
  

Watercress as a nutritional adjuvant 
treatment in breast cancer 

A thesis submitted for the degree of Doctor of Philosophy 

Department of Food and Nutritional Sciences 

Natasa Giallourou 

June 2017 



 2 

 
 
 
 
 

 

 

To my parents, 

my guardian angels. 

  



 3 

Declaration of ownership 
 
‘Declaration:  

I confirm that this is my own work and the use of all material from other sources has 

been properly and fully acknowledged.’ 

  



 4 

Acknowledgments 

First and foremost I would like to thank my supervisor Dr Jonathan Swann for his 
support and guidance. He has been a continuous source of motivation and inspiration 
and I will be forever grateful for everything he has done for me.  

Great thanks to Dr Daniel Commane for ‘adopting’ me halfway through my PhD 
and most importantly for helping me realise and understand the importance of 
patience and perseverance in research. In addition, I am thankful to Dr Niamh 
Harbourne (University College Dublin) for her supervision and great support 
throughout my PhD.  

Furthermore, I am grateful to Prof Ian Rowland for offering me the opportunity 
to work at the University of Reading and for his invaluable contribution in this project. 
A big thank you to my industrial supervisor Dr Steve Rothwell for his continuous help 
and support and for being a perfect example of how one can be endlessly passionate 
about their job.  

Many thanks to Prof Graham Packham (University of Southampton) for hosting 
me in his lab and to Prof Ketan Patel (University of Reading) for giving me the chance 
to be a part of his projects.  

I would like to acknowledge my sponsors - the University of Reading and the 
Agriculture and Horticulture Development Board (AHDB) for funding my PhD.  

My PhD experience would not have been the same without a few special 
friends from the University of Reading. I am very thankful to everyone in 2-1 for all the 
great moments and particularly Roberta and Caroline for supporting me through it all. 
Special thanks to Petra, Katerina, Vangelis and Panos for making the past three years 
unforgettable.  

I would especially like to thank my boyfriend, Panayiotis, for his patience, 
support and unconditional love over the past three years. Thank you for brightening 
my life and making my heart smile. I am also extremely grateful to his family for 
everything they have offered to me and for being so helpful during my thesis write up.  

Words cannot express my gratitude to my family. Special thanks to my 
grandparents for their lifelong love and support. I hope I made you proud. Thank you 
to my little sister Maria for being my best friend and to my brother Christos for being 
by my side. Lastly and most importantly, I wish to thank my parents. Thank you for 
teaching me what hard work looks like and to appreciate the ways in which it pays off 
in the end. Thank you for reminding me that everything in life happens for a reason 
and for always being by my side, supporting me in fulfilling my dreams. Thank you for 
your unwavering love. I owe you everything I am today, and everything I am working 
on becoming. Σας αγαπώ!  



 5 

Abstract 

Breast cancer is a leading cause of cancer related mortality globally, and 
epidemiological studies suggest a link between healthy nutrition and cancer 
prevention. Members of the Brassicaceae family, including watercress, have been 
extensively studied for their anti-cancer and anti-genotoxic potential. Watercress has a 
complex phytonutrient profile characterised by high levels of carotenoids, flavonols 
and glucosinolates Extracts of watercress exhibit strong antioxidant capacity in vitro. 
Watercress and its components have been associated with the inhibition of the three 
stages of carcinogenesis: initiation, proliferation and metastasis in in vitro cancer cell 
models. Phenethyl isothiocyanate (PEITC) is a glucosinolate break-down product and 
watercress is the richest dietary source of it. It has received considerable attention for 
its anti-cancer properties and has been tested in a number of clinical trials.  

In this thesis, the effects of crude watercress extract and PEITC on the 
metabolic and phenotypic responses in breast cancer and healthy breast tissue cell 
lines were examined. Radiotherapy is the most common treatment modality for breast 
cancer patients, it functions by killing cancer cells but it simultaneously damages 
healthy tissues. We set out to examine synergistic responses to irradiation and 
watercress/ or PEITC exposures in breast cancer cells and we further investigated 
whether watercress or PEITC can be protective against radiation induced collateral 
damage.  

Watercress and PEITC effectively modulated important cancer cell metabolic 
pathways associated with anti-cancer endpoints such as cell cycle arrest and DNA 
damage. In this thesis, PEITC has been shown to enhance the sensitivity of cancer cells 
to irradiation making the cancer killing process more effective, whereas watercress can 
protect healthy breast cells from radiation induced damage. These observations 
appear to be mediated by the ability of PEITC and other phytochemicals in watercress 
to interact with the antioxidant glutathione. The results obtained from this work 
remain to be validated in a clinical setting. 
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1 Introduction 

1.1 Molecular basis of cancer 

Cancer is often defined as a disease of uncontrolled and abnormal proliferation of cells 

that leads to tumour formation. It is the result of a multistep process involving genetic 

mutations as well as epigenetic changes progressively driving the transformation of 

healthy cells to malignant derivatives. It has been postulated that cancer cells acquire 

a number of gain of function traits during malignant transformation, indicative of the 

high complexity of this disease (Fig. 1.1). The hallmarks include increased proliferative 

activity, evasion of growth suppressors, induction of angiogenesis, activation of 

invasion and metastasis, resistance to cell death and the enabling of replicative 

immortality [1]. Enabling characteristics, which facilitate tumor progression, involve 

inflammation and genomic instability that expedites the acquisition of the 

aforementioned hallmarks. Advances in the field of cancer research over the past 

decade have led to consideration of the importance of previously understudied cancer 

traits for sustaining tumour cells in vivo. Notably the ability of cancer cells to evade 

challenges from the immune system and to reprogram their metabolism to establish 

as tumours [2]. 

1.2 Breast cancer 

Breast cancer is the most common type of cancer amongst women in the United 

Kingdom (UK), with nearly 53,700 new cases in 2013 and a one in eight estimated 

lifetime risk of diagnosis (Cancer Research UK, 2016). The UK 10 year survival rate is 

increasing and the treatment curative is 78% of all women affected by breast cancer. 

The decline in breast cancer associated mortality is likely due to improved drug 
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treatment despite breast cancer incidence rates increasing in recent years. A national 

screening program means that the majority of the breast cancer cases are now 

diagnosed at an early stage.  

 Genetic predisposition has been identified in individuals with mutations in the 

BRCA1, BRCA2, PTEN and TP53 genes but these mutations account for only a small 

percentage of all breast cancers. This suggests that the majority of cases are caused by 

a complex combination of environmental and inherited factors [3]. 

  

Figure 1.1 The established hallmarks of cancer 

Figure adapted from [2] 
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1.2.1 Subtypes of breast cancer 

Breast cancer is a multifaceted disease and is characterised by many subtypes with 

different clinical and molecular features that can have different prognostic attributes 

and therapeutic implications. Breast cancer can be invasive or non-invasive. 

Adenocarcinomas are the most common form of invasive breast cancer and can be 

either ductal or lobular accounting for approximately 85% and 15% of invasive 

adenocarcinomas respectively [4] (Fig. 1.2 depicts the structure of a healthy human 

breast). 

 In addition to invasive breast cancer, non-invasive forms can appear with 

ductal carcinoma in situ  (DCIS) which is the most common type, and lobular 

carcinoma in situ (LCIS). LCIS is rare in comparison to DCIS and is considered as an 

increased risk factor for invasive breast cancer rather than as a direct precursor lesion 

[5] 

 

 

 

 

 

 

 

 

Figure 1.2 Anatomy of the normal human breast 

[By Andrewmeyerson (Own work); adapted to add labels [CC BY-SA 3.0, 
(http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons Andrewmeyerson]  
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1.2.2 Hormone receptors status and their relevance to treatment 

Hormone receptor status is the major biomarker for breast cancer prognosis and 

response to therapy. Oestrogen receptors (ER) are cellular proteins and are activated 

by the lipophilic steroid, oestrogen. Binding of oestrogen to ER results in a variety of 

signalling cascades involved in DNA synthesis, cell division and the formation of 

proteins including the progesterone receptor (PR). Breast cancer is often characterised 

by higher levels of expression of ER and PR compared to healthy tissue and the 

presence of these receptors (referred to as ER+ or PR+) is generally linked with positive 

prognosis and increased rates of successful endocrine therapy. 

Tamoxifen is the primary drug administered to pre-menopausal women with 

an ER positive status. It is a selective oestrogen receptor modulator that acts by 

binding to ER resulting in conformational changes in the protein and antagonistically 

inhibiting transcription of oestrogen responsive genes, eventually halting cell division 

[6]. For ER+ post-menopausal breast cancer patients, aromatase inhibitors are being 

given as adjuvant therapy for the inhibition of oestrogen synthesis. Aromatase 

catalyses the conversion of androgens to oestrogens; its inactivation thereby reduces 

the mitogenic effects of oestrogens. There are three aromatase inhibitors namely 

anastrozole, exemestane and letrozole that are widely used in the clinical setting [7]. 

 Overexpression of the human epidermal growth factor 2 (HER2) is indicative of 

a more aggressive form of breast cancer with poor prognosis and it is found at 

increased levels in 25-30% of all breast cancer cases [8, 9]. Activation of HER2, and of 

other members of the human epidermal growth factor family (HER), by ligands like 

epidermal growth factor, initiates a signal cascade that alters gene expression 
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affecting biological functions related to proliferation and migration. Trastuzumab 

(Herceptin) is used as a treatment for breast cancer patients overexpressing HER2. It is 

involved in the regulation of proliferation and apoptosis; cancer cells treated with 

Herceptin exhibit G1 cell cycle arrest [10, 11].  

Triple negative cancers do not express ER, PR and do not overexpress HER2. 

These types of cancer are exceptionally aggressive, they do not respond to endocrine 

treatment and are correlated with poor prognosis [12]. Chemotherapy is the chosen 

treatment modality in these cases [13].  

1.2.3 Radiotherapy  

Adjuvant radiotherapy is a crucial element for the treatment of breast cancer. It has 

been used for over 50 years and is undeniably a positive intervention recommended 

to a substantial proportion of patients [14] (the process of radiotherapy is depicted in 

Fig. 1.3). Results from the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) 

study of 45,000 women with breast cancer in 86 randomised trials, suggest that 

radiotherapy following breast conserving surgery reduced the 5 year recurrence rate 

by 15.7% and the 15 year breast cancer mortality by 4.2% [15].  
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Figure 1.3 Linear accelerator delivering high-energy x-rays to the target cancer site.  

Figure adapted from [16]  

 
The goal of radiotherapy is to damage the DNA and kill cancer cells inducing 

cell death. Charged energy particles and photons can induce direct or indirect 

ionisation of the atoms that make up DNA nucleotides. Indirect ionisation stems from 

the radiolysis of water molecules inside the cell, which then results in the rapid 

formation of reactive free radicals, mainly hydroxyl radicals that can in turn induce 

damage to DNA and cellular compartments (Fig. 1.4). Direct ionisation by charged 

particles usually causes double strand DNA breaks but single strand breaks are also a 

common outcome. Double strand breaks cause substantially more genomic instability 

than single strand breaks and are more likely to result in cell death or poor DNA repair. 

Radiotherapy has the potential to induce a broad range of damage to DNA in addition 

to single and double strand breaks, including base pair alterations, destruction of 

sugars and interstrand crosslinks [17]. Radiation sequelae include activation of signal 

transduction pathways for cell cycle arrest, allowing for DNA repair, or in some 
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instances where the damage is too high, for apoptotic machinery to be employed to 

prevent further DNA replication [18]. The susceptibility of breast cancer cells to 

ionising radiation depends to a great extent on the rate of cell proliferation, the total 

dose of radiation, the fractionation plan and on the capacity of these cells to repair 

DNA damage [19].  

Non-cancerous cells are unavoidably affected in the course of radiotherapy 

treatment however healthy cells are better equipped to scavenge the radiation 

induced damage and may have more efficient DNA repair meachinery [20]. Side 

effects of radiotherapy can be divided into acute and late. Acute side effects include 

mainly skin reactions and are extremely common among patients receiving 

radiotherapy [14]. Late side effects include hyperpigmentation, skin fibrosis and 

potential influence on lung and heart tissues. Cardiac damage has been linked to 

radiotherapy during breast cancer, as have radiation induced sarcomas and lung 

cancers, due to the proximity of these tissues to the breast [15, 21]. Fractionation of 

the total radiation dose is therefore employed allowing the healthy cells to recover 

between treatments. The need for radio-protective agents is of paramount importance 

for oncologists especially in cases of radio-resistant tumours where higher doses of 

radiation have to be administered to the patient.  
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Figure 1.4 Direct and indirect DNA damage induced by ionising radiation and the 
consequences on cellular functions 
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1.3 Cancer cell metabolism 

The metabolic activities of cancer cells are dissimilar to those of normal cells. [2]. 

Cancer cells undergo metabolic reprogramming, acquiring distinct metabolic features 

resulting in enhanced or suppressed activity of conventional metabolic pathways. 

Reprogrammed tumour cell metabolism modifies cellular fitness in such a manner that 

presents a selective advantage during the acquisition of malignant properties 

therefore; deregulated cancer metabolism constitutes one of cancer’s established 

hallmarks 

The metabolic phenotype of cancer cells is shaped by a complex combination 

of intrinsic and extrinsic molecular events involving genetic mutations and 

interactions with the microenvironment. Inherently, proliferating cells have to alter 

their metabolism to meet three basic needs: a) rapid generation of ATP to sustain their 

energy status, b) upregulated biosynthesis of macromolecules for biomass increase c) 

strict maintenance of redox status (Fig.1.5) [22]. To support the essential requirements 

for growth and proliferation, cancer cells rewire the metabolism of all major groups of 

macromolecules: carbohydrates, proteins, lipids, and nucleic acids [23]. 

Growth and survival of cancer cells are processes regulated by oncogenic 

signalling pathways, which are activated by the loss of function of tumour suppressor 

genes like p53 or the activation of oncogenes, like PI3K; this can strongly influence cell 

metabolism. Cell signalling modifications influence metabolism in order to maintain 

function through increases in the rate of cell proliferation. Coupled with the genetic 

alterations that modify cancer cell metabolism, metabolic interactions with the 

microenvironment constitute a major determinant of the metabolic phenotype of 
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cancer cells. Interestingly, a range of genetically stable cell lines (fibroblasts, 

endothelial cells and components of the immune system) alter their metabolic 

phenotype when residing in the vicinity of a growing cancer [24]. 

 

 

 

Figure 1.5 Causal elements shaping the cancer metabolic phenotype 

Genetic alterations control cancer cell metabolism along with signals from the tumour 
microenvironment. The abnormal metabolic phenotype of cancer cells ultimately satisfies the energy 
requirements of the cells in the form of ATP; it maintains their biosynthetic capacity for cell proliferation 
and ensures maintenance of appropriate redox status.  
 

Cancer cells modify the metabolic configuration of the extracellular milieu as a 

result of their enhanced substrate uptake, catabolism and export of metabolites, 

thereby influencing the phenotype of local normal cells. Reciprocally, the 

microenvironment can induce shifts in the metabolism and signalling cascades in the 

cancer cells per se [25]. The abnormal vasculature of tumours in combination with the 

innately altered cancer cell metabolism generates a spatial and temporal 
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heterogeneity in oxygen concentration, pH, as well as the availability of several 

nutrients like glucose and glutamine, which are all essential requirements for tumour 

progression [22]. Solid tumours need to adapt to these stressful and dynamic 

microenvironment features, developing strategies, which feed into the cancer cells’ 

distorted metabolic phenotype by altering cell signalling, transcriptional regulation 

and redox balance contributing to tumour growth and dissemination [26]. 

1.3.1 Glycolysis 

Cell proliferation is a process during which cells have increased requirements for 

nutrients and it also induces shifts in the manner nutrients are utilised to meet cellular 

needs. Non-proliferating cells in differentiated tissues utilise glucose to generate 

acetyl-CoA in the mitochondrial space, which is oxidised in the tricarboxylic acid (TCA) 

cycle under normoxic conditions. The oxidative reactions of the TCA cycle give rise to 

NAD+/NADH and FAD/FADH2 that then fuel the electron transport chain and ATP is 

produced through oxidative phosphorylation. The net energy yield of oxidative 

phosphorylation is 36 ATP molecules. Under insufficient oxygen conditions, 

differentiated cells undergo anaerobic glycolysis, converting glucose to lactate 

yielding two ATP molecules (Fig. 1.6). 

The carbon economy of tumour cells differs significantly from that of 

differentiated cells. Cancer cells reprogram their biochemical pathways to fulfil their 

needs during cancer progression. Carbon is shuttled to the biosynthesis of 

macromolecules like fatty acids, cholesterol, sugars, nucleotides and non-essential 

amino acids [25]. Cancer cells undergo glycolysis even in the presence of oxygen; a 
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process defined as the Warburg effect and is one of the best-studied metabolic 

characteristics in cancer cells [27]. Under adequate oxygen concentrations, tumour 

cells generate ATP via glycolysis, shifting the primary ATP generation from oxidative 

phosphorylation. The majority of glucose is therefore converted to lactate with only a 

minor percentage (~5%) of pyruvate being metabolised in the TCA cycle [28]. ATP 

generation through glycolysis is a fast process compared to oxidative phosphorylation 

but it is far less efficient in terms of ATP yield. Therefore, cancer cells exhibit 

excessively high rates of glycolysis to cover their bioenergetics, biosynthetic and redox 

needs resulting in the high accumulation of lactate (Fig. 1.6).  

The explanation behind the paradoxical switch of rapidly proliferating cells to 

the less efficient glycolysis is still unclear. It is proposed that because the metabolic 

requirements of cancer cells extend beyond ATP, glycolysis presents a biosynthetic 

advantage for these cells through the branching pathways like pentose phosphate 

pathway and one-carbon metabolism running parallel to glycolysis giving rise to a 

high flux of carbon sources [28] (Fig. 1.7)  
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Figure 1.6 Schematic representation of the oxidative and glycolytic metabolic 
phenotypes of differentiated and proliferative tissues respectively.  

In the presence of oxygen, non-proliferating (differentiated) tissues first metabolize glucose to pyruvate 
via glycolysis and then completely oxidize most of that pyruvate in the mitochondria to CO2 during the 
process of oxidative phosphorylation. Because oxygen is required as the final electron acceptor to 
completely oxidize the glucose, oxygen is essential for this process. When oxygen is limiting, cells can 
redirect the pyruvate generated by glycolysis away from mitochondrial oxidative phosphorylation by 
generating lactate (anaerobic glycolysis). This generation of lactate during anaerobic glycolysis allows 
glycolysis to continue (by cycling NADH back to NAD+), but results in minimal ATP production when 
compared with oxidative phosphorylation. Warburg observed that cancer cells tend to convert most 
glucose to lactate regardless of whether oxygen is present (aerobic glycolysis). This property is shared 
by normal proliferative tissues. Mitochondria remain functional and some oxidative phosphorylation 
continues in both cancer cells and normal proliferating cells. Nevertheless, aerobic glycolysis is less 
efficient than oxidative phosphorylation for generating ATP. In proliferating cells, ~10% of the glucose is 
diverted into biosynthetic pathways upstream of pyruvate production. Figure and legend adapted from 
[28] 
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Figure 1.7 Metabolic pathways active in proliferating cells 

Metabolic pathways active in proliferating cells are directly controlled by signalling pathways involving 
known oncogenes and tumor suppressor genes. This schematic shows our current understanding of 
how glycolysis, oxidative phosphorylation, the pentose phosphate pathway, and glutamine metabolism 
are interconnected in proliferating cells. This metabolic wiring allows for both NADPH production and 
acetyl-CoA flux to the cytosol for lipid synthesis. Key steps in these metabolic pathways can be 
influenced by signalling pathways known to be important for cell proliferation. Activation of growth 
factor receptors leads to both tyrosine kinase signalling and PI3K activation. Via AKT, PI3K activation 
stimulates glucose uptake and flux through the early part of glycolysis. Tyrosine kinase signalling 
negatively regulates flux through the late steps of glycolysis, making glycolytic intermediates available 
for macromolecular synthesis as well as supporting NADPH production. Myc drives glutamine 
metabolism, which also supports NADPH production. LKB1/AMPK signalling and p53 decrease 
metabolic flux through glycolysis in response to cell stress. Decreased glycolytic flux in response to 
LKB/AMPK or p53 may be an adaptive response to shut off proliferative metabolism during periods of 
low energy availability or oxidative stress. Tumor suppressors are shown in red, and oncogenes are in 
green. Key metabolic pathways are labeled in purple with white boxes, and the enzymes controlling 
critical steps in these pathways are shown in blue. Some of these enzymes are candidates as novel 
therapeutic targets in cancer. Figure and legend adapted from [28] 
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1.3.2 Glutaminolysis 

Tumour cells are highly dependent on glutamine for macromolecular biosynthesis as 

well as robust cell proliferation. Glutamine is intracellularly converted to glutamate by 

the action of glutaminase. Glutamate can then be converted to α-ketoglutarate via 

glutamate dehydrogenase and incorporated into the TCA cycle. Through this process 

of anaplerosis, glutamate can serve as a carbon and nitrogen source for the 

production of nonessential amino acids, purines, pyrimidines, nucleotides and lipids 

[25, 29]. The enzyme glutathione cysteine ligase (GCL) can also convert glutamate 

directly to glutathione which is the most significant antioxidant in cells and has a 

major role in the management of cellular redox status [30].  

1.3.3 Fatty acid synthesis 

Biosynthesis and turnover of fatty acids is often increased in tumour cells to meet the 

anabolic requirements of rapidly proliferating cells. Lipids are shuttled towards the 

formation of cellular membranes and signalling molecules. De novo biochemical 

synthesis of fatty acids requires reducing power coming from NADPH as well as acetyl-

CoA, which is the major lipogenic substrate unit. In the process of fatty acid synthesis 

acetyl-CoA comes from citrate formed in the TCA cycle in the mitochondria and is 

converted to acetyl-CoA by the action of ATP citrate lyase (ACLY). In nutrient-scarce 

circumstances (which is usually the case in vivo), cancer cells have higher rates of 

glycolysis. As such, pyruvate is preferentially converted to lactate rather than being 

oxidised in the TCA cycle to provide citrate for fatty acid synthesis via acetyl-CoA. 

Instead extracellular acetate has been shown to be the source of acetyl-CoA for de 
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novo fatty acid synthesis in a variety of hypoxic brain tumours [31-33]. Acetate can 

hence nourish stressed tumour cells.  

1.3.4 Choline metabolism 

Malignant transformation during carcinogenesis is characterised by active choline 

metabolism as observed by increased levels of choline-containing metabolites as well 

as choline breakdown products like phospholipids [34]. Phospholipids such as 

phosphocholine, phosphatidylcholine, along with phosphatidylethanolamine and 

other neutral lipids are the constituents of the lipid bilayer of cellular membranes and 

have a vital role in the maintenance of membrane integrity. Up-regulated choline 

metabolism is central to sustaining cancer cell proliferation and can also be influenced 

by the tumour microenvironment.  Hypoxic conditions as well as low extracellular pH 

have been found to induce shifts in the concentrations of total choline, 

phosphocholine and glycerophosphocholine [35, 36]. Furthermore, oncogenes, 

cytokines and growth factors can affect choline metabolism [34]. Because choline-

containing metabolites are detectable by non-invasive spectroscopic methods, these 

compounds may form a non-invasive biomarker of cell transformation, the stage of 

cancer development, as well as response to therapy [37]. 
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1.3.5 ROS and cancer 

Reactive oxygen species (ROS) are a natural by-product of cell metabolism and can 

have pleiotropic effects in all aspects of cell survival. The fate of cells relies heavily on 

the levels at which ROS are present (Fig. 1.8). Low abundance of intracellular ROS 

(yellow area) presents a benefit for cell proliferation and successful progression 

through survival pathways as a result of post-translational modifications [38, 39]. 

Conversely, if the levels of ROS become extremely high (pink area in Fig. 1.8) this 

causes detrimental oxidative stress via macromolecular damage, senescence [40] and 

loss of mitochondrial membrane potential leading to apoptosis [41]; a collection of 

events that can have lethal effects on cells. To counter the outcomes of oxidative 

stress, cancer cells increase their antioxidant content (mainly GSH), limiting the 

accumulation of ROS at excessively high levels preventing irreparable damage [42]. 

Naturally, proliferating cells acquire oncogenic mutations, which favour anomalous 

energy metabolism and protein translation leading to aberrantly increased ROS [43]. 

Through further mutations and adjustments, cancer cells tightly orchestrate the 

cycling of ROS and antioxidant production in a manner that permits cell survival and 

maintenance of ROS at moderate quantities (blue area). This remarkable regulation of 

ROS not only protects cancer cells from catastrophic oxidative damage but also 

ensures that they will benefit from ROS driven mutagenic episodes, which favour 

tumour progression.  
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Figure 1.8 Schematic representation of the influence of ROS levels on cell fate. 

 

1.3.6 Glutathione 

Glutathione (GSH) is a tripeptide made of glutamate, cysteine and glycine. It has a 

critical role in cancer through its role as an intracellular ROS scavenger, controlling the 

intracellular redox state.  Many cultured cancer cell lines demonstrate increased 

intracellular GSH concentrations [44]. GSH scavenging of ROS is mediated by 

glutathione peroxidase. Upon donating its exposed sulfhydryl group, GSH becomes 

reactive and reacts with other glutathione molecules forming glutathione disulphide 

(GSSG), the oxidised form of glutathione. The glutathione pool is maintained mainly in 

a reduced state via the action of glutathione reductase (GR), which has a great affinity 

for GSSG. NADPH is the source of reducing equivalents for GSH regeneration from its 

oxidised equivalent and this reaction is catalysed by GR (Fig. 1.9). NADPH is formed 

through the pentose phosphate pathway, from the glycolysis-derived glucose-6-

phosphate.  
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Figure 1.9 Glutathione ‘recycling’ between its reduced and oxidised state 

1.3.7  Metabolic biomarkers of breast cancer 

Breast cancer tissue metabolomic analyses using primarily HR-MAS NMR have revealed 

important metabolic features of the disease that correlate with in vivo observations. 

The potential biomarkers unveiled thus far appear to be robust, with particular interest 

in the changes in choline metabolism during cancer. The list of potential biomarkers 

from cancer tissue biopsies also includes glycine as a choline breakdown product, 

lactate as a marker of glycolytic metabolism, taurine and several lipids [45-47]. The 

metabolic alterations during breast cancer are highly multifaceted and are interrelated 

with genetics and receptor status. 

Urine and blood are the most commonly used biofluids for diagnostic purposes. 

Review of the available literature revealed potential metabolic signatures in breast 

cancer, however no definitive consensus on potential biomarkers. Possible metabolic 

biomarkers from blood include histidine, proline, phenylalanine, glutamate, 3-

hydroxybutyrate, lactate and lipids [48-50]. Studies examining potential breast cancer 

biomarkers in urine are very limited for conclusive results. 

Studies exploring potential breast cancer biomarkers in breast tissue, serum and 

urine in the last 25 years have been recently reviewed by Gunther UL, 2015 [37] 
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1.4 Watercress  

Watercress (Nasturtium officinale) belongs to the family of Brassicaceae together with 

broccoli, cabbage, mustard and Brussels sprouts. It is a perennial herb, grown in 

aquatic or semi-aquatic conditions originating in Europe but also cultivated in Asia 

and the Americas. Watercress has been known since the first century AD mainly for its 

medicinal purposes besides being consumed as a raw salad crop [51]. While still being 

eaten as a raw vegetable in salads, watercress is becoming increasingly popular in 

cooked foods. The rising interest in healthy diets and the shift towards natural foods in 

the last decade has put watercress under the ‘microscope’ of the nutritional science 

community as well as the health-conscious public. Watercress is a known rich source 

of phytochemicals such as glucosinolates, carotenoids, flavonols, vitamins and 

minerals and recent studies have provided evidence for potential chemopreventive 

properties of watercress [52, 53]  

1.4.1 Phytochemical components of watercress 

1.4.1.1 Glucosinolates  

Glucosinolates are plant secondary metabolites, found predominantly in cruciferous 

vegetables of the Brassicaceae family. They are nitrogen and sulfur-containing 

glycosides - β-thioglycoside, Ν-hydroxysulfates - along with a variable amino acid 

derived R-group. Glucosinolate metabolism is driven by the action of a β-

thioglycosidase enzyme, myrosinase, in glucosinolate containing plants. This enzyme 

is located in a different cellular compartment of the plant to the glucosinolates [54] 

Glucosinolates are stable compounds that exist in the cytoplasm of the plant cell. 
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However, when the plant tissue is damaged such as upon cooking, cutting, 

mastication or digestion, an enzyme-substrate interaction occurs resulting in the 

hydrolysis of the glucosinolates and the formation of a range of bioactive products 

including isothiocyanates, thiocyanates and nitriles (Fig. 1.10) [54]. Table 1.1 

summarises the glucosinolates commonly found in watercress along with their 

respective isothiocyanates. 

The chemical structure and proportion of these breakdown products are 

dependent upon the hydrolysis conditions like temperature and pH, as well as the R-

group nature of the glucosinolate. In humans the conversion of glucosinolates to their 

hydrolysis products can also be driven by the gut microbiota, which possess a low-

level myrosinase activity [55]. The distinctive bitter and pungent taste and aroma of 

cruciferous vegetables is attributed mainly to isothiocyanates generated from 

glucosinolates and it is suggested that this is adapted as a defense mechanism by the 

plants, making them unattractive to predators [56]  

 

Figure 1.10 Glucosinolate hydrolysis via myrosinase reaction  

Figure adapted from [56]  
 



 

Table 1.1 Glucosinolate and isoothiocyanate content of watercress. Reported values were obtained from Gill et al.  [57] represent 
mean ± SD from 8 replicates and Rose et al. [58] mean ± SE from 12 replicates. 
   

