
	

	
	
	
An	exploration	of	the	role	of	
mucoadhesives	in	food	
Doctor	of	Philosophy		
School	of	Chemistry,	Food	and	Pharmacy	

Sarah	Louise	Cook	
June	2017	

	

	

	



	

Declaration		

I	confirm	that	this	is	my	own	work	and	the	use	of	all	material	from	other	sources	

has	been	properly	and	fully	acknowledged.		

Sarah	Cook	

Signed		 	 	 	 	 	 	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	

Abstract	

	

Mucoadhesives	 are	used	 to	 enhance	drug	permeability	 and	 retention	at	mucosal	

membranes	 in	 the	 body.	 This	 is	 achieved	 by	 the	 adherence	 of	 a	 pharmaceutical	

dosage	 form	 to	 a	 mucosal	 membrane	 through	 interactions	 between	 a	

mucoadhesive	material	 and	 the	mucosa.	Many	polysaccharides	 (PSs)	used	 in	 the	

food	industry	as	thickeners,	emulsifiers,	stabilisers	and	fat	replacers	are	also	used	

as	 mucoadhesives	 in	 the	 pharmaceutical	 industry.	 This	 overlap	 of	 use	 has	

provoked	an	interest	in	utilising	these	PSs	to	modulate	the	organoleptic	properties	

of	food.		

	

This	 work	 aimed	 to	 elucidate	 the	 role	 of	 mucoadhesion	 in	 the	 organoleptic	

properties	of	 simple	 food	 systems.	Mucoadhesive	PSs	were	either	 in	an	aqueous	

solution	 or	 cast	 into	 films	 containing	 flavour	 compounds.	 A	 novel	 method	 for	

assessing	mucoadhesion	for	liquid	formulations	was	developed	using	fluorescence	

microscopy	 with	 labelled	 and	 unlabelled	 PS.	 Time	 intensity	 and	 progressive	

profiling	 sensory	 experiments	 were	 employed	 to	 assess	 the	 impact	 of	

mucoadhesives	on	 flavour	perception	 in	 liquid	 and	 solid	model	 food	matrices.	A	

range	of	 in	vitro	 tests	were	used	 to	 assess	 various	properties	 of	 PS	 films	 loaded	

with	flavourings	such	as	texture	analysis,	dissolution	and	swelling	ratios	in	order	

to	 explain	 perception	 results.	 	 Finally,	 a	 selected	mucoadhesive	 (carboxymethyl	

cellulose)	 was	 incorporated	 into	 popcorn	 seasoning	 and	 sensory	 perception	

changes	were	assessed.		

	

This	 body	 of	 work	 describes	 method	 development	 to	 assess	 the	 mucoadhesive	

strength	of	PSs,	shows	that	mucoadhesive	PSs	in	solution	prolong	the	retention	of	



	

a	model	 tastant	 in	 the	 oral	 cavity	 and	 controls	 delivery	 and	 thus	 perception	 of	

flavour	from	solid	polymeric	materials,	and	describes	an	attempt	to	incorporate	a	

mucoadhesive	PSs	in	a	snack	food	formulation.		
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Chapter	1:	General	introduction	&	literature	review	

1.1.	Introduction	

Polysaccharides	 (PSs)	 are	 commonly	 used	 in	 the	 food	 industry	 as	 thickeners,	

gelling	agents,	stabilisers,	emulsifiers,	and	binders.	They	are	most	commonly	used	

in	liquid	or	semi-solid	dairy	products,	meat	products,	sauces	and	confectionary	[1].	

The	impact	to	the	structure	and	sensory	perception	of	a	food	product	when	adding	

PSs	is	gathering	interest	[2–6].	The	fact	that	many	of	these	PSs	are	mucoadhesive	

has	 rarely	 been	 reported	 in	 the	 literature	 as	 an	 influencing	 phenomenon	 to	

consider	when	 investigating	 the	 results	obtained	with	 regards	 to	 flavour	 release	

and	sensory	perception.		

	

Mucoadhesion	has	attracted	a	lot	of	attention	in	pharmaceutical	research	and	the	

pharmaceutical	 industry,	 and	 is	 therefore	 well	 defined	 and	 effectively	 utilised	

within	 these	 fields.	 In	 the	 simplest	 terms,	 mucoadhesion	 is	 the	 adhesion	 of	 a	

polymeric	material	 to	a	mucosal	membrane	 in	the	body.	The	polymeric	material,	

containing	an	active	pharmaceutical	ingredient	(API),	adheres	to	a	target	mucosa	

for	an	extended	period	of	time	compared	to	the	API	itself,	thereby	prolonging	the	

API	residence	on	mucosal	surfaces,	increasing	permeation	and	thus	bioavailability	

for	certain	APIs	[7].		

