhimurium and Enterococcus faecalis. Results shows that probiotics from three volunteers 

were able to produce active compounds on solid media with antimicrobial activity and the 

most effective putative probiotic was from volunteer A. These were also confirmed when 

cell-free culture supernatants (CFCS) from the putative probiotics were used in agar well 

diffusion assay. These experiments were able to confirm the capacity of potential probiotics 

to inhibit selected pathogens. One of the main inhibitory mechanisms may result from the 

production of organic acids from utilising the GA and consequent lower of culture pH. These 

observations could lead to the end products of GA metabolism. Moreover, microbial 

community composition was analysed using next generation sequencing (NGS) and whole 

genome sequencing (WGS), increased in Firmicutes phylum and Ruminococcaceae in family 

level and the isolated microorganism was identified as lactobacilli at genus level after GA 

enrichment. In conclusion, the potential probiotics shows a remarkable antimicrobial activity, 

this is relevant to elderly population to decrease infections caused by pathogens bacteria.  

Further investigation to evaluate the probiotic bacteria capacity using in vitro mixed cultures. 

 

 

 

 



Chapter 4 Gum acacia enrichment culture to extract probiotic microorganisms 

99 

 

 

4.1 Introduction  

Aging is associated with decreases in potentially beneficial bacteria such as  bifidobacteria 

[1]. Bifidobacteria are associated with improved immune function of elderly population [2]. 

Addtionally the genera  Lactobacillus have been linked to improved gut health and wellbeing 

and can act to inhibit the growth of pathogens such as E. coli and Salmonella [3], [4]. The  

changes in the gut microbiota in aged people are also associated with an increased 

inflammatory status that might be associated with increased infectious diseases and reduced 

immunity [5]. Previous work showed a potential prebiotic effect of GA in an in vitro batch 

culture study (chapter 2). Furthermore, in a complex in vitro gut model system using elderly 

gut microbiota, potential anti-inflammatory properties were observed with both GA and 

fructooligosacchrides (FOS). These results imply that the GA is able to impact on the 

negative changes associated with ageing.  

Probiotics are defined as “live microorganisms that, when administered in adequate amounts, 

confer to a health benefit on the  host” [6]. Furthermore, probiotics might reduce  

gastrointestinal infections through the ability to produce substances with antimicrobial 

properties such as organic acids [7].   Likotrafiti et al., (2004) demonstrated in an in vitro 

study that probiotics could inhibit Clostridium difficile, enteropathogenic Escherichia coli 

(EPEC), vero-cytotoxigenic E. coli (VTEC) and Campylobacter jejuni. In addition, prebiotics 

and synbiotics in a nutritional intervention study with elderly led to increases in organic acids 

in the colon, thus indicating some anti-pathogenic potential [8]. 

Studies have reported that GA has prebiotic activity through fermentation leading to increases 

in organic acids [9], [10]. Furthermore, in Sudan which GA can be used traditionally, Salih et 
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al (2012) observed a reduction in acute diarrhoea in children an intervention randomised 

controlled study following GA consumption and anti-diarrhoeal properties could have 

attributed to antimicrobial activity, however, the mechanism is uncertain and the clinical use 

of GA is still at a very early stage [11] . In vitro studies provide a rapid method to identify 

bacteria with the ability to inhibit pathogens and hence with the potential to reduce the risk of 

enteric infections in vivo, this could be relevant to hospitalised elderly [8]. Additionally, in 

previous studies on the GA effect on the intestinal bacteria, an in vitro pig model, indicated 

that the intestinal bacteria likely to be responsible for fermentation of high molecular weight 

gum acacia was Prevotella ruminicola-like bacterium, as determined by 16S rRNA gene 

sequencing[10]. Although there are similarities in the gut composition in between humans 

and pigs, more studies are needed to investigate which predominant bacteria that can ferment 

GA. 

The use of an enrichment culture with known substrate offers a simplified approach to assess 

from within a mixed microbial community some of the main utilisers of the substrate. 

Furthermore, if isolates can be found with probiotic potential there exists the possibility of 

finding novel probiotics, ideal for use in synbiotic combination. This provides a novel 

approach to isolating potential probiotics that are key utilisers of GA. As the field of 

prebiotics has developed, the methodology for assessing the modulation of gut microbiota has 

changed to assess particular microbiota compositional changes as a response to fermentation. 

In this study NGS has been used as a way of sequencing millions of fragments even in a 

complex environments like the intestinal microbiota [12]. Here the aim of the present study 

was firstly to isolate probiotics bacteria from GA enrichment culture with evaluation in vitro 

of the ability of bacteria isolated from elderly faecal microbiota to inhibit selected Gram- 
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positive and Gram- negative pathogenic strains. Secondly, examine the ability of gut bacteria 

to utilise GA.   

4.2 Material and method  

4.2.1 Enrichment culture  

All chemicals unless otherwise stated were purchased from Sigma Aldrich. Pre-reduced basal 

medium (peptone water (2 g/l), yeast extract (2 g/l), NaCl (0.1 g/l), K2HPO4 (0.04 g/l), 

KH2PO4 (0.04 g/l), NaHCO3 (2 g/l), MgSO4•7H2O (0.01 g/l), CaCl2•6H2O (0.01 g/l), tween 

80 (2 ml/l), hemin (50 mg/l), vitamin K1 (10 ml/l), L-cysteine (0.5 g/l), bile salts (0.5 g/l), 0.5 

ml of 10% cysteine –HCL, resazurin (1 mg/l) with 1% pre-digested GA was added into 

hungate tubes (9 ml) autoclaved.  Faecal slurry (1ml, 1%) was inoculated into the hungate 

tubes for each volunteer, aged over 65 years, in good general health who had not consumed 

antibiotics in the previous 6 months. The hungate tubes were incubated anaerobically at 37
o
C. 

Every 24 h 1ml of supernatant was transferred into 9 ml of fresh growth medium, this 

continued for 14 days. Samples were taken after 24 h then after the first week and second 

week of the experiment. Organic acids were analysed using GC. Additionally, DNA was 

extracted from the pellet of the samples to be used to assess the microbes present during the 

enrichment procedure.  

4.2.2 Isolation of gum acacia fermenting bacteria 

 After 14 days of the enrichment experiment, i.e. incubation of faecal bacteria from three 

volunteers with gum acacia samples were plated (100μL) on MRS agar under anaerobic 

conditions at 37
o
C at10

-1
 -10

-8
 dilutions within PBS 1%. After 48 h colonies were countable 

on 10
-4

, 10
-5

, 10
-6

 dilutions. A commonly occurring (based on morphology) colony was 

selected to investigate the antimicrobial properties using an agar spot test.  
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4.2.3 Bacterial strains and culture conditions  

The bacterial strains used in the study are listed in Table (1), Escerichia coli, Salmonella 

enterica Typhimurium, Entrococcus faecalis, these strains were maintained at -70
o
C in 15% 

(w/w) glycerol onto Cryobank cryogenic beads (Prolab Diagnostics,UK). Bacterial strains 

were cultured aerobically with 10 ml LB broth in Bijou bottles at 37 ° C in a shaking 

incubator for 24h.  

Table 14: Bacterial strains used in this study 

Bacterial species Strain 

Escherichia coli NCFB1989 

Salmonella Typhimurium LT2 

Enterococcus faecalis NCTC 775 

 

4.2.4 Antimicrobial activity by an agar spot test 

Antimicrobial activity was investigated as by Barbosa et al (2005) using a colony overlay 

assay [13]. Pure culture microorganisms isolated from enrichment culture at 14 days were 

inoculated as 5 µL spots on MRS agar plates (3 spots/plate) and incubated at 37°C for 24 h 

under anaerobic conditions, to allow growth to occur. Subsequently, the growth that had 

occurred was exposed to chloroform vapour for 30min. the plates were aerated for 20min 

before overlaying with 10 ml of 0.7% (w/v) LB agar at 45oC, of an overnight culture 

previously inoculated with 10 µL of the indicator pathogen strain. MRS agar plates without 

any culture spot were also poured with 0.7% (w/v) LB agar containing 10 microliters of each 

indicator pathogenic. The plates were incubated at 37°C aerobically.  Zones of inhibition 

around the spots at any of the incubation time points (8, 24 and 48 h) were examined and 
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scored. The experiment was conducted using isolated from the enrichment culture 

experiments.  