GLUCOSINOLATE  ISOTHIOCYANATE  
Chemical Name Common Name Chemical Name μmol/g DW 

 
2-Phenylethyl-GLS 

 
Gluconasturtiin 

 
2-Phenethyl-ICT 

 
17.98 ± 4.31[57], 
23.7 ± 0.64 [58] 

6-Methylsulfinylhexyl-GLS Glucohesperin 6-Methylsulfinylhexyl-ICT 0.2 ± 0.00[58] 

7-Methylsulfinylheptyl-GLS Glucoibarin 7-Methylsulfinylheptyl-ICT 
1.07 ± 0.03 [57],  
3.9 ± 0.09 [58] 

8-Methylsulfinyloctyl-GLS Glucohirsutin 8-Methylsulfinyloctyl-ICT 
0.68 ± 0.15[57], 
2.1 ± 0.05[58]  

7-Methylthioheptyl-GLS - 7-Methylthioheptyl-ICT 1.8 ± 0.14[58] 

8-Methylthiooctyl-GLS - 8-Methylthiooctyl-ICT 0.8 ± 0.06[58] 

4-Methoxy-3-indolylmethyl-GLS 4-Methoxyglucobrassin 4-Methoxy-3indolylmethyl-ICT 0.79 ± 0.05[57] 

3-Indolylmethyl-GLS Glucobrassicin Indole-3-carbinol* 0.43 ± 0.26[57] 
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1.4.1.2 Isothiocyanates 

Watercress is the source of a number of glucosinolates, which can be further 

hydrolysed to their respective isothiocyanates. Phenethyl isothiocyanate (PEITC) is the 

most abundant isothiocyanate derived from watercress and watercress is the richest 

dietary source of this compound. This isothiocyanate is the result of the myrosinase 

enzymatic conversion of gluconasturtiin. Other naturally occurring isothiocyanates 

include sulforaphane prevalent in broccoli and allyl-isothiocyanate that occurs in 

mustard (Fig. 1.11). 

 
Figure 1.11 Chemical structures of common ITCs 

 
Isothiocyanates are electrophilic compounds with the general chemical 

formula R-N=C=S. Their biological properties are underlined by their highly 

electrophilic central carbon unit [59]. As a result, isothiocyanates can rapidly conjugate 
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with thiol groups like cysteine and lysine via thiocarbamoylation (Fig. 1.12). For this 

reaction the thiol group is converted to a thiolate ion, allowing for the nucleophilic 

attack on the carbon atom. This will break one of the N=C double bonds so that 

nitrogen can attract a hydrogen giving a thiol-isothiocyanate conjugate [60].  

 

Figure 1.12 PEITC thiocarbamoylation reaction 

 
The most abundant intracellular thiol is GSH that also acts as the major 

antioxidant therefore ITCs strongly interact with GSH. ITCs including PEITC passively 

diffuse across the plasma membrane and enter the intracellular space where they bind 
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to glutathione forming an ITC-GSH conjugate, which is then exported outside the cell 

through efflux pumps. Extracellularly, the exported conjugate dissociates releasing a 

free ITC and a GSH molecule. ITCs can then re-enter the cell and conjugate to more 

thiol containing peptides (Fig. 1.13). This process eventually depletes the cell of its 

glutathione content, and results in the accumulation of ITCs intracellularly [61]. 

Glutathione depletion can result in excessively high ROS concentrations that can lead 

to substantial cell damage.  

Figure 1.13 Intracellular accumulation of ITCs 

Isothiocyanates diffuse across the plasma membranes (1) and once located in the intracellular 
space they bind to thiol groups in glutathione (GSH), upon the action of glutathione-S-
transferase (GST) (2). The glutathione-isothiocyanate conjugate is then exported from the cells 
via efflux pumps (3). The conjugate is hydrolysed extracellularly (4) giving rise to a free 
isothiocyanate, which can then re-enter the cell. This cycle results in a rapid accumulation of 
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isothiocyanates and the concurrent depletion of intracellular glutathione, allowing 
isothiocyanates to bind via thiol groups to other proteins (5) via thiocarbamoylation. Figure 
adapted from [61].  
 

1.4.1.2.1 Metabolism of isothiocyanates 

PEITC, and all isothiocyanates, passively diffuse across the plasma membrane into the 

cell where it reversibly conjugates with glutathione forming a glutathione 

dithiocarbamate (Fig. 1.14). The PEITC-GSH conjugate can be expelled from the cells 

by transporters, like multidrug resistance protein 1 (MRP1), and enter the mercapturic 

acid pathway for further metabolism. Extracellularly, the PEITC conjugate undergoes a 

series of enzymatic modifications forming PEITC-cysteine-glycine via the action of γ-

glutamyltransferase (γGTP), followed by cleavage of the glycine residue by 

cycteinglycinase (CG) giving PEITC-cysteine conjugate. This conjugate is then 

transported to the liver where it gets acetylated by Ν-acetyltransferases to mercapturic 

acid namely PEITC-N-acetylcysteine conjugate (PEITC-NAC). Upon acetylation, the 

conjugate is transported to the kidneys and eliminated via urine excretion [62].  
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Figure 1.14 Schematic representation of the mercapturic acid pathway for the 
metabolism of PEITC.  

Following ingestion of watercress gluconasturtiin is hydrolysed to PEITC by the action of 
myrosinase. After diffusion into the cells [1] PEITC conjugates with glutathione via GST action 
forming a glutathione dithiocarbamate conjugate [2]. The PEITC-GSH conjugate can be 
expelled from the cells by MRP1 [3] and enter the mercapturic acid for further metabolism. 
PEITC-GSH conjugate undergoes a series of enzymatic modifications [4-5] resulting in the 
formation of a PEITC-cysteine conjugate, which is transported [6] and metabolised in the liver 
and converted to mercapturic acid [7] (PEITC-NAC conjugate). The PEITC-NAC conjugate goes 
to the kidneys and is excreted in urine. Urinary ITC-NACs serve as a marker of ITCs 
bioavailability. 
Figure adapted from [63] and [62]. 
 

Isothiocyanates are detectable in the urine in their NAC conjugate form and 

recovery of these molecules in urine is therefore commonly used to study the 

bioavailability of isothiocyanates. A study observed that the isothiocyanate-NAC 

conjugates are biologically active and their properties are similar to that of the parent 

compounds, possibly prolonging the effects of isothiocyanates at the systemic level 

[64]. A study examined the urinary excretion of PEITC-NAC following consumption of 

30 g of watercress containing 21.6 mg of gluconasturtiin (equivalent to 7.6 mg of 
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PEITC), of which 30-67% was recovered as PEITC-NAC in urine [65]. The concentration 

of PEITC-NAC in the urine peaked between 2-4 hours and was not present in the urine 

by 24 hours, indicating rapid metabolic clearance of PEITC.  

It is important to highlight the role of GST in isothiocyanate metabolism and 

effective chemoprevention by isothiocyanates overall. Some epidemiological data 

suggest that the anticancer properties of isothiocyanates are greater in individuals 

bearing GSTM1 or GTT1 null-null genotypes compared to those with a positive GSTM1 

or GTT1 genotype due to the impaired metabolism of isothiocyanates in these 

individuals [66]. However some studies noted a greater risk reduction in individuals 

with the most active or expressed genotypes [67, 68]. Loss of GST enzymatic activity 

would result in a limited conjugation of isothiocyanates to glutathione and 

subsequent elimination from the cells, extending their presence in the system possibly 

enhancing their protective effects in vivo. Some evidence supports this hypothesis 

[69], however in a study where volunteers consumed 200 ml of watercress juice no 

effect of GSTT1 or GSTM1 status was observed on isothiocyanate conjugates excretion 

[70].  

1.4.1.3 Watercress polyphenols 

Flavonoids are a diverse group of polyphenolic compounds, ubiquitously found in the 

plant kingdom mainly as glycosides. Watercress contains molecules from the flavone 

and flavonol subgroups (Table 2) as well as other phenolics, hydroxycinnamic acid 

derivatives, in high concentrations [52]. Flavonoids have received intense interest due 

to their potential favourable effects on human health. They can act as direct 
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antioxidants in vitro [71, 72] and indirectly through the stimulation of detoxification 

enzymes like the cytochrome P450. Flavonoids also inhibit tumor proliferation and 

induce apoptosis [73]. Collectively, these actions may be associated with a decreased 

risk of cancer, cardiovascular disease and chronic inflammation [74] 

 

Table 1.2 Flavonoid content of watercress. Data obtained from the USDA Nutrient 
Data Laboratory [75]. Data represent mean ± SE of nutrient values reported in different 
studies.  

Flavonoids mg/100g FW 

Flavones  

Apigenin 0.0 ± 0.00 

Luteolin 0.0 ± 0.01 

Flavonols  

Kaempferol 23.0 ± 3.66 

Myricetin 0.2 ± 0.05 

Quercetin 30.0 ± 6.74 

 

1.4.1.4  Carotenoids  

Carotenoids are isoprenoid, lipid-soluble pigments found in the chloroplasts of 

photosynthetic organisms. This class of phytochemicals can be divided into two main 

groups: the oxygenated xanthophylls like lutein and zeaxanthin, and the carotenes 

that are un-oxygenated like α-carotene and β-carotene. Numerous health benefits are 

attributed to dietary carotenoids, including antioxidant and anti-carcinogenic 

activities [76]. Watercress is an exceptional source of carotenoids with concentrations 

ranging from 2.5 to 5.9 mg β-carotene/100g fresh weight (FW) and 5.77 to 10.71 mg 

lutein/100 g FW [75, 77]. Gill et al. [57] have shown that adults who consumed 85 g of 
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raw watercress for eight weeks had significantly higher concentrations of lutein and β-

carotene in their plasma. This is likely related to the concurrent reduction in markers of 

DNA damage in their lymphocytes. This may be attributed to the antioxidant effect of 

carotenoids in combination with other health promoting compounds in watercress. 

1.5 Anti-cancer potential of PEITC 

1.5.1 Chemopreventive agent 

Phase I (Cytochrome P450 (CYP)) drug metabolising enzymes (DMEs) activate dietary 

pro-carcinogens through oxidation, reduction or hydrolysis creating electrophilic 

intermediates which may form adducts in DNA [78]. 

PEITC has been shown to have a dual effect on the expression and activity of DMEs. In 

primary hepatocytes PEITC induced up-regulation of the expression of CYP1A1 and 

CYP1A2, both of which are carcinogen-activating enzymes [79]. However, in 

baculovirus-infected insect cells carrying human CYP isoforms, PEITC was found to 

completely inhibit a range of CYPs including CYP1A2 [80]. Further studies support the 

notion that PEITC can be a potent inhibitor of phase I CYPs including CYP2E1, CYP3A4 

and CYP2A3 [81-83]. 

Data from human and rodent studies provide evidence for the inhibition of 

carcinogen-induced carcinogenesis by PEITC. In a recent phase II clinical trial 

conducted by Yuan et al. [84] eighty-two smokers, smoking only deuterated NNK 

cigarettes for the duration of the study, were randomly assigned to a placebo and a 

PEITC receiving group. The metabolic activation of NNK, a nicotine-derived potent 

lung carcinogen, was significantly reduced by PEITC treatment as measured by the 
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urinary excretion of NNK metabolites. It is worth noting that the effect was stronger in 

subjects with the null genotype of both the GSTM1 and the GSTT1 polymorphisms, as 

well as in women. Similar results were obtained from earlier rodent studies where NNK 

treated animals receiving a diet rich in PEITC developed significantly fewer lung 

tumours than those without the PEITC intervention [85]. Further to this, pre-treatment 

of mice with PEITC for a week followed by NNK administration, resulted in increased 

urinary excretion of NNK derivatives in comparison to the non-PEITC treated animals 

and correlated with a reduced tumour burden [86]. The chemopreventive effects of 

PEITC are therefore suggested to be a result of its potential to modulate the activity of 

phase I and phase II DMEs. 

Phase II enzymes constitute a protective mechanism of the cells through their 

role as detoxifying agents of reactive phase I metabolites. They conjugate compounds 

with large polar molecules like glutathione, glucuronide or sulfate limiting the 

biotransformation of damaging carcinogens and facilitating their elimination through 

the urine or bile [87]. Isothiocyanates including PEITC can induce the expression of 

phase II DMEs with known chemopreventive properties such as glutathione S-

transferase (GST), NAD(P)H:quinone oxoreductase 1 (NQO1) and UDP-

glucuronosyltransferase (UGT) [88].  

A number of studies have demonstrated the potential of PEITC to induce the 

activity of phase II enzymes. PEITC treatment significantly increased the induction of 

GST isoenzymes in a murine liver [89] and along similar lines hepatic activity of GST 

was stimulated by PEITC administration in rats but with no effect in the lungs or 

kidneys [90]. Treatment of human liver biopsies with increasing concentrations of 
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PEITC showed a varied response in the induction of phase II enzymes characterised by 

inter-individual and inter-enzyme variation [91].  

1.5.2 Cell proliferation 

Cancer cells are characterised by up-regulated pro-proliferative signals in order to 

generate new cells, expand in size and establish as tumours. Activation of the Ras 

family of proteins is vital to sustain proliferation and PEITC has been shown to inhibit 

several components of the Ras family including the Akt (protein kinase B). Akt has a 

central role in apoptosis and cell proliferation and it is overactive in many types of 

cancers. PEITC has been shown to inhibit its activity in a number of models including 

breast cancer [92-95]. It has been suggested that this is mediated through inhibition of 

the epidermal growth factor receptor (EGFR) and of HER2; both of which are 

significant regulators of Akt [93, 96, 97].  

1.5.3 Cell cycle arrest 

Cell cycle progression involves a series of processes, which direct dividing and 

proliferating cells through the G, S, G2 and M phases. It is mediated by the activation 

of cyclin dependent kinases (Cdk) and their associated cyclins and PEITC can modulate 

cell cycle and inhibit proliferation of cancer cells by targeting this complex [98].  

PEITC has been shown to induce cell cycle arrest at the G1/S phase, the growth 

and proliferation phase. The G1 checkpoint is the point of assessment of adequate 

nutrients and growth factors and detection of DNA damage levels. If a cell carries 

substantial amount of damaged DNA this signals the delay or arrest of the cell cycle in 

G1 repressing the transition to the subsequent phases. In the case of cancer, the cell 
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cycle process is deregulated resulting in different growth characteristics in these cells, 

and ultimately uncontrolled cell proliferation.  

In HT-29 colon cancer cells, PEITC induced G1 cell cycle arrest by down-

regulating cyclin A, D and E [99]. PEITC has also been shown to inhibit the growth of 

oral squamous carcinoma HSC-3 cells through G1/S cell cycle arrest mediated by 

reductions in the levels of Cdk2, Cdk6 and their associated cyclins with concomitant 

increases in the expression of protein levels of cyclin-dependent kinase inhibitors p15, 

p53, p27 and p21 [100]. Arrest in the S phase of the cell cycle has also been observed, 

upon PEITC treatment in sarcoma cells and this observation was associated with a 

reduction in protein levels of cyclin A, the S phase cyclin regulator [101]. PEITC-

induced cell cycle arrest in the G2/M phase is related to the down-regulation of Cdk1, 

cyclin B1 and the cell division cycle 25C (Cdc5C) [102, 103]. Cdk1 forms complexes with 

cyclin B. Subsequently; Cdc25C targets this complex for dephosphorylation of Cdk1 

promoting its activation, which is necessary for transition into mitosis (M phase). Cell 

cycle arrest by PEITC is the result of a decrease of the levels of Cdk1 or cyclin B or by 

inhibition of Cdk1 phosphorylation [102].  

1.5.4 Tumour Metastasis 

Healthy cells, once they have specialised and differentiated do not migrate to other 

tissues and remain in the organ or tissues they have specialised for. In cancer, cells 

reverse from their differentiated state and behave like pluripotent cells, invading 

blood circulation and metastasise to secondary organs from their original primary 

location, resulting in extensive spread of cancer. Cancer invasion and metastasis is 
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associated with a much poorer prognosis and increased mortality. Development of 

anti-invasive and anti-metastatic therapies is therefore an important target of cancer 

research. A number of studies have shown that PEITC can significantly suppress 

invasion and negatively influence metastasis. This activity was related to the 

attenuation of the protein and mRNA expression of matrix metalloproteinases that are 

known to promote cell migration, invasion and proliferation [103-105]. Interestingly, 

Gupta et al. [96] have demonstrated the anti-metastatic potential of PEITC in vivo in a 

breast cancer metastasis mouse model. In this model, MDA-MB-231 brain seeking 

breast cancer cells were injected into the left ventricle of the heart of female mice and 

a part of these cells migrated to the brain through blood circulation and established as 

metastatic tumours [96]. Oral administration of the mice with 10 μΜ of PEITC 

significantly prevented the migration of the breast cancer cells to the brain of these 

animals. Additionally, in a secondary experiment PEITC administration following 

tumour cell implantation, limited the growth of the metastasized tumours in the brain 

area and also prolonged the survival of the mice with cancer [96].  

1.5.5 Angiogenesis 

A recognised mechanism by which PEITC inhibits growth and survival of established 

cancer cells is through the inhibition of angiogenesis. This is a hallmark in the process 

of tumour progression during which new blood vessels are formed from existing 

vasculature to meet the increasing demands of cancer cells for nutrients and oxygen 

[61]. A study explored the impact of PEITC on a specific pathway central to 

angiogenesis by exposing human MCF-7 breast cancer cells to PEITC and measuring 
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hypoxia-inducible factor 1α (HIF-1α) signalling activity [106]. HIF-1α stimulates the 

expression of the vascular endothelial growth factor (VEGF), a master regulator of 

angiogenesis. PEITC was shown to be an effective inhibitor of HIF-1α protein 

expression, which is stably expressed in hypoxic conditions, contributing to the anti-

angiogenic properties of ITCs. To further substantiate the data obtained from this 

study Alwi et al.  [107] demonstrated that, similar to PEITC, crude watercress extracts 

inhibited cancer cell growth and HIF activity in vitro. Furthermore, 6 to 8 hours after 

dietary intake of 80 g watercress by four healthy human volunteers, peripheral blood 

cells exhibited significantly attenuated HIF signalling activity, suggesting that dietary 

intake of watercress may be sufficient to modulate potential anti-cancer pathways 

[107]  

1.5.6 Apoptosis 

Apoptosis is a critical process to ensure clearance of non-functional, damaged or aged 

cells. Cells undergo apoptosis when proliferation can no longer be controlled by the 

cell cycle checkpoints. Defects in the apoptotic pathway can lead to cancer formation, 

and pro-apoptotic therapies present attractive targets in cancer research.  

 PEITC induces apoptosis in several cancer cell lines via the intrinsic and 

extrinsic pathways [108-112]. Mitochondria are the central organelle mediating signal 

transduction apoptotic pathways and have a major role in the intrinsic apoptosis 

pathway [113, 114]. PEITC is a potent intracellular ROS generator inducing oxidative 

mitochondrial damage [115-117]. These observations are likely to be a result of the 

continuous intracellular conjugation of PEITC with glutathione and subsequent export 
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outside the cell, diminishing the cell of its antioxidant potential leading to increased 

ROS and oxidative damage [118]. Additionally, ROS accumulation as a result of PEITC 

treatment can result in lipid peroxidation of the mitochondrial membrane 

accompanied by loss of the mitochondrial integrity, which triggers the release of 

apoptosis inducing factor (AIF) and of cytochrome c [116]. This leads to caspase 

cleavage and activation that eventually elicits apoptotic events. PEITC treatment 

reduces the levels of the anti-apoptotic proteins Bcl-2 and Bcl-xL, which are 

overexpressed in cancer and can inhibit the activation of the pro-apoptotic Bax 

protein and the release of cytochrome c with an immediate effect on the caspase 

cascade and activation of the apoptosis pathway [100, 112, 119].  

PEITC-mediated apoptosis can also ensue via the extrinsic pathway through its 

interaction with the tumour necrosis factor related apoptosis-inducing ligand (TRAIL) 

and the elevated expression of death receptors, which bind to TRAIL and lead to 

apoptosis exclusively in cancer cells [120, 121]. The predominant apoptosis pathway 

induced by PEITC can vary between different cell types [98].  

1.6 Health implications of watercress consumption 

Research has highlighted a promising chemopreventive role of watercress and its 

components. Boyd et al.  [53] showed inhibition of three stages of carcinogenesis: 

initiation, proliferation and metastasis in HT29 colon cancer cells after incubation with 

watercress extract. In the same study, watercress extract appeared to be protective 

against oxidative DNA damage induced by genotoxic compounds like 4-hydroxy 

nonenal (4-HNE), faecal water and hydrogen peroxide (H2O2). Inhibition of cell cycle 
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progression at the S phase of these cells was also observed as well as suppressed 

invasion of HT115 cells (a highly invasive colon cancer cell line) through matrigel. 

Along similar lines, Kassie et al.  [122] showed that pretreatment of hepatoma Hep G2 

cells with watercress extract, reduced the genotoxic effects of benzo(a)pyrene (B(a)P) 

in DNA damage measurements. In the same study, treatment of the cells with the 

watercress extract significantly increased the activity of drug metabolising enzymes 

GST and CYP1A1. However this effect cannot solely be attributed to the reduction of 

DNA damage, since garden cress in the same study setting also protected against 

B(a)P but had no observable effect of the activity of GST or CYP1A1 [122]. These results 

cannot be attributed to PEITC since it was not detected in the watercress extract by 

LC-MS. Kassie et al. did detect PEITC using gas chromatography, but when it was 

added to Hep 2G cells in similar concentrations as those present in the extract, it was 

not protective against B(a)P induced genotoxicity. It can therefore be suggested that 

phytochemicals present in watercress, other than PEITC, can have chemopreventive 

effects and that this impact is not restricted to modifications to drug metabolizing 

enzymes.  

Evidence was also provided that isothiocyanates other than PEITC possess anti-

genotoxic and anti-carcinogenic properties [58]. The compounds 7-methylthioheptyl-

ICT and 8-methylthiooctyl-ICT were found to be present in watercress at 

concentrations three times lower than PEITC. These components were shown to have 

a much stronger potency for inducing quinone reductase activity in murine hepatoma 

Hepa 1c1c7 cells compared to PEITC, providing further evidence for the ability of 

watercress to induce phase II enzymes. 
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Additional information derived from a study conducted by Gill et al.  [57] during 

which 60 volunteers consumed 85 g of raw watercress for eight weeks; showed a  

decrease in markers of DNA damage in lymphocytes with concomitant increases in 

circulating β-carotene and lutein. Reduced DNA damage was much greater in 

smokers, suggesting that increased smoking-derived ROS led to lower antioxidant 

status and they therefore benefited more from watercress-derived antioxidants than 

non-smoking individuals. The activity of two detoxifying enzymes namely, superoxide 

dismutase (SOD) and glutathione peroxidase (GPX) were analysed in this study, with 

insignificant differences between the control and intervention phase of the study 

providing further evidence that cruciferous vegetables may not exert their 

chemopreventive effects via modulation of SOD and GPX [123]. A minor but significant 

increase was observed in GPX and SOD only in individuals with the GSTM1 null 

phenotype [124]. 

A study by Hecht et al. [125] provides further evidence to support the 

chemopreventative effects of watercress. In this work the consumption of 56.8 g of 

watercress for three days was found to inhibit the metabolic activation of a tobacco-

specific lung carcinogen NNK in a group of smokers. This anti-carcinogenic 

observation was attributed to PEITC activity, due to notable shifts in the urinary 

excretion of PEITC-NAC, which correlated with elevated urinary detoxification 

metabolites that are used as biomarkers of NNK oxidative metabolism.  

On the basis of the evidence currently available, it seems fair to suggest that 

watercress supplementation may further prove useful in the modulation of cancer 

progression and disease recurrence. The metabolic and molecular mechanism behind 
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its potential mechanism of action are not yet fully understood.  

1.7 Epidemiological data for the chemopreventive impact of cruciferous 

vegetables consumption 

Population studies from different geographical locations provide contradicting 

evidence for the inverse relationship between the risk of developing cancer and 

increased dietary intake of cruciferous vegetables. Despite the fact that these studies 

do not provide direct correlation between cancer occurrence and specific ITCs, a 

number of them suggest a correlation between total ITCs intake from dietary sources 

and reduced risk of certain types of cancer. Total ITCs are however an arguable 

measurement as there are numerous variables biasing their calculation such as variety 

of cultivar, growth period, climate and harvest method [63]. Further to this, different 

cooking regimes can have a crucial impact on the ITC content of cruciferous 

vegetables. 

Epidemiological studies in the Netherlands [126], United States [127] and 

across Europe [128] analysed the daily consumption of cruciferous vegetables and 

found insignificant or modest associations with prostate cancer risk. Cohort studies in 

the United States and the Netherlands found no evidence for inverse correlation 

between colorectal cancer and cruciferous vegetable dietary intake [129-131]. In 

contrast, the Netherlands Cohort Study on Diet and Cancer concluded that individuals 

with high intake of cruciferous vegetables (more than 3 servings per day) had a 

reduced risk of colon cancer compared to those with a lower intake [132].  
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 Varying results from epidemiological studies also arise in the case of lung 

cancer [133-135]. The majority of these studies report little or no association between 

lung cancer risk and cruciferous vegetables but one study based on the Nurses’ Health 

Study and the Health Professionals’ Follow up Study suggested that women 

consuming over four portions of cruciferous vegetables weekly had a lower risk of 

developing lung cancer (relative risk = 0.74, 95% CI = 0.68-1.20) [136].  

Regarding breast cancer, a meta-analysis carried out from 17 studies (14 case-

control and 3 cohort studies) evaluating breast cancer risk in association with 

vegetables intake, suggested that consumption can reduce 25% of the breast cancer 

risk (relative risk = 0.75, 95% CI = 0.66-0.85) [137]. However, a meta-analysis of seven 

large prospective studies performed in the United States, Canada, Sweden and the 

Netherlands did not show any association [138]. Total intake of cruciferous vegetables 

was not significantly associated with reduced risk of breast cancer in pre or post 

menopausal women irrespective of a monthly serving exceeding 1000 g with odds 

ratios of 0.7 (95% CI = 0.5-1.2) and 0.8 (95% CI = 0.6-1.2) respectively [139]. 

Interestingly, examination of a cohort of breast cancer survivors showed reduced 

cancer recurrence correlating with dietary cruciferous vegetables intake [140]. 

This heterogeneous body of evidence can be a result of a number of 

confounding factors in the studies like the differences in the subject population, 

duration of cruciferous vegetables dietary intake, age of the subjects as well as 

differences in the isothiocyanate content of the reported vegetables. It is also 

important to note that people’s food and lifestyle habits have significanltly changed 

over the past decade a factor which can have a major effect on the outcomes of 
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studies with wider durations. Epidemiological studies can also be confounded by the 

participants’ reporting bias.  

Consequently, based on the current epidemiological data and the lack of long term 

chronic human clinical trials in the literature, no definitive conclusions can be drawn 

about the effective protection of cruciferous vegetables and cancer risk  

  



 

1.8 Thesis framework  

On the basis of the reviewed literature herein it is apparent that watercress and PEITC 

potentially modulate a range of factors implicated in cancer onset and progression and are 

influential in the efficacy of cancer treatment. Characterising the biochemical effects of 

watercress components and PEITC on cellular energetics is key to understanding the 

mechanisms through which they exert their beneficial effects. As such, a central aim of this 

thesis is to define the metabolic impact of watercress and PEITC exposures on breast cancer 

and healthy cells lines. 

Further we aim is to assess the potential of watercress and PEITC to act as 

radiosensitising or radioprotective agents in breast tumour or normal cells respectively. The 

relevance of the obtained data will be evaluated in a human clinical trial involving breast 

cancer patients consuming watercress during radiotherapy.  

1.8.1 Aims 

1. Investigate the impact of watercress and PEITC on the metabolome of breast cancer 

and healthy breast cells 

2. Evaluate the interactions between watercress or PEITC with ionising radiation on 

markers of cellular function and metabolism of breast cancer and healthy breast cells 

3. Examine the effects of domestic cooking methods on the phytochemical profile of 

watercress and formulate recommendations for optimal preparation to maximise 

nutrient ingestion  

4. Assess the metabonomic impact of watercress consumption during radiotherapy 

treatment in breast cancer patients  
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2 Metabonomics and Chemometrics  

 Metabonomics 2.1

Metabonomics is a term first coined in 1999 and is defined as ‘the quantitative measurement 

of the dynamic multiparametric metabolic response of living systems to pathophysiological 

stimuli or genetic modification’ [141]. Metabolic profiling is facilitated by analytical platforms 

like NMR spectroscopy and mass spectrometry (MS) and aims at the coverage of the complete 

spectrum of metabolites, the metabolome, in a given biological sample. This collection of 

metabolites serves as a direct snapshot of the biochemical activity in a system [142] and 

provides information on physiological status and perturbations arising from exogenous 

stimuli like diet and the gut microbiome [143]. Metabolic profiling approaches are versatile in 

that they can be applied in several biological matrices such as urine, plasma, homogenised or 

intact tissues and cells [144, 145]. Metabonomics is a top-down ‘systems level’, dynamic 

approach and it is being used as an increasingly popular tool in the fields of medicine for 

diagnostic [146] and prognostic [147] purposes as well as in nutritional sciences [148] and 

toxicology [149].  

Metabonomic data are interpreted and latent information is extracted using 

multivariate statistical analysis. Statistical interpretation is naturally followed by biological 

interpretation, which often generates new hypotheses for exploration.  A metabolic change 

can be probed by further experiments to assess its validity as a functional biomarker.  

Validation of biomarkers with diagnostic value is of paramount importance, and it is often 

performed in an independent cohort of experimental samples to establish the biological basis 

of a molecule that serves as a potential biomarker. 
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Integration of metabonomic data with ‘omic’ data derived from other platforms or data from 

large-scale consortia projects, can provide a richer and more comprehensive understanding 

of complex diseases by exploring the interactions between genetic, metabolic and other 

physiological shifts in a system.  