	

The	 recognition	 and	 consequent	 extensive	 research	 of	 mucoadhesion	 in	 the	

pharmaceutical	 field	 has	 led	 to	 an	 excellent	 understanding	 of	 the	 mechanical,	

chemical	 and	 physical	 factors	 involved.	 This	 understanding	 has	 subsequently	

advanced	the	development	of	dosage	forms,	improving	the	delivery	and	efficacy	of	

APIs.	However,	the	ability	of	mucoadhesives	to	retain	small	molecules	at	mucosal	

surfaces	may	prove	important	to	the	food	industry.		
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It	 was	 intended	 that	 the	 work	 contained	 in	 this	 PhD	 thesis	 would	 enhance	 the	

knowledge	and	understanding	of	how	mucoadhesion	may	 influence	organoleptic	

properties	of	food.	More	specifically,	experiments	were	designed	to	investigate	the	

impact	on	dynamic	flavour	perception	that	mucoadhesive	PS	have	on	model	food	

systems.	 Furthermore,	 the	mucoadhesive	 nature	 of	 the	 PS	was	 investigated	 and	

experiments	were	designed	to	measure	their	ability	to	retain	flavour	molecules	in	

a	similar	way	to	APIs.	The	project	was	a	BBSRC	case	studentship,	jointly	funded	by	

McCormick,	UK	Ltd,	who	produces	spices,	seasonings	and	flavourings.			

	

The	 thesis	 is	 divided	 into	 8	 chapters,	 5	 of	which	 describe	 the	 primary	 research	

conducted	to	test	 the	hypotheses	outlined	at	 the	end	of	 this	chapter.	Chapter	1.2	

provides	an	explanation	of	mucoadhesion,	an	overview	of	the	literature	regarding	

PS,	mucoadhesion	and	 flavour	perception,	and	the	overall	aims	and	objectives	of	

this	 body	 of	 work.	 Chapter	 2	 gives	 the	 chemical	 characteristics	 of	 the	 PS	 used	

throughout	 the	 thesis	 and	 some	 theory	 behind	 the	 rheology	 used	 in	 research	

chapters.	 Chapters	 3	 to	 5	 describe	 work	 done	 to	 elucidate	 the	 basic	 impact	 of	

mucoadhesives	 in	 model	 liquid	 food.	 Chapter	 6	 describes	 the	 move	 to	 working	

with	solid	PS	matrices.	Chapter	7	describes	an	attempt	to	apply	these	fundamental	

findings	to	a	real	food	product.		
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1.2.	 Literature	 review	 on	mucoadhesion,	 polysaccharides	 and	 their	 impact	

on	food	products		

1.2.1.	Mucoadhesion		

The	 importance	 and	 interest	 in	 developing	 mucoadhesive	 formulations	 has	

increased	 as	 more	 challenging	 drugs,	 such	 as	 peptides,	 proteins	 and	

oligosaccharides	 have	 been	 discovered	 and	 synthesised.	 These	 types	 of	

therapeutics	 are	 challenging	 for	 various	 reasons,	 such	 as	 their	 poor	 solubility,	

limited	uptake,	fast	breakdown	or	short	half-life.	Furthermore,	it	may	be	necessary	

for	certain	drugs	to	bypass	first	pass	metabolism	and	therefore	alternative	routes	

such	 as	 sublingual	 administration	 is	 sought.	 The	 systemic	 absorption	 of	 APIs	

through	diffusion	or	 transport	 across	mucosal	 surfaces	may	be	 enhanced	by	 the	

addition	 of	 mucoadhesives.	 This	 enhancement	 is	 termed	 polymer-mediated	

enhancement	 of	 API	 delivery.	 These	 controlled	 release	 formulations	 have	 been	

researched	 for	 many	 years	 and	 subsequently	 employed	 in	 a	 variety	 of	

pharmaceutical	applications	[7–14].	

	

Mucoadhesives	can	be	utilised	in	drug	formulations	to	deliver	APIs	to	a	variety	of	

target	mucosal	tissues.	These	include:	the	nasal	route	via	sprays,	gels	and	pumps;	

vaginal	 or	 urethral	 routes	 using	 suppositories,	 pessaries,	 vaginal	 rods	 and	 gels;	

and	the	oral	route	via	buccal	and	sublingual	patches,	 tablets	and	gels.	One	of	 the	

most	 commercially	 recognised	 formulations	 containing	 mucoadhesives	 is	

Gaviscon	 Liquid®.	 This	 product	 contains	 sodium	 alginate,	 a	 mucoadhesive	 PS,	

which	gels	in	the	presence	of	Ca2+	ions.	Due	to	its	mucoadhesive	and	gel	forming	

abilities,	 this	 formulation	 is	 used	 to	 treat	 heart	 burn	 by	 coating	 the	 esophageal	

walls	with	the	viscous,	mucoadhesive	gel,	protecting	it	against	the	acid	rising	from	

the	stomach	[15].	The	oral	route	for	drug	delivery	includes	targeting	formulations	
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to	 the	buccal	 tissue	 in	 the	mouth	as	well	 as	 the	 rest	of	 the	gastrointestinal	 tract	