4.2.5 Preparation of cell-free culture supernatants (CFCS) 

2ml of putative probiotic overnight pre-cultures (10ml) was transferred to 100 ml of MRS 

broth and incubated for 24 h under the same conditions. Then, an aliquot of the cultures was 

centrifuged at 12,000 g for 10 min at 4 °C. the pellet was discarded and the CFCS aliquot into 

4 tubes of 15 ml. two of them were neutralised to pH 7 by addition of 4 M NaOH and all of 

them were filter-sterilised through a sterile 0.20 µm-pore-size filter (Sartorius Stedim Biotech 

S.A., Aubagne Cedex, France). CFCS were concentrated by freeze-drying (~3days) (Christ- 

Gamma 2-16 LSC-Germany) and reconstituted with sterile high –performance liquid 

chromatography (HPLC) water (Fisher Scientific Ltd, Loughborough, Leicestershire, UK) to 

achieve 10-fold concentration.  

4.2.6 Antimicrobial activity by well diffusion assay  

Potential mechanisms involved in the inhibition of pathogenic bacterial growth were 

investigated by a well diffusion assay. This experiment was run in order to test if the 

inhibitory effect of the supernatants was exclusively due to its acidic pH or whether other 

mechanisms were involved. Twenty millilitres of 1.2% (w/v) of LB agar at 45 °C was mixed 

with 20 μL of an overnight culture of the indicator pathogen strain during the stationary 

phase and poured into petri dishes for the well diffusion assay according to Delgado et al., 

(2007) [11]. The agar was left to set for 30 min and 3 separate 6-mm diameter wells punched 

into the agar with sterile metal cylinder. Then, 60 μL of non –concentrated CFCS, were 

added into each well. The same procedure was carried out using CFCS non –concentrated 

and concentrated to 10 folds adjusted to pH 7 by addition of 4 M NaOH. The plates were 

incubated under appropriate conditions at 37°C for 24-48 h and antimicrobial activity 
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recorded as growth–free inhibition zones around the wells. Inhibition zones were measured in 

mm from the edge of the wells. As the controls, non-concentrated fresh MRS broth (pH6) as 

well as non-concentrated fresh MRS broth, adjusted to pH 7 by the addition of 4 M NaOH, 

were used. This experiment was carried out in triplicate and for each biological replicate, 

three technical repeats were used.  

4.2.7 Short chain fatty acid production 

To quantify the SCFA at different stages of the enrichment experiment samples were 

acidified to transfer the SCFA into the liquid phase to enable detection. 100 µl of sample 

supernatant mixed with 260 µl of  H2SO4 solution (20 µ l of concentrated sulphuric acid with 

100 m of distil water) to the sample was incubated for 10 minutes. After that, 50µl of internal 

standard was added 4 mM.  inject volume 1 microl, inlet temperature 240 and detect 240, 

oven initial temperature 14
0
C 5 min, the ratio 1

0
C /min to 24

0
C 5min.   

4.2.8 DNA extraction 

The DNA was extracted initially according to Yu and Morrison (2004) [12]. Following 

this a QIAamp DNA Minikit was used according to the manufacturer’s instructions. 

(Qiagen,51304). Briefly 0.5ml of lysis buffer ( 500 mM NaCl, 50 mM Tris-HCl, pH 8.0, 50 

Mm EDTA and 4% sodium dodecyl sulphate)  was added to samples in 2 ml screw –cap 

tubes. The samples were homogenised for 3 minutes in a Mini-Bead beater™ (Bio Spec 

Products, Bartlesville, OK, USA) for 1 min pulses with 2 min rest on ice between pulses. 

After that, samples were incubated for 15 min at 95 °C. For precipitation of DNA 130 µl of 

10 M ammonium acetate was added and incubated for 5 min and then was centrifuged at 4°C 

for 10 min at 16,000× g and transferred to 1.5 tubes with 750 µl  iso-propanol and incubated 

on ice for 30 min.  Spectrophotometer Nano Drop ( ND-1000) was used to check the 

extraction DNA quantity.  
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4.2.9 PCR Amplification and Sequencing 

Aliquots of extracted DNA were amplified with universal primers for the V4 and V5 

regions of the 16S rRNA gene. The primers U515F (5’-GTGYCAGCMGCCGCGGTA) and 

U927R (5’-CCCGYCAATTCMTTTRAGT) were designed to permit amplification of both 

bacterial and archaeal ribosomal RNA gene regions [13]. 

Forward and reverse fusion primers consisted of the Illumina overhang forward (5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG) and reverse adapter (5’-

GTCTCGTGGGCTCGGAGATGTGTAATAAGAGACAG) respectively.  Amplification 

was performed with FastStart HiFi Polymerase (Roche Diagnostics Ltd, UK) using the 

following cycling conditions: 95 °C for 3 min; 25 cycles of 95 °C for 30 s, 55 °C for 35 s, 72 

°C for 1 min; followed by 72 °C for 8 min.  Amplicons were purified using 0.8 volumes of 

Ampure XP magnetic beads (Beckman Coulter).  Each sample was then tagged with a unique 

pair of indices and the sequencing primer, using Nextera XT v2 Index kits, and KAPA HiFi 

Hot Start ReadyMix using the following cycling conditions: 95 °C for 3 min; 12 cycles of 95 

°C for 30 s, 55 °C for 30 s, 72 °C for 30 s; followed by 72 °C for 5 min.  Index-tagged 

amplicons were purified using 0.8 volumes of Ampure XP magnetic beads (Beckman 

Coulter).  The concentration of each sample was measured using the fluorescence-based 

Picogreen assay (Invitrogen). Concentrations were normalized before pooling all samples, 

each of which would be subsequently identified by its unique MID.  Sequencing was 

performed on an Illumina MiSeq with 2 x 300 base reads according to the manufacturer’s 

instructions (Illumina Cambridge UK). 

4.2.10 Bioinformatics and Data Analysis 

The sequence reads obtained were processed according to the microbiome-helper pipeline 

(https://github.com/mlangill/microbiome_helper/wiki/16S-standard-operating-procedure).  
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Essentially paired end reads were merged based on overlapping ends using PEAR 

(http://sco.h-its.org/exelixis/web/software/pear/), before filtering the data for base-calling 

quality.  The processed sequences were then classified using the pick open reference, the 

operational taxonomic units ( OTUs), process implemented in QIIME v1.9.0  softwares 

against the Green genes 16S rRNA gene database (http://greengenes.secondgenome.com/).  

The resulting distribution of OTUs across the multiple samples was further analysed using 

QIIME v1.9.0. to summarise the distributions and explore alpha and beta diversity.  Sequence 

data were assembled and quality filtered. Further data analysis was performed using the open-

source software system Quantitative Insights into Microbial Ecology (QIIME). Operational 

taxonomic units (OTU) were selected using a closed-reference OTU selection protocol.  

4.3 Statistical analysis 

All data from organic acids production and bacterial changes were analysed by repeated 

measures one-way Anova,  p value of less that 0.05 was deemed as statistically significant.  

4.4 Results  

4.4.1 Antimicrobial activity by an agar spot test 

All of the cultures tested resulted in a zone of inhibition against all pathogens at 8, 24 h 

and 48h as shown in Table 15.  The potential probiotic from volunteer A resulted in greater 

antimicrobial activity in which more inhibition of the pathogens in 8 h Enteroococcus 

faecalis and in 24 and 48 h with Salmonella typhimurium and finally with Escherichia coli in 

8, 24 and 48 h compared with other potential probiotics from volunteers A, B and C. figure 

(10) shows example of the inhibition zone of agar spot test.  