 1H Nuclear magnetic resonance (NMR) spectroscopy  2.2

1H NMR spectroscopy is an analytical method facilitating the profiling of a vast array of low 

molecular weight compounds (<1000 Daltons), in bio-fluids, tissues and cells [145]. This 

technique benefits from high reproducibility and simple sample preparation as well as short 

experiment times. NMR-based metabolic profiling is an invaluable tool in the field of 

metabonomics capturing and delivering highly informative snapshots regarding the 

metabolic state of the sample under study.  

2.2.1 The NMR Spectrometer 

An NMR spectrometer is comprised of a superconducting magnet, made of coils of 

superconducting wire, which is cooled using liquid helium to temperatures very close to 

absolute zero, to enable a strong magnetic field. A central component of the NMR 

instrumentation is the probe, which accommodates the NMR sample tube and facilitates the 

generation and transmittance of the radiofrequency pulse to the sample. The signal from the 

excited nuclei is detected by the probe and through the receiver coil surrounding the sample. 

Figure 2.1 depicts the components of an NMR superconducting magnet. 
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Figure 2.1 Internal configuration of an NMR spectrometer.  

Inside the magnet a liquid nitrogen tank is located, whose main function is to insulate the 
inner liquid helium tank. At the centre of the electromagnet there is the bore, a long tube 
from the top of which the sample is inserted and sits in the probe.  
 

2.2.2 Principles of 1H NMR spectroscopy 

The principle of NMR spectroscopy is based in the physical properties of the atomic nuclei 

that are composed of protons and neutrons. The nuclear property of interest in NMR 

experiments is the nuclear angular momentum spin quantum number (I), commonly referred 

to as nuclear spin. This number depends on the number of protons (atomic number) and the 

number of neutrons (atomic mass) [150]. If the number of neutrons and protons are both 

even, then the nucleus has I=0 (e.g. 12C, 16O, 32S). In cases where the number of neutrons and 
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the number of protons is odd, then the nucleus has I=1/2  (e.g. 1H, 13C, 31P). When the number 

of neutrons and the number of protons are both odd then the nucleus has I=1.  

Any nucleus with a spin quantum number (I) different from zero can be analysed using 

NMR spectroscopy. Proportional to the nuclear spin is the magnetic moment (μ), which is the 

vector of the positive charge of the nucleus as a result of nuclear spinning and of the angular 

momentum through the gyromagnetic ratio (γ). The gyromagnetic ratio is a fundamental 

constant, unique to each nucleus. It can therefore be deduced that if a nucleus, with I =0 will 

not have a magnetic moment and will not be detected by NMR. Some of the isotopes used in 

NMR spectroscopy in biological applications are those with I =1/2 such as 1H, 13C, 15N, 31P. 

Hydrogen (1H) is the most commonly used atom in metabolic profiling, since it is the most 

abundant element in biological molecules. The natural abundance of 1H is 99.98%, 

substantially higher than that of 13C, which is 1.1%.  

When a magnetic field is applied to nuclei with a spin quantum I>0, the nuclear 

moments of spins will orient themselves and the number of possible energy levels can be 

calculated by the equation: 2I+1. The magnetic quantum number mI designates these energy 

levels of nuclei. The spin quantum number (I) of 1H is equal to 1/2 and will therefore have two 

possible orientations (energy states) in the presence of a magnetic field (Fig. 2.2). Upon 

transition from a random to an oriented state, the nuclei spin around the axis of the applied 

magnetic field in a motion known as the Larmor precession with a frequency ν and an angular 

speed ωο [150]. 
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Figure 2.2 Energy levels of a nucleus with a spin quantum number 1/2 

Schematic representation of the energy level of a nucleus with I =1/2 and transition upon 
application of an external magnetic field B0. The nucleus aligns with or against the applied 
magnetic field in a low (α, mI=+1/2) or high (β, mI=-1/2) energy state respectively. The 
difference between the two energy states is described as ΔΕ.  
 

The population of the protons between the two energy states is given by the Boltzmann 

distribution: 

𝑁!
𝑁!

=  𝑒!!"/!" 

 

Nα and Nβ represent the number of nuclei that occupy the lower and upper energy 

state respectively; K is the Boltzmann constant and T the absolute temperature in degrees 

Kelvin. ΔΕ is the energy difference between the two energy states α and β and the energy 

required for the transition (flipping) of the nuclear spins.  

It is important to note that there will be a slight excess of nuclei in the lower energy 

state at thermal equilibrium. The net absorption of energy by the nuclei that change spin 
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states will in turn give an NMR signal. The energy needed for the flipping between the two 

orientations is provided by electromagnetic radiation and can be calculated using the 

following equation: 

𝛥𝛦 = 𝜈ℎ = 𝛾ℎ𝛣!/2𝜋 

 

Where 𝜈 is the Larmor frequency; h is the Planck’s constant; γ corresponds to the 

gyromagnetic ratio (unique for each nucleus and defines the direction of the spin) and B0 is 

the strength of the external magnetic field.  

ΔΕ is equal to νh meaning that electromagnetic radiation is proportional to the 

resonance frequency. This means that an exact frequency should be applied for the nuclei to 

resonate (flip) between the energy levels, and allow for an NMR signal to be detected. In 

addition, considering that ΔΕ is directly related to the applied magnetic field (B0 ) the Larmor 

frequency (resonance) will also be proportional to B0. 

Energy for the excitation of nuclei is provided in the form of radiofrequency (RF) pulses 

during an NMR experiment. The RF pulses used interact with all the nuclei of an isotope in a 

sample. The fact that there are differences in the population distribution of nuclei in the two 

energy levels, and therefore different Larmor frequencies, creates a net magnetisation vector 

M0 in the same direction as B0 (z-axis) (Fig. 2.3a). Application of a short 90° RF pulse rotates the 

magnetisation vector away from the z-axis to the x-y plane (Fig. 2.3b). When the pulse stops, 

the nuclei will relax and return to equilibrium (Fig. 2.3c). During the precession movement 

back to z-axis, the magnetisation vector will release an oscillating voltage, detected by the 

receiver coil and amplified by the receiver. This detectable NMR signal is know as free 

induction decay (FID) and it represents the sum of these oscilations. The speed of relaxation 
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and the RF pulse determines the differences between molecules. The FID recorded in a time 

domain is converted into the frequency domain and into an NMR spectrum by Fourier 

transformation (Fig. 2.3d).  

 

Figure 2.3 The NMR signal acquisition process 

a) Precession of the magnetisation vector around the z-axis b) application of a 90° RF pulse 
causes a transition of the vector along the x-y plane c) release of RF pulse and free induction 
decay to return back to equilibrium d) signal acquisition and Fourier transformation. 
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Relaxation describes the process during which excited nuclei release their previously 

absorbed energy and return to equilibrium. The relaxation of the nuclear spin magnetisation 

is not an intrinsic characteristic of excited nuclei but is facilitated by two processes: the spin-

lattice (longitudinal) relaxation time (T1) and the spin-spin (transverse) relaxation time (T2). 

During spin lattice relaxation, nuclei in a higher energy state release energy to the lattice (the 

sample in which the nuclei are held) and lose energy returning to the lower state. This process 

happens exponentially with time and it is essentially the time constant for a nucleus to return 

to its equilibrium state (z axis).  

For spin-spin relaxation to occur, inter-nuclei interactions take place during which 

there is an exchange of energy between nuclear spins in the higher and lower energy state. T2 

is therefore defined as the time constant for the nuclear spins to lose energy in the XY plane 

[150]. 

2.2.2.1 Chemical shift 

A property of NMR spectroscopy that can provide further structural and conformational 

details about a molecule, is that each nucleus experiences the applied magnetic field (B0) 

differently resulting in distinct resonance frequencies. The electron cloud surrounding the 

interrogated nucleus influences this effect, in that the external applied magnetic field (B0) will 

generate a local magnetic field in the electron cloud, which will be smaller, and in the 

opposite direction of B0. This phenomenon is known as nuclear shielding and essentially 

reduces the magnetic field experienced by the nucleus. The extent to which each nucleus will 

be shielded depends on the electronegativity of the atoms in the molecule. For instance, if a 

proton nucleus is bound to a highly electronegative atom like oxygen, it will have a lower 
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electron density because the oxygen nucleus will attract more electrons. This will decrease 

the shielding of the proton nucleus against B0 and result in the protons experiencing a higher 

overall magnetic field and resonating at higher frequencies. On the contrary, proton nuclei of 

a methyl group will have a greater electron density leading to a higher degree of shielding, a 

weaker experienced magnetic field and therefore a lower resonance frequency.  

Nuclear shielding essentially corresponds to the difference between the applied and 

the experienced magnetic field by the nucleus. The chemical shift (δ) can be defined by the 

following formula: 

δ(ppm) = [(!observed - υreference) (Hz)] ! !"!

!"#$%&'(#%#& !"#$%#&'( (!")
 

Where υobserved is the resonance frequency of the samples proton nucleus, and υreference is the 

resonance frequency of a reference nucleus. In the NMR experiments described in this thesis 

the reference compound used is 3-(trimethylsilyl)-[2,2,3,3,-2H4]-propionic acid (TSP). TSP is a 

highly shielded compound, meaning that it absorbs energy at low frequency therefore its 

resonance does not overlap with the resonances of other metabolites in the sample of 

interest. Molecules are characterised by their chemical shift relative to the reference 

compound in an experiment rather than the frequency of the line due to the fact that 

different applied magnetic fields can cause the observed peaks to appear at slightly different 

frequencies, but the position in relation to the reference compound peak is always constant 

when expressed as the chemical shift (ppm).  

2.2.2.2 The spin-spin coupling 

The spin-spin coupling (or J coupling) phenomenon occurs extensively when two nuclei are 

in close proximity, and serve as minor independent magnetic fields. Adjacent nuclei in the 
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same molecule interact with each other, as well as with the external applied magnetic field, 

resulting in the splitting of the NMR signal and subsequent spectral peak multiplicity. NMR 

spectra are characterised by the presence of not only singlet peaks, but also doublets, triplets 

and multiplets. Spin-spin coupling occurs when adjacent protons affect the NMR signal as 

such, that splitting of the resonance peak occurs into further components. The peak pattern 

of shape and intensity is in accordance with Pascal’s triangle (Fig. 2.4). If all couplings to a 

particular proton are the same there will be 2nI+1 peaks, where I is the spin quantum number 

and n is the number of adjacent nuclei (n + 1 for 1H I = 1/2).  

In 1H NMR spectroscopy, spin-spin coupling is observed in protons that are up to three 

bonds apart, but any unsaturated bonds can influence the distance up to which the electron 

exchange occurs [150]. J coupling interactions are not affected by the applied magnetic field 

in a given sample, meaning that the observed peak patterns are constant regardless of the 

external magnetic field strength [151]. This feature of NMR spectroscopy is of great 

importance for molecular structure characterisation since it depends on chemical bonds, 

coupled nuclei, the distance of the interacting bonds as well as the dihedral angles between 

the bonds. 
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Figure 2.4 Example of J coupling in the generation of different peak shapes and intensities 
following the Pascal’s triangle (n; number of adjacent nuclei) [152] 

 

2.2.3 Pulse sequences 

A single pulse sequence employed in 1D NMR experiments can be broken down into several 

sections. The preparation time, also known as the relaxation delay (s), the pulse width (μs) and 

lastly the acquisition time. During the relaxation delay (RD) the spin system is prepared for the 

spins to reach equilibrium. This is an important step to ensure maximum signal to noise ratio. 

Insufficient relaxation of the spin system will result in poor quality peaks. For a complete spin 

system relaxation, RD lasts about four to five times the T1 relaxation time. Following RD is the 

pulse width during which the radiofrequency generator is rapidly turned on and then off (5-

15 μs) and this results in the perturbation of the spin system. Subsequently, the signal from 

the excited spins relaxing back to their original state (FID) is recorded during the acquisition 

period. The pulse sequence is repeated multiple times during an experiment to compensate 
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for the rather low sensitivity of the NMR compared to other spectroscopy based methods. 

Increasing the number of acquired scans increases the signal to noise ratio. 

Pulse sequences in NMR experiments can be modified accordingly, to facilitate the metabolic 

profile acquisition from different samples. The following two sections describe the pulse 

sequences used in this thesis.  

2.2.3.1 Standard one-dimensional solvent suppression pulse sequence  

One-dimensional experiments with water pre-saturation allow for the acquisition of the 

resonance of all 1H-containing molecules in a given sample including signals from small 

molecules as well as broad signals from larger molecules. This type of pulse sequence is used 

for the acquisition of spectra from urine samples, aqueous tissue extracts as well as cell 

extracts, which are characterised by a poor macromolecular content. The water resonance is 

irradiated during this sequence with a low power continuous wave for pre-saturation and 

attenuation of the resonance before acquisition [153]. Figure 2.5 shows a representative 1H 

NMR spectrum obtained from the hydrophilic fraction of cell extracts using a standard one-

dimensional pulse sequence.  

2.2.3.2 The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence  

This experiment is particularly relevant for samples with substantial macromolecular content 

such as tissue extracts and plasma samples. The CPMG spin-echo pulse sequence attenuates 

the signals of macromolecules like proteins and lipids, allowing for a better signal acquisition 

from small molecules (carbohydrates, amino acids, nucleic acids). The pulse sequence is as 

follows: RD - 90° - (t -180° – t)n – 90° -acquire; where t is the spin- echo delay, n represents the 

number of loop and 180° is the 180° radiofrequency pulse [145]. During the CPMG pulse 
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sequence the amplitude of the received signal decays over time as a result of the T2 

relaxation. Naturally, larger molecules have faster T2 relaxation therefore their signal decays 

first and their resonance weakens.  

 

Figure 2.5 Representative 1H NMR spectrum of the hydrophilic metabolites extracted from 
untreated MCF-7 cells 
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 Chemometrics 2.3

Metabonomic analytical platforms generate thousands of signals from metabolic 

fingerprinting. Multivariate data analysis is the ideal tool to be used in instances where the 

number of variables obtained substantially exceeds the number of samples, which is a typical 

case in metabonomics. Univariate statistical analyses lack the ability to account for 

multicolinearities, where highly correlated variables can mutually define and predict a class, 

rendering the analysis less robust than multivariate statistical analyses. 

The purpose of multivariate statistics undertaken for large datasets is to summarise 

and visualise the main sources of variation in the data and facilitate the extraction of useful 

information from such complex datasets, usually in the form of plots and model summary 

statistics. Unsupervised and supervised modelling methods are used in metabonomics to 

facilitate biological interpretation and biomarker discovery. 

2.3.1 Unsupervised methods – Principal components analysis 

Principal component analysis (PCA) is an unsupervised method of multivariate data analysis 

meaning that no existing hypothesis of the dataset is needed for model generation. It is a 

data projection-based method facilitating the representation of a multivariate dataset matrix 

(X) consisted of n rows (samples) and k columns (variables) by reducing the large 

dimensionality of the dataset while maintaining important information for data 

interpretation. In PCA, each observation is represented by one point in as many dimensions as 

there are variables, and placed on the plane according to the variables values. 

PCA calculates the line of least squares, which passes through the origin. The first 

fitted line is called the first principal component (PC1) in the multidimensional space, and this 
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will be in the direction that explains the greatest degree of variation in the dataset. A single 

principal component cannot adequately explain the variation in a model of biological data. 

Therefore, subsequent principal components are implemented to further explain the 

variation and are calculated orthogonally to the previous principal component. Figure 2.6 

shows how PC1 and PC2 form a model plane in the multivariate space, on which every 

observation is projected.  

  PCA is interpreted by the scores and loadings plots. From each principal component, 

the respective scores and loadings can be produced. Scores represent the projections of the 

observations on the corresponding principal component. Scores plots (graphical 

representation of the projection-score value (t)) reveal any existing similarity or difference 

among the samples in the new reduced dimensional space as a function of the variance 

explained by each of the principal components calculated. PCA constitutes a useful tool for 

the detection of outliers in the dataset matrix. Loadings (P) are the cosine angle of a variable 

from a specific principal component. It calculated to examine the degree of contribution of 

each variable (for NMR spectral data each variable corresponds to a signal and therefore a 

metabolite) to the model for each of the principal component, and allows for the 

identification of the metabolites driving any specific patterns observed in the scores plot. The 

matrix is therefore modelled by the equation: 

 

𝑋 =  𝑇𝑃’+ 𝐸 

 

X represents the metabolite data; T is the scores; P transposed represents the loadings and E 

is the residuals. The residuals represent the deviation between the true position of a data-
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point and the position projected on the model plane, and constitute the part of the dataset 

matrix that cannot be explained by the model. 

 

 

Figure 2.6 Geometric representation of the PCA process [154] 

Variables in the X matrix (X1, X2, X3) that contains 12 samples are placed in a lower dimension plane. 
Each dimension represents one variable. The scores and loadings plots are provided from the model 
plane. Scores plots provide information on any existing groupings, trends or outliers in the dataset 
and the loadings plots explains the contribution of each of the variables (X1, X2, X3) in the model.  
 



 78 

2.3.2 Centring & Scaling 

In metabonomic datasets variables can have considerably different ranges and this can 

modify the quality and the quantity of information obtained by a statistical model.  PCA, like 

all projection-based methods, is sensitive to scaling of the variables, meaning that the 

variables with highest value range will substantially influence and dominate the model [154]. 

In order to adjust for this, two data modification methods are employed prior to model 

construction; mean centring and scaling (Fig. 2.7). 

Mean centring is a data pre-processing method, which, as the name suggests, ensures 

that the mean of each variable is centred on the origin of the axes. This is achieved by 

calculating the mean of each of the variables and subtracting it from the value of each 

variable, thus removing the mean trajectory from the dataset [154, 155]. The interpretation of 

the obtained result will be relative to the spread around the mean and all of the variables will 

have the same reference point. The first principal component will therefore represent the 

covariance in the dataset and will not be dominated by the mean of each variable. 

Scaling of data adjusts the weight of each variable on each axis, and prevents the 

skewed interpretation of the results as a consequence of differences in the range of values for 

each of the variables. In unit variance scaling the value of each variable is divided by its 

standard deviation, hence variables have equal variances and no variable can dominate over 

any other.  

Pareto scaling is a scaling method used in metabonomic data analysis, and is 

calculated by dividing each variable by the square root of its standard deviation [154]. It 

minimises the differences in the range of the variables values, while maintaining the order of 
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the starting variance of each variable. Pareto scaling up-weights medium features without 

inflating baseline noise, which is the case in unit variance scaling [156].  

 
Figure 2.7 Schematic representation of the effect of mean-centring and scaling methods on 
data 

  



 80 

2.3.3 Supervised methods – Projections to latent structures and Orthogonal 

projections to latent structures 

While PCA is an unsupervised method of data modelling, projections to latent structures (PLS) 

method and its iterations are supervised methods, meaning that a priori knowledge is 

required for model construction. In these methods a response variable (Y) is implemented 

corresponding to continuous or discrete variables such as age, gender or treatment group. 

When the Y matrix contains discrete data, discriminant analysis is performed (PLS-DA).  

PLS method relates matrices X (predictor, metabolite data) and Y (response variable to 

be predicted) aiming to explain the maximum covariance between the two and allow for any 

true metabolic variation related to a response variable to be shown (Fig. 2.8). This method is 

particularly useful in metabonomic studies where the number of variables surpasses the 

number of observations. Similarly to PCA, the first PLS component calculated in the X and Y 

multivariate space must describe the maximum variation within the matrices and therefore 

maximise the covariance of the scores t1 and u1 (Fig. 2.8). Further components are calculated 

perpendicular to the previous one. The new PLS model can be expressed by the following 

equations: 

𝑋 = 𝑇𝑃! + 𝐸 

𝑌 = 𝑈𝐶! + 𝐹 

 

Where T and U correspond to the matrix of scores that summarise the X and Y variables 

respectively. P’ and C’ represent the loadings for the correlation between X and Y and the 

score vectors U and T respectively.  E and F are the residual matrices.  
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Figure 2.8 Schematic representation of the principle of PLS model 

 
Orthogonal projections to latent structures (OPLS) and orthogonal projections to latent 

structures – discriminant analysis (OPLS-DA) are variants of the PLS models facilitating the 

filtering of extraneous variation irrelevant to the biological class. Variable (X) matrices 

obtained from NMR metabolic profiling often contain variation that is uncorrelated to the Y 

matrix that can introduce noise in the PLS/ PLS-DA model and compromise its interpretability 

(e.g. instrumental issues, sampling problems and uncontrolled sources of biological 

variation). In OPLS and OPLS-DA models an integrated Orthogonal Signal Correlation (OSC) 

filter is implemented during model construction. This added orthogonal component divides 

the X matrix variation into a predictive component (variation correlating between X and Y) 
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and an orthogonal component that accounts for the variance that is uncorrelated to Y [154]. It 

therefore describes the unwanted systematic variation unrelated to the biological variation 

(Y). This partitioning of the X matrix variation positively impacts model interpretation by 

separating between-class and within-class variation, something that cannot be facilitated by 

PLS models [154, 157]. 

Similarly to PCA, loadings in OPLS-DA are displayed in the form of a pseudo-NMR 

spectrum, plotting the covariance between the metabolites and the Y matrix (classes). OPLS-

DA covariance plots are obtained by back-scaling the unit-variance scaled model (multiplying 

the model coefficients by the standard deviation of the corresponding variable) to a 

correlation matrix [157, 158]. The pseudo-spectrum is coloured with scale; the colour of each 

resonance on the plot is the square of the correlation of each metabolite with the class 

relationship (R2: the proportion of the X matrix predictable by Y).  

2.3.3.1 Model diagnostics and validation 

PLS and its derivative models are prone to over-fitting. This phenomenon occurs when a 

model despite its apparent ability for fitting training data, it has a poor predictive ability for 

future observations and therefore predicts noise or random error. R2Y represents the 

proportion of X needed to describe Y, and this value is known as the ‘goodness of fit’ [159]. It 

signifies the ability of the model to fully characterise the dataset, therefore a high R2Y value 

suggests a low residual value. In order to overcome the problem of over-fitting, a cross 

validation step is implemented in the data analysis to assess the true predictive ability of a 

model. Cross validation is performed by removing 1/7th of the X matrix, and using the 

remaining data to predict the missing values back into the model. If the interrogated model is 
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valid it will accurately predict the missing data. This procedure is repeated until every 

observation has been back-predicted once. Cross validation facilitates the determination of 

the Q2Y value, which represents the predictive power of the model i.e. how well X predicts Y 

in the model.  

In most cases, R2 value is expected to be higher than Q2 as the model complexity 

increases but the difference should not be more than 0.2-0.3. R2 will continue to increase with 

complexity due to greater variation explained by the model. On the contrary, Q2 value will 

reach a peak when the model is saturated, in terms of the number of fitted components, and 

will then start to decline. This is a result of the fact that when additional variation is added to 

the model, the more noise is added too leading to a reduction in the predictive ability of the 

model.  

2.3.3.2 Permutation testing  

A permutation test is used to calculate the significance of the estimated predictive power Q2Y 

of the model, to validate the model. Here, data are shuffled (permutated) resulting in the 

random assignment of observations in correct or incorrect classes. Virtual OPLS-DA models 

are then constructed based on the newly generated dataset, and the R2Y and Q2Y values are 

obtained. The Y matrix is normally permutated 1000 times and the R2Y and Q2Y values are 

ranked. The rank of the Q2Y from the real model against the virtual random models provides a 

significance value. The real model is considered significant if its Q2Y value ranks within the top 

5% of the Q2Y values obtained from the virtual models (p <0.05). Hence a genuine association 

exists between the metabolites and the response measure.  
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3 Characterising the metabolic perturbations induced by watercress and 
phenethyl isothiocyanate exposure in MCF-7 and MCF-10A cells 

 

Hypothesis 

It is hypothesised that phenethyl isothiocyanate (PEITC) and the watercress extract will induce 

significant metabolic modifications with anti-carcinogenic potential in breast cancer cells and 

that these effects will be different from those in healthy breast cells.  

Aims 

• Characterise the basal metabolic profiles of MCF-7 and MCF-10A cells. 

• Investigate the metabolic response of MCF-7 and MCF-10A cells in response to crude 

watercress extract and PEITC. 

• Study how crude watercress extract and PEITC influence markers of cellular 

genotoxicity.  

Objectives 

• 1H NMR metabonomics and multivariate statistics will be used to characterise the 

metabolic profiles of the two cell lines following exposure to different doses of the 

watercress extract and PEITC. 

• Treatment genotoxicity will be evaluated by measuring DNA damage using the Comet 

assay, assessing cell cycle stages using flow cytometry and measuring mitochondrial 

membrane potential.  
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3.1 Introduction 

Watercress (Nasturtium officinale) belongs to the family of Brassicaceae together with broccoli, 

Brussel sprouts and kale. Epidemiological studies suggest a link between the consumption of 

Brassica vegetables and a reduced risk for many types of cancers [160] including breast cancer 

[161, 162]. Watercress has a complex phytochemical profile characterised by high levels of 

carotenoids, flavonols and glucosinolates [163] and extracts of watercress exhibit strong 

antioxidant capacity in vitro [52, 57]. Watercress and its components have been associated 

with the inhibition of the three stages of carcinogenesis: initiation, proliferation and 

metastasis in in vitro cancer cell models [53, 58, 164]. 

Plant tissue damage such as cutting or chewing, induces the release of the plant 

enzyme myrosinase (β-thioglucoside glycohydrolase; EC 3.2.3.1), which hydrolyses 

glucosinolates present in the tissue, forming reactive isothiocyanates [63]. It is this group of 

bioactive compounds that have received considerable attention for their potential anti-

cancer properties. Watercress is particularly rich in gluconasturtiin, which is the glucosinolate 

precursor to phenethyl isothiocyanate (PEITC). Research has highlighted promising 

chemopreventive and chemotherapeutic activities of PEITC. Due to its highly electrophilic 

nature PEITC reacts with cellular thiols via thiocarbamoylation and after its cellular uptake it 

reacts with glutathione (GSH), which is the major intracellular antioxidant [60, 108, 165] 

depleting cells of their GSH content. GSH has a vital role in the maintenance of cellular redox 

status [30] and tight regulation of intracellular reactive oxygen species (ROS) through the 

induction of antioxidant mechanisms is central to cancer cell survival. Low levels of ROS can 

have a proliferative advantage for cancer cells [166]. Excessively high levels of ROS though, 

will result in disruptions in redox balance can lead to mitochondrial damage underpinned by 
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oxidative stress, and ultimately cancer cell death [22]. To manage this, cancer cells use 

antioxidants such as GSH, to prevent ROS from accumulating at detrimentally high levels. 

Malignant cells are commonly characterised by elevated ROS levels compared to non-

cancerous cells [166] PEITC treatment has therefore a selective detrimental effect on cancer 

cells since they rely on their antioxidant mechanisms for survival and PEITC depletes the 

cellular levels of their main antioxidant, GSH.  

At the cellular level PEITC has been extensively shown to have direct anti-cancer 

effects in in vitro cancer models.  It causes cell cycle arrest in a wide variety of cell lines and it is 

a potent inducer of apoptosis [99, 102, 108]. PEITC increases the activity of Nrf2, a key 

transcription factor relevant to the activation of oxidant/electrophile response genes 

mediating chemopreventive functions [167]. PEITC also inactivates the nuclear factor kappa B 

(NF-kB) pathway affecting important steps in carcinogenesis including, inflammation, cancer 

cell survival, differentiation and proliferation [168-170]. Inflammation is a central process in 

cancer development and PEITC has been shown to decrease the expression of inducible nitric 

oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) resulting in an attenuated secretion of 

pro-inflammatory mediators [171]. Other targets of PEITC include the hypoxia inducible factor 

(HIF) [106] negatively regulating angiogenesis as well as inhibiting mTOR, which plays a key 

anabolic role in translation and functions as a vital metabolic integration point joining 

nutrient availability with growth signals [22, 95]  

 

Metabolic regulation is a determining element of the cell growth machinery and 

cancer cells have adapted to several oncogenic signals to modify their metabolic phenotype 

as such, to support their needs for growth, survival and malignant transformation. Core 
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cancer cell metabolism serves the three basic needs of proliferating cells: i) rapid ATP 

generation to sustain energy status, ii) increased need for the biosynthesis of 

macromolecules, proteins, lipids and nucleotides, iii) maintenance of appropriate cellular 

redox status.  

To our knowledge, limited work has been done on the effects of PEITC and of crude 

watercress extract on cancer cell energetics and metabolism. PEITC impacts a great range of 

oncogenes and tumour suppressor genes, which can all cause shifts in intracellular signalling 

pathways involved in cancer cell metabolism. It is therefore central to get an insight into the 

effect of such a bioactive compound on the global metabolic profile of cancer cells. This 

chapter will investigate the biochemical response of MCF-7 breast cancer cells to increasing 

doses of watercress extract and to PEITC using 1H NMR metabonomics. This will then be 

compared to the metabolic response of immortalised but non-tumorigenic MCF-10A cells to 

the same treatments. Biochemical observations will be related to inducible cancer related 

phenotypic changes in cell behaviour.  
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3.2 Materials and methods 

5.1.1 Cell Culture 

The MCF-7 human breast adenocarcinoma cell line was purchased from the American Type 

Culture Collection (ATCC) (LGC standards, Middlesex, UK). Cells were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM; Lonza Group Ltd, Basel, Switzerland) supplemented with 

10% (v/v) foetal bovine serum (FBS; Lonza Group Ltd), 2 mM glutamine (Thermo Fisher 

Scientific, Loughborough, UK), 50 U/ml penicillin and 50 U/ml streptomycin (Thermo Fisher 

Scientific, Loughborough, UK) and 1% non-essential amino acids (Sigma-Aldrich, Dorset, UK).  

The MCF-10A, non-tumorigenic breast epithelial cell line was kindly provided from 

Prof. Graham Packham (University of Southampton, Southampton, UK). Cells were maintained 

in Ham’s F12:DMEM (1:1) (Lonza Group Ltd), 20 ng/ml epidermal growth factor (EGF) 

(PeproTech, London, UK), 0.1 μg/ml cholera toxin (Sigma-Adrich), 10 μg/ml insulin 

(Invitrogen), 500 ng/ml hydrocortisone (Sigma-Aldrich), 5% horse serum (Invitrogen) and 50 

U/ml penicillin and 50 U/ml streptomycin (Thermo Fisher Scientific, Loughborough, UK). 

 Cells were grown in an incubator at 37 ºC with 5% CO2 and 95% humidity in 75 cm2 

culture flasks and were routinely passaged at approximately 70% confluency. The medium 

was changed every 2-3 days. For passaging, cells were washed with phosphate buffer saline 

(PBS; Lonza Group Ltd) before detaching with 5ml of Trypsin-Versene® (EDTA) mixture (Lonza 

Group Ltd) for 3-5 mins for MCF-7 cells and 18-20 mins for MCF-10A cells. Media (5 ml) was 

then added to the cells to inactivate the trypsin and the cell suspensions were centrifuged at 

300 g for 3 mins. Cell pellets were resuspended in complete media in the flask and incubated.  
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5.1.2 Compounds and Extracts 

3.2.1.1 Analytical grade compounds 

Phenethyl isothiocyanate (PEITC) was purchased from Sigma (Dorset, UK). PEITC stock 

solution (30 mM) was made up in DMSO fresh on the day of use. 

3.2.1.2 Watercress extracts 

Fresh watercress samples were obtained directly from Vitacress Salads Ltd. (Andover, UK). 

Samples were snap frozen in liquid nitrogen and stored at -80 ºC. 2 g of leaf and 2 g of stem 

were weighed and placed in a 20 ml syringe (BD Biosciences, Oxford, UK) that had had the 

plunger removed and a circular 25 mm glass microfiber filter (Whatman, Dassel, Germany) 

placed at the bottom. The syringe was then placed inside a 50 ml centrifuge tube without the 

lid and centrifuged at 1500 g for 30 mins to collect the extract. This crude watercress extract 

was then filtered through a 0.22 μm filter and used in the cultures. 

5.1.3 Cell proliferation 

For the determination of cell proliferation MCF-7 and MCF-10A cells were seeded in 96-well 

microplates at 5x103 cells per well and incubated at 37 ºC with 5% CO2 and 95% humidity for 

24 hours. Cells were exposed to the watercress extract at 6.25, 12.5, 25 and 50 μl/ml and PEITC 

at 5, 10, 20, 30 μM for 24 hours. The treatments were then removed by aspiration. Cells were 

permeabilised with 100 μl of ice-cold methanol for 5 mins at room temperature. Methanol 

was removed and the plates were allowed to air dry for 15 mins in a hood, followed by 

addition of 100 μl of DAPI in PBS (70 μl of 30mM DAPI stock solution in 10.43 ml of PBS). Cells 

were incubated in the dark for 30 mins at 37 ºC and absoprtion was measured using GENios 

microplate reader (TECAN Group Ltd., Mannedorf, Switzerland) with absorbance at 340 nm 
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and emission at 465 nm. The experiment was performed in triplicate with three technical 

replicates per experiment.  

5.1.4 NMR Metabonomics 

The metabolic profiles of MCF-7 and MCF-10A cells were analysed using 1H NMR 

spectroscopy. Cells were seeded at 1x105 cells per well into six well plates and treated at 80% 

confluency. Cells were exposed to the watercress extract at 6.25, 12.5, 25 and 50 μl/ml and 

PEITC at 5, 10, 20, 30 μM for 24 hours. Media was transferred into eppendorf tubes and cells 

on the surface of the plate were washed twice using 1 ml cold (4ºC) PBS and were quenched 

using 1 ml of ice-cold methanol (maintained on dry ice). Cells were allowed to lyse for 2 mins 

and were detached from the plate using a cell scraper and transferred into an Eppendorf 

tube. Methanol quenching was repeated to maximise metabolite recovery. A vacuum 

concentrator (SpeedVac) was used to dry down the cell suspensions before reconstitution in 

80 μl of phosphate buffer (pH 7.4) in 100% deuterium oxide containing 1 mM of the internal 

standard, 3-(trimethylsilyl)-[2,2,3,3,-2H4]-propionic acid (TSP).  

For every sample, a standard one-dimensional NMR spectrum was acquired using a 

600 MHz Bruker NMR spectrometer, with water peak suppression using a standard pulse 

sequence (recycle delay (RD)-90°-t1–90°-tm-90°-acquire free induction decay (FID) RD= 4s, 

t1=8.62 μs, tm= 100 ms). For each spectrum 256 scans and 8 dummy scans were obtained, 

collected in 64K data points with a spectral width of 12.001 ppm. 1H NMR spectra were 

manually corrected for phase and baseline distortions and referenced to the TSP singlet at δ 

0.0. Spectra were digitized using an in-house MatLab (version R2012a, The Mathworks, Inc.; 

Natwick, MA) script. Metabolites were identified using an in-house database of standards and 
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Chenomx NMR suite (version 7.7, Chenomx Inc). Multivariate modelling, including principal 

component analysis (PCA) and orthogonal projections to latent structures discriminant 

analysis (OPLS-DA), was performed on the samples using in house scripts  

5.1.5 Cell Cycle  

MCF-7 and MCF-10A cells were seeded at a 1x105 cells per well in six well plates and incubated 

as required. The cells were then exposed to the watercress extract and PEITC at 6.25, 12.5, 25, 

50 μl/ml and 5, 10, 20, 30 μM, respectively for 24 hours. Following treatment removal, the cells 

were washed with cold PBS (4°C) and harvested by trypsinisation. Cells were pelleted by 

centrifugation at 300 g for 3 mins and the supernatant was discarded. The cell tissue was then 

resuspended in 200 μl of cold PBS and fixed with drop-wise addition of 70% (v/v) fresh ice-

cold methanol. The samples were then stored at -20 °C until analysis.  

On the day of the analysis, samples were centrifuged at 300 g for 3 mins and the 

supernatants were discarded. The cell pellets were then resuspended in 200 μl of PBS and 25 

μl of 1 mg/ml RNAse was added to the suspensions. The samples were incubated at 37°C for 

30 mins and 2.5 μl of 400 μg/ml of PI dye were added to the cells which were then incubated 

for a further 30 mins at room temperature under dark conditions. The final volume of the cell 

suspensions was adjusted to 600 μl with PBS. Cellular DNA content of 15,000 cells was 

quantified via flow cytometry. The flow cytometry analysis was performed using the FL2 

channel on a BD AccuriTM C6 flow cytometer (Germany). Data analysis was facilitated using the 

Flow Jo software (version 7.6, Tree star Inc, Oregon, USA). Cell cycle progression was 

evaluated accounting for the percentage of cells in each of the phases Gap0/1 (G0/1), 

Synthesis (S), Gap2/mitosis (G2/M) and apoptotic cells (sub G0/1). The principle of the cell 
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cycle analysis is based on the fluorescence intensity of the PI nuclear dye that is proportional 

to the DNA concentration of the cell. 

5.1.6 Comet Assay 

The Comet assay is used for the measurement of DNA strand breaks in single cells. MCF-7 and 

MCF-10A cells were seeded in T25 cells culture flasks at a concentration of 1x106 and 

maintained at 37 °C with 5% CO2 and 95% humidity. The cells were then exposed to the 

watercress extract and PEITC at 6.25, 12.5, 25, 50 μl/ml and 5, 10, 20, 30 μM, respectively for 24 

hours. The treatment solutions were then removed via aspiration followed by washing with 

PBS and detaching from the cell culture flask with trypsin. Cell suspensions were adjusted to a 

concentration of 1x106 cells/ml.  

Following the treatments, 20 μl of the cell suspensions were resuspended in 200 μl of 

warm low melting point agarose (LMA) (0.85% w/v) and applied 75 μl of this was dispensed 

on Comet Slides (Trevigen). The LMA was allowed to solidify at 4°C for 15 mins. The slides 

were then transferred into a staining jar, lysis buffer (2.5M NaCl, 0.1M EDTA, 0.01M Tris and 1% 

(v/v) Triton X – added just prior to use – pH 10) was added and the cells were allowed to lyse 

for 1 hour at 4°C). 

Following lysis of the cells, the slides were placed in a horizontal electrophoresis tank 

and incubated for 20 mins in alkaline buffer (0.3M NaOH, 1mM EDTA – pH 13) at 4°C in dark 

conditions. Electrophoresis was carried out at 26 V, 300 mA for 30 mins at 4°C. Immediately 

after electrophoresis the slides were washed in neutralising buffer (0.4M Tris – pH 7.5) three 

times for 5 mins.  
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The slides were then stained with 10 μl of ethidium bromide (20 μl/ml) and DNA 

migration from the nucleus was visualized with a fluorescence microscope (Olympus BX51). 

The computer-based image analysis software, Komet 4.0 (Andor Technology, South Windsor, 

CT) was used to calculate the proportion of DNA that had migrated from the head to the tail 

of the comet (% tail DNA). The mean value from 100 randomly scored cells was taken as an 

index of damage for each replicate well.  

5.1.7 Mitochondrial membrane potential assay 

Mitochondrial membrane potential was assessed using the JC-10 mitochondrial membrane 

potential kit according to the manufacturer’s instructions (Sigma, Dorset, UK). Briefly, 1x104 

MCF-7 and MCF-10A cells were seeded in a 96 well plate and allowed to attach overnight. The 

cells were then exposed to the watercress extract at 6.25, 12.5, 25 and 50 μl/ml and PEITC at 5, 

10, 20, 30 μM for 24 hours. JC-10 dye-loading solution  (50 μl) was added to each well and 

incubated for 60 mins before measuring fluorescent intensities (Ex/Em= 485/520 nm and 

Ex/Em=544/590 nm). The shifts of mitochondrial membrane potential were measured as the 

ratio between aggregate (Em =520 nm) and monomeric forms (Em =590 nm) of the JC-10 dye 

using FLUOstar Omega (Isogen Life Science, De Meer, the Netherlands). Increasing ratio 

indicates mitochondrial membrane depolarization and damage. 
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3.3 Results 

5.1.8 Cell Proliferation 

Cytotoxicity of increasing doses of the crude watercress extract and PEITC was assessed in 

MCF-7 and MCF-10A cells. The dose response curves for cytotoxicity as assessed by DAPI 

staining are presented in Fig. 3.1 (A-D). Treatment with the watercress extract did not impact 

MCF-10A proliferation but caused a 20% and 25% decrease in proliferation in MCF-7 cells 

treated with 25 and 50 μl/ml of the extract, respectively. PEITC caused a significant decrease 

in cell proliferation in MCF-7 cells reaching up to 46% in the highest PEITC dose (30 μM). 

Treatment of the MCF-10A cells with 30 μM of PEITC showed evidence of cytotoxicity 

compared to the untreated cells.  



 95 

 
Figure 3.1 Cytotoxicity of the crude watercress extract and PEITC in MCF-7 (A&B) and MCF-
10A (C&D) cells. 

Data presented as mean ± SEM percentage cell survival. Statistically significant differences 
between control and treated cells are indicated *p<0.05, **p<0.01, ***p<0.001 after one-way 
ANOVA followed by Dunnett’s multiple comparison test. Data shown represent the average of 
three independent experiments with three replicates per sample. WX, watercress.  
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5.1.9 Comparative metabonomic profiling of MCF-7 and MCF-10A cells 

Metabolic profiles were acquired from the hydrophilic methanol extracts of MCF-7 and MCF-

10A cells using 1H NMR spectroscopy. Principal components analysis (PCA) was applied to the 

baseline metabolic profiles of MCF7 and MCF-10A cells to observe the main drivers of 

variation within the metabolic data. From the scores plot obtained from this PCA model 

(Figure 3.2A) clear separation was observed between the two cell lines in the first principal 

component (PC1). This indicates that the tumorigenic difference of the cell lines is the main 

source of variation accounting for 22% of the total variation within the data (metabolites). The 

loadings plot for PC1 from this model (Fig. 3.2B) indicates that this variation was explained by 

an increased amount of lactate, phosphocholine and glycine in the MCF-7 cells compared to 

the MCF-10A.  

An orthogonal projection to latent structures discriminant analysis (OPLS-DA) model 

was built to make a pair-wise comparison between the two cell lines. An OPLS-DA model with 

strong predictive ability (Q2 Ŷ = 0.56, R2Ŷ = 0.98) was obtained and validated by permutation 

testing (1000 permutations; p = 0.001). The correlation coefficients plot from this model is 

presented in Fig. 3.3. MCF-7 cells contained greater amounts of lactate, the amino acids 

alanine, glutamine, glutamate, methionine serine and glycine. MCF-10A cells contained 

higher amounts glucose, myo-inositol, choline and creatine phosphate compared to the MCF-

7, threonine, as well as phosphocholine.  
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A B 

Figure 3.2 Comparison of the metabolic profile obtained from the two cell lines. (A) PCA 
scores plot (PC1 vs PC2). (B) PCA loadings plot of PC1. 

Figure 3.3 OPLS-DA model identifying metabolic associations with cell type. GPC, 
glycerophosphocholine.  

(Q2 Ŷ = 0.56, R2Ŷ = 0.98, p = 0.001) 
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5.1.10 Metabolic profiling with increasing doses of crude watercress extract 

5.1.11 MCF-7 

PCA was performed on untreated samples and samples treated with increasing doses of the 

watercress extract. A clear clustering was observed between the low and the high treatment 

doses on the first principal component representing 17% of the variation (Fig. 3.4A).  No 

observable separation was observed between the untreated samples and those treated with 

the two lower doses (6.25 and 12.5 μl/ml) of the watercress extract. This metabolic transition 

from low to high doses was explained by increases in the intracellular lactate content of the 

cells (Fig. 3.4B). Valid OPLS-DA models with good predictive ability (Q2Ŷ) were returned for 

all the pair-wise comparisons of control MCF-7 cells and cells treated with the different 

watercress extract doses (Table 3.1). 

Watercress treatment of the MCF-7 cells caused a number of metabolic perturbations 

including an increase in lactate production at the highest dose (50 μl/ml), elevated amino acid 

abundance (valine, leucine, isoleucine, alanine, asparagine) and also an increase in the 

glutathione content of these cells. Significant increases of NAD+ were also observed 

accompanied by increased AXP (indistinguishable spectral differences between AMP and 

ADP) and essentially a lower ATP content (Fig. 3.5).  
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Figure 3.4 (A) PCA scores plot of the MCF-7 cells treated with increasing concentrations of 
the watercress extract for 24 hours. (B) PCA loadings plot of PC1 
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Table 3.1 Summary of the OPLS-DA models returned for the comparisons between untreated 
control cells against cells treated with the watercress extract (6.25 -50 μl/ml) and PEITC (5-
30μΜ) for 24 hours from both MCF-7 and MCF-10A cells. 

Treatment R2Ŷ Q2Ŷ P-value 

MCF-7 

Control vs WX 6.25 0.9579 0.4645 0.006 

Control vs WX 12.5 0.9871 0.4948 0.002 
Control vs WX 25 0.9666 0.7333 0.001 
Control vs WX 50 0.9716 0.7525 0.001 
Control vs PEITC 5 0.9809 0.4917 0.002 
Control vs PEITC 10 0.9884 0.9056 0.002 
Control vs PEITC 20 0.9709 0.9317 0.001 
Control vs PEITC 30 0.9978 0.9041 0.001 

MCF-10A 
Control vs WX 6.25 0.9250 0.4678 0.018 
Control vs WX 12.5 0.9344 0.5708 0.004 
Control vs WX 25 0.9639 0.7038 0.001 
Control vs WX 50 0.9782 0.8248 0.001 
Control vs PEITC 5 0.9774 0.0520 0.590 
Control vs PEITC 10 0.8776 0.2292 0.250 
Control vs PEITC 20 0.9079 0.6422 0.001 
Control vs PEITC 30 0.9538 0.8483 0.001 
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Figure 3.5 OPLS-DA coefficients plot comparing the metabolic profiles of untreated control 
MCF-7 cells and the highest dose of WX (50 μl/ml) treated cells. (AXP: indistinguishable 
difference between AMP, ADP, ATP) 
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5.1.12 MCF-10A 

Treatment of MCF-10A cells with the watercress extract caused a metabolic transition from 

the low to high doses as observed in the PCA scores plot with the different groups separating 

along PC1 (Fig. 3.6A). Similarly to the MCF-7 cells, increased lactate explained the variation 

across the treatment groups (Fig. 3.6B). An OPLS-DA model was constructed to probe for 

discriminating features between control and watercress treated cell samples (50 μl/ml). As 

expected, the model was dominated by elevated lactate in the watercress treated cells with 

concomitant increases in acetate, succinate and 4-aminobuturate (4-AB) as well as choline 

and glycerophosphocholine. The metabolic profile of the untreated MCF-10A cells contained 

higher phosphocholine, the amino acids valine, leucine, isoleucine, glutamate, glutamine, 

methionine and glutathione compared to the watercress treated samples (Fig. 3.7).  
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Figure 3.6 (A) PCA scores plot of the MCF-10A cells treated with increasing concentrations of 
the watercress extract for 24 hours. (B) PCA loadings plot of PC1. 

A 

B 
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Figure 3.7 OPLS-DA coefficients plot comparing the metabolic profiles of untreated control 
MCF-10A cells and WX (50 μl/ml) treated cells. GPC, glycerophosphocholine, 4-AB, 4-
aminobutyrate.  
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5.1.13 Metabolic profiling with increasing doses of PEITC 

5.1.14 MCF-7 

PCA of untreated and increasing PEITC dose data from MCF-7 cells revealed separation in the 

first principal component based on the PEITC dose representing 42% of the variance in the 

dataset (Fig. 3.8A). PCA demonstrated a metabolic trajectory between low and high doses of 

PEITC driven by lower phosphocholine in the high dose samples compared to the control and 

low dose samples (Fig. 3.8B). 

OPLS-DA models were constructed for a pair-wise evaluation of the effect of the 

four PEITC dose treatments compared to control treatment in the MCF-7 cells. Valid models 

with good predictive ability (Q2Ŷ) were returned for the comparisons between control and 

treated MCF-7 cells (Table 3.1). PEITC treatment induced a strong perturbation in the 

biochemical signature of these cells in a dose dependent manner. Following the high dose 

exposure to PEITC lactate, valine, leucine, isoleucine, methionine and threonine, glutamate 

and glutamine were increased compared to the control treatment and low dose samples. 

PEITC significantly decreased the amount of choline-related metabolites, phosphocholine 

and glycerophosphocholine and glycine. MCF-7 cells treated with a high PEITC dose 

exhibited a characteristic depletion in their glutathione content and taurine to a lesser 

extent (Fig. 3.9). Interestingly, PEITC appears to have a biphasic effect on glutathione, which 

increases with low PEITC exposure but is depleted with the high dose treatment.  
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Figure 3.8 (A) PCA scores plot of the MCF-7 cells treated with increasing concentrations of 
PEITC for 24 hours. (B) PCA loadings plot of PC1. 

 

A 

B 
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Figure 3.9 OPLS-DA coefficients plot comparing the metabolic profiles of untreated control 
MCF-7 cells and PEITC (30 μM) treated cells. 
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5.1.15 MCF-10A  

The metabolic response of MCF-10A cells to PEITC was found to differ compared to that of 

MCF-7 cells. A dose dependent effect was observed with no discernible differences between 

control samples and those treated with the 5 or 10 μM of PEITC. Clustering of the cells treated 

with 30 μM of PEITC was observed on the first principal component (Fig. 3.10A) and was 

driven by decreased levels of alanine and phosphocholine in these samples (Fig. 3.10B).  

Pairwise OPLS-DA models were constructed comparing the effect of the four PEITC 

dose treatments with the control treatment in the MCF-10A cells. The low doses of PEITC (5 

and 10 μM) did not have a significant impact on the metabolic profile of the MCF-10A cells. 

On the contrary, the models built for the pair-wise evaluation of the effects of the two 

highest PEITC dose treatments were of strong predictive ability (PEITC 20μΜ, Q2Y = 0.64, 

PEITC 30μΜ, Q2Y = 0.85) and valid upon permutation testing (PEITC 20μΜ, p = 0.001, PEITC 

30μΜ, p = 0.001). MCF-10A cell respond to PEITC treatment with reductions in their amino 

acid pool (valine, leucine, isoleucine, threonine, alanine, glutamate, glutamine, 

methionine) and phosphocholine and glycine abundance (Fig. 3.11). Strikingly, the higher 

doses of PEITC did not cause depletion in the levels of glutathione or taurine as it was the case 

in the MCF-7 cells but rather increased their levels.   
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Figure 3.10 A) PCA scores plot of the MCF-10A cells treated with increasing concentrations of 
PEITC for 24 hours. (B) PCA loadings plot of PC1 

 

A 

B 
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Figure 3.11 OPLS-DA coefficients plot comparing the metabolic profiles of untreated control 
MCF-10A cells and PEITC (30 μM) treated cells. 
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5.1.16 In vitro effects of watercress and PEITC in MCF-7 and MCF-10A cells 

The metabolic alterations observed from the OPLS-DA models were used to perform 

unsupervised hierarchical clustering of the metabolites by integrating the corresponding 

peaks. The results are summarised in Fig 3.12A and Fig 3.12B. A clear metabolic separation of 

all treatments and doses was observed in the MCF-7 cells but the response of the MCF-10A 

cells to the different treatments was varied and characterised by some overlap. No observable 

effects of the low PEITC doses were noted in the MCF-10A cells. MCF-7 cells respond to 

watercress and PEITC treatments by shifting their metabolic phenotype in an anti-parallel 

manner. Metabolites like glutathione, aspartate, glycine, phosphocholine and alanine are 

significantly lower in the MCF-7 cells treated with the higher doses of PEITC but are found in 

higher levels in the watercress treated cells. In addition, amino acids (threonine, glutamine, 

methionine, tyrosine, phenylalanine, leucine, isoleucine, valine and histidine) are 

characteristically elevated in the PEITC treated MCF-7 cells whereas their levels are lower in 

the watercress treated groups.  Comparing the metabolic profiles of the two treated cell lines 

reveals significant differences in the response of cancer and non-transformed cells upon 

watercress and PEITC exposure with a more uniform response in the MCF-7 cells. 
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Figure 3.12 Unsupervised hierarchical clustering heat-map of metabolites from MCF-7 (A) 
and MCF-10A (B) cells treated with watercress extract or PEITC at increasing concentrations. 
Each row represents a metabolite and each column represents a sample. The row Z-score 

A 

B 
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(scaled expression value) of each metabolite is plotted in red-blue colour. The red colour 
indicates metabolites that are high in abundance and blue indicates metabolites low in 
abundance 

 

5.1.17 Cell cycle analysis 

Propidium iodide staining was used to assess the impact of watercress extract and PEITC on 

the cell cycle distribution of MCF-7 and MCF-10A cells.  

At the basal level, untreated MCF-7 cells had 10% greater cell distribution in the S 

phase and 8% in the G2 phase as compared to untreated MCF-10A cells. In MCF-7 cells (Fig. 

3.13) watercress (50 μl/ml) caused a significant 11% reduction in the G1 phase and a parallel 

increase in the proportion of the cells in the S phase. PEITC induced a cell cycle arrest at the 

G1 phase only at the highest doses (20 and 30 μΜ) with concomitant decrease in the 

proportion of cells in the S phase. 

A similar effect of the watercress extract was observed with the MCF-10A cells with an 

8% reduction of cells in the G1 phase and a 4% increase of cells in the S phase (50 μl/ml). In 

contrast, PEITC did not induce a cell cycle arrest at the G1 stage as observed in the MCF-7 

cells. PEITC caused a significant increase in the percentage of cells in the S and G2 phase and a 

concomitant decrease of the cells in the G1 phase only at the two highest doses.  
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Figure 3.13 Cell cycle analysis of MCF-7 (A&B) and MCF-10A (C&D) exposed to a range of 
crude watercress extracts (0-50 μl/ml) and PEITC (0-30μΜ) for 24 hours.  

Data presented as mean ± SEM percentage cell survival. Statistically significant differences 
between control and treated cells are indicated *p<0.05, **p<0.01, ***p<0.001 after one-way 
ANOVA followed by Dunnett’s multiple comparison test. Data shown represent the average of 
three independent experiments with three replicates per sample. WX, watercress. 

5.1.18 DNA oxidative damage 

MCF-10A cells possessed slightly lower basal DNA damage (8.8 ± 1.4%) compared to MCF-7 

cells (13.6 ± 1.6%) (Fig.3.14). Crude watercress extract did not induce any significant 

genotoxic effects in either cell line at any of the concentrations tested. PEITC on the other 

hand was genotoxic in both cell lines at 20 and 30 μM with significantly increased % tail DNA. 

In MCF-7 cells PEITC 20 μM and 30 μM caused 14.1% and 19.2% additional damage 
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respectively. In MCF-10A cells the same treatments induced a further 4.7% and 8.2% damage 

respectively.  

 

Figure 3.14 Genotoxic effects of the crude watercress extract and PEITC on MCF-7 (A&B) and 
MCF-10A (C&D) cells after a 24-hour incubation.  

Data presented as mean ± SEM percentage cell survival. Statistically significant differences 
between control and treated cells are indicated *p<0.05, **p<0.01, ***p<0.001 after one-way 
ANOVA followed by Dunnett’s multiple comparison test. Data shown represent the average of 
three independent experiments with three replicates per sample. WX, watercress. 
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5.1.19 Mitochondrial membrane potential 

The impact of increasing doses of the crude watercress extract and PEITC on the 

mitochondrial membrane potential was assessed by fluorescent JC-10. Crude watercress 

extract did not affect the membrane potential of MCF-10A cells but induced significant 

increase in the polarisation of the mitochondrial membrane of MCF-7 cells (Fig.3.15). A 

remarkable loss of mitochondrial membrane potential was observed in the PEITC treated 

groups with the polarisation increasing by 148% in the highest PEITC dose in MCF-7 cells. 

MCF-10A cells were more resistant to the lower doses of PEITC but showed 65% and 115% 

increase in polarisation in the two high PEITC doses respectively. 

 

 

Figure 3.15 Impact of PEITC and the crude watercress extract on the mitochondrial 
membrane potential of MCF-7 and MCF-10A cells as evaluated by increased JC-10 
monomer/aggregate ratio (520/590 nm).  

Data presented as mean ± SEM percentage cell survival. Statistically significant differences 
between control and treated cells are indicated *p<0.05, **p<0.01, ***p<0.001 after one-way 
ANOVA followed by Dunnett’s multiple comparison test. Data shown represent the average of 
three independent experiments with three replicates per sample. WX, watercress. 
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3.4 Discussion 

Crude watercress extract and PEITC induced a range of phenotypic changes in cell behaviour 

both in MCF-7 and MCF-10A cells. PEITC G1 cell cycle arrest in MCF-7 cells was accompanied 

by significant decreases in cell proliferation as well as elevated DNA damage in this cell line. 

DNA damage can lead to the activation of the tumour suppressor p53, which can then induce 

the expression of p21 that then binds to G1/S cyclin-dependent kinases (Cdk) inhibiting their 

activity and arresting the cells in the G1 phase [100]. PEITC was also shown to cause loss of the 

mitochondrial membrane potential in agreement with other studies [111, 117], which is 

considered the trigger for further downstream events in the apoptotic cascade. Crude 

watercress extract caused an accumulation of cells in the S phase of the cell cycle in MCF-7 

cells. Our results are corroborated by those of Boyd et al. [53] who also observed cell cycle 

delay in the S phase of HT-29 cells treated with a watercress extract. Watercress is known to 

inhibit Cdk gene expression preventing the cells from progressing through the cell cycle. The 

watercress extract also caused minor decreases in cell proliferation and mitochondrial 

potential without however having a genotoxic effect in either cell line. MCF-10A cells were 

highly resistant to any watercress driven phenotypic changes in cell progression and also less 

sensitive to the genotoxic PEITC effects. It should be noted though that the high dose of 

PEITC is cytotoxic to MCF-10A cells, suggesting a hormetic role for this ICT.  

1H-NMR spectroscopy based metabonomics was successfully applied to tumorigenic 

MCF-7 and non-tumorigenic MCF-10A breast cells to examine the fundamental differences in 

their metabolic phenotype. The biochemical impact of crude watercress extract and PEITC 

was then examined on these two cell lines. To our knowledge this is the first study looking at 
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the comparative metabolic responses of these cell lines to bioactive compounds of nutritional 

importance. 

Metabolic phenotype of MCF7 and MCF-10A 

Through basal metabolic profiling it was possible to differentiate between the cancerous 

MCF-7 cell line and the non-transformed MCF-10A cell line. As expected the cancerous MCF-7 

cell line appeared to be more reliant on glycolysis for energy generation as indicated by the 

higher content of lactate. Similarly, greater amounts of phosphocholine were measured in the 

MCF-7 cells, relative to the non-transformed cells. This may be an adaptation to the higher cell 

proliferation rate and the demand for the synthesis of new cellular membranes, and it may be 

coupled to sparing of fatty acids in a glycolytic cellular environment.  

MCF-7 cells also contained higher levels of glutamine. Glutamine is interchangeable 

with glutamate and alpha glutarate in the TCA cycle, which may be redundant in these cells, it 

also acts as a precursor in the biosynthesis of nucleotides and as an amino acid for protein 

synthesis. Higher amounts of the antioxidants glutathione and taurine were also observed in 

the MCF-7 cells. These compounds serve as antioxidants and their increased abundance 

facilitates the maintenance of appropriate cellular redox status by keeping the amount of ROS 

at a level that enables cell proliferation and survival. 