4.4.2 Whole genome sequencing  

As such this organism was sequenced using whole genome sequencing to identify the 

organism. The putative probiotic from volunteer A was seen to be more effective than others 
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and the results show that 99.4% chance to be Lactobacillus rhamnosus ATCC 8530 at strain 

level.using DNA STAR.and by MR-RAST assembled shotgun metagenome which identified 

the isolated microorganism as lactobacilli at genus level as shown in figures 8 and 9 .  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: This chart illustrates the distribution of taxonomic domins , genus for the annotations , 

each slice indicates the percentage of reads with predicted and ribosomal RNA genes annoted to 

the indicated taxonomic level. This is based on all annotation source databases used by MG-

RAST.  
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Figure 9:  This chart illustrates the distribution of taxonomic domins , phyla for the annotations , each slice 

indicates the percentage of reads with predicted and ribosomal RNA genes annoted to the indicated taxonomic 

level. This is based on all annotation source databases used by MG-RAST. 
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4.4.3 Antimicrobial activity by a well diffusion assay 

Table 16 shows the putative probiotics from three different volunteers resulted in 

inhibition against all pathogens in the spot test assays. Subsequent well diffusion agar test 

resulted in halos too small to measure with the non-concentrated supernatant. The 10-fold 

concentrated supernatants were subsequently used. It was seen that the strongest inhibition 

was with non pH adjusted supernatants from all of the putative probiotics and this was 

accordance with agar spot test results. Furthermore, well diffusion assay when the CFCSs 

were more concentrated, larger inhibition zones were observed as shown in Table 16.  On the 

other hand, when the supernatants were pH adjusted, the inhibition activity was difficult to 

quantify. Though, around the wells observation of a yellow colouration, likely due to some 

anatanogestic effect comparing with controls that did not show any inhibition. Figures 11 

shows inhibition zone of the adjusted pH and non adjusted examples.  

4.4.4 Determination of organic acid production 

There were no significant differences between day 0 and day 14 although there are notably 

changes with individual data in Table 17. 
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Table 15: Growth inhibition of of pathogens by probiotics potential by an agar spot test,  S.Typhimurium,  E. 

coli,  E. faecalis. 

 

 

 

 

 

Pathogenic strain Time 

Salmonella Typhimurium 8 h 24 h 48 h 

Volunteer A 23.33±5.77 21.33±2.30 20±0.0 

Volunteer B 22.66±1.15 18.66±2.30 17.33±2.30 

Volunteer C 22.66±1.15 20±0.0 16±2.0 

Escherichia Coli 8 h 24 h 48 h 

Volunteer A 30±0.0 24.66±1.15 20.66±1.15 

Volunteer B 20±0.0 20.66±1.15 19.33±1.15 

Volunteer C 20±0.0 18±2.0 16.66±3.05 

Enterococcus faecalis 8 h 24 h 48 h 

Volunteer A 28±3.46 14.66±4.61 10±2.0 

Volunteer B 20±0.0 14.66±1.15 12.66±1.15 

Volunteer C 16±0.0 11± 1.0 10±2.0 

The different degree of the growth inhibition is expressed in mm as the mean of three replicates 

±SD 
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Table 16:  well diffusion assay. Inhibitory effects of non –adjusted pH of cell-free culture supernatants of 

selected putative probiotics against  pathogenic bacteria Salmonella Typhimurium,  Escherichia coli,  

Entrococcus faecalis (non concentrated) and 10-fold concentrated. 

non –adjusted pH of cell-free culture supernatants 

Pathogens strain E. coli  S. Typhimurium E. faecalis 

 NC 10-fold NC 10-fold NC 10-fold 

Volunteer A 2.66±0.57 6.4±0.34 3.00±0.0 6.00±0.0 2±0.0 6.33±1.52 

Volunteer B 1.50±0.0 5.33±0.57 1.16±0.28 5.00±0.0 1.73±0.46 5.33±0.57 

Volunteer C 2.25±0.57 5.00±0.0 2.00±0.0 5.30±0.57 2.33±0.57 5.00±0.0 

adjusted pH of cell-free culture supernatants 

Volunteer A 0.0±0.0 1.06±0.11 0.0±0.0 0.93±0.11 0.0±0.0 0.86±0.23 

Volunteer B 0.0±0.0 1±0.0 0.0±0.0 1±0.0 0.0±0.0 1±0.0 

Volunteer C 0.0±0.0 1±0.0 0.0±0.0 0.93±0.11 0.0±0.0 0.86±0.23 

The different degree of the growth inhibition is expressed in mm as the mean of three replicates 

±SD 
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Table 17: SCFA concentration using acidification method for three volunteers A, B, C 

 Acetate Propionate butyrate 

Volunteer A 

Day 0 0 6 0 

Day 7 39.53 7.54 11.28 

Day 14 28.31 4.47 9.78 

Volunteer B 

SAMPLES Acetate Propionate butyrate 

Day 0 0 8.61 11.36 

Day 7 17.86 11.95 15.51 

Day 14 22.29 14.84 5.92 

Volunteer C 

SAMPLES Acetate Propionate butyrate 

Day 0 9.62 4.62 17.68 

Day 7 19.71 11.27 15.01 

Day 14 18.18 11.17 4.52 
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Figure 11: Well diffusion assay, the inhibition zone adjusted pH on the left hand and non-adjusted samples on 

the right hand, S. Typhimurium, E. coli, E. faecalis. 10-fold concentrated CFCS. 

 

 

4.4.5 Relative abundance phyla, family levels and genera 

In this present study, samples were obtained from enrichment cultures on day 0 and day 14 

from three volunteers. The microbial communities were characterised regarding to the 

different fermentation times, between 0 and 14 days in the presence of single carbohydrate 

source, GA at 1%.  

Figure 10: : Agar spot test isolated probiotics from three volunteers A, B and C the growth of inhibition zone,  

the three isolated probiotics have shown an anti-pathogenic effect against pathogens S.Typhimurium,  E. coli,  

E. faecalis the plates shows the inhibition zone of agar spot test within, S. Typhimurium as an example 
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    The phyla Bacteroidetes, Firmicutes and Proteobacteria were the most abundant during 

the experiment, which are the most abundant in the human gut composition. After the 

fermentation of GA for two weeks the phyla Firmicutes showed a trend to increase using 

repeated measures one-way ANOVA between different times (p=0.08).  There were increases 

(15.96, 29.30, 31.24) % for the three volunteers respectively compared to (9.77, 11.38, 10.19) 

% at the beginning of the inoculum. Figure (13) shows the changes in phyla.  

Figure (12) shows  the beta diversity analysis PCoA shows the diversity of microbial 

composition between three samples and shows the bacteria has clustered and moved toward a 

specific composition for the three volunteers after fermentation for 14 days.  

Family level Ruminococcaceae, which belongs to Firmicutes phylum, as showns in Figure 

(14) , was enhanced from (0.0, 0.50, 1.75) % (9.09, 18.67, 15.64) % for the three volunteers.  
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Figure 12: PCoA plot:  Investigation of the effect of GA enrichment culture on gut microbiota reads of the three 

volunteers A, B and C.(bacterial diversity and relative abundance) Beta diversity analysis in different times of 

individual volunteers different times were represented as spot with red (day 0) baseline, blue (day 7), orange 

(day14).  

 

 

Figure 13: Relative abundance of   bacterial reads at phyla level  for different three volunteers at time 0 baseline 

day and 14 day. Investigation of the effect of GA enrichment culture on gut microbiota (bacterial diversity and 

relative abundance) at phylum level between three volunteers, A, B, C in enrichment culture experiment for 14 

days at the beginning of the experiment compared with the end of the experiment. Firmicutes has greater 

increase within the three volunteers in 14 days and a decrease in bacteroidetes correlate with the increase in 

firmicutes. A thin green line presents Actinobacteria not clear in all samples. 
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Figure 14:  Relative abundance of   bacterial reads at family level for different three volunteers at time 0 baseline day and 14 

days. Investigation of the effect of GA enrichment culture on gut microbiota (bacterial diversity and relative abundance) at 

family level between three volunteers in enrichment culture experiment for 14 days, The first three columns are the three 

volunteers gut composition at the beginning of the experiment compared with the end of the experiment, the last 3 columns 

representing day14 for each. Ruminococcaeae family has the greatest increase within the three vounteers in 14 days. 
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4.5 Discussion  

An in vitro enrichment culture study was used with the aim of identifying the microorganisms 

within the elderly faecal microbiota that utilise GA. Furthermore putative probiotics were 

isolated from these enrichment experiments and tested for antimicrobial activity against three 

pathogenic strains S. Typhimurium, E. coli, E. faecalis. Bacterial populations were 

characterised at days 0,  and 14 by community profiling (NGS).   

Previous investigations have shown that bifidobacteria, bacterioides and lactobacilli are 

increased following the fermentation of GA [14]. In our previous work GA shows anti-

inflammatory properties in a gut model system, whilst the impact on the microbiota was not 

so marked. As a further investigation to seek other members of microbiota which might be 

responsible for GA fermentation was undertaken. NGS community profiling was employed to 

discover this.  