Glutathione 

The MCF-7 breast cancer cells exhibited non-linear but dose-dependent changes in 

glutathione concentrations in response to watercress and PEITC treatments. PEITC appears to 

induce a biphasic response in the glutathione abundance of MCF-7 cells, with increased 

concentrations at low doses and depletion at the two higher doses. The ability of 

isothiocyanates to act as both pro-oxidants and indirect antioxidants may explain the dose-
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dependent fluctuations in cellular glutathione content. Prolonged exposure to low 

isothiocyanate concentrations can induce phase II enzymes, which regulate antioxidant gene 

expression [56] potentially explaining the increase in glutathione observed in the MCF-7 cells 

treated with the lower doses of PEITC. PEITC effectively depletes cells of glutathione by 

continued intracellular conjugation and efflux hence disabling the glutathione antioxidant 

system [60, 165]. Glutathione depletion accompanied by compromised mitochondrial 

function ultimately results in excessive oxidative stress, as demonstrated by the increased 

levels of DNA damage with higher PEITC exposure and this may help explain the observed 

cell cycle arrest and cell cytotoxicity in the PEITC treated MCF-7 cells. Interestingly, PEITC did 

not deplete MCF-10A cells of glutathione and these cells were also less sensitive to PEITC 

induced DNA damage.  PEITC has previously been shown to selectively kill cancer cells with 

lower antioxidant status over non-tumorigenic cell lines [116, 172, 173]  

Glutathione increased in MCF-7 cells with increasing concentrations of the watercress 

extract. This is likely to be a result of the complex mixture of compounds in the watercress 

extract such as phenolics and flavonoids with proven antioxidant properties. Flavonoids 

increase the expression of γ-glutamylcysteine synthetase, which is directly proportional to 

elevated glutathione levels [174]. Watercress is also a rich source of folate [75] which can be 

used in one-carbon metabolism pathway, adding to the cellular glutathione pool. 

Energy status, glycolysis and mitochondrial function 

The ‘’Warburg effect’’ is a well established metabolic phenotype observed in cancer cells. It 

postulates that tumour cells generate ATP through enhanced glycolysis rather than oxidative 

phosphorylation, characterised by higher lactate as seen here in MCF-7 cells, even when 

oxygen is not a limiting factor and although they possess the functional properties to 
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maintain oxidative phosphorylation. As a result the majority of the glucose is converted to 

lactate via glycolysis, providing a rapid source of ATP. However, this is a far less efficient 

process in terms of ATP molecules produced per mol of glucose input.  

Results from the mitochondrial membrane potential assay indicate that the watercress 

extract and PEITC significantly compromise mitochondrial function. Oxidative 

phosphorylation can therefore no longer occur in the mitochondria resulting in cellular 

energy depletion. Up-regulated glycolysis, evidenced by increased lactate levels, is an 

essential adaptation to cope with the limited capacity for ATP generation through oxidative 

phosphorylation. Pyruvate dehydrogenase (PDH) kinase is inhibited by increasing 

concentrations of ROS, which may increase as a result of the observed glutathione depletion 

[175]. PDH kinase catalyses the conversion of pyruvate to acetyl-coA dictating the rate at 

which the TCA cycle occurs and its inhibition may therefore favour lactate production [175].  

One-carbon metabolism 

Significant decreases in glycine were observed in MCF-7 cells treated with the higher 

concentrations of both the PEITC and the watercress extract. Rapidly dividing cells rely heavily 

on the maintenance of their biosynthetic potential as well as redox status for survival. 

Continuous shuttling of carbon molecules in the one-carbon metabolism pathway, which has 

a central role in cell proliferation and cancer progression, ensures the availability of the 

building blocks necessary for the construction of new cellular components. This also sustains 

the formation of reducing power compounds for redox balance. Upon conversion from 

serine, glycine enters the glycine cleavage system and fuels the folate cycle of the one-carbon 

metabolic network. Following a series of reduction and methylation reactions, the folate cycle 

is coupled to the methionine cycle. The two interconnected cycles constitute one-carbon 
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metabolism, the product of which is a multitude of compounds for synthesis of 

macromolecules like proteins, lipids and nucleotides necessary for cell growth [176].  

Glycine has a multifaceted role in cancer cell proliferation and survival. It is involved in 

purine and nucleotide biosynthesis, which forms the basis of DNA synthesis and repair that is 

a central metabolic feature of cell proliferation. Data from a mathematical modelling study in 

60 cell lines (NCI60 panel) suggest that glycine metabolism is positively correlated with 

increased proliferation rates and provides further evidence on its role in purine, ATP and 

NADPH synthesis [177]. Consequently, reductions in glycine content with PEITC treatment is 

consistent with impaired cell survival observed in our results.  

Cellular redox balance is also regulated by glycine/one-carbon metabolism via 

glutathione synthesis and maintenance of NADP+/NADPH ratio. Therefore, glutathione 

depletion by PEITC can be a combined result of both conjugation followed by extracellular 

transport of glutathione as well as a consequence of reduced synthesis of this antioxidant due 

to lack of glycine uptake and conversion.  

Antagonising glycine uptake and its mitochondrial biosynthesis in HeLa cells and in a 

range of other cells resulted in compromised proliferation by prolongation of the G1 phase of 

the cell cycle without any observed effect on protein synthesis, consistent with a defect in 

nucleotide synthesis through one carbon metabolism [178]. Consistently, in our study, PEITC 

caused a significant cell cycle prolongation in the G1 phase of the MCF-7 cells suggesting that 

glycine reductions are likely to be contributing to this effect. 

Threonine and methionine also have an important role in one-carbon metabolism. 

Interestingly the higher doses of PEITC increase the abundance of these amino acids in MCF-7 

cells but not in the MCF10A cells. Threonine, apart from serine, acts as a glycine precursor and 
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is introduced into the one-carbon metabolism pathway via the glycine cleavage system [179]. 

Methionine per se is necessary for protein synthesis, but adenylation of methionine gives rise 

to S-adenosylmethionine (SAM), which in turn acts as a methyl donor in a number of 

metabolic pathways as well as reactions that produce phospholipid head groups for new cell 

membrane composition [176]. SAM is also involved in glutathione synthesis through 

transsulfuration reactions.  

Accumulation of these amino acids in the PEITC treated MCF-7 cells is suggestive of a 

blockage in one-carbon metabolism pathway resulting in the inability of these cells to 

maintain their needs in macromolecules necessary for proliferation.  

Collectively, these observations provide novel evidence for the impact of PEITC and 

watercress in negatively regulating one-carbon metabolism, further substantiating their role 

as anti-cancer agents.   

Lipid metabolism and inflammation 

A prominent target of the crude watercress extract and of PEITC is lipid and phospholipid 

metabolism. Major shifts were observed in both cell lines upon treatments involving choline, 

phosphocholine and glycerophosphocholine. Phosphocholine is a major constituent of cell 

membranes therefore reduced levels of phosphocholine are directly related to loss of cell 

membrane homeostasis and compromised cell proliferation and viability. Elevated 

phosphocholine levels are positively correlated with the expression of COX-2 enzyme, which 

is a pro-inflammatory marker [180]. PEITC has been shown to down regulate the expression 

and activity of COX-2 [171], which is associated with the inactivation of NF-κB. It is plausible 

that reduced phosphocholine observed here reflects COX-2 inhibition as part of an anti-
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inflammatory phenotype in cancer cells. The role of choline metabolism in cancer is highly 

complex and merits further investigation both in in vitro and in vivo models. 

Amino acid metabolism 

PEITC and watercress strongly interact with the metabolism of amino acids in both cell lines. 

PEITC at the higher doses, but not watercress, induced a strikingly selective increase in the 

pool of amino acids in MCF-7 cells, but not in the MCF-10A cells, including branched chain 

amino acids (valine, leucine, isoleucine) and glutamine.  

Glutamine and protein translation 

Glutamine together with glucose represents the two molecules that appear to be the most 

important for cellular metabolic needs. Catabolism of glutamine supplies the cells with 

carbon, nitrogen, energy molecules and reducing equivalents to sustain cancer cell growth 

and proliferation. In the process of glutaminolysis, glutamine is converted to glutamate by 

the action of glutaminase enzymes. Glutamate can then be directly converted to glutathione 

by the enzyme glutathione cysteine ligase (GCL), which in turn regulates the cellular redox 

status. Glutaminolysis can also yield substrates to refuel the TCA cycle. These anaplerotic 

reactions maintain the carbon levels needed for the TCA cycle to preserve its function as a 

biosynthetic ‘hub’ [22].  Increases in the amino acid levels of the cells treated with watercress 

and PEITC suggest that they are not being used for maintaining TCA function which 

ultimately results in energy depletion and cease in proliferation.  

Glutamine is an essential amino acid for biosynthesis establishes and is a key 

component for the protein translational requirements of cancer cells. mTORC1 is master 

regulator of translation, which is inhibited by PEITC [95, 181] but is positively regulated by the 

abundance of glutamine. It is therefore unlikely that PEITC exhibits its inhibitory effects on 
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mTORC1 via glutamine. PEITC causes mitochondrial damage that essentially increases the 

AMP/ATP ratio due to energy depletion, which in turn activates AMPK. AMPK acts upstream of 

mTORC1, ultimately inactivating it and suppressing translation. MCF-10A cells have a lower 

basal mTORC1 activity as compared to the MCF-7 cells [182] suggesting that PEITC has a 

stronger affinity for cells with increased rates of translation.  

3.5 Conclusions 

1H-NMR metabonomics has been successfully applied in profiling and distinguishing between 

tumorigenic and non-transformed cells as well as mapping the responses of MCF-7 and MCF-

10A breast cells to PEITC and crude watercress extract. Our results suggest that the most 

prominent metabolic targets of the two treatments include glutathione metabolism, energy 

metabolism as well as phospholipid and amino acid metabolism. Metabolic biomarkers 

identified in this study provide further evidence on the biphasic impact that PEITC has on the 

oxidative status on breast cancer cells and that the observed effects are distinct between 

malignant and normal cells. Watercress and PEITC can induce significant changes in the 

cancer cell metabonome accompanied by genotoxic effects such as cell cycle arrest, 

mitochondrial damage and oxidative stress. Collectively, these can potentially result in 

increased sensitivity to radiation and DNA damaging chemotherapeutic drugs.  
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4 Sensitisation of human breast cell lines to ionising radiation by 
phenethyl isothiocyanate and watercress extract 

 

Hypothesis 

It is hypothesised that phenethyl isothiocyanate (PEITC) sensitises cancer (MCF-7) cells, but 

not healthy (MCF-10A) cells, to ionising radiation (IR) and that watercress extract protects 

healthy cells from IR induced collateral damage while enhancing the deleterious effects of IR 

in cancer cells.  

 

Aims 

• Examine the combined effect of PEITC or watercress pre-treatment with IR on 

physiological parameters of cell function and genotoxicity 

• Characterise the metabolic response of MCF-7 and MCF-10A cell lines to IR. 

• Investigate how the metabolic profile of the MCF-7 and MCF-10A cells mediated by IR 

exposure following pre-treatment with PEITC or with watercress 

 

Objectives 

• MCF-7 and MCF-10A cells will be exposed to X-ray IR and DNA damage levels will be 

measured using the Comet assay, and cell cycle progression will be assessed using 

flow cytometry.  

• 1H NMR metabonomics and multivariate statistics will be used to define the metabolic 

variation between cell type, PEITC or watercress pre-treatment and IR.  
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4.1 Introduction 

Breast cancer represents a leading cause of cancer related mortalities globally. Nearly 250,000 

new breast cancer cases are projected to occur solely in the United States in 2016 accounting 

for over 40,000 deaths [183]. In the United Kingdom (UK), breast cancer is the most common 

type of cancer in women, with nearly 53,700 new cases in 2013 and a one in eight estimated 

lifetime risk of diagnosis (Cancer Research UK, 2016). Radiotherapy is a primary treatment 

modality for many breast cancer patients and it aims to damage cellular DNA. Fractionated 

delivery of high-energy X-ray beams generates within the targeted tissue highly reactive free 

radicals, which cause DNA damage via lipid peroxidation or oxidative cellular respiration. 

Radiation-induced damage activates several signal transduction pathways whose primary 

role is to detect genomic injury leading to cell cycle arrest, where DNA is repaired or, in 

occasions of substantial damage, endogenous apoptotic machinery of cells is triggered to 

inhibit further replication of the damaged DNA [184]. Radiotherapy is indisputably a positive 

intervention [14] however as its primary mode of action is the killing of cancer cells to prevent 

replication, other non-cancerous cells can be affected as well. Therapeutic selectivity is 

therefore a vital issue in cancer therapy, and essentially an ideal anticancer agent should be 

toxic to cancerous cells but exert minimum toxicity in healthy cells.  

 Dietary isothiocyanates have been widely studied for their anti-cancer role as well as 

their ability to act as radiosensitisers and radioprotective agents. Benzyl isothiocyanate 

sensitises human pancreatic cancer cells to X-ray irradiation by inducing apoptosis [185] and 

allyl isothiocyanate exerts synergistic effects with IR against lung cancer cells [186]. 

Sulforaphane, a broccoli derived isothiocyanate, has been shown to mitigate genotoxicity 

induced by γ-radiation in human lymphocytes in vitro [187].  
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PEITC has been extensively shown to have direct anti-cancer effects in in vitro cancer models.  

It possesses genotoxic properties causing cell cycle arrest and mitochondrial damage in a 

wide variety of cell lines and it is a potent inducer of apoptosis [99, 102, 108, 188]. Combined 

treatment of cancer cells with PEITC along with established chemotherapeutic agents such as 

cisplatin and doxorubicin potentiates their cancer-killing properties [189, 190] providing 

preliminary evidence for the use of PEITC as an adjuvant treatment during radiotherapy in 

breast cancer patients. PEITC, due to its highly electrophilic nature reacts with cellular thiols 

via thiocarbamoylation. After its cellular uptake it also reacts with glutathione (GSH), the 

major intracellular antioxidant, depleting cells of their GSH content and impacting cell 

survival [60, 108, 165]. As radiotherapy works primarily by inducing DNA damage through the 

formation of free radicals, the ability of PEITC to deplete the radical scavenger GSH is likely to 

contribute to its radiosensitising properties. 

 Epidemiological studies suggest a link between the consumption of Brassica 

vegetables, which are the main dietary source of isothiocyanates, and a reduced risk for many 

types of cancers [160] including breast cancer [161, 162]. Watercress is the main dietary 

source of PEITC as well as a rich source of other phytochemicals such as carotenoids and 

flavonols, and it has been shown to have anti-cancer properties by inhibiting initiation, 

proliferation and metastasis in vitro [53, 58, 164].  

 We previously showed that PEITC and watercress are potent modulators of the cellular 

metabolic landscape and can affect cellular physiology (Chapter 3).  In this study we 

examined the DNA damage response, cell cycle arrest and the metabolic impact of PEITC or 

watercress extract combined with X-ray irradiation exposure on cancerous and non-

transformed breast cells.   
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4.2 Materials and methods 

4.2.1 Cell Culture 

The MCF-7 human breast adenocarcinoma cell line was used as a breast cancer model. The 

cells were purchased from the American Type Culture Collection (ATCC) (LGC standards, 

Middlesex, UK). Cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM; Lonza 

Group Ltd, Basel, Switzerland) supplemented with 10% (v/v) foetal bovine serum (FBS; Lonza 

Group Ltd), 2mM glutamine (Thermo Fisher Scientific, Loughborough, UK), 50 U/ml penicillin 

and 50 U/ml streptomycin (Thermo Fisher Scientific, Loughborough, UK) and 1% non-

essential amino acids (Sigma-Aldrich, Dorset, UK).  

The MCF-10A is a non-tumorigenic breast epithelial cell line used as a model of typical 

breast function. The cells were kindly donated by Prof. Graham Packham (University of 

Southampton, Southampton, UK). Cells were maintained in Ham’s F12:DMEM (1:1) (Lonza 

Group Ltd), 20 ng/ml epidermal growth factor (EGF) (PeproTech, London, UK), 0.1 μg/ml 

cholera toxin (Sigma-Aldrich), 10 μg/ml insulin (Invitrogen), 500 ng/ml hydrocortisone 

(Sigma-Aldrich), 5% horse serum (Invitrogen) and 50 U/ml penicillin and 50 U/ml 

streptomycin (Thermo Fisher Scientific, Loughborough, UK). 

Cells were grown in an incubator at 37ºC with 5% CO2 and 95% humidity in 75 cm2 

culture flasks and were routinely passaged at approximately 70% confluency. The medium 

was changed every 2-3 days. For passage, cells were washed with phosphate buffer saline 

(PBS; Lonza Group Ltd) before adding 5ml of Trypsin-Versene® (EDTA) mixture (Lonza Group 

Ltd) and allowing the cells to detach for 3-5 mins for MCF-7 cells and 18-20 mins for MCF-10A 

cells. 5 ml of medium was then added to the cells to inactivate the trypsin and the cell 
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suspensions were centrifuged at 300g for 3 mins. Cell pellets were then resuspended in 

complete media in the flask and incubated.  

4.2.2 Compounds and Extracts 

4.2.2.1 Analytical grade compounds 

Phenethyl isothiocyanate (PEITC) was purchased from Sigma-Aldrich (Dorset, UK). 20 mM 

PEITC stock solution was made up in DMSO fresh on the day of use. 

4.2.2.2 Watercress extracts 

Fresh watercress samples were obtained directly from Vitacress Salads Ltd. (Andover, UK). 

Samples were snap frozen in liquid nitrogen and stored at -80 ºC. Leaves (2 g) and stems (2 g) 

were weighed and placed in a 20 ml syringe (BD Biosciences, Oxford, UK) that had had the 

plunger removed and a circular 25 mm glass microfiber filter (Whatman, Dassel, Germany) 

placed at the bottom. The syringe was then placed inside a 50 ml centrifuge tube without the 

lid and centrifuged at 2600 rpm for 30 mins at 4 ºC to collect the extract. This crude 

watercress extract was then filtered through a 0.22 μm filter (Whatman) and used in the 

cultures. 

4.2.3 Irradiation 

MCF-7 and MCF-10A cells were plated in the respective culture plates for each experiment 

and next day were treated with the crude watercress or PEITC for 24 hours. At the end of the 

treatment period the cells were exposed to 5 Gy X-ray radiation using an orthovoltage X-ray 

unit (Gulmay Medical D3225, Xstrahl, UK). The irradiator was at a stable distance from the cell 

culture plates and the irradiator field was approximately 20 x 20 cm. The cell culture plates 

were placed in the centre of the irradiation field.  
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Following radiation treatment cells were returned in the incubator and were allowed to rest 

for 1 hour. The cells were then collected and used in the experiments.  

4.2.4 Cell viability 

Cell viability was assessed using the MTT (3-[4,5- dimethylthiazol-2-yl]-2,5-diphenyl 

tetrazolium bromide) based in vitro toxicology assay kit (Sigma-Aldrich, Dorset, UK) according 

to the manufacturers instructions. Briefly, 5x103 MCF-7 or MCF-10A cells were seeded in 96 

well plates. Cells were allowed to attach overnight and were then treated with PEITC (10, 20 

μΜ) or the watercress extract  (12.5, 50 μl/ml) for 24 hours. Three hours before the end of the 

treatment duration cell were irradiated and allowed to rest as described above. Two hours 

before the end of duration of the treatment MTT solution was added to each well equal to 

10% of the culture medium volume and the cells were incubated for the remaining 2 hours. 

Following MTT incubation, the formazan crystals formed were dissolved in MTT solubilisation 

solution equal to the original culture medium volume. Plates were shaken to enhance 

dissolution and absorbance was measured at 570 nm and 690 nm (background absorbance)  

4.2.5 Cell Cycle  

Cell cycle progression was evaluated accounting for the percentage of cells in each of the 

phases Gap0/1 (G0/1), Synthesis (S), Gap2/mitosis (G2/M) and apoptotic cells (sub G0/1). The 

principle of the cell cycle analysis is based on the fluorescence intensity of the PI nuclear dye 

that is proportional to the DNA concentration of the cell. MCF-7 and MCF-10A cells were 

seeded at a 1x105 cells per well in 6 well plates and incubated as required. The cells were then 

exposed to the watercress extract and PEITC at 12.5, 50 μl/ml and 10, 20, respectively for 24 

hours and then irradiated with 5 Gy IR and allowed to rest for 1 hour. Following treatment 
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removal, the cells were washed with cold PBS (4°C) and harvested by trypsinisation. Cells were 

pelleted by centrifugation (brand) at 300g for 3 mins and the supernatant was discarded. Cells 

were resuspended in 200 μl of cold PBS and fixed with drop-wise addition of 70% (v/v) fresh 

ice-cold methanol (1 ml). The samples were then stored at -20°C until analysis.  

On the day of the analysis, the samples were centrifuged at 300g for 3 mins and the 

supernatants were discarded. Cell pellets were then resuspended in 200 μl of PBS and 25 μl of 

1 mg/ml RNAse was added to the suspensions. The samples were incubated at 37°C for 30 

mins and then 2.5 μl of 400 μg/ml of PI dye was added to the cells and samples were 

incubated for a further 30 mins at room temperature under dark conditions. The final volume 

of the cell suspensions was adjusted to 600 μl with PBS. Cellular DNA content of 15,000 cells 

was quantified via flow cytometry. The flow cytometry analysis was performed using the FL2 

channel on a BD AccuriTM C6 flow cytometer (Germany). Data analysis was facilitated using the 

Flow Jo software (version 7.6, Tree star Inc, Oregon, USA).  

4.2.6 Comet Assay 

The Comet assay is a semi-quantitative measure of DNA strand breaks in single cells. MCF-7 

and MCF-10A cells were seeded in T25 cells culture flasks at a concentration of 1x106 and 

maintained at 37°C with 5% CO2 and 95% humidity. The cells were then exposed to the 

watercress extract and PEITC at 12.5, 50 μl/ml and 10, 20μM, respectively for 24 hours. Cells 

were then irradiated as explained above. The treatment solutions were then removed via 

aspiration followed by washing with PBS and detaching from the cell culture flask with 

trypsin. Cell suspensions were adjusted to a concentration of 1x106 cells/ml. 
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Following the treatments, 20 μl of the cell suspensions were resuspended in 200 μl of 

warm low melting point agarose (LMA) (0.85% w/v) and applied 75 μl of this was dispensed 

on Comet Slides (Trevigen). The LMA was allowed to solidify at 4°C for 15 mins. The slides 

were then transferred into a staining jar, lysis buffer (2.5M NaCl, 0.1M EDTA, 0.01M Tris and 1% 

(v/v) Triton X – added just prior to use – pH 10) was added and the cells were allowed to lyse 

for 1 hour at 4°C). 

Following lysis of the cells, the slides were placed in a horizontal electrophoresis tank 

and incubated for 20 mins in alkaline buffer (0.3M NaOH, 1mM EDTA – pH 13) at 4°C in dark 

conditions. Electrophoresis was carried out at 26 V, 300 mA for 30 mins at 4°C. Immediately 

after electrophoresis the slides were washed in neutralising buffer (0.4M Tris – pH 7.5) three 

times for 5 mins.  

The slides were then stained with 10 μl of ethidium bromide (20 μl/ml) and DNA 

migration from the nucleus was visualized with a fluorescence microscope (Olympus BX51). 

The computer-based image analysis software, Komet 4.0 (Andor Technology, South Windsor, 

CT) was used to calculate the proportion of DNA that had migrated from the head to the tail 

of the comet (% tail DNA). The mean value from 100 randomly scored cells was taken as an 

index of damage for each replicate well.  

4.2.7 1H NMR spectroscopy-based metabonomics 

The metabolic profiles of MCF-7 and MCF-10A cells were analysed using 1H NMR 

spectroscopy. Cells were seeded at 1x105 cells per well into 6 well plates and treated at 80% 

confluency. The cells were then exposed to the watercress extract at 12.5 or 50 μl/ml of 

extract and PEITC at 10 or 20 μM for 24 hours and treated with IR following the method 
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described above. Media was transferred into eppendorf tubes and cells on the surface of the 

plate were washed twice using 1 ml cold (4ºC) PBS and were then quenched using 1 ml of ice-

cold methanol (maintained on dry ice). The cells were allowed to lyse for 2 minutes and were 

detached from the plate using a Starstedt cell scraper and transferred into an eppendorf tube. 

Methanol quenching was repeated to maximise metabolite recovery. A vacuum concentrator 

(SpeedVac) was used to dry down the cell suspensions before reconstitution in 80 μl of 

phosphate buffer (pH 7.4) in 100% deuterium oxide containing 1 mM of the internal standard, 

3-(trimethylsilyl)-[2,2,3,3,-2H4]-propionic acid (TSP).  

For every sample, a standard one-dimensional NMR spectrum was acquired using a 600 

MHz Bruker NMR spectrometer, with water peak suppression using a standard pulse 

sequence (recycle delay (RD)-90°-t1–90°-tm-90°-acquire free induction decay (FID), RD= 4s, 

t1=28.96 μs, tm= 100 ms). For each spectrum 256 scans and 8 dummy scans were obtained, 

collected in 64K data points with a spectral width of 12.001 ppm. 1H NMR spectra were 

manually corrected for phase and baseline distortions and referenced to the TSP singlet at δ 

0.0. Spectra were digitized using an in-house MatLab (version R2012a, The Mathworks, Inc.; 

Natwick, MA) script. Metabolites were using an in-house database of standards and Chenomx 

NMR suite (version 7.7, Chenomx Inc). Multivariate modelling, including principal component 

analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-

DA), was performed on the samples using in house scripts.  
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4.3 Results 

4.3.1 Cell viability 

The impact of combined IR and PEITC or watercress treatment on cell survival was assessed 

using the MTT assay. At the dose applied IR decreased mean cell survival in both cell lines, 

although this was not statistically significant (p>0.05). Significant decreases in the survival of 

both cell lines were observed with PEITC pre-treatment prior to IR (Fig. 4.1). At 20μM of PETIC 

cell viability was decreased by 86 % in MCF-7 (p<0.01) and 66 % in MCF-10A (p<0.05) relative 

to IR alone. 10 μM of PEITC did not affect MCF-10A cell viability. Exposure to the watercress 

prior to IR did not have an impact on cell viability in MFC-10A cells compared to irradiated 

cells. Combined exposure to both doses of watercress and IR resulted in significant decrease 

in cell viability of MCF-7 cells when compared to the non-irradiated controls (p<0.01). 

 

Figure 4.1 Effect of PEITC and watercress extract (WX) pretreatment (24 hours) combined 
with 5 Gy of IR on MCF-7 (A) and MCF-10A (B) cell viability.  

Statistically significant differences between groups are indicated as follows: ##p<0.01, 
###p<0.01 for comparisons to ‘Control – IR’ *p<0.05, **p<0.01 for comparisons to ‘Control+IR’ 
after one-way ANOVA followed by Dunnett’s multiple comparison test. Data shown represent 
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the average of three independent experiments with three replicates per sample. WX, 
watercress. 

4.3.2 Cell cycle analysis 

Cell cycle kinetics were assessed using propidium iodide staining; the MCF-7 cultures had a 

much higher number of cells in S-phase than was observed with the MCF-10A cells, this is 

consistent with a higher proliferative capacity for the cancer cell line. The response to a 5 Gy 

IR dose also differed; in the MCF-7 cells there was an accumulation of cells in G2 arrest 

coupled to a decrease in the number of cells in S phase. In contrast the MCF-10A cells 

responded to IR by increasing the proportion of cells in the G1 phase of the cell cycle (~6%) 

(Fig. 4.2B) coupled to an 11% reduction in the percentage of cells in G2.  

Pre-treatment of MCF-7 and MCF-10A cells with the watercress extract or with PEITC 

differentially sensitised cells to a subsequent dose of 5 Gy IR, (Fig. 4.2A and 4.2B). In the MCF-7 

cells pre-treatment with PEITC (20 μM) led to a further reduction in the number of irradiated 

cells in S-phase, and an accumulation of irradiated cells in G1 cell cycle arrest with a reduction 

in the proportion of cells in G2 relative to non-pretreated irradiated controls. The same dose 

of PEITC alone caused a 7.6% increase in the proportion of the cells in G1 phase but when 

combined with IR the proportion increased to 18.4% (Fig. 4.2C). In the MCF-10A cells, PEITC 

caused a minor decrease in the proportion of the cells on the G2 phase coupled to an increase 

in the percentage of the cells in the S phase.  
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 In contrast to PEITC, watercress increased the percentage of IR cells in S phase in both 

cell lines. In the MCF-7 cells this was coupled to a decrease in the proportion of cells in G2, 

whereas in the MCF-10A cells the proportion of cells in G1. These observations were not 

observed in non-irradiated watercress treated cells.  

Figure 4.2 Cell cycle analysis of MCF-7 (A) and MCF-10A (B) cells exposed to 5 Gy of IR 
following a 24 hour pre-treatment with PEITC or crude watercress extract. Statistically 
significant differences between irradiated control and treated cells are indicated *p<0.05, 
**p<0.01, ***p<0.001 and significant differences between non-irradiated and irradiated 
cells are indicated ##p<0.01, ### p<0.001 after one-way ANOVA followed by Dunnett’s 
multiple comparison test. (C) % Distribution of MCF-7 cells in G1 upon treatment with 
PEITC or IR. Different letters suggest statistical significance (p<0.05).  

Data shown represent the average of three independent experiments + SEM with two 
replicates per sample. WX, watercress. 
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4.3.3 DNA oxidative damage 

To further assess if the observed cell cycle arrest was a response to DNA damage, MCF-7 and 

MCF-10A cells were treated with PEITC and the crude watercress extract for 24 hours followed 

by exposure to 5 Gy of IR and DNA lesions were quantified using the Comet assay. IR induced 

a 39 % increase in tail DNA in MCF-7 cells and pre-treatment with 20 μM of PEITC significantly 

increased the damage by a further 15 % resulting in a final 66% tail DNA content (Fig. 4.3). 

Exposure of the MCF-7 cells to 50 μl/ml of the watercress extract also increased DNA damage 

levels by 7% compared to the irradiated but non-treated control cells.  