At the phyla level during all experimental stages Bacteriodetes, Firmicutes and 

Protobacteria were the most abundant bacterial groups. Similar results have been seen in 

other studies, among elderly populations [15],[16]. Increases in the Firmicutes have been 

observed in the end of the experiment, yet this change was not significant, this result is 

relevant to maintain the gut microbiota balance in elderly population. Furthermore, within the 

family level it was seen that Ruminococcaceae, which might be a butyrate producer, utilised 

GA as a carbohydrate source. This result is important as could improve the elderly health in 

producing butyrate. However, within this enrichment experiment SCFA were not observed to 

significantly increase, In the current study GA did not show lead to significant increases in 

bifidobacteria and / or lactobacilli at genus level, however, it was still posible to isolate out 

lactobacilli at the end of the enrichment experiment. This means that lactobacilli were able to 

use GA, although, they may have not been a predominant utiliser. Wyatt et al (1986) 
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observed using human faecal inoculum in basal medium with 2% of GA resulted in isolation 

of Bifidobacterium longum and Bacteroides ovatus, Bacteroides oris, Bacteroids buccae and 

prevotella ruminicola-like bacterium [17].   

      SCFA were assessed during the enrichment experiments, however, these did not 

significantly increase. This could possibly be because that after the fermentation for 24 h a 

less diverse bacteria consortium is being transferred to the subsequent tube therefore, the 

production of the SCFA may be lower than the previous cultured inoculum, depending on 

which microorganisms were selected for by the GA and therefore the more the samples were 

diluted the lowest bacterial numbers composition resulted.   

 

 

In this current study, microorganisms were isolated onto MRS agar following the enrichment 

culture. These isolates were assessed for anti-microbial activities against known pathogens. 

Three separate microorganisms were isolated from the enrichmentment culture experiments. 

The microorganism that showed the greatest anti-pathogenic potential was further identified 

by whole genome sequencing to be Lactobacillus rhamnosus (WGS) 99.4 %. Lactobacillus 

bacteria is known to have antipathogenic and probiotic properties, therefore the resultant 

microorganism was further studied for its probiotic potential [18].  The premise of this 

experiment being to isolate GA utilisers that show probiotic potential. The antagonistic 

activities of isolated putative probiotics could not be attributed to competition for the growth 

substrates between potential probiotic and pathogens as probiotic cells were killed with 

chloroform before overlaying the pathogen, thus another factor produced by these organisms 

was involved.  
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Moreover, the pH of the cell-free culture was between 4 and 5, therefore, correspondingly 

suggesting that the mechanism of this effect may be attributed to the low culture pH. Other 

mechanisms that could be attributed to this effect associated with lactobacilli for example 

bacteriocins that cause of the extension of the lag phases and the lower growth rate of 

pathogens. Further, these studies suggest that growth-inhibiting activity was attributed to the 

lower pH associated with production of organic acids. E. coli is a Gram-negative bacterium 

which is a member of Enterobacteriaceae family. E. coli can colonise in the body, especially 

in the lower intestine and be transmitted through the faecal-oral route. Pathogenic strains of 

the bacterium can cause diseases from gastroenteritis to extra-intestinal infections of the 

urinary tract, pulmonary and nervous system [19]. The antimicrobial potential by each 

probiotic used here could indicate to the ability of probiotics to to inhibit pathogens within 

the colon and in particular elderly gut microbiota. The bacterium that  led to the greatest 

antimicrobial activity belonged to volunteer A , this microorganism was identified by whole 

genome sequencing. Following neutralising of the supernatants within the well diffusion 

assays a large reduction in the antipathogenic properties was observed. Therefore it is likely 

that SCFA and organic acids were key to these effects. It is well known that lactobacilli can 

produce organic acids which lead to a decrease in pH [20]. In another study, De 

Keersmaecker and others, reported strong antimicrobial activity of L. rhamnosus GG against 

Salmonella that was mediated by lactic acid [21].  

When culturing the isolated probiotics from volunteer A lactobacilli was identified 

confirming that lactobacilli is able to use GA. Therefore, the reason for the lack of observed 

selectivity could be attributed to a limitation of the DNA sequencing method, whereby the 

choice of primers can result in lost information. Moreover, the potential probiotics were able 

to grow well in selective medium. On the other hand, this could mean that FISH analysis 
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could provide an important tool for assessing probiotic selectivity, as NGS is a not fully 

quantitative method. As such as Bifidobacteirum and Lactobacillus could be underestimated 

by 16S rRNA gene sequencing analysis if the correct primers are not used and this had been 

reported in a  previous study  [22].  

 

 

 

4.6 Conclusion  

Overall, we were able to observe the probiotic potential of isolated bacterial microorganisms. 

These results could establish the basis for further experiments, e.g. the design of in vitro 

mixed batch culture to test the potential probiotic and synbiotic properties using GA as a 

prebiotic.  
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5. Chapter (5) An in vitro study exploring a synbioitc on elderly 

gut microbiota against Escherichia coli 

Abstract   

The aim of this study was to evaluate in vitro the effect of a putative probiotic, (Lactobacillus 

rhamnosus), potential prebiotic gum acacia (GA) individually and in a synbiotic combination 

against the survival E. coli (NCFB1989) in a mixed community using pH-controlled 

anaerobic batch cultures inoculated with faeces from elderly volunteers. Population changes 

of the bacterial groups were enumerated using fluorescence in situ hybridisation (FISH) and 

the short chain fatty acids concentration were determined using gas chromatography (GC). 

The Synbioitc significantly increased Lactobacillus spp. numbers at 10 h and reduced 

numbers of bacteria in the Clostridium histolyticum group. Butyrate significantly increased 

within the synbiotic vessel. GA alone also led to significant reductions in numbers of bacteria 

in the Clostridium histolyticum group. The probiotic led to increase in acetate and propionate 

production. E. coli growth was not affected by the pro-pre biotic or synbitoic addition the 

microbiota was however modulated by the treatments. Overall, the synbiotic treatment gave 

rise to the greatest impact on the intestinal microbiota.  
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5.1 Introduction  

There is variation in the gut microbial composition between young adults and aged people. 

In a study comparing young and aged people in India, concluded that the gut microbiota of 

the elderly harboured a greater proportion of Bacteroidetes and a distinct abundance in 

Firmicutes numbers [1]. Moreover, a research found similar results when comparing elderly 

and younger populations gut microbiota [2]. Furthermore, two studies observed less 

Bifidobacterium and Clostridium cluster IV alongside increases in enterobacteria and 

Escherichia coli in elderly, when compared to middle age subjects [3],[4]. The differences 

between young adults and elderly in the gut composition could contribute in part to the 400 

times more gastrointestinal infections observed in the elderly than in younger adults [5]. 

Previous studies have been shown that probiotics have a protective effects against the 

intestinal infection by E.coli O157:H7 in animals models  [6, 7] also in human trails FOS has 

been associated with the reduction of the traveler’s diarrhoea symptoms [8]. E.coli for 

example can colonise the large intestine after passing the small intestine which and can act as 

a potnetial pathogen within, particularly in the case of dysbiosis [9]. Concluding  that people 

with weak immune system are at increased risk for developing these complications such as 

elderly population.Dietary intervention is one approach that could be used to promote healthy 

ageing. Indeed, probiotics and prebiotics have been observed to modulate the microbiota and 

enhance the immune function in elderly volunteers [10], [11]. To increase the efficacy of 

probiotics, prebiotics could be used in conjunction to selectively enhance the composition 

and/or activity of the gastrointestinal microbiota, thus conferring benefits to host health [12]. 

A combination of pro-prebiotic, which is known as a synbiotic identified as “a mixture of 

probiotics and prebiotics that beneficially affects the hosts by improving the survival and 

implantation of live microbial dietary supplements in gastrointestinal (GI) tract, by 
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selectively stimulating the growth and/or by activating the metabolism of one or a limited 

number of health –promoting bacteria and thus improving host welfare” [13], should achieve 

the requirements of both pro- and prebiotics.   

For a probiotic to be classed as such certain criteria need to be fulfilled regarding safety, 

stability, functionality and physiology. Probiotic organism properties should preferably be of 

human origin, and be well defined genus/strain, and demonstrate non – pathogenic behaviour 

and produce antimicrobial substances resulting in antagonistic activities against pathogens 

[14]. In previous chapter (Chapter 4) studies were reported indicating that elderly populations 

have increased exposure to pathogenic bacteria which, as a result, could lead to infectious 

disease [15], [5]. Moreover, previous studies reported that prebiotic FOS was able to reduce 

symptoms of traveller’s diarrhoea, which often associated with E. coli strains [8].  

Gum acacia (GA) has prebiotic potential observed through modulation of gut microbiota 

in previous work. Furthermore, a potential probiotic has been isolated from the elderly 

microbiota using GA as a substrate. The premise being GA should be very specific for this 

probiotic, thus its activity should be enhanced. The probiotic has shown antimicrobial effects 

against enteric pathogens E. coli, Salmonella Typhimurium and Enterococcus faecalis. these 

are desirable properties in probiotics. The inhibition mechanisms includes the production of 

organic acids and other substrates such as bacteriocins [16], [17].   

This study aimed to elucidate the probable effects of synbiotic on the colonic microbiota 

using a model simulated colonic fermentation in a pH controlled, stirred, batch-culture 

system, with elderly faecal inoculum, reflecting of the environmental conditions of the distal 

region of the human large intestine. The putative probiotic used in this combination of 
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synbiotic with GA has been previously identified to be active against the S.Typhimurium, E. 

coli, E. faecalis, therefore, E. coli was added as an intestinal pathogen.  

5.2 Material and Methods  

Chemicals  

All media constituents were purchased from Oxoid Ltd, Basingstoke, UK and all 

chemicals were purchased from Sigma- Aldrich, Poole, UK unless otherwise stated. Media 

used was de Man Rogosa Sharpe (MRS) broth for putative probiotic and LB broth for E. coli 

NCFB 1989 strain. 

5.2.1 Bacterial strains and culture preparation  

E. coli (NCFB1989) was selected as a pathogen for use in these experiments. The putative 

probiotic bacteria was isolated from a healthy elderly volunteer (Chapter three). For these 

bacteria growth curves of optical density (spectrophotometer, Sherwood, UK) (OD660 nm) 

against colony forming units (CFU) per milliliter by regular sampling of 24 hour cultures was 

conducted in triplicate. Lactobacillus rhamnosus, the putative probiotic was inoculated in de 

Man–Rogosa–Sharpe (MRS) 10 ml broth and grown at 37°C to late log phase under 

anaerobic (10:10:80%; H2:CO2:N2) conditions. E. coli (NCFB1989) was inoculated in Luria 

Bertani (LB) broth 10 ml 37°C and grown to late log phase under aerobic conditions. Then 

the bacterial suspension was centrifuged at 12,000 g for 10 min at 4 °C. According to growth 

curve, concentration of cells were adjusted to 5×10
8
 CFU/ml and 4×10

8
 CFU/ml for putative 

probiotic and E coli respectively. The supernatant was removed and cells re-suspend in 

phosphate –buffered saline (PBS) (1 M, pH 7.4) (Oxoid Ltd, Basingstoke, Hampshire, UK). 

After that, cells were immediately added to the batch culture vessels according to that the E. 

coli was added to all vessels while putative probioitic was added to the probiotic and 
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synbiotic vessels. For quantification E. coli was plated on Macconkey agar with ampicillin 1 

g/Lfor the survival E. coli (Oxoid) each time point.  

5.2.2 Antibiotic resistance development for Escherichia coli 

In order to reduce the effect of some background gut microbiota from donors, the test 

pathogen strain was developed into an antibiotic resistance strain before being inoculated into 

pH-controlled anaerobic faecal batch cultures. Antibiotic resistant variant was selected by 

growing E. coli on successive overnight aerobic culture in LB broth whilst increasing 

ampicillin concentration from 0.100 to 100μg L
-1

. The resistant colonies were isolated and 

used within the subsequent experiment. 

5.2.3 In vitro Upper Gut Digestion  

60 g of GA powder was added to 150 ml of distilled - water and the solution was mixed 

with 20 mg of α –amylase in 6.25 ml CaCl₂ (1 mM) and incubated on a shaker at 37 °C
 
 for 

30 minutes. This simulated the initial oral digestion. Subsequently, 2.7 g of pepsin in 25ml of 

HCl (0.1M) was used to facilitate gastric breakdown of the sample. The pH was progressively 

reduced to 2 by adding 6 M HCl, the resulting suspension was incubated on a shaker at 37°C 

for 2 hours. A further 560mg of pancreatin and 3.5g of bile in 125 ml of NaHCO₃ solution 

was added to simulate the effect of the small intestine on the gum sample. The pH was 

increased to 7 by adding NaOH (6M) and the suspension was incubated on a shaker at 37°C 

for 3 hours. Samples were transferred to cellulose dialysis membrane (1 KDa molecular 

weight), purchased from Cheshire biotech Cheshire, UK, and dialysed against 10mM NaCl 

solution at 4°C to remove low molecular mass digestion products. After 15 hours, the dialysis 

fluid was changed and dialysis continued for additional 2 h. The remaining sample was freeze 
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dried IEC Lyoprep-3000 freeze dryer (Dunstable, UK) (5 days) prior to use in batch culture 

systems.  

5.2.4 Faecal sample preparation  

Faecal samples were obtained from three healthy volunteers 65 years of age and above. 

Volunteers had not been consuming antibiotics for at least 6 months before the experiment 

and had no history of gastrointestinal disease. Volunteers were not consumers of probiotic or 

prebiotic supplements. Samples were prepared on the day of the experiment and within 1 

hour of production and were diluted to (1:10, w/v) in anaerobic phosphate buffered saline 

(0.1 M; pH7.4). Samples were homogenised in a stomacher for 2 minutes the resulting 

slurries were inoculated into seperate batch culture fermenters. 

5.2.5 Batch culture  

Three independent batch culture experiments were carried out using faeces from a 

different donor each time. Vessels were autoclaved and then aseptically filled with 135 ml of 

basal medium (peptone water (2 g/l), yeast extract (2 g/l), NaCl (0.1 g/l), K2HPO4 (0.04 g/l), 

KH2PO4 (0.04 g/l), NaHCO3 (2 g/l), MgSO4·7H2O (0.01 g/l), CaCl2·6H2O (0.01 g/l), tween 

80 (2 ml/l), hemin (50 mg/l), vitamin K1 (10 ml/l), L-cysteine (0.5 g/l), bile salts (0.5 g/l), 0.5 

ml of 10% cysteine –HCL, resazurin (1 mg/l)). Vessels were left overnight with nitrogen 

pumping (15mL/min) through the vessel to provide an anaerobic environment. Before 

addition of faecal slurry, temperature of basal medium was set at 37 °C and pH was 

maintained at 6.8 using a pH meter (Electrolab pH controller, Tewksbury, UK) by the 

addition of 0.5 M HCl or 0.5M NaOH. The vessels were stirred using magnetic stirrers. 0.3 g 

(1:10 w/v) of pre-digested GA was added to three vessels, a remaining vessel was left as the 

blank. All vessels were inoculated with faecal slurry. 4× 10
8
 of E. coli suspension was added 
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to all four vessels and 1 ml of probiotic was added to probiotic and synbiotic vessels. The 

vessels were left for 48h, with 7 ml samples taken at 0, 5, 10, 24 and 48h. Samples were 

centrifuged in preparation for GC analysis, or prepared for microbial enumeration by FISH in 

triplicate.  

5.2.6 In situ florescent hybridization (FISH) analysis  

All nucleotide probes used for fluorescent in situ hybridisation were commercially 

syntheised and labelled with dye Cy3 at the 5’ end (Sigma Aldrich Co. Ltd. UK). 

375-µl sample obtained from each vessel was fixed for four hours 4˚C in 1125 μL (4% 

w/v) paraformaldehyde. Fixed samples were then centrifuged at 11,337g (Eppendorf 

centrifuge mini spin, Eppendorf, UK) at room temperature for 5 minutes. The supernatant 

was discarded and pellet resuspended in 1 ml of cold 1×PBS by aspirating carefully using a 

pipette. This step was conducted twice. The washed cells were resuspended in 150 µL of cold 

1×PBS, then 150 µL of ethanol (99%) was added and the samples stored at -20˚C.  

To assess differences in bacterial numbers, fluorescence in situ hybridisation (FISH) was 

conducted, using oligonucleotide probes designed to target specific diagnostic regions of 16S 

rRNA. The probes were commercially synthesised and labeled with the fluorescent dye Cy3. 