MCF-10A cells exhibited sensitivity to IR but to a lesser extent than the cancerous cells. 

IR induced an 11% increase in tail DNA in these cells. Following a 24 hour pretreatment with 

10 μM of PEITC and 50 μl/ml of watercress extract reduced the comet tail from 19.37% in the 

irradiated cells to 13.88% and 10.5% respectively. The highest dose of PEITC combined with 5 

Gy of IR was genotoxic to the non-tumorigenic cells resulting in a final 44 % tail DNA.  
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Figure 4.3 DNA damage levels in MCF-7 and MCF-10A cells exposed to 5 Gy of IR following 24 
hour pre-treatment with PEITC or crude watercress extract. Statistically significant differences 
between groups are indicated as follows *p<0.05, **p<0.01, ***p<0.001 after one-way ANOVA 
followed by Dunnett’s multiple comparison test.. Data shown represent the average of three 
independent experiments + SEM with two replicates per sample. WX, watercress. 
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4.3.4 Metabonomic profiling of MCF-7 and MCF-10A cells in response to IR exposure 

MCF-7 

Metabolic profiles were obtained from the cell extracts of MCF-7 cells exposed to 5 Gy IR and 

of untreated control cells. Principal component analysis (PCA) was applied to these profiles to 

reveal the main source of variation within the metabolic data. The scores plot obtained from 

the PCA model (Fig. 4.4A) showed a separation between the two groups along the first 

principal component, indicating that IR exposure is responsible for the largest amount of 

variance in the data. The loadings plot for PC1 from this model (Fig.4.4B) shows that 

phosphocholine and glycine explained the variation in the model being present in lower 

amounts in the irradiated MCF-7 cells.  

An orthogonal projections to latent structures discriminant analysis (OPLS-DA) model 

was constructed to perform a pair-wise comparison between the untreated and irradiated 

cells. A valid OPLS-DA model with good predictive ability (Q2Ŷ=0.462) was obtained and 

validated by permutation testing (1000 permutations; p=0.005). The metabolites associated 

with IR in MCF-7 cells are shown in the coefficients plot extracted from the OPLS-DA model 

(Fig. 4.5). Irradiated MCF-7 cells contained lower amounts of glutathione and phosphocholine 

as well as glutamine and glutamate, but had higher amounts of lactate, taurine and glucose 

compared to the non irradiated cells.  
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Figure 4.4 (A) PCA scores plot of MCF-7 untreated cells and cells exposed to 5 Gy IR. (B) PCA 
loadings plot for PC1. 

 
Figure 4.5 Correlation coefficients plot obtained from the OPLS-DA model identifying 
metabolic changes in the MCF-7 cells induced by 5 Gy of IR exposure. GPC, 
glycerophosphocholine   
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MCF-10A  

Exposure of MCF-10 A cells to IR caused a uniform metabolic response in these cells, indicated 

by the tight clustering in the PCA scores plot (Fig. 4.6A). Clear separation can be seen in the 

first principal component, which explains 47% of the total variation within the data. In 

contrast to the MCF-7 cells, irradiated MCF-10A cells had higher amounts of phosphocholine 

(Fig. 4.6B).  

An OPLS-DA model with strong predictive ability (Q2Ŷ=0.87) and valid upon 

permutation testing (p=0.001) was constructed to probe for the discriminating features 

between non-irradiated and irradiated MCF-10A cells (Fig. 4.7). The non-tumorigenic cells 

response to irradiation exposure is characterised by an increase in glutathione, this is in stark 

contrast to the irradiated cancer cells. Irradiation treatment also causes increases in the 

lactate, phosphocholine and amino acid (valine, isoleucine, leucine, alanine, threonine) 

content of these cells.   
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Figure 4.6 (A) PCA scores plot of MCF-10A untreated cells and cells exposed to 5 Gy IR. (B) 
PCA loadings plot for PC1.  

 
Figure 4.7 OPLS-DA model constructed on the metabolic profiles of cell extracts obtained 
from control and irradiated (5 Gy IR exposure) MCF-10A cells. GPC, glycerophosphocholine  
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4.3.5 Comparative metabolic impact of IR in MCF-7 and MCF-10A cells 

Comparing the metabolic profiles of irradiated MCF-7 and MCF-10A cells returned a 

significant OPLS-DA model (Q2Ŷ=0.895, p= 0.001) (Fig. S1-appendix). Following irradiation the 

metabolic differences between the cell types were consistent with the differences observed 

pre-treatment with higher levels of lactate, alanine, glutamine, and glycine in the irradiated 

MCF-7 cells compared to irradiated MCF-10A cells. The major difference, as observed in the 

metabolic associations (correlation coefficients) summarised in Fig. 4.8, lies in the glutathione 

shifts between the two cell lines. At baseline, MCF-7 cells contained higher amounts of 

glutathione compared to MCF-10A cells however, post IR this was reversed with MCF-10A 

cells containing significantly higher glutathione. In addition, MCF-10A cells had significantly 

lower amounts of phosphocholine pre-IR compared to MCF-7 cells, but this difference was no 

longer significant post IR suggesting a higher phosphocholine utilisation rate by the non-

tumorigenic cell line upon IR exposure.  
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Figure 4.8 Summary of the significant metabolic alterations identified from the OPLS-DA 
models comparing metabolic profiles of MCF-7 and MCF-10A cells with (+IR) and without (-IR) 
radiation exposure (n = 5-6). Colours indicate the correlation coefficient (r) extracted from the 
OPLS-DA model. Red indicates metabolites that are present in higher amounts in MCF-10A 
cells and blue indicates metabolites that are present in lower amounts in MCF-10A cells 
compared to MCF-7 cells.  
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4.3.6 Metabolic perturbations induced by IR combined with PEITC or watercress 

extract pre-treatment 

Valid OPLS-DA models with good predictive ability (Q2Ŷ) were returned for all the pair-wise 

comparisons between irradiated MCF-7 and MCF-10A cells pre-treated with the different 

PEITC and watercress extract concentrations (Table 4.1). The metabolic associations between 

cell type and treatment and how these associations change after exposure to IR are presented 

in Fig. 4.9. 

 

Table 4.1 Summary of the OPLS-DA models returned for the comparisons between irradiated 
control cells against cells treated with the watercress extract (12.5 or 50 μl/ml) and PEITC (10 
or 20 μΜ) for 24 hours from both MCF-7 and MCF-10A cells. 

Treatment R2Ŷ Q2Ŷ P-value 

MCF-7 

Control + IR vs WX 12.5 μl/ml 0.9650 0.6166 0.001 

Control + IR vs WX 50 μl/ml 0.9749 0.6806 0.001 

Control + IR vs PEITC 10μΜ 0.9614 0.8218 0.001 

Control + IR vs PEITC 20μΜ 0.9410 0.6577 0.001 

MCF-10A 

Control + IR vs WX 12.5 μl/ml 0.9589 0.6869 0.003 

Control + IR vs WX 50 μl/ml 0.9949 0.6136 0.001 

Control + IR vs PEITC 10μΜ 0.9259 0.7119 0.001 

Control + IR vs PEITC 20μΜ 0.9735 0.9497 0.001 

 
 
The most striking observation of the impact of the pre-treatment with PEITC or the watercress 

extract followed by IR, was the shift in glutathione levels in both cell lines.  

We previously observed a biphasic response of MCF-7 to PEITC doses with regards to 

glutathione. Low PEITC exposure (10 μM) increased the glutathione content of these cells but 
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was depleted by the high PEITC dose (20 μΜ). This effect of PEITC in MCF-7 cells was the same 

after exposure to IR. Interestingly, in MCF-10A cells, PEITC increased glutathione at both low 

and high doses, but glutathione was significantly decreased after exposure of the PEITC pre-

treated cells to IR.  

Crude watercress extract treament alone, caused an increase in glutathione in MCF-7 

cells and this effect persisted following IR. In contrast, a reduction in GSH was seen in MCF-

10A cells following watercress treatment but was elevated when the watercress treatment 

was followed by IR.  

A great range of metabolic associations established during the pre-treatment of both 

cell lines with watercress extract and PEITC remained largely unchanged following exposure 

of the cells to IR including shifts in lactate, choline, taurine, glycine, UDP-conjugates as well as 

changes in cellular amino acid pools (Fig. 4.10). It should also be noted, that the metabolic 

signature of the MCF-10A cells pre-treated with the high PEITC dose (20 μM) combined with 

IR, is suggestive of a metabolic shut-down in these cells, with the majority of the metabolites 

being depleted.  
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Figure 4.9 Summary of the metabolites associated with the OPLS-DA models given by the 
correlation coefficient (r) with the response variable, in this case PEITC or watercress (WX) 
treatment and IR (n = 5-6) in comparison to non-irradiated control or irradiated control cells. 
The red colour indicates metabolites that are positively correlated with the respective 
treatment (PEITC or WX) and blue colour indicates a negative correlation between 
metabolites and treatment. 
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4.4 Discussion 

Radiotherapy is an important treatment modality in breast cancer. Cancer cells posses several 

aberrant signalling pathways that can result in drug resistance or failure of therapeutic 

outcomes. Current research suggests that combination therapy can kill cancer cells more 

efficiently via diverse mechanisms simultaneously [191]. Isothiocyanates such as PEITC have a 

range of cellular targets for cancer-related outcomes [191]. This property makes PEITC and its 

dietary source watercress, highly desirable for combinatorial therapeutic methods, assuming 

it does not decrease the effectiveness of radiotherapy or enhance its negative effects on local 

healthy tissue.  

The aim of this study was to examine the impact of PEITC and of crude watercress 

extract combined with IR on cancerous and non-cancerous cells. To our knowledge this is the 

first study examining this concept. Our observations suggest that PEITC can sensitise MCF-7 

cells towards IR induced damage but can also harm MCF-10A cells to a lesser extent. The 

watercress extract appears to be protective in MCF-10A rescuing them from IR oxidative 

damage. The potential mechanism of action explaining our observations involves the ability 

of watercress and PEITC to interact with glutathione, modifying the anti-oxidant potential of 

the cell lines. 

 In the cancerous MCF-7 cells IR caused G2 cell cycle arrest as a result of increases in 

DNA damage levels but no significant impact of IR on cell survival was observed, suggesting a 

potential resistance of these cells to IR killing. Our results are consistent with those of Jänicke 

et al. [192] who observed the same cell cycle arrest and failure of IR to activate the 

mitochondrial intrinsic apoptosis pathway. Pre-treatment with PEITC results in significant G1 

arrest parallel to increased DNA damage and significant compromise of cell viability. These 
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observed effects are likely to be mediated by the ability of PEITC to further induce p53 activity 

in MCF-7 cells [193] which is a potent regulator of G1 cell cycle arrest. PEITC can also induce 

apoptosis from the mitochondria in breast cancer cells by caspase activation as well as 

changes in the Bac/Bcl-2 ratio following the release of cytochrome c, all significant elements 

of the intrinsic apoptotic pathway [119]. 

At the biochemical level, different responses were observed in glutathione abundance 

following IR exposure in MCF-7 versus MCF-10A cells. Treatment of MCF-7 cells with IR 

resulted in intracellular glutathione depletion in agreement with other studies where 

important decreases in glutathione were observed in cancer cells exposed to IR [63, 194, 195]. 

In contrast, MCF-10A cells responded to IR induced stress by increasing their glutathione 

content. IR generates reactive oxygen species (ROS), which are quenched in part through the 

glutathione response reducing the potential of ROS to exert oxidative DNA damage. 

Elevations in intracellular glutathione in MCF-10A cells can be considered part of a protective 

response by up-regulating the metabolic anti-oxidant capacity of these cells. This may explain 

their ability to better recover from IR induced damage compared to MCF-7 cells, and which 

may explain the lower levels of DNA damage observed in the healthy cells in this study.  

MCF-10A cells respond to low dose PEITC treatment (10 μM) by elevating their 

glutathione content. When these cells are exposed to IR and PEITC (10 μM), glutathione is 

depleted contrary to the cancer cells. Depleted glutathione pools suggest increased 

utilisation of glutathione for IR-derived ROS scavenging purposes, explaining the decreased 

DNA damage levels in these cells.  

 Pre-treatment of MCF-10A cells with the watercress extract also appeared to be 

protective when the cells were exposed to IR, evidenced by the reduced levels of DNA 
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damage. Watercress extract has been shown to possess anti-genotoxic properties in several in 

vitro models where cells have been challenged with known genotoxic agents [53, 122]. The 

combined treatment of MCF-10A cells with the watercress extract and IR appears to increase 

the glutathione content of these cells, suggestive of enhanced anti-oxidant activity and 

hence a protective effect. It can be argued that other anti-oxidant compounds present in 

watercress spare some of the glutathione in these cells.  

The protective effect of watercress in healthy cells observed here is unlikely to be a 

result of PEITC or any other ITC since they are not present in the extract, as a result of the high 

volatility of these compounds as well as the snap freezing of the plant material, which 

inactivates the myrosinase enzyme. PEITC alone was found to be genotoxic at high 

concentrations in the healthy cells therefore, the anti-genotoxic effect of the watercress 

extract can be attributed to the great range of other phytochemical present such as phenolics 

and carotenoids (phytochemical profiling of watercress described in Chapter 5).  

 The metabolic signatures of MCF-7 cells indicate that glutathione depletion is a major 

target for PEITC, which can lead to the build up of intracellular ROS resulting in cell damage. 

Elevated ROS is a characteristic outcome of IR exposure and combined with the glutathione 

depleting property of PEITC can be exploited for cancer cell killing. Indeed, our results 

suggest that PEITC treatment can sensitise cells to IR induced damage as observed from G1 

cell cycle arrest, elevated DNA damage levels and reduced cell viability. Combined treatment 

of MCF-7 cells with the high PEITC dose (20 μΜ) and IR is also characterised by sparing of 

glucose and reduced lactate abundance, suggesting that the rates of glycolysis are 

diminished. Glycolysis is the main source of energy and of biosynthetic molecules in cancer 

cells. Attenuated activity of this pathway further adds to the cancer killing process.  
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 Cellular membranes are a primary target of IR due to the impact ROS can have on lipid 

bilayers of which phosphocholine is a main constituent. Scavenging of ROS by the higher 

levels of glutathione observed in MCF-10A cells can explain the apparent increase in their 

phosphocholine levels following IR. This may reflect the efforts to maintain cell membrane 

integrity, which can be violated by ROS produced as a result of IR exposure. Conversely, the 

MCF-7 response to IR is characterised by lower levels of phosphocholine. Phosphocholine can 

potentially serve as a breast cancer biomarker since higher levels of this molecule have been 

reported in the clinical setting in breast cancer lesions compared to benign breast cancer 

lesions [196-198] as well as in vitro in comparisons of cancerous cell with normal mammary 

epithelial cells [199]. Decreases in phosphocholine have been observed in tissues after 

chemotherapy and radiation treatment and have been correlated with positive therapy 

outcomes [194, 200-202].  

 PEITC treatment reduces phosphocholine abundance suggesting an impact on cell 

membrane integrity that may contribute to radiation induced cancer cell killing. However, 

this effect is not limited to the tumorigenic landscape. High dose of PEITC combined with IR is 

genotoxic to healthy cells, characterised by DNA and apparent reduced metabolic activity, 

providing further evidence to the hormetic behaviour of dietary isothiocyanates [203]. 

4.5  Conclusions 

These results suggest a potential synergistic effect of PEITC and IR towards MCF-7 cell killing 

and radiosensitisation and that watercress extract, free of PEITC, can rescue healthy cells from 

collateral damage. It is postulated that glutathione has a principal role in the response of cells 

to IR challenge and that the inclusion of dietary watercress during RT may enhance the 



 152 

outcome. Our study examined the acute effects of IR therefore future work could be 

performed to examine the repair mechanisms of both cell lines subjected to the treatments 

over time. In addition, better insight into the apoptotic pathways induced by IR combined 

with watercress and PEITC should be obtained.  
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6 Effects of domestic processing methods on the phytochemical content 
of watercress (Nasturtium officinale) 

 

Hypothesis 

It is hypothesised that common cooking methods will significantly impact the nutrient 

content of watercress and that the phytochemical profiles obtained will differ according to 

the cooking method employed. 

 

Aims & Objectives 

• The effect of boiling, microwaving, steaming, chopping and blending into smoothie 

will be examined on the major phytochemical compounds in watercress. 

• Flavonols, glucosinolates and carotenoids will be quantified using liquid 

chromatography and mass spectrometry. 

• Total antioxidant activity of watercress following the different processing methods will 

be evaluated using the Ferric Reducing Antioxidant Power (FRAP) assay. 
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6.1 Introduction 

Watercress (Nasturtium officinale) belongs to the family of Brassicaceae together with broccoli, 

cabbage, mustard and Brussels sprouts. Epidemiological studies associate a higher intake of 

Brassica vegetables, such as watercress, with a reduced risk of various types of cancers [160]. 

Watercress is an exceptional source of natural, bioactive compounds for which research has 

highlighted a favourable role in anti-genotoxic and anti-cancer processes both in vivo and in 

vitro [53, 57, 58]. The health benefits of watercress have been attributed to phytochemicals 

including glucosinolates, carotenoids and flavonoid compounds. 

 Watercress, and essentially all members of the Brassicaceae family, has been identified 

as a rich source of glucosinolates [63]. Glucosinolates are hydrolysed to isothiocyanates by the 

action of the enzyme myrosinase (β-thiglucoside glucohydrolase; EC 3.2.3.1), upon cell tissue 

damage such as mastication, chopping or cooking. This group of plant bioactive compounds 

is responsible for the characteristic pungent taste that Brassica vegetables possess. 

Gluconasturtiin (2-phelylethyl glucosinolate) is the most prominent glucosinolate in 

watercress [53, 57] with a range of aliphatic and indole glucosinolates adding to its 

glucosinolate profile.  

High concentrations of carotenoids and flavonol compounds are also contained in 

watercress. Carotenoids with well established health benefits such as β-carotene, lutein and 

zeaxanthin are abundant in watercress [76]. Flavonols like quercetin, kaempferol and 

isorhamnetin, make up the polyphenolic core of watercress [204]. Polyphenols have attracted 

great importance due to their many health benefits related to cardiovascular function, 

antioxidant and anticancer activity (Morel, Lescoat, Cillard, & Cillard, 1994 Doostdar, Burke, & 

Mayer, 2000; Galati, Teng, Moridani, Chan, & O'Brien, 2000).  
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While watercress is widely consumed raw in salads, it is becoming increasingly popular 

in cooked foods such as soups, smoothies and also wilted in pasta and meat dishes. Annual 

retail sales of watercress in the United Kingdom amounted to 40 million pounds in 2015. Sales 

of food products with cooked or processed watercress as the main ingredient have taken off 

the last few years, representing approximately 50% of total watercress sales (S. Rothwell, 

Vitacress salads LTD, personal communication, March 10, 2016). Culinary processing is the 

source of several complex biochemical and physical alterations, modifying the phytochemical 

constituents of vegetables, ultimately resulting in nutritional changes [205].  

To our knowledge, phytochemical characterisation of watercress subjected to different 

culinary treatments has not been explored to date. The present research was undertaken to 

elucidate the effects of five common cooking methods on the phytochemical profile of 

watercress and formulate suggestions for the most appropriate method for consuming 

watercress for maximum nutrient ingestion. (The work for this chapter has been published in 

the Journal of Food Chemistry) 
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6.2 Materials and methods 

6.2.1 Plant Material 

Fresh watercress samples were provided from VITACRESS LTD (Andover, Hampshire, UK), 

transferred to the laboratory and stored at 4 °C for up to 24 hours until all watercress 

processing analyses were performed. Only samples free from mechanical damage were used 

in the experiments. All analyses were performed in triplicate using the same batch of plant 

material to minimise variation in our results.  

6.2.2 Reagents & Chemicals 

All chemicals were obtained from Sigma Aldrich (Poole, UK), unless otherwise stated.  

6.2.3 Domestic Processing 

The effect of domestic processing on the phytochemical content and antioxidant activity of 

watercress was examined by cooking of the plant material by boiling, microwaving, steaming, 

chopping and blending with water to make a watercress smoothie. Processing treatments 

and cooking times used were decided upon general consumer preferences and after online 

search of watercress recipes as well as using past research papers looking at the effects of 

domestic processing on other types of Brassica vegetables. 100 g portions of watercress were 

used for each replicate (n=3). Temperature data for boiling and steaming treatments were 

recorded throughout cooking, using a temperature logger (Squirrel OQ610-S, Grant 

instruments, UK) and a type T thermocouple.  

Boiling (n=3): 500 ml of tap water was brought to boil (90 °C) in a stainless steel pot and 

watercress was boiled for 2, 5 and 10 min. Watercress was removed from the boiling water 

and was kept at -20 °C for analysis.  
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Microwaving (n=3): Fresh watercress was placed in plastic trays, then transferred to a 

domestic microwave oven (Panasonic, UK) and cooked at full power (1400 W) for 1, 2 and 3 

min.  

Steaming (n=3): A domestic steamer (Russel Hobbs, UK) was pre-heated at 100 °C with 500 ml 

water at its base. Watercress was placed in the steamer and cooked for 5, 10 and 15 min.    

Chopping (n=3): 100 g of watercress was transferred to a food processor (Waring Commercial, 

New York, USA) and chopped for 30 secs at full speed. To study the effect of storage time on 

the phytochemical content, the chopped watercress was left on the bench at room 

temperature (21 °C) for 0, 10, 30, 60 and 120 min to replicate how watercress can be treated at 

home when chopped in salads or other dishes and not consumed immediately after 

preparation.  

Watercress smoothie (n=3): 100 g of the plant material was transferred to a juice maker 

(Vitamix, Total Nutrition Centre, UK), 200 ml of water was added and the watercress was 

blended for 30 secs at full power. The effect of storage time was also examined by leaving the 

smoothie on the bench at room temperature (21 °C) for 0, 10, 30, 60 and 120 min. 

After processing, all samples were immediately frozen in liquid nitrogen then freeze-dried 

(Christ A 2-4 LD, Christ, Germany); ground to fine powder using a coffee bean grinder 

(De’Longhi, Italy), vacuum packed and stored at -20 °C.  

6.2.4  Preparation of watercress extracts 

Crude methanol (MeOH) extracts: The method used for the preparation of the extracts was 

adapted from Bell et al. [206] Briefly, 40 mg of ground watercress powder was heated in a dry-

block at 75 °C for 2 min to inactivate myrosinase enzyme. Preheated (70 °C) 70% (v/v) MeOH 
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(1 ml) was then added to each sample and placed in a water bath for 20 min at 70 °C. Samples 

were then centrifuged for 5 min at 6,000 rpm and the supernatant was transferred to fresh 

tubes. The final volume was adjusted to 1 ml with 70% (v/v) MeOH and stored at -20 °C until 

the day of analysis. MeOH extracts were used for the FRAP assay, total phenols as well as 

flavonols and glucosinolates identification and quantification. 

Acetone extracts: Total and specific carotenoids were determined in acetone watercress 

extracts. Watercress powder (25 mg) was weighed out in Falcon tubes (12 ml) previously 

wrapped in aluminium foil to minimise the degradation of carotenoids by ultra-violet light. 

Acetone (4 ml) was added to the powder and the samples were shaken for 15 min at 8000 

rpm. Following centrifugation at 4000 rpm for 5 min, the supernatant was transferred to a 

clean tube and the process was repeated (4 ml acetone for the second time and 2 ml the third 

time) until a colourless supernatant was obtained. The combined supernatants were 

transferred in fresh tubes and the final volume was adjusted to 10 ml with 100% acetone.  

6.2.5 Determination of total phenolics  

Total phenols were measured using the method developed by Singleton and Rossi [207] with 

slight modifications. Briefly, 0.2 ml of the MeOH watercress extract (Section 2.4) or blank was 

added to 6.0 ml of distilled water in volumetric flasks and mixed with 0.5 ml of Folin - 

Ciocalteu reagent. A sodium carbonate solution 20% (v/v) (1.5 ml) was added to the mixture 

and the volume was adjusted to 10 ml.  Absorbance was read after incubation of the samples 

for two hours at room temperature, at 760 nm using a UV-Vis Spectrophotometer (UV-VIS, 

Perkin Elmers, UK). A standard curve was made using gallic acid in the following 



 159 

concentrations: 0, 50, 100, 150, 250, 500, 750 &1000 mg/L and total phenols were measured as 

gallic acid equivalents (R2 > 0.99).  

6.2.6  Ferric Reducing Antioxidant Power (FRAP) assay 

Antioxidant activity of the samples was determined using the FRAP assay based on an 

adapted version of the method developed by Benzie and Strain [208].  The FRAP reagent was 

made by mixing 25 ml of 300 mM acetate buffer (pH 3.6), 2.5 ml 10 mM 2,4,6-tripyridyl-s-

triazine solution (TPTZ) and 2.5 ml of freshly prepared ferric chloride hexahydrate 

(FeCl3·6H2O).  A standard curve was made using L-Ascorbic acid in the following 

concentrations: 0, 10, 50, 100, 250, 500, 750, 1000 μmol/L (R2 > 0.99). Each sample (MeOH 

extracts from Section 2.4) or standard (10 μl) was combined with 300 μl of the FRAP reagent 

and 100 μl of the mixture was transferred in duplicate in a 96-well plate. Absorbance was 

measured immediately using a plate reader (Tecan GENios, Geneva, Switzerland) at 595 nm.  

6.2.7 Total carotenoids 

An aliquot of the acetone extracts prepared as previously described (Section 2.4) was used to 

quantify the total carotenoid content of the samples spectrophotometrically. Absorbance was 

measured at 470, 645 and 662 nm in a spectrophotometer (UV-VIS, Perkin Elmers, UK). The 

total amount of carotenoids was calculated according to the following equations by 

Lichtenthaler [209].   

𝐶! = 11.24 𝐴!!" − 2.04 𝐴!"# 

𝐶! = 20.13 𝐴!"# − 4.19 𝐴!!" 

𝐶!!! = 7.05 𝐴!!" + 18.09 𝐴!"# 

𝐶!!! =  
1000 𝐴!"# − 190 𝐶! − 63.14 𝐶!

214  
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*Chlorophyll a (𝐶!), Chlorophyll b (𝐶!), Total Chlorophylls (𝐶!!! ), Total Carotenoids (𝐶!!!). Equations are based 

on specific absorption coefficients for 100% acetone. The pigment concentrations obtained by inserting the 

measures absorbance values are μg/ml plant extract solution.   

6.2.8 Quantification of carotenoids via HPLC 

To determine the amount of lutein, zeaxanthin and β-carotene present, the acetone extracts 

were used (Section 2.4). Carotenoids were quantified using the method developed by 

Guiffrida et al. [210] with modifications.10 ml of the extract was mixed with 10 ml of diethyl 

ether, 10 ml of water and 5ml of 10% (v/v) NaCl. Two layers were formed and the lower - 

acetone phase was discarded. The upper layer containing the ether was collected in a glass 

vial and anhydrous Na2SO4 was added to it to remove any moisture from the solution.   The 

ether phase was transferred to a clean glass vial, the volume was adjusted to 10ml with 

diethyl ether and the solution was condensed under nitrogen gas. The dry residue was then 

reconstituted in 1 ml of methyl tert- butyl ether (MTBE):MeOH (1:1, v/v), filtered using 0.22 μm 

syringe driven filter unit and analysed by HPLC.  The analyses were performed using an 

YMC30 column (5 µm 250 x 4.6 mm) on a HP Agilent 1050 series HPLC system. The mobile 

phases used were as follows: Eluent A, consisting of MeOH:MTBE:H2O (82:16:2 v/v/v) and 

Eluent B, consisting of MeOH:MTBE:H2O (23:75:2 v/v/v). The analyses followed a gradient 

program for the mobile phases, 0 min 0% B, 20 min 0% B, 80 min 70% B, 90 min 70% B. The 

protocol used a 1 mL/min flow rate and a 100 µL injection volume. UV-vis spectra were 

gathered in the range of 190-600 nm and the chromatograms were analysed at 450 nm. 

Identification was based on retention times by comparison with HPLC grade standards of 

lutein, zeaxanthin and β-carotene (Extrasynthese, France).  
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6.2.9 Identification and quantification of glucosinolates and flavonols via LC-MS/MS 

Methanol extracts, prepared as described above, were used for the quantification of 

glucosinolates and flavonols in the samples (Section 2.4.1). Each extract (1 ml) was filtered 

using a 0.22 μm syringe driven filter unit (Millex; EMD Millipore, Billerica, MA, USA) and then 

diluted using 9ml LC-MS grade water. For the quantification of glucosinolates and flavonols, 

external calibration curves of 12 mM sinigrin hydrate and isorhamnetin standards were 

prepared using the following concentrations (56 ng.μl-1, 42 ng.μl-1, 28 ng.μl-1, 14 ng.μl-1, 5.6 

ng.μl-1, R2 > 0.99). Glucosinolates and flavonols were analysed by LC-MS/MS using an Agilent 

1200 LC system coupled to an Agilent 1100 series LC/MS mass trap spectrometer. Separation 

conditions of samples and MS analysis settings used are identical to those described by Bell, 

Oruna-Concha [206] . Glucosinolates were quantified at 229 nm and flavonols at 330 nm. The 

identification was performed using the compounds nominal mass and the analysis of their 

fragmentation patterns, and also by the comparison with previously published data. All data 

were analysed using Agilent ChemStation.  

6.2.10  Statistical Analysis 

The results are presented as the mean of three biological replicates (n = 3) for each sample. 

One-way ANOVA and Dunnett’s multiple comparisons test were used for comparison of all 

treatments related to the raw watercress. These analyses were carried out using GraphPad 

Prism version 5.0a for Mac OS X,GraphPad software (Version 5.0a La Jolla, California, USA). 