The probes used were: Bif164 for bifidobacteria (BIF), Lab158 for lactobacilli/enterococci 

(LAB), Chis 150 for Clostridium histolyticum group (CHIS), Erec 482 for Eubacterium 

rectale – Clostridium coccoides group (EREC), Bac 156 for  Bacteroides–Prevotella group 

(BAC). EUB 338 mixture consisting of EUB338, EUB338II and EUB338III for total bacteria 

(Total) see table 7. Samples were hybridised as described by Daims et al., 1999 [18].  For the 

hybridisation 20 μ L of diluted sample was pipetted onto a teflon poly-L-lysine-coated six-

well slide (Tekdon Inc., Myakka City, FL). The samples were dried onto the slides at 46-
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50˚C for 15 minutes and after that dehydrated in an alcohol series 50, 80, and 96%. The 

ethanol was allowed to evaporate from the slides before hybridisation buffer (0.1 of probe in 

a 50 μL of (0.9 M NaCl, 0.02 M Tris/HCl (pH 8.0), formamide (if required – Table 5), 10% 

(w/v) sodium dodecyl sulphate, 4.55 ng ml-1 probe) was applied to permeabilise the cells for 

use with probes Bif164 and Lab158, samples were treated with 20 μ L of lysozyme at room 

temperature for 15 min before being washed briefly for 2−3 seconds in water and then 

dehydrated in the ethanol series. Then the slides were placed in hybridisation oven for 4 

hours (ISO20 oven, Grant Boekel). For the washing step, slides were placed in 50 ml of 

washing buffer (0.9 M NaCl, 0.02 M Tris/HCl (pH 8.0), 0.005 M ethylenediaminetetraacetic 

acid (EDTA) solution (pH 8.0, Table 2)), warmed at the appropriate temperature for each 

probe and 20 μL of 4;6-diamidino-2-phenylindole di hydrochloride (DAPI) was added to the 

washing buffer. After 10 minutes slides were briefly washed (2−3 s) in ice-cold water and 

dried under a stream of compressed air. Five microliters of Pro Long Gold anti-fade re-agent 

(Invitrogen) was added to each well and a coverslip applied. Slides were stored in the dark at 

4 °C until cells were counted under a NikonE400 Eclipse microscope. A DM510 light filter 

was used to count specific bacteria hybridised with the probes of interest. A minimum 15 

random fields of view were counted for each sample. The following formula was used to 

calculate numbers of bacteria: (0.8 × A1 × 6732.42 × 50 × Dilution factor), where A1 is the 

average count of 15 fields of view, 6732.42 is the area of the well divided by the area of the 

field of view, multiplying by 50 takes the count back to millilitre of sample. Results were 

expressed as Log10 bacterial numbers per millilitre batch culture fluid. 
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5.2.7 Preparation sample for short chain fatty acids  

To determine the SCFAs samples were extracted and derivatised as previously described  

[19]. Samples were defrosted and 1ml of each sample or standard solution was transferred 

into a labeled 100 mm × 16mm glass tube with the internal standard of 50µl of 2- ethyl 

butyric acid (0.1M). 0.5 ml concentrated HCL and 2 ml of diethyl ether were added to each 

glass tube was added to each glass tube and samples were vortex for 1 min. Samples were 

centrifuged at 2000 g for 10 min (SANYO MSE Mistral 3000i; Sanyo Gallenkap PLC, 

Middlesex, UK). The diethyl ether (the upper layer) was transferred into a new glass tube. A 

second extraction was conducted by adding 1 ml of diethyl either followed by vortex and 

centrifugation. 400 µl of pooled ether extract and 50 µl N-(tert-butyldimethylsilyl)-N-

methyltrifluoroacetamide (MTBSTFA) was added into a GC screw-cap vial. Samples were 

heated at 80°C for 20 minutes and then left at room temperature for 48 hours to allow lactic 

acid in the samples to completely derivatise.  

A 5890 SERIES II Gas Chromatograph (Hewlett Packard, UK) using an Rtx-1 

10m×0.18mm column with a 0.20μm coating (Crossbond 100% dimethyl polysiloxane; 

Restek, Buckinghamshire, UK) was used for analysis of SCFA. Temperatures of injector and 

detector were 275°C, with the column programmed from 63°C for 3 minutes to 190°C at 

10°C min
-1

 and held at 190°C for 3 minutes. Helium was the carrier gas (flow rate 1.2 ml 

min-1; head pressure 90 MPa). A split ratio of 100:1 was used.  The standard solution 

contained (mM): sodium formate, 10; acetic acid, 30; propionic acid, 20; isobutyric acid, 5; 

n-butyric acid, 20; iso-valeric acid, 5; n-valeric acid, 5; sodium lactate, 10; sodium succinate, 

20. The sample was injected onto the column, which was maintained at 140 
o 

C for the first 5 

minutes, temperature of the column was increased over 5 minutes to 240 
o 

C. To maintain 
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appropriate calibration after injection of every 20 samples an external standard solution, with 

known concentrations of SCFAs was injected. Peaks and response factors within samples 

were calibrated and calculated using ChemStation B.03.01 software (Agilent Technologies, 

Cheshire, UK).  

5.3 Statistical analysis  

Bacterial numbers were statistically evaluated after transformation to log10 counts per ml 

using Microsoft Office Excel 2007 (Washington, USA). Subsequently repeated measures 

one-way analysis of variance (ANOVA) was used to test the effect of time as within the 

subjects factor, (0 h, 10 h) and to assess the significant differences between the two subjects 

in the same time points. Significant differences between times points were detected and 

represented by “*” p <0.05, “**” p<0.01 and “***” p < 0.00. 

5.4 Results 

5.4.1 Bacterial enumeration  

Figure (15) shows the bacterial changes after the fermentation of synbioitc, putative 

probiotic, potential prebiotic. Lactobacilli numbers increased within the synbioitc vessel at 10 

h (p=0.04).  Furthermore, Clostridium histolyticum group numbers decreased within synbiotic 

and GA vessels (p=0.02), (0.02) respectively. Additionally, a significant increase in C. 

histolyticum group numbers was observed within the negative control (p=0.02) when 

compared with baseline.   
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Figure 15: changes in the bacterial composition figures are presenting  the mean bacterial populations in pH-controlled 

batch cultures at 0, 5, 10, 24, and 48h.Values are mean ± SD.*, significant differences from the 0h value within the same 

treatment, p<0.05. small letters differences from the negative control. 1% faecal batch culture inoculated with vessel 1 

negative control, vessel 2 GA, vessel 3 synbiotic and vessel 4 is probiotic isolated.  
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5.4.2 E. coli counting  

Samples were taken at 0, 5, 10 and 24 h to count the enumerate this bacterial group on 

selective agar, there were no significant changes however, there were an increase in the 

numbers throughout the fermentation Table (18). The numbers of E. coli were lower than 

control to some extent at 5 h in the synbiotic and GA vessels.  

Table 18:  The E. coli growth in an in vitro batch culture 48h 

Substrate T0 T5 T10 T24 

Control 6.54±0.05 9.03±0.62 8.95±0.53 8.77±0.57 

GA 6.34±0.15 8.63±0.53 8.81±0.46 9.16±1.08 

Synbiotic 6.54±0.11 8.73±0.46 9.35±0.10 10.32±0.94 

Probiotic 6.54±0.14 9.14±1.16 9.05±0.48 9.79±0.96 

Faecal batch culture (1%) assessing E. coli changes following fermentation of GA (gum acacia), L. rhamnosus 

(probiotic) or L. rhamnosus and GA (synbiotic) following fermentation at 0, 5, 10 and 24 hours. Values are 

Log10 number of cells/ ml batch culture assessed by culturing on Macconkey agar. 

5.4.3 SCFA production  

 The analysis of SCFA shows that butyrate has been significantly increased within the 

synbitoic vessel (p=0.03). Acetate was significantly increased in all substrates comparing 

with baseline (p=0.03, 0.05, 0.00, respectively). Propionate has increased within potential 

prebiotic and probiotic vessels (p=0.03 for both) as compared with baseline Table (19). 
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Table 19: SCFA production of the in vitro fermentation batch culture 48h 

*The changes from the control vessel in small letters, the changes from baseline is *.  The samples were taken at 

0 and 10 hours of faecal batch culture (1%) assessing E. coli changes following fermentation of GA (gum 

acacia), L. rhamnosus (probiotic) or L.rhamnosus and GA (synbiotic). Values are mM concentration.  