Principal component analysis (PCA) and correlation analysis were performed using XL Stat 

(Version 2016 Addinsoft, New York City, New York, USA).   
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6.3 Results and Discussion  

6.3.1 Total phenols content  

Fresh watercress had the highest amount of total phenols (14.86 ± 2.02 mg GAE g-1 DW) 

compared to the processed samples (Fig. 5.1A). Our results are in agreement with that of 

Aires, Carvalho [211] who found the phenolic content of watercress to be 14.00 ± 0.03 mg 

GAE g-1 DW. In comparison to other vegetables in the Brassica family, watercress is a rich 

source of phenolic compounds. It has a similar amount to kale (16.67 ± 0.67 mg GAE g-1 DW) 

[212] and it is much higher than broccoli and cabbage which have a lower phenolic content 

that being 8.86 mg and 5.6 mg GAE g-1 DW respectively [213, 214].  

Boiling of watercress resulted in a significant decrease (P<0.05) in the total phenolic 

content in comparison with the fresh samples. Total phenolic losses ranged from 49% to 71% 

in the samples boiled for 2 and 10 minutes respectively. Microwaving and steaming for up to 

5 minutes did not significantly affect the phenolic content of watercress (P>0.05). Likewise, 

blending with water to make a watercress smoothie and chopping did not have a significant 

effect on the total phenolic content in the watercress. However, storage of the smoothies and 

the chopped watercress samples for 120 minutes at room temperature resulted in a 

significant reduction of the phenolics from 13.65 ± 1.56 to 10.76 ± 1.15 mg GAE g-1 DW and 

from 10.55 ± 1.48 to 8.65 ± 2.29 mg GAE g-1 DW respectively (Figure 1A).  

Our results are corroborated by previous studies showing that boiling of Brassica 

vegetables can lead to significant time dependant losses of phenolics whereas microwaving 

and steaming led to only minor decreases in the phenolic content of broccoli [215, 216], red 

cabbage [217] and cauliflower [218]. During the process of cooking, phenolic compounds 
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appear to be highly reactive undergoing several changes including their release from bound 

forms, oxidation, degradation and polymerisation [213].  

The losses during boiling can be attributed to water-soluble compounds leaching into 

the water used for boiling or due to breakdown of these compounds during thermal 

processing. Indeed, analysis of the water used in the boiling experiments (9.35 ± 0.12 mg GAE 

g-1 DW) for total phenolics revealed that phenols had leached into the boiling water. The total 

amount of phenols in the water used in boiling and the remaining phenol content of 

watercress was no different from the total phenols in raw watercress. The minimal effect of 

microwaving and steaming on the phenolic compounds is potentially a result of limited or no 

contact of the samples with water and also the inactivation of oxidative enzymes preventing 

the disruption of phenolic biosynthesis and degradation [219]  
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Figure 6.1 (A) Total phenols content in raw and processed samples expressed as gallic acid 
equivalents (GAE) in mg g-1of dry weight (DW). (B) FRAP-assay results for the measurement of 
the antioxidant activity in raw and cooked watercress samples. Results are presented as 
ascorbic acid equivalents (AAE) in mg g-1 of DW. Data is mean of three biological replicates + 
SD. Significance: *, P < 0.05; **, P < 0.01; *** P < 0.001 as compared to raw watercress.  (BD: 
Boiled, MW: Microwaved, ST: Steamed, SM: Smoothie, CH: Chopped. 
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6.3.2 Flavonols identification and quantification 

Flavonol profiling of watercress revealed three main derivatives namely kaempferol, 

quercetin and isorhamnetin as well as feruloyl, ceffeoyl, p-coumaroyl and sinapoyl glucosides 

attached to kaempferol and quercetin. Kampferol-3-diglucoside-7-glucoside was the most 

abundant flavonol detected (3.76 ± 0.09 mg g-1 DW). The flavonols identified in the fresh 

watercress leaves are similar to those defined by Martinez-Sanchez, Gil-Izquierdo [204].  

Domestic processing of watercress resulted in a significant decrease in the levels of all 

quantified flavonols (Table 5.1). The only exception was Q 3,4'diGlc-3'-(p.coum-Glc) + K 3,4'-

diGlc which appeared to be the most stable of all flavonols and were only significantly 

affected by boiling (P<0.05). Total flavonol losses suggest that these compounds are 

particularly sensitive to all cooking regimes used. Boiling for 10 minutes nearly depleted all 

watercress samples of flavonols in a time dependent manner. The unstable nature of 

flavonols was also apparent in chopped watercress and watercress smoothie with the levels 

going down to 3.42 ± 0.32 and 4.11 ± 0.36 mg g-1 DW respectively as compared to the total 

amount of flavonols in the fresh samples (10.70 ± 1.07mg g-1 DW, P<0.001). Similarly to total 

phenols, the highest retention of flavonols was observed in the microwaved watercress 

followed by steamed.  



 

 

Table 5.1 Concentration of individual and average total flavonols in raw and processed watercress samples. Data are presented in 
mg g-1 of DW (mean ± SD). Experiment was performed with three biological replicates per group. Significance: *, P < 0.05; **, P < 
0.01; *** P < 0.001 as compared to flavonoid content of raw watercress. Abbreviations: K, kaempferol; I, isorhamnetin; Q, quercetin; 
Glc; glucoside, fer, feroloyl; sinp, sinapoyl; p.cisoum, p-coumaroyl; caf, caffeoy

 

 K 3-diGlc- 
7-Glc I 3-Glc K 3-(fer-

triGlc)-7 Glc 

Q 3-(fer-Glc)-3'-
(sinp-Glc)-4'-Glc + 
Q 3-p.coum-Glca 

Q 3,4'diGlc-3'-
(p.coum-Glc) + 

K 3,4'-diGlca 

Q 3-(caf-Glc)-3'-
(sinp-Glc)-4'-Glc 

Q -3,4’diGlc-3’-
(caf-Glc) 

K 3-(sinp-
triGlc)-7-Glc 

K 3-(sinp-
Glc)-4’Glc Total 

 mg g-1 DW 

Raw 3.76±0.09 1.18±0.03 1.73±0.06 0.52±0.01 0.35±0.02 1.35±0.26 0.76±0.02 0.68±0.14 0.36±0.05 10.70±1.07 

           

Boiled 2m 1.09±0.16*** 0.46±0.04*** 0.62±0.08*** 0.28±0.01*** 0.21±0.04 0.29±0.09*** 0.36±0.08*** 0.20±0.02*** 0.15±0.05*** 3.66±0.30*** 

Boiled 5M 0.55±0.04*** 0.26±0.02*** 0.34±0.03*** 0.17±0.02*** 0.08±0.01*** 0.18±0.09*** 0.19±0.05*** 0.11±0.06*** 0.13±0.06*** 2.01±0.15*** 

Boiled 10m 0.58±0.16*** 0.26±0.06*** 0.35±0.08*** 0.16±0.03*** 0.06±0.03*** 0.12±0.07*** 0.13±0.02*** 0.13±0.15*** 0.08±0.02*** 1.86±0.17*** 

           

MW 1m 2.25±0.33** 0.76±0.06*** 0.99±0.20*** 0.36±0.09* 0.37±0.09 0.63±0.42*** 0.61±0.08* 0.36±0.05*** 0.20±0.04*** 6.53±0.62** 

MW 2m 1.57±0.43*** 0.54±0.16*** 0.74±0.21*** 0.25±0.08** 0.23±0.17 0.47±0.19*** 0.38±0.23* 0.24±0.10*** 0.15±0.04*** 4.57±0.44*** 

MW 3m 1.31±0.22*** 0.44±0.09*** 0.57±0.10*** 0.20±0.04*** 0.25±0.04 0.29±0.01*** 0.44±0.01* 0.23±0.01*** 0.14±0.01*** 3.87±0.36** 

           

Steamed 5m 1.50±0.28* 0.53±0.11*** 0.68±0.13*** 0.27±0.10*** 0.28±0.10 0.40±0.08*** 0.44±0.16* 0.23±0.05*** 0.16±0.03*** 4.47±0.41** 

Steamed 10m 1.41±0.29*** 0.49±0.11*** 0.64±0.11*** 0.22±0.06*** 0.24±0.11 0.36±0.04*** 0.41±0.16** 0.21±0.01*** 0.15±0.06*** 4.12±0.39** 

Steamed 15m 1.25±0.19*** 0.45±0.06*** 0.59±0.11*** 0.22±0.07*** 0.19±0.06 0.32±0.10*** 0.36±0.08*** 0.16±0.03*** 0.15±0.02*** 3.70±0.35*** 

           

Smoothie 0m 1.31±0.01*** 0.47±0.02*** 0.66±0.01*** 0.26±0.02*** 0.27±0.07 0.44±0.26*** 0.37±0.06*** 0.21±0.05*** 0.11±0.04*** 4.11±0.36*** 

Smoothie 30m 0.92±0.10*** 0.35±0.03*** 0.49±0.05*** 0.14±0.03*** 0.18±0.02 0.25±0.14*** 0.24±0.04*** 0.10±0.02*** 0.07±0.01*** 2.73±0.27*** 

Smoothie 60m 1.11±0.16*** 0.44±0.09*** 0.64±0.11*** 0.19±0.03*** 0.28±0.04 0.30±0.08*** 0.28±0.09*** 0.10±0.02*** 0.06±0.01*** 3.39±0.33*** 

Smoothie 120m 1.13±0.20*** 0.42±0.06*** 0.64±0.12*** 0.23±0.07*** 0.19±0.02 0.26±0.11*** 0.29±0.10*** 0.11±0.06*** 0.06±0.03*** 3.34±0.33*** 

           

Chopped 0m 1.12±0.17*** 0.42±0.07*** 0.58±0.09*** 0.15±0.04*** 0.17±0.10* 0.41±0.14*** 0.30±0.11*** 0.16±0.03*** 0.11±0.01*** 3.42±0.32*** 

Chopped 30m 0.96±0.13*** 0.44±0.07*** 0.53±0.07*** 0.13±0.02*** 0.24±0.04 0.24±0.03*** 0.40±0.04** 0.16±0.01*** 0.10±0.01*** 3.21±0.27*** 

Chopped 60m 0.78±0.07*** 0.41±0.04*** 0.49±0.06*** 0.10±0.01*** 0.20±0.02 0.19±0.02*** 0.42±0.10** 0.13±0.02*** 0.09±0.01*** 2.80±0.23** 

Chopped 120m 0.72±0.14*** 0.38±0.11*** 0.49±0.14*** 0.06±0.03*** 0.11±0.08** 0.34±0.17*** 0.26±0.09*** 0.11±0.02*** 0.08±0.03*** 2.56±0.22*** 



 167 

Carotenoid content 

In contrast to the previous assays, boiling of watercress resulted in an increased 

concentration of total measurable carotenoids, from 2.35 ± 0.22 mg g-1 DW in the fresh 

samples to 3.13 ± 0.20 mg g-1 DW after 2 minutes of cooking and up to 3.28 ± 0.30 mg g-1 

DW after 5 minutes of boiling (Table 5.2). Microwaving and steaming did not have a 

significant impact on the level of total carotenoids (P>0.05). On the other hand, the 

watercress smoothie had significantly lower total carotenoid content, with the levels 

decreasing from 1.54 ± 0.21 to 1.11± 0.08 mg g-1 DW after 60 minutes of storage at 

ambient temperature. A similar decreasing trend was observed in the chopped watercress 

samples. 

The individual carotenoids identified and quantified in our watercress samples 

were β-carotene, lutein and zeaxanthin and they all resulted in distinct responses upon 

domestic processing.  β-carotene was the most abundant of the three quantified 

carotenoids (0.95 ± 0.08 mg g-1 DW) and its levels significantly increased after thermal 

treatment of the watercress samples. Boiling for 5 minutes resulted in β-carotene being 

significantly increased up to 1.75 ± 0.09 mg g-1 DW as compared to the raw samples 

(P<0.001). In the microwaved watercress samples β-carotene was increased up to 1.48 ± 

0.26 mg g-1 DW (P<0.01) and in the samples steamed for 15 minutes levels went up to 1.54 

± 0.07 mg g-1 DW (P<0.001). β-carotene was decreased in the watercress smoothie only 

after storage for 30 and 60 and 120 minutes (P<0.01) therefore, immediate consumption 

of a watercress smoothie ensures sufficient intake of β-carotene. No significant differences 

were found in the chopped samples.  

Lutein content of fresh watercress samples was 0.24 ± 0.02 mg g-1 DW and it 

exhibited the highest degree of stability after watercress processing. It was significantly 
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increased only after 5 minutes of boiling going up to 0.36 ± 0.02 mg g-1 DW  (P<0.05). 

Significant decreases in lutein were only observed in the smoothie after 120 minutes of 

storage (P<0.05). Zeaxanthin concentration in fresh watercress was notably lower than β-

carotene and lutein (0.02 ± 0.00 mg g-1 DW). It was dramatically affected by boiling with 

increases higher than 6 and 3 times, as compared to fresh watercress, after boiling for 5 

minutes and steaming for 10 minutes respectively.   

Increases in the carotenoid contents of other Brassica vegetables such as broccoli, 

Brussels sprouts, cabbage and cauliflower upon boiling and steaming have been reported 

by a number of research groups [76, 213, 220]. Elevations in the measurable carotenoid 

concentrations after thermal treatments can be explained by changes in the plant cell wall 

due to the breakdown of cellulose as well as improved extractability of carotenoids from 

the plant as a result of the denaturation of carotenoid-protein complexes due to thermal 

processing [221].  
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Table 6.2 Quantification of total and specific carotenoids, in raw and processed watercress 
samples. Data is presented as absolute carotenoid concentration in mg g-1 of DW (mean ± 
SD). Experiment was performed with three biological replicates per group. Significance:  *, 
P < 0.05; **, P < 0.01; ***P < 0.001 as compared to carotenoid content of raw watercress. a 
Total amount of carotenoids measured spectrophotometrically. 

 
β-carotene Lutein Zeaxanthin Total a 

 mg g-1 DW 

Raw 0.95±0.08 0.24±0.02 0.02±0.00 2.35±0.22 

     Boiled 2m 1.42±0.27** 0.30±0.06 0.09±0.03*** 3.13±0.20** 

Boiled 5M 1.75±0.09*** 0.36±0.02* 0.13±0.01*** 3.28±0.30*** 

Boiled 10m 1.29±0.20 0.24±0.05 0.10±0.03*** 3.00±0.17* 

     MW 1m 1.47±0.26** 0.32±0.04 0.04±0.01 2.53±0.15 

MW 2m 1.19±0.09 0.28±0.04 0.04±0.01 2.57±0.13 

MW 3m 1.48±0.26** 0.26±0.06 0.05±0.00 2.65±0.33 

     Steamed 5m 1.34±0.10* 0.26±0.02 0.05±0.01 2.33±0.23 

Steamed 10m 1.45±0.10** 0.18±0.03 0.06±0.01* 2.27±0.12 

Steamed 15m 1.54±0.07*** 0.17±0.10 0.05±0.01 2.31±0.47 

     Smoothie 0m 0.61±0.15 0.24±0.02 0.02±0.01 1.54±0.21** 

Smoothie 30m 0.39±0.01** 0.18±0.05 0.03±0.01 1.14±0.17*** 

Smoothie 60m 0.36±0.14*** 0.16±0.05 0.02±0.00 1.11±0.08*** 

Smoothie 120m 0.31±0.28*** 0.11±0.09* 0.01±0.01 1.57±0.36** 

     Chopped 0m 0.81±0.05 0.23±0.04 0.02±0.02 1.94±0.23 

Chopped 30m 0.62±0.23 0.17±0.08 0.02±0.01 1.65±0.15* 

Chopped 60m 0.71±0.11 0.22±0.01 0.03±0.01 1.57±0.25** 

Chopped 120m 0.67±0.10 0.18±0.02 0.02±0.01 1.79±0.17 
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6.3.3 Glucosinolate identification and quantification 

Gluconasturtiin was the most abundant glucosinolate in fresh and cooked watercress 

samples followed by the indole glucosinolates: glucobrassicin, 4-methoxyglucobrassicin, 

4-hydroxyglucobrassicin and the aliphatic glucosinolate glucoibarin (Table 5.3). The profile 

characterised here is similar to that previously defined by Boyd, McCann [53], Gill, Haldar 

[57]. 

Glucosinolate quantification revealed a major impact of cooking on the levels of 

these phytochemicals. Boiling reduced the levels of total glucosinolates by up to 63% and 

led to significant loses of all the individual glucosinolates identified in this study (P<0.001).  

Considerable glucosinolate losses after boiling of Brassica vegetables like broccoli, 

cauliflower and Brussels sprouts, have also been observed in other studies performed by a 

number of research groups [222, 223]. Heat application combined with cooking in water 

can result in depletion of glucosinolates in Brassica as a result of enzyme activity 

modification and thermally induced breakdown processes [205, 224]. Boiling of watercress 

in water caused significant loss of glucosinolates that most likely have leached into the 

cooking water. Similar conclusions were drawn by Song and Thornalley [222] who showed 

that boiling of Brassica vegetables leads to significant leaching of glucosinolates in the 

boiling water. Jones [224] have shown that the glucosinolate losses in Brassica vegetables 

are positively correlated with the cooking time.  

Microwaving and steaming had a subtle effect on glucosinolate concentrations 

with minor losses at the longest cooking duration, as compared to the other treatments. 

Microwaving and steaming for 2 or 5 minutes did not result in major losses of total 

glucosinolates suggesting that these cooking methods will ensure a higher retention rate 

of these phytochemicals. Our results are in agreement with that of Song and Thornalley 
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[222] who examined the impact of different cooking methods on broccoli, brussels 

sprouts, cauliflower and green cabbage. This observation is likely due to denaturation and 

subsequent deactivation of the myrosinase enzyme, which depletes glucosinolates in 

favour of their hydrolysis to isothiocyanates, after application of high temperatures during 

cooking [225].  We found that cooking by steaming resulted in a slight increase in 

gluconasturtiin concentrations from 1.76 to 2.04 mg g-1 DW (P<0.05) and it can therefore 

be considered as the preferred method of watercress consumption to maximise 

gluconasturtiin levels. Elevated gluconasturtiin concentrations upon steaming are also 

reported by Gliszczynska-Swiglo, Ciska [213] in broccoli. Increases in other glucosinolates 

in Brassica vegetables subjected to steaming have been also been noted in a number of 

studies [223, 226]. The inactivation of myrosinase at the high temperatures such as the 

ones reached during steaming, can temporarily cease the conversion of glucosinolates to 

isothiocyanates [223] a process which can be undertaken post ingestion, in vivo,  by the 

action of the endogenous bacterial myrosinase in the gut [227].  Furthermore, heat 

application leads to plant cell structure disintegration allowing glucosinolates to be 

released from their bound forms on the plant cell wall making these compounds more 

recoverable during extraction [213]. Steaming is performed without direct contact of the 

plant material and water, preventing the leaching of glucosinolates into it.  

Homogenisation by blending watercress with water to create a smoothie resulted 

in dramatic reductions in glucosinolates stemming mainly from the complete loss of 

gluconasturtiin (P<0.001). Upon chopping losses ranged from 35% to 46% after 120 

minutes of storage at room temperature. Chopping of vegetables before consumption is a 

regular practise and this can lead to decreased glucosinolate content since they are 

exposed to myrosinase for conversion to isothiocyanates. This was reflected in our results 



 172 

and those of others [222, 228], and it was particularly apparent in the gluconasturtiin 

quantification. When watercress was homogenised to create a smoothie, gluconasturtiin 

was completely lost and the levels of other glucosinolates were significantly diminished.  

Our results are comparable with results from a study performed by Smith, Mithen [228] 

where homogenisation for juice extraction from Brussels sprouts led to loss of 

glucosinolates which were converted to isothiocyanates and other breakdown products 

due to the exposure of glucosinolates to myrosinase enzyme. Song and Thornalley [222] 

observed that shredding of Brassica vegetables and subsequent storage at ambient 

temperature results in major losses of glucosinolates with concurrent formation of 

isothiocyanates. Isothiocyanates such as PEITC are highly volatile compounds therefore 

they are prone to evaporation as observed by Rose, Faulkner [58] who did not detect 

PEITC in watercress aqueous extracts. However, Ji, Kuo [229] noted that PEITC remains 

stable in aqueous buffers with a half-life of 56 h at ambient temperature. This suggests 

that smoothies or juices made from watercress, which is rich in PEITC, should be freshly 

consumed after preparation to ensure adequate ingestion.   
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Table 6.3 Concentration of individual and average total glucosinolates in raw and 
processed watercress samples. Data is presented in mg g-1 of DW (mean ± SD). Experiment 
was performed with three biological replicates per group. Significance: *, P < 0.05; **, P < 
0.01; ***, P < 0.001 as compared to carotenoid content of raw watercress. 

 

 
 
 
 
 
 

 
Gluconasturtiin Glucobrassicin 4-hydroxy- 

glucobrassicin 
4-methoxy- 

glucobrassicin 
Glucoibarin Total 

 mg g-1 DW 

Raw 1.76±0.07 0.47±0.04 0.22±0.01 0.26±0.01 0.08±0.00 2.79±0.09 

 
      

Boiled 2m 1.02±0.05*** 0.18±0.02*** 0.08±0.01*** 0.09±0.01*** 0.06±0.00 1.44±0.06*** 

Boiled 5M 0.81±0.09*** 0.13±0.02*** 0.07±0.01*** 0.08±0.01*** 0.06±0.00 1.16±0.11*** 

Boiled 10m 0.71±0.06*** 0.10±0.00*** 0.08±0.01*** 0.08±0.00*** 0.06±0.00 1.03±0.07*** 

  
      

MW 1m 1.97±0.22 0.41±0.06 0.18±0.04 0.18±0.06** 0.05±0.04 2.78±0.40 

MW 2m 1.59±0.19 0.32±0.07 0.17±0.00 0.16±0.01** 0.06±0.00 2.30±0.22** 

MW 3m 1.57±0.09 0.38±0.04 0.12±0.03** 0.15±0.02** ND 2.22±0.17** 

  
      

Steamed 5m 2.04±0.09* 0.35±0.01** 0.18±0.04 0.14±0.03** 0.06±0.00 2.77±0.06 

Steamed 10m 1.98±0.06 0.35±0.02** 0.19±0.01 0.17±0.01** ND 2.69±0.08 

Steamed 15m 1.61±0.31  0.30±0.05*** 0.10±0.03*** 0.12±0.02*** ND 2.13±0.34* 

  
      

Smoothie 0m ND 0.27±0.05*** 0.03±0.05*** 0.04±0.05*** ND 0.34±0.11*** 

Smoothie 30m ND 0.30±0.01*** ND ND ND 0.30±0.01*** 

Smoothie 60m ND 0.28±0.04*** ND ND ND 0.28±0.04*** 

Smoothie 120m ND 0.29±0.01*** ND ND 0.02±0.04* 0.31±0.01*** 

  
      

Chopped 0m 1.06±0.09** 0.52±0.05 0.11±0.03** 0.11±0.01*** ND 1.80±0.06** 

Chopped 30m 1.16±0.05** 0.39±0.04 0.10±0.02* 0.10±0.00*** ND 1.75±0.02*** 

Chopped 60m 1.03±0.06** 0.39±0.05 0.10±0.02* 0.10±0.00*** ND 1.62±0.11*** 

Chopped 120m 1.01±0.06** 0.34±0.06** 0.08±0.01*** 0.08±0.01*** 0.01±0.02* 1.52±0.14** 
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6.3.4 Antioxidant activity 

The antioxidant activity of all watercress samples was determined using the FRAP assay 

(Figure 1B). Fresh watercress had an antioxidant activity of 74.54 ± 10.81 μmol AAE g-1 DW. 

Watercress was found to have the highest antioxidant activity when compared to spinach, 

rocket and mizuna [204, 230].  

Boiling dramatically decreased the antioxidant capacity of watercress over time as 

compared to raw watercress, with losses reaching 67% of total antioxidant activity for 

samples cooked for 10 minutes (Fig. 5.1B). Antioxidant activity analysis of the cooking 

water showed that the losses observed during boiling are due to leaching of antioxidant 

compounds in the water (46,03 ± 9.42 μmol AAE g-1 DW). In contrast, microwaving and 

steaming of watercress did not result in any significant losses. Chopping and blending to 

smoothie had no significant impact on the antioxidant activity of the samples, however 

storage of these samples at room temperature for 30 or 120 minutes resulted in a 

significant decrease in antioxidant activity. Chopping and blending to smoothie reduced 

the antioxidant activity to 42.84 ± 8.00 and 48.47 ± 9.63 μmol AAE g-1 DW at 120 minutes 

of storage respectively. The antioxidant activity of raw and cooked samples followed a 

similar trend to that found for total phenols with a significant correlation between these 

measures (R2 = 0.759, P<0.05). 

In a study carried out by Ismail, Marjan [231] it was found that boiling for 1 minute 

significantly decreased the antioxidant activity of kale, but not that of cabbage. Zhang and 

Hamauzu Zhang and Hamauzu [215] showed that after boiling and microwaving, broccoli 

lost 65% and 65.3% of its total antioxidant activity respectively.  

Since the antioxidant activity of plants may be defined by the concentration of phenols 

and ascorbic acid in combination with other phytochemicals, leaching of these 



 175 

compounds into the boiling water, or oxidation and degradation of them during cooking, 

can lead to lower antioxidant activity of watercress [213, 219].  

6.3.5 Watercress phytochemical profile modifications upon cooking 

PCA revealed distinct phytochemical profiles for watercress cooked using different 

regimes (Fig. 5.2). The profiles obtained from microwaved and steamed watercress closely 

resembled that of fresh watercress with these cooking methodologies positively 

correlating with the phenolics, carotenoids and glucosinolate concentrations. In stark 

contrast, boiled watercress has a phytochemical profile very different from that of fresh 

watercress characterised by elevated carotenoid amounts (R2= 0.668) and significant 

losses in glucosinolates and flavonols, which essentially result in compromised antioxidant 

activity (R2= -0.596).  Chopped watercress and watercress smoothie samples have similar 

phytochemical profiles and separate from the fresh samples on the first principal 

component characterised by losses of all the phytochemicals quantified in our study. 

Cooking time appears to be negatively correlated with microwaving, boiling and steaming 

but exposure of chopped samples and watercress smoothie to ambient temperature for 

extended time periods does not appear to have a particular impact on the measureable 

phytochemicals in these samples, expect in the total phenolic content of stored chopped 

watercress. Antioxidant activity as measured by the FRAP assay, exhibits a significant 

positive correlation with microwaving (R2= 0.452) driven by higher concentrations of 

glucosinolates and flavonols suggesting that it should be the preferred method of 

watercress preparation when it is not consumed raw. 
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Figure 6.2 PCA scores of all cooked samples (☐) and loadings plot for all quantified 
phytochemicals (O). Abbreviations: 4-MGB, 4-methoxyglucobrassicin; 4-HGB, 4-
hydroxyglucobrassicin; KSG, K 3-(sinp-Glc)-4’Glc; KSTG, K 3-(sinp-triGlc)-7-Glc; QDGCG, 
QCSG, Q 3-(caf-Glc)-3'-(sinp-Glc)-4'-Glc; KDG, K 3-diGlc-7-Glc; IG, I 3-Glc; KFTG, K 3-(fer-
triGlc)-7 Glc; QCG+KDG Q 3,4'diGlc-3'-(p.coum-Glc) + K 3,4'-diGlc.  
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6.4 Conclusions 

This study clearly demonstrates that health-promoting compounds in watercress are 

significantly influenced by domestic processing methods. Cooking by microwaving and 

steaming preserves the levels of most phytochemicals in watercress. Domestic processing 

can have a detrimental effect on the bioactives, which may be responsible for the health 

promoting properties of watercress. Satisfactory retention of beneficial phytochemicals in 

watercress may be achieved by avoiding boiling which results in a compromised 

phytochemical profile.  
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6 Plasma and urinary metabonomic responses to watercress 
intervention in breast cancer - A pilot study 

 
Hypothesis 

It is hypothesised that watercress consumption during radiotherapy treatment can help in 

limit radiation induced damage in healthy cells, whilst potentially enhancing the response 

of breast cancer patients to the treatment 

 

Aim  

• To explore the ability of watercress intake to modulate the metabolism of breast 

cancer patients undergoing radiotherapy 

Objectives 

• 1H NMR metabonomic profiling of plasma and urine samples will be used to 

identify biochemical differences between breast cancer patients consuming 

watercress throughout the duration of radiotherapy and breast cancer patients 

maintain their habitual diet during treatment.  
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6.1 Introduction 

RT works by significantly increasing ROS formation, damaging the DNA of the 

targeted cancer tissue. It aims in the cease of cancer cell proliferation and ultimately 

cancer cell death. Non-cancerous cells, including blood cells, are unavoidably affected in 

the course of radiotherapy treatment. Side effects include skin reactions, nausea, anorexia 

and generalised pain are extremely common among patients receiving radiotherapy [14]. 

More severe side effects include hyperpigmentation, skin fibrosis and potential influence 

on lung and heart tissues. [15, 21]. The need for radio-protective agents is of paramount 

importance for oncologists especially in cases of radio-resistant tumours where higher 

doses of radiation have to be administered to the patient.  

Of note, the role of nutrition intervention in medium and long-term outcomes in 

cancer has been demonstrated. It is today acknowledged as grade A evidence that 

individualised nutritional counselling and education plays a central role in improving 

long-term outcomes in cancer, by prolonging survival, reducing late radiotherapy toxicity 

and improving quality of life [232, 233]. The present pilot clinical trial of nutritional 

supplementation in cancer, intends to further explore the effects of therapeutic diets 

supplemented with phytonutrients via watercress that may prove useful in global disease 

prognosis.  