 

5.5 Discussion  

This study aimed to determine the effect of an isolated probiotic from healthy elderly faecal 

GA enrichment extract, on the anti-pathogenic properties against E. coli. and to test a novel 

synbiotic by adding GA as selected prebiotic to the probiotic of interest.  pH-controlled batch 

culture fermentation systems were used with elderly gut microbiota.  To date, there have been 

several studies of how pre, pro and synbiotics can shift the gut microbial and immune 

response in elderly people both in vitro and in vivo studies [20], [21], [22] however,  only 

Substrate Time Acetate Propionate Butyrate 

Control 0 1.38±0.52 0.16±0.02 0.12±0.01 

10 7.99±1.27** 2.34±0.34** 1.11±0.79 

GA 0 1.54±0.39 0.2±0.06 0.26±0.18 

 

10 6.25±1.95* 1.73±0.57 1.16±1.74 

 

Synbiotic 0 1.4±0.35 0.17±0.01 0.2±0.1 

10 6.8±1.85* 2.43±0.11* 0.32±0.13* 

Probiotic 0 1.34±0.41 0.12±0.00 0.14±0.00 

10 6.51±0.88** 1.65±0.47* 0.38±0.26 
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very few study in vitro  have looked at the effect of probiotic and synbiotic anti-pathogenic 

effect on elderly people in mixed cultures by isolated probiotics [23], [17].  

     Prior study (chapter 3) noted the importance of the effect of GA on improving elderly gut 

microbiota. In this present study,  a selective inhibitory effect of GA against the growth of   

C. histolyticum was observed,  this is a group of bacteria that have sometimes been associated 

with inflammation and large bowel disease, thus such a change is potentially of benefit to the 

host [24, 25]. Moreover, total bacteria, Bifidobacterium spp., Lactobacillus spp., Bacteroides 

spp. and Eubacterium rectale, increases by GA were not observed. these results were in 

contrast with our previous work (chapter 2) and in vivo studies [26]. In chapter 2 in vitro 

batch cultures GA resulted in significant increases in Bifidobacterium spp. and  Lactobacillus 

spp. at 10 hours. Therefore this timepoint waas deemed appropriated for monitoring the 

synbiotic effects. A possible explanation that the beneficial bacterial groups did not 

significantly increased, for example  bifidobacteria  was able to utilise GA at the beginning of 

the fermentation which might explained by suppress the growth of E. coli at time 5 h after 

that a competition of substrates with E. coli might occur so bifidobacteria was  not able to 

utilise GA any more while E. coli have easier  access to metabolise GA while in previous 

work GA was selectively fermented, another dose to be added could be effective [27].  GA 

have been previously observed to influence the growth of selected intestinal bacteria such as 

bifidobacteria and lactobacilli [26] these bacterial groups are able to  suppress undesired 

bacteria such as E. coli  [13].  

       Additionally, the numbers of total bacteria, Bifidobacterium spp., Lactobacillus spp.,  

Bacteroides spp. and Eubacterium rectale and C. histolyticum remained constant during the 

time of fermentation in the presence of the potential probiotic. Nevertheless, the previous 

work (chapter 4) shows a strong anti-microbial activity against selected pathogens strains (E. 



Chapter 5:  Exploing a synbiotic on elderly gut microbiota against E.coli 

 

137 

 

coli, S. Typhimurium, E. faecalis).  A possible explanation of the limited effect of probiotic 

vessel that there was no carbohydrate source to support the probiotic growth, consequently, 

the effects on the E. coli may have been limited.  

Moreover, anti-pathogenic effect of lactobacilli strains  have been previously observed [28]. 

Other studies looking at probiotics and their anti-pathogenic effects have observed that 

lactobacilli isolated from healthy elderly have anti-pathogenic properties against Clostridium 

difficile, enteropathogenic Escherichia coli and Campylobacter jejuni in solid agar assay 

[23]. 

Lactobacilli have been observed to inhibit the binding of E. coli with mucosal cells; E. coli 

adherence to mucosal cells is important to induce pathogenisis   [29],[30]. Probiotics were 

expected to inhibit E. coli growth yet, the effect was limited. Likewise, lactobacilli have been 

observed able to modulate the microbial composition and the immune response in elderly 

people [31], [32]. Tejero-Sariñena et al (2013) demonstrated that in vitro batch cultures an 

anti-pathogenic effect was observed when the probiotics were initially able to established 

while here in this study the aim was to observe the competition between probiotics and E. 

coli  in the elderly gut microbiota so they both have been added in the same time to the 

vessels [28].   

The synbiotic treatment in the current study caused a significant increase in the potentially 

beneficial Lactobacillus spp. in relation to the control vessel and a decrease in C. 

histolyticum, which have been assoicated with negative effects on colonic health.  The results 

observed were more potent in the synbiotic vessel, compared to probiotic or prebiotic alone. 

Prior studies have noted the importance of synbiotic effects on modulation of elderly health.  

For example, treatment with lactitol and L. acidophilus, B. bifidum, B. lactis and inulin 
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resulted in increases in Bifidobacterium spp. and Lactobacillus spp. numbers [33, 34]. Similar 

observation in a study using synbitoics in a gut model system, Likotrafiti et al (2016) 

demonstrated  that in vessel 1 there was inhibition of E. coli, however, this did not continue 

into vessels 2 and 3., It may also might be the case in this study that here a basal medium, 

with limited nutrients, did not facilitate growth of probiotic  [35].  In contrast, Fooks and 

Gibson (2003) addressed that two synbiotics (Lactobacillus plantarum 0407, oligofructose) 

(Bifidobacterium bifidum Bb12, oligofructose and xylo-oligosacchrides) (50:50 w/w) 

inhibited E. coli within in vitro batch culture, however, a 1% of starch or FOS were added to 

the vessels and probiotics established may contributes to the inhibition of pathogens [36]. 

  In vivo and in vitro studies have investigated the effect of probiotics on the gut microbiota 

composition have used a dose of 10
8  

or 10
9 

 probiotics which is similar to this study [37], 

[20]. The discrepancy in the results of the current study may relate to a diluting effect of the 

probiotic in the presence of the mixed community of faecal bacteria resulting in a reduced 

effect on pathogens.  

Additionally, In the current study we used a pH appropriate to the distal region of the large 

intestine.  This selection was made because  older people often have distal diseases, therefore 

the use of a pH relevant to this (pH 6.8) was deemed appropriate. Furthermore, in the distal 

colonic regions fewer sources of carbohydrate are available, thus within this model we can 

look at the effects of GA in the absense of other substrates. It is noted that the breakdown of 

prebiotics may occur within more proximal regions, therefore the use of  pH 5.5, which may 

influence the prebiotic effect, would also be appropriate and recommended in future studies 

[38, 39].Overall, introduction of a synbiotic led to a modulation of bacterial composition, that 

was more marked than that of the pre and probiotic when used alone – therefore, the 

enhanced selectivity afforded was observed. Fooks and Gibson (2003) observed, that when 
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synbiotics were added into an in vitro system before a pathogen initial establishment was 

enabled [36].  

In addition, SCFA production was enhanced in GA and probiotics and synbiotic 

fermentation.  In particular, synbiotic gave increased the concentration of butyrate. Increases 

in butyrate are important as butyrate is as an energy source for the epithelial cells and plays 

an important role in controlling inflammation and resisting pathogen invasion [40], [41]. 

therefore, this can be beneficial for elderly gut health. 

5.6 Conclusion  

In conclusion, it was observed that the synbiotic enhanced the colonic microbiota which 

highlighted the importance of the combination of pre and probiotic for regulation of the 

indigenous microbiota to a more beneficial composition. Although no additional benefits 

were seen in inhibition of E. coli. To our knowledge, this is the first time to investigate the 

effect of a novel synbiotic in mixed culture, that have been challenge tested against 

pathogenic E. coli strains in the batch culture system using faecal samples from elderly 

volunteers. This emphasises the importance of using mixed cultures to see effects, as this 

would be more relevant to the in vivo situation. Further analysis is needed to study more the 

different doses of the probiotic potential and develop synbiotic could have more effect on 

elderly health. 
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6. Chapter (6) General discussion  

The World Health Organisation reported that the population of those aged 60 years and older 

is rapidly increasing  and over one-third of the UK population will be aged over 65 years by 

2050 [1]. Ageing is associated with increases in infections and disease and impaired 

immunity [2]. There is evidence to link increases in inflammation and gut disorders to the gut 

microbiota. These changes can be reverse through dietary intervention by modulating the gut 

microbiota. Pre, pro and synbiotic are therefore potential functional foods that could alter the 

gut microbiota to enhance the well-being of this population in particular [3], [4]. Therefore, 

interest in research to find a novel prebiotic recently increased.  