Building upon the in vitro data (previously described in Chapter 3 and 4) 

supporting a role of watercress and its components -particularly PEITC- against various 

steps in carcinogenesis, a human intervention study was conducted to explore the 

potential of watercress to reduce DNA damage levels. A randomised crossover study was 

carried out by Gill et al. in 60 healthy volunteers that were instructed to consume one pack 

(85g) of raw watercress daily for 8 weeks [57]. Compared to the control phase, watercress 
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supplementation increased lymphocyte DNA resistance to free radicals, thus reducing 

DNA damage. The hypothesis set out was that watercress might reduce cancer risk via 

decreased damage to DNA and possible effects on antioxidant status by increasing levels 

of plasma carotenoids. Additional evidence was obtained from a study performed by 

Fogarty et al. where acute and chronic watercress attenuated DNA damage and lipid 

peroxidation and decreased H2O2 accumulation following exhaustive exercise [52].  

Watercress is the richest dietary source of PEITC, to which a number of anti-cancer 

properties are attributed. A recognised mechanism by which PEITC inhibits the growth 

and survival of established cancer cells is through the inhibition of angiogenesis [61]. Alwi 

et al. performed a study in twelve healthy women who had previously been treated for 

breast cancer, where dietary intake of 80 g watercress significantly reduced hypoxia-

inducible factor (HIF) signalling activity in peripheral blood cells. HIF is a major positive 

regulator of angiogenesis and its inhibition by watercress consumption suggests that diet-

derived PEITC may be sufficient to modulate angiogenesis [107]. These findings are 

justifiably interesting for potential cancer prevention by watercress.  

Metabolic profiling of bio-fluids obtained from cancer patients undergoing RT can 

provide important information on treatment efficacy and disease prognosis. However, RT-

specific metabolic biomarkers can be difficult to obtain since they are naturally 

confounded by cancer-specific biomarkers. Limited data from human studies are available 

regarding prognostic and predictive metabolic biomarkers in RT. In a recent study, 

metabolomic profiling of urine samples obtained from cancer patients undergoing whole-

body RT before receiving hematopoietic stem-cell transplantation, revealed seven 

metabolic markers differing between pre and post radiation (octanoylcarnitine, 

hypoxanthine, xanthine, trimethyl-lysine, acetyl-carnitine, decanoylcarnitine and uric 
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acid). The metabolites identified were directly related to RT targets such as mitochondria-

related lipid damage and β-oxidation perturbations (carnitines and trimethyllysine), 

oxidative stress and radiation-induced DNA damage (purine catabolism: xanthine, 

hypoxanthine and uric acid) [234].  

In this thesis, Chapter 3 has provided in vitro data on the potential of watercress 

extract and PEITC to interact with the metabolome of breast cancer and healthy cells, 

influencing phospholipid metabolism as well as modulating the antioxidant status of 

these cells. These observations were accompanied by mitochondrial damage, cell cycle 

arrest and DNA damage. Subsequently, in Chapter 4 it was shown that through its ability 

to deplete glutathione, PEITC sensitises breast cancer cells to radiation induced damage 

whereas the watercress extract appeared protect healthy cells from IR toxicity by 

influencing intracellular levels of glutathione. To validate these observations in vivo, the 

present study seeks to investigate and analyse the ability of watercress to act as a 

nutritional adjuvant intervention during radiotherapy treatment, in that it can potentially 

alleviate radiotherapy derived systemic side effects and improve the treatment outcomes 

in breast cancer patients.  
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6.2 Materials and Methods  

6.4.1 Subjects 

The study was conducted in 47 female volunteers aged between 40-71 years old. All 

subjects were early-stage breast cancer patients referred for radiotherapy with curative 

intent at the University Hospital of Santa Maria (Lisbon, Portugal). Exclusion criteria were 

pregnancy, cognitive impairment, and patients carrying implantable electronic devices 

(e.g. pacemaker). Information regarding family history of was collected from all 

participants in the study. Ethical review and approval was provided by the ethics 

committee of both the Lisbon University Hospital and the Faculty of Medicine of the 

University of Lisbon. The clinical trial was registered at http://clinicaltrials.gov 

(NCT02468882).  

6.4.2 Study design 

The study was designed as a non-blinded, prospective randomised controlled trial. The 

volunteers were assigned to either the control or the intervention group. The control 

group received standard care, maintaining their ad libitum diet. The intervention group 

was asked to consume 100 g of watercress per day alongside their habitual diet from the 

onset and for the total duration of the radiotherapy treatment. Breast cancer patients 

participating in the study were prescribed 60-70 Gy of radiotherapy treatment with 

fractionated delivery over a 6-7 week period.  

 Patients received detailed recommendations on how to consume watercress with 

suggestions for preparation including watercress eaten fresh as a salad, or gently cooked 

by steaming or microwaving or stirred into hot food before serving. These suggestions 

were given to the volunteers on the basis of the results obtained in Chapter 5. 
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 Spot urine and blood samples were obtained at baseline and at the end of the RT 

treatment. Blood samples were collected in heparin containing tubes and centrifuged at 

12,000 g for 10 min. Plasma aliquots and urine samples were stored at -80 °C until 

analysed.  

6.4.3 Statistical analysis 

Statistical analysis of clinical characteristics was carried out using GraphPad Prism version 

5.0a for Mac OS X,GraphPad software (Version 5.0a La Jolla, California, USA). P-values were 

calculated by unpaired t-test with Welch’s correction for continues variables and by chi-

squared test for categorical variables. 

6.4.4 1H NMR spectroscopy and data processing 

Metabonomic profiling was performed on all urine samples. A 400 μl aliquot was added to 

200 μl of phosphate buffer (pH 7.4, 100% D2O, 0.2M Na2HPO4/NaH2PO4) containing 1mM of 

the internal standard, 3-(trimethylsilyl)-[2,2,3,3,-2H4]-propionic acid (TSP) and 2mM sodium 

azide (NaN3) as a bacteriocide. Samples were vortexed and spun at 13,000 g for 10 min and 

550μl of the supernatant were transferred into 5mm NMR tubes. Spectroscopic analysis 

was performed on a 600 MHz Bruker AvanceTM NMR spectrometer at 300K using a Bruker 

TXI probe (Bruker Biospin, Rheinstetten, Germany). 1H NMR spectra of the urine samples 

were acquired using a standard one-dimensional pulse sequence [recycle delay (RD) -90°-

t1–90°-tm-90°-acquire free induction decay (FID)]. The water signal was suppressed during 

the RD of 4 s with a mixing time of (tm) 100 ms, t1 was 11.25 μs. For each spectrum, 32 scans 

were obtained into 64K data points using a spectral width of 12.001 ppm. 

Aliquots of 200 μl plasma were combined with 400 μl of saline buffer (100% D2O, 

0.9% NaCl). The samples were mixed by vortexing and were then centrifuged at 13,000 g 

for 10 min and 550 μl of the resulting supernatant were transferred to 5 mm NMR tubes. 1H 
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NMR spectra were acquired on a 600 MHz Bruker AvanceTM NMR spectrometer at 300K 

using a Bruker TXI probe (Bruker Biospin, Rheinstetten, Germany) in a random order. 

Spectra were acquired using a one-dimensional technique using a standard pulse 

sequence with water pre-saturation and Carr-Purcell-Meiboom-Gill (CPMG) spin echo 

sequences to minimise the broader peaks occurring from lipids and proteins 

The acquired NMR spectra were manually phased, corrected for baseline distortions 

and referenced to TSP for urine samples or glucose resonance (α anomeric proton) (δ 5.23) 

for plasma samples (TopSpin 3.0, Bruker, Rheinstetten, Germany) and then imported into 

MatLab (version R2012a, The Mathworks, Inc.; Natwick, MA). The region containing the 

water peak was removed as well as the TSP peak region. The urea resonance region was 

also removed from the urinary spectra. 1H NMR spectra were then aligned manually using 

a recursive segment-wise peak method (RSPA) algorithm to minimise chemical shift 

variation due to residual pH differences within samples. Urine spectra were then 

normalised to unit area to account for inter-sample concentration variation.  

MatLab was used for multivariate modelling. Analysis included principal component 

analysis (PCA) using pareto scaled data to observe clustering in the datasets and identify 

outliers. Orthogonal projection to latent structures (OPLS) models were constructed using 

unit variance scaling to maximise any differences between the groups and to identify 

metabolites driving any potential differences between them. Metabolites were identified 

using an in-house database of standards and Chenomx NMR suite (version 7.7, Chenomx 

Inc). 
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6.3 Results 

Clinical information was obtained from the participants in each group. Statistical analysis 

for the comparison of the clinical characteristics between the control and intervention 

group are presented in Table 1. Significant differences with age, BMI and blood pressure 

were observed between the two groups at baseline.  

Table 6.1 Baseline clinical characteristics (mean ± SD) 

 Control (n=25) Watercress (n=22) P value 

Age (y) 58 ± 9 54 ± 8 0.047 

BMI (kg/m2) 30.78 ± 6.96 27.27 ± 4.57 0.044 

High blood pressure* 15 4 0.003 

Smoker 1 4 0.178 

Diabetes Mellitus 2 1 1.000 

Oestrogen receptor (-) 3 1 0.612 

Progesterone receptor (-) 4 0 0.112 

Family History –Breast cancer 6 6 1.000 

Family History – Other cancers 13 16 0.223 
*Numerical data not available for blood pressure. Data was collected in a binomial form 

 

6.4.5 Plasma metabonomic profiling 

Metabolic profiles were measured from the plasma and urine samples of participants in 

the control and watercress intervention groups. Principal component analysis (PCA) was 

applied to these profiles to reveal sources of variation within the metabolic data.  

The PCA scores plot obtained from the model built on all the baseline plasma profiles 

revealed separation in the first principal component by treatment group (control or 

watercress-treatment; PC1 R2 = 44%; Fig. 6.1A). This indicates that before watercress 

consumption occurred the participants in this group were metabolically different from 

those in the control group. The loadings plot for PC1 from this model (Fig. 6.1B) shows 

that increased levels of VLDL in the control group and higher glycerol content in the 
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watercress intervention group explained the variation. The PCA model built on the plasma 

profiles at the end of RT returned similar results (Fig. 6.2). Inclusion of all four experimental 

groups in one PCA model (control baseline and end of RT, watercress baseline and end of 

RT) showed that plasma metabolic profiles differed between the two treatment groups 

along PC1 but there was not observable clustering by RT (baseline vs. RT) (Fig. 6.3) These 

results suggest that the differences between the two groups are most likely to arise from 

the differences in their baseline clinical characteristics.  
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Figure 6.1 (A) PCA scores plot obtained from the plasma metabolic profiles of control and 
watercress consuming patients at baseline (B) PCA loadings plot for PC1. 
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Figure 6.2 (A) PCA scores plot obtained from the plasma metabolic profiles of control and 
watercress consuming patients at the end of RT (B) PCA loadings plot for PC1. 
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Figure 6.3 PCA scores plot comparing the plasma metabolic profiles of patients in the 
control group and those whose diet was supplemented with watercress (WX) at baseline 
and at the end of the radiotherapy treatment (RT). Profiles observed to cluster by 
treatment group.  

Pairwise comparisons were performed between the treatment groups (control 

versus watercress) before and after RT using OPLS-DA models (Fig. 6.4). OPLS-DA models 

with good predictive ability were obtained comparing the two groups at baseline (Q2Ŷ = 

0.18; p = 0.0110) and at the end of RT (Q2Ŷ = 0.26; p=0.0002). The metabolic variation 

between the control and watercress treated patients was found to be greater high-density 

lipoproteins (HDL) in the plasma from watercress treated-patients and higher VLDL in the 

control patients. These differences were present both at baseline (before watercress 

consumption) and after radiotherapy indicating that watercress intake was not driving 

these differences.  
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Figure 6.4 OPLS-DA models comparing the plasma metabolic profiles of control and 
watercress intervention groups at baseline (Q2Ŷ = 0.18; p = 0.0110) (A) and at the end of RT 
(Q2Ŷ = 0.26; p=0.0002). (B).  
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6.4.6 Urinary metabolic profiles 

The PCA scores plot comparing all the urinary metabolic phenotypes from the study did 

not reveal any clustering in the dataset (Fig. 6.5A). The variance in the first component of 

this model was dominated by creatinine and hippurate (Fig. 6.5B) and trimethylamine-N-

oxide exerted the greatest influence on the second principal component (Fig. 6.5C). The 

OPLS-DA model constructed to compare the the two groups at baseline was not valid (Q2Ŷ 

= -0.29, p = 0.89). 

PCA analysis of the urinary metabolic profiles at the end of RT revealed clustering along 

the second principal component by treatment group (Fig. 6.6A). This component 

explained 12 % of the metabolic variation within the dataset. The biochemical signature of 

watercress consumption is characterised by higher excretion of hippurate (Fig. 6.6C). An 

OPLS-DA model was constructed to compare the urinary profiles of control volunteers and 

those consuming watercress post IR. This model identified significant metabolic variation 

between the two groups (Q2Ŷ = 0.2010, p = 0.01). Watercress consumption during RT 

correlated with increased excretion of hippurate and N-methyl-nicotinic acid (NMNA) 

(Fig.6.7).  
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Figure 6.5 (A) PCA scores plot obtained from the urine metabolic profiles of control and 
watercress consuming patients at baseline. PCA loadings plot for PC1 (B) and PC2 (C). 
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Figure 6.6 (A) PCA scores plot obtained from the urine metabolic profiles of control and 
watercress-consuming patients at the end of RT. PCA loadings plot for PC1 (B) and PC2 (C). 
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Figure 6.7 OPLS-DA model comparing the urine metabolic profiles of control and 
watercress intervention groups at the end of RT.  

 
Table 6.2 Summary of the OPLS-DA models returned for the comparisons between the 
two treatment groups at baseline and at the end of RT.  

Group Comparison 
Plasma Urine 

Q2Y P value Q2Y P value 

Control Baseline vs WX Baseline 0.18 0.01 -0.29 0.89 
Control End RT vs WX End RT 0.26 0.0002 0.20 0.01 
Control Baseline vs Control End RT -0.17 0.53 -0.20 0.59 
WX Baseline vs WX End RT -0.33 0.76 -0.57 0.99 
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6.4 Discussion 

This prospective pilot clinical trial investigated the impact of watercress consumption on 

the response of early stage breast cancer patients to RT. 1H NMR spectroscopy was 

employed to characterise the urinary and plasma metabolic profiles of breast cancer 

patients consuming 100 g/day of watercress (watercress group) and those with no 

watercress consumption (control group) before and after RT. Multivariate data analysis 

identified baseline metabolic variation between the participants assigned to the two 

treatment groups. Those in the control group had higher amounts of circulating VLDL 

whilst those in the watercress group had higher amounts of HDL cholesterol. These 

differences remained after watercress consumption and RT. VLDL carries fat from the liver 

to other parts of the body via the blood and is raised with a high-fat diet. In contrast, HDL 

collects excess cholesterol in the blood and returns it to the liver where it is broken down 

and removed. Hence, these lipoproteins can be associated with dietary intake and 

metabolic health. A significant difference in the BMI values of the two treatment groups 

was found with the control group having an average BMI of 30.78 kg/m2 at baseline 

classifying them as ‘moderately obese’. The watercress intervention group had a BMI of 

27.27 kg/m2, classified as overweight. BMI values remained significantly different at the 

end of the radiotherapy treatment. As a result of this major confounding factor 

comparisons between the two groups must be treated with considerable caution. These 

features also suggest that the watercress intervention group was likely already conscious 

about a healthy lifestyle of which a diet rich in fruits and vegetables is an essential 

element. Following breast cancer diagnosis, these women might have modified their usual 

habits towards a healthier well-being. As a result, any observations made here cannot 

necessarily be attributed to watercress. 
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Hippurate was found in higher concentrations in the urine of the watercress-

consuming group at the end of RT. This is a gut microbial-mammalian co-metabolite and it 

is formed in the liver from the conjugation of dietary or microbially derived benzoic acid 

with glycine [235]. Watercress is a rich dietary source of phytochemicals including 

polyphenolic compounds. Metabolism of phenolic compounds such as chlorogenic acid, 

quinic acid and cinnamic acid results in a range of aromatic compounds like 

phenylpropionate, which can be further metabolised to benzoic acid and essentially, 

increase the amount of urinary hippurate [236]. In studies examining the metabolism and 

absorption of such polyphenols, hippurate was identified as the predominant urinary 

metabolite [237-240]. Further to this, a study comparing the urinary profiles from 

participants consuming either a low phytochemical diet without fruits and vegetables or a 

standard phytochemical diet, showed that the standard phytochemical diet was 

associated with increased hippurate excretion further substantiating the link between 

phytochemicals and hippurate [241].  

Hippurate perturbations might also be attributed to potential modulation of the 

gut microbiota by watercress. Germ free animals do not excrete hippurate demonstrating 

the importance of the gut microbial activity in the production of hippurate [242, 243]. 

Cruciferous vegetables have the potential to modify the gut bacterial composition [244] 

and since certain bacterial species have been linked to specific reactions during the 

metabolism of particular phytochemicals [245] this can result in changes in the microbially 

derived urinary metabolites like hippurate.  

It should be noted that hippurate can be considered as a potential biomarker of 

‘health’ and conditions like high blood pressure and obesity have been correlated with the 

lower excretion of hippurate [246-249]. It is certainly of great interest observing increased 
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hippurate upon watercress consumption, but this result has to be treated with caution 

considering the differences in the clinical characteristics of the two groups at baseline. 

Hippurate is known to be inversely related to BMI and blood pressure Further to this, no 

significant shifts in hippurate concentrations were observed when comparing pre and 

post radiotherapy urine samples therefore no link between this metabolite and radiation 

induced damage can be established. 

Urinary profiles of the cancer patients consuming watercress during their 

radiotherapy treatment exhibited an elevation in the excretion of NMNA (trigonelline). 

NMNA is a product of niacin metabolism and watercress is a good source if niacin and 

other vitamins of the B-complex. Other dietary sources of trigonelline are coffee as well as 

plants like fenugreek and garden peas. Trigonelline has been found to have anti-invasive 

activity against cancer cells in vitro and has also been shown to have beneficial anti-

diabetic actions. 

Several limitations in the study should be discussed. The small number of subjects 

in each group is likely to under-power the study, particular in a metabolic profiling study 

where the high number of variables increases the amount of inter-individual variability 

across the study. Also the sample size was too small for subgroup analyses and most 

importantly affected the randomisation efficacy for allocation of the volunteers in the 

treatment groups. Flawed randomisation resulted in significantly different baseline 

characteristics between the two groups, as discussed above, preventing us from drawing 

unbiased and meaningful conclusions from the analyses. Additionally, no direct 

therapeutic outcomes were recorded such as tumour size or patient survival that could be 

used as a measure of treatment and/or watercress efficacy.  
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In summary, this study provides some initial [236]indications that watercress could 

potentially induce metabolic perturbations in biomarkers of health in breast cancer 

patients possibly aiding in the management of RT induced DNA damage and subsequent 

side effects. Undoubtedly, further studies with larger intervention groups and better 

randomisation strategies are required to verify our observations and explore the possible 

mechanism for watercress’ anti-cancer effect.  
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7 Final discussion 

The framework for this thesis was developed from the work of Boyd et al. [53] that 

provided initial data on the direct anti-cancer effects of watercress in vitro as well as from 

two human trials [57] [52] that demonstrated the potential of watercress consumption to 

reduce DNA damage and increase antioxidant status in adults. As discussed in Chapter 1 

watercress and Brassica vegetables in general, have received great attention for their anti-

cancer properties. Most of the health properties attributed to Brassica are due to their high 

content of glucosinolate-derived bioactives ITCs, and more specifically, in the case of 

watercress, gluconasturtiin-derived PEITC. PEITC has been extensively shown to inhibit 

established hallmarks of cancer, supported by a great number of published in vitro and 

animal studies. The effects of watercress and PEITC on cellular energetics and metabolism, 

which represent essential processes in cancer progression, are largely unexplored. As 

such, the main aim of this thesis was to investigate the impact of watercress on breast 

cancer development as well as to examine how watercress interacts with cancer and 

radiotherapy and understand the different outcomes and biochemical mechanisms 

underlying this interaction. To address the knowledge gap regarding the lack of metabolic 

data, a substantial part of this thesis is dedicated to profiling the biochemical effects that 

watercress and PEITC can have in cancer, using 1H NMR metabonomics. 

In Chapter 3 the metabolic signature of breast cancer in vitro was defined by 

comparing the metabolic phenotypes of breast cancer and healthy cell lines. The profile 

obtained for the breast cancer cells was consistent with that of rapidly proliferating cells as 

indicated by the high amount of phosphocholine and glycolytic characteristics. The 

distinct metabolic perturbations induced by increasing doses of a watercress extract and 

PEITC were then examined and compared between the two cell lines. Untargeted 
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metabolic profiling enabled a vast range of metabolites to be screened allowing a broad 

overview of the metabolic state to be captured. Through this approach, watercress and 

PEITC were found to perturb a range of pathways and processes, such as oxidative 

phosphorylation, glycolysis, and one-carbon metabolism. This also provided further 

evidence supporting the major role of PEITC in the inhibition of mRNA translation in 

cancer models contributing to its chemopreventive and anti-cancer effects [250]. 

The results obtained from Chapter 3 confirmed PEITC as a GSH depleting agent. 

Interestingly, this effect was specific to the breast cancer cell line. Glutathione depletion 

by PEITC is the main mechanism through which excessive ROS are formed intracellularly 

leading to substantial DNA damage and eventually leading to cell death. On the basis of 

these results oxidative stress and the pro-oxidant phenotype induced by PEITC is 

hypothesised to increase the sensitivity of the cancer cells to radiation induced damage, 

which is ROS mediated. Indeed, this is supported by results in Chapter 4 where a 

concomitant increase in DNA damage and GSH depletion was observed in the cancer cell 

model treated with IR and PEITC. This highlights the radiosensitising potential of this 

compound.  

Watercress pre-treatment protected the healthy breast cells from radiation-

induced damage as observed by lower levels of DNA damage. This observation was 

parallel to an increased glutathione content in these cells. Higher abundance of GSH 

antioxidant is likely to rescue the cells from ROS-induced damage. Findings from human 

intervention studies with watercress have provided considerable evidence for a 

prophylactic effect of watercress under pro-oxidant conditions similar to radiotherapy, 

such as smoking [57] and exhaustive exercise [52]. These effects were explained by shifts 

in lipophilic compounds like carotenoids, of which watercress is a very rich source, and by 
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reducing the amount of DNA damage in lymphocytes. It should be noted though, that 

ITCs bioavailability or excretion was not measured in these studies, therefore it is unknown 

if any of the protective effects observed were mediated by these compounds. Further to 

this, the interaction between watercress and the glutathione related detoxification 

enzymes (GPX, GST) is inconclusive and depends highly on the individual’s genotype. The 

rescuing effect of watercress in the healthy breast cell observed here is unlikely to be a 

result of PEITC, since the watercress extract used is devoid of this compound. ITCs are 

highly volatile compounds and do not survive the extraction process. Therefore, we can 

speculate that the prophylactic effect of watercress in vitro is a result of other 

phytochemicals like carotenoids and polyphenols. Extensive phytochemical profiling of 

watercress performed in Chapter 5 further supported this observation.  

 While watercress did not appear to induce any genotoxicity (Chapter 3) in either of 

the two cell lines under study, PEITC at high doses caused significant DNA damage in both 

breast cancer and healthy cells. This observation generates further evidence for the 

hormetic properties of phytochemicals that is, being beneficial at low doses but leading to 

toxicity when ingested at high doses. It is unlikely though that these toxic exposures will 

be reached through the human diet. 

 Findings from Chapter 5 were used to formulate suggestions for participants in 

the human trial reported in Chapter 6 regarding the preferable ways of cooking 

watercress before consumption to preserve phytochemical density. Cooking of Brassica is 

known to inactivate the myrosinase enzyme, which is responsible for the conversion of 

glucosinolates to bioactive ITCs. However, bacteria in the gut possess myrosinase activity 

and present a potential means through which ITCs can arise in circulation and possibly 

mediate the health benefits of glucosinolates to the host. The degree to which this is 
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occurring is unclear and merits further investigation [251]. The significant role of the gut 

microbiome was also apparent from the increased urinary excretion of the hippurate, a 

gut-derived metabolite associated with the consumption of polyphenols and a general 

biomarker of health, in the group of volunteers consuming watercress. These observations 

highlight the importance of incorporating metagenomic and metabonomic data in the 

interpretation of clinical trials and epidemiological studies examining the anti-cancer 

potential of Brassica vegetables.  

 Results from in vitro (and animal) studies examining the impact of whole plant 

extracts or specific phytochemicals on health and disease can be highly informative. 

However, caution should be taken when interpreting these observations and drawing 

conclusions about the potential benefits they can confer to humans. Evidence derived 

from such studies regarding the mechanisms of action of phytochemicals in Brassica 

vegetables might not translate to the human. These studies ignore the role of the food 

matrix in the observed effects since they only use whole juice extracts from the plant 

under study. More work focusing on the processes of absorption, metabolism, and 

excretion upon watercress ingestion, has to be undertaken. Phytochemicals contained in 

watercress like glucosinolates and their hydrolysis products as well as flavonols, undergo 

complex modifications and conjugations when in the system. The form and quantity at 

which they reach the target site are poorly understood and they are affected by multi-

organ interactions, the gut microbiome and variations in individual’s genotype. Chapter 5 

has also highlighted the importance of preparation and cooking methods on the quality 

and quantity of the ingested phytochemicals.  
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Study limitations and future perspectives 

The work described in this thesis, has addressed a number of research questions, while 

highlighting some opportunities for future research. Further work would advance our 

understanding regarding the molecular mechanisms of action of watercress and PEITC in 

cancer and provide further data on the relevance of watercress consumption during 

breast cancer therapy in vivo.  

 Breast cancer is a highly heterogeneous disease, with distinct molecular subtypes 

leading to differential responses to target therapies. The experiments in this thesis were 

carried out using MCF-7 breast cancer cells and MCF-10A healthy cells. MCF-10A cells are 

the most commonly used healthy breast cells and represent the best model for the study 

of normal human mammary epithelial function available to date. On the other hand, MCF-

7 cells represent only one molecular subtype of breast cancer. Consequently, further work 

should be carried out to examine whether the findings from the experiments carried out 

in this thesis are consistent with other in vitro models of breast cancer, which represent 

different degrees of sensitivity, endocrine responsiveness, metastatic potential and 

immunoprofile.  

 In Chapter 3 significant shifts in the levels of lactate were observed upon 

treatment with watercress and PEITC in both cells lines suggestive of disruptions in 

oxidative and glycolytic metabolism. Increased lactate is postulated to arise from a 

compromised ability for oxidative phosphorylation due to mitochondrial membrane 

damage and a switching of cells to glycolysis as a last resort for energy acquisition. As 

discussed previously glycolysis is a key pathway in cancer cell metabolism, therefore 

further work is recommended to elucidate the mechanism behind our observation. Real-

time rates of oxidative phosphorylation and glycolysis can be studied using Seahorse Cell 
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AnalysisTM, which provides functional cellular metabolic data. Furthermore, experiments 

using radiolabeled glucose isotopes to study glucose uptake and metabolism combined 

with glucose and lactate transporters expression data could provide a more mechanistic 

overview on the impact of watercress and PEITC on glucose cellular energetics.  

 In Chapter 4 a protective effect of watercress against radiation induced damage in 

healthy breast cells was observed parallel to a radiosensitising impact of PEITC in breast 

cancer cells. Cell cycle and Comet assay data supported these observations, however 

additional experiments are required to further explore these effects. Transcriptomics for 

the interrogation of DNA damage, apoptosis, as well as repair pathways would further our 

understanding of the chemoprotective effect of watercress and the genotoxic effect of 

PEITC. Information obtained from such an exploratory approach could be integrated with 

metabonomic data and provide a better picture of the interactions between genetic, 

metabolic and physiological shifts in an irradiation-perturbed system. 

 Despite obtaining encouraging results from the in vitro work performed; the results 

could not be validated in vivo (Chapter 6) therefore the relevance of our observations 

remains to be examined. This was a consequence of a flawed study design, characterised 

by low participant numbers, as well as an incorrect randomisation strategy and no record 

of treatment endpoints from the patients enrolled in the trial. A revised clinical trial 

investigating the impact of watercress consumption during radiotherapy should be 

performed.  It is recommended that the new study should be performed at a hospital with 

a high intake of breast cancer patients to allow for the recruitment of enough volunteers 

to adequately power the study. The study design should consist of four treatment groups: 

a) healthy individuals on their habitual diet, b) healthy individuals consuming watercress, 

c) breast cancer patients undergoing radiotherapy without consuming watercress and d) 
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breast cancer patients consuming watercress throughout their radiotherapy treatment. 

Collection of plasma and urine samples from volunteers in these groups would help draw 

meaningful conclusions on the metabolic fingerprint of breast cancer, radiotherapy and a 

nutritional intervention through watercress ingestion. Pre-screening of the participants 

prior to their participation in the clinical trial is of paramount importance to avoid the 

introduction of bias from differences in anthropometric and physiological factors. In 

addition, a proper randomisation method should be employed to ensure the acquisition 

of valid and interpretable results. Additionally, treatment endpoints such as radiotherapy 

efficacy as described by tumour size and histopathological measures, as well as cancer 

recurrence, should be recorder for all participants in the trial. This will allow for the 

correlation of metabonomic measures with cancer treatment outcomes and the 

generation of meaningful results.  

Concluding remark 

This thesis has provided evidence for the potential of watercress and PEITC to induce 

significant metabolic perturbations in breast cancer, a previously unexplored area. Novel 

preliminary evidence have been obtained, for the potential prophylactic impact of 

watercress during radiotherapy, through protecting healthy tissue from damage as well as 

enhancing the therapeutic outcomes of the treatment. The systemic impact of watercress 

against breast cancer should be further explored, for the generation of robust evidence in 

support of the current, promising findings. 
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Appendix 

 

Figure S1 OPLS-DA model comparing the metabolic response of MCF-7 and MCF-10A 
cells exposed to 5 Gy IR. GPC, glycerophosphocholine 
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