The aim of this study was to assess the prebiotic potential of gum acacia (GA) in vitro 

fermentation batch culture then an ex vivo approach was used to determine the likely impact 

on immune function. Moreover, a novel synbiotic was developed using GA to extract an 

organism that utilises it, whilst offering potential beneficial effects.  

Additionally, GA have been used traditionally as food in India and Australia and evidence 

have been provided that GA have been used in food industry as a stabilizer, thickener and 

emulsifier, a growth enhancer for probiotic bacteria like other polysaccharides are capable of 

enhancing viability and enzymes hydrolysis. Moreover, several studies have found that GA 

can exert several beneficial effects on health. GA has been found to have hypochlesrolemic 

effect [5]. Also a study found to reduce blood glucose in diabetes patients [6]. Moreover, has 

anti-obese properties and reduce BMI GA has been investigated in previous data have been 

focused on other groups such as patients in diabetes, renal failure. Other research has noted 

anti-diarrhoea properties of GA without measuring the gut microbiota changes. However, 
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very few studies have been carried out to use GA as prebiotic to enhance the beneficial 

growth colonic bacteria. 

Interest in research using prebiotics in diet as a functional food in this particular group has 

increased. Prebiotics have been studied in healthy elderly and a positive effect has been 

observed in terms of modulation of intestinal bacteria and immune function. Moreover, these 

functional foods can also be applied to other groups such as IBS and IBD patients. The use of 

different foods as a prebiotics are worth investigate. Other foods such as dates have shown 

potential prebiotics Eid et al (2015) have demonstrated that dates could shift the colonic 

microbiota in healthy volunteers [7],[8].  

The main findings of this thesis include the following: 

 GA induced significant increases in Bifidobacterium spp. and Lactobacillus spp. and 

increased the production of organic acids in batch culture systems. Furthermore, in a 

3-stage in vitro continuous culture system Bifidobacterium spp. significantly 

increased upon fermentation of GA, and these changes persisted in the more distal 

vessels. 

 Furthermore, an ex vivo PBMC cell assay of these supernatants (from gut model 

system) led to significant increases in IL-10 an immune anti-inflammatory marker.  

These changes are potential of benefit to an elderly host, due to changes occurring 

within their microbiota and immune function. 

 Isolated probiotics extracted from GA enrichment culture resulted in anti-pathogenic 

properties against Escherichia coli, Salmonella Typhimurium and Enterococcus 

faecalis.   

 A novel synbiotic combination evolved from this work, using GA as the selected fibre 

for the isolated probiotic. Synbiotic fermentation resulted in significant increases in 
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Lactobacillus spp and decreases in Clostridium histolyticum group – these effects 

were enhanced as compared to GA and probiotic alone.  

 Limited function of GA, probiotic and synbiotic against E. coli was observed in in 

vitro batch cultures, with mixed faecal inoculum. This highlight the importance of 

assessing microbial effects within mixed communities.  

Recently, there has been a demand for production of a second generation of a novel prebtioics 

ingredients Hernandez-Hernandez et al (2011) [9]. Such prebioitcs should display greater 

persistence in the large intestine and have greater selectivity with regards to the intestinal 

microbiota. Furthermore, an additional biological effect, e.g. by targeting specific 

physiological functions and or reducing the risk disease such as displacement of pathogens 

and regulate the function of immune system. In this context GA might represent potential 

candidates for the second generation prebiotics. Therefore, the current work has in vitro 

models to enhance understanding of GA fermentation and, focussing on an elder population, 

has determined the cytokine production in PBMC cells from elderly volunteers.  GA shows a 

promising results as it can improve the immune function via increases in IL-10. This is 

potentially of benefit to an older population who are undergoing increases in inflammatory 

status.   

Additionally, GA have shown to increases in Firmicutes which lactobacilli belongs to this 

phylum have a positive impact and could potentially play an important role in decreasing 

inflammation and disease in elderly people. 

To date, synbiotic studies are of interest, using enrichment culture to isolate probiotics using 

prebiotics enables a selectivity to be achieved. In the future, this method to develop synbiotic 

could offer probiotics an enhanced chance of survive in the colon. In the current study the 

synbiotic results were enhanced when compared to pre-probiotic alone. This shows that the 
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targeted approach has been successful. However, in the mixed culture environment the effect 

against E. coli was not as potent as in solid agar, therefore, more studies are needed in the 

mixed cultures, to see the impact of a full consortium of bacteria.  

Although the GA, the probiotic and synbiotic did not show antimicrobial effects against E. 

coli in a mixed culture, other potential benefits to the microbial balance were observed. Other 

studies have isolated probiotics from elderly populations and used them synbiotic 

combinations, however, the selection of prebiotic was based on randomly screening which 

synbiotic was more effective, while here in this present study more specific approach to 

probiotic selection has been used. Previously, studies have isolated probiotics from elderly 

faeces and tested these in a mixed cultures in order to assess their antimicrobial activity [10], 

however, in this present study to enhance the viability of the probiotics an enrichment culture 

was used with GA, furthermore the isolated probiotics had antimicrobial activity, 

subsequently, a synbiotic combination was in a mixed culture have enhanced the modulation 

of the gut microbiota.   

 Further research therefore should concentrate on the investigation of other synbiotics using 

this technique that developed. These effects are important for maintaining the gut balance in 

elderly. In terms of the probiotic dose this might be the case in this study therefore, more 

studies on the dose effect is needed. This study has furthered to our knowledge on the GA 

metabolite and possesses anti-inflammatory potential. Furthermore, it is utilised by 

microorganisms that possess possible anti-pathogenic activities leading to a novel synbioitc 

combination. 

Bifidobacteria was observed to increase following GA fermentation in the initial work, this 

could be due to the bifidobacteia enable to compete with other GA utilisers is reduced. 

Inverse relationship of increases in Firmicutes compared with Bacteroidetes phylum 



Chapter 6: General discussion  

148 

 

following GA degradation, which enable the beneficial bacteria belongs to the Firmicutes  to 

utilise the carbohydrates to saccahrolytic fermentation. The bifidogenic characrestic of GA 

has been demonstrated in human studies (Calame et al 2008).  

These data combined with anti-inflammatory potential shows GA as an appropriate food to 

study more when considering an elderly population. Further, this work has looked at targeted 

synbiotics, which could also provide an area for future interesting research. This is especially 

important for in the clinical setting, were elderly may have altered in their gut microbiota due 

to changing in diet, medication, inflammation. Prebiotics are commonly added to diet to 

enhance nutritional status.  

 

 

6.1 Future direction  

GA could be a good candidate as a functional food. Here, in terms of food sector, other food 

ingredients could potentially be a desirable choice for an elderly group, when compared to 

using a prebiotic supplement. Gibson (2008) recommended to add prebiotics in beverages 

and biscuits as convenient food sources. Moreover existing fruits may also be assessed for 

their prebiotic potential. The results obtained in this thesis show promise in terms of GA 

impacting on inflammatory status of older volunteers, as such more research into GA using 

human trials to investigate the potential prebiotic efficacy on the elderly gut microbiota 

population and to measure cytokines production relevant to the inflammatory status. 

Furthermore, little is known about the long-term verses the short term effects of prebiotic 

intervention on the immune function, this would be a useful area of in vivo study.  
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The results of the current study also indicated more potent effects when using a synbiotic, as 

compared to a prebiotic or probiotic. Looking at the impact of these products side-by-side on 

immune potential, firstly through in vitro approaches, then in vivo could highlight the best 

tools for reducing inflammation in older volunteers.  

Moreover, the finding in this project could lead to target the effect of these potential products 

on the hospitalised elderly patients and whether it has an effect on other pathogens.  

Further in vitro fermentation in mixed culture is needed to assess the ability of probiotics, 

pre, synbitoics to modulate the gut microbiota in elderly population and the aim of 

establishing probiotics with different doses.  

Using the novel approach of enrichment culture to isolate probiotics from the candidate 

prebiotic and screening with in vitro approaches provides an effective way of developing a 

targeted synbiotic product. Furthermore, it could be pertinent to use different sources of 

potential prebiotics to develop synbiotics that could have stronger characteristic compared to 

pre or probiotic alone;  promising results could then be applied in vivo.  
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