(GI),	 including	 the	oesophagus,	 stomach,	 small	 and	 large	 intestine.	Each	of	 these	

routes	of	administration	has	different	mucosal	structures	and	a	different	secretory	

mucus	 composition,	which	will	 affect	 the	mucoadhesive’s	 strength	of	 the	dosage	

form.								

	

1.2.1.1.	Oral	cavity	mucosa	

The	 anatomy	 and	 histology	 of	 the	 human	 oral	 cavity	 has	 been	 described	

extensively	in	the	literature	[16].	Important	for	mucoadhesion,	the	oral	mucosa	is	

the	 moist	 membrane	 lining	 all	 surfaces	 of	 the	 oral	 cavity	 except	 for	 the	 teeth	

(Image	 1.1.).	 There	 are	 three	 different	 kinds	 of	 oral	 mucosa,	 each	 with	

characteristics	 that	 reflect	 their	 role	 in	mastication	 and	 speech.	The	masticatory	

mucosa	 is	 keratinised	 and	 covers	 the	 gingiva	 and	 hard	 palate.	 As	 the	 name	

suggests,	this	mucosa	is	responsible	for	masticatory	processes	and	must	be	tough	

as	it	is	at	risk	of	abrasions	and	potential	infection	from	pathogen-harbouring	food.	

The	rest	of	the	oral	cavity	is	covered	with	soft,	non-keratinised	epithelium,	called	

the	 lining	mucosa.	The	dorsal	of	 the	 tongue	 is	 an	exception	 to	 this,	possessing	a	

specialised	mucosa	with	 characteristics	 of	 both	masticatory	 and	 lining	mucosae.	

The	mucosal	 surfaces	 are	 covered	 in	 a	 layer	 of	mucosal	 secretion,	which,	 in	 the	

oral	cavity,	is	the	saliva.	This	is	a	relatively	thin	covering	compared	to	other	areas	

of	the	body,	between	1	and	100	μm	thick	[17–19].	This	mucosal	secretion	serves	

many	 roles	 similar	 to	 other	 secretions	 in	 the	 body	 as	 it	 protects	 tissues	 against	

mechanical	 and	 pathogenic	 stress.	 In	 addition	 to	 these	 roles,	 it	 serves	 many	

specialised	 roles	 necessary	 for	 speech,	 mastication,	 bolus	 formation	 and	

deglutition	[20].		
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Image	1.1.	Cross	section	of	oral	structures.		

	

Saliva	 is	 a	 highly	 aqueous	 viscoelastic	material	 consisting	 of	 around	 95%	water	

with	the	remainder	comprising	salts	and	proteins.	Mucins	are	large	glycoproteins	

of	particular	importance	in	establishing	mucoadhesion,	comprising	approximately	

1.2	 mg/mL	 in	 healthy	 individuals	 [21].	 Mucins	 are	 responsible	 for	 the	 highly	

viscoelastic	nature	of	all	mucosal	secretions	due	to	the	formation	of	aqueous,	gel-

like	 networks.	 This	 viscoelasticity	 is	 important,	 serving	 as	 a	 barrier	 to	 foreign	

substances,	 slowing	 diffusion	 and	 inhibiting	 large	 molecules	 from	 penetrating.	

However,	with	 regard	 to	mucoadhesion,	 polymer	 chains	 that	 can	 penetrate	 into	

this	mucus	layer	can	interact	with	the	mucin	resulting	in	a	continuous	network	of	

polymer	and	mucin	interactions,	strengthening	a	mucoadhesive	joint.		
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Mucins	exist	as	both	secretions	in	the	saliva,	as	well	as	transmembrane	mucins	on	

epithelial	 cells,	which	 are	 exposed	 to	 the	oral	 cavity.	Mucins	 are	 integral	 for	 the	

lubrication	of	the	oral	cavity,	due	to	their	water	retaining	capacity,	enabling	all	the	

usual	 functions	 of	 mastication,	 swallowing	 and	 speech.	 Mucins	 enable	 saliva	 to	

serve	 many	 functions	 including:	 acting	 as	 a	 diffusion	 barrier	 for	 nutrients,	

pathogens	and	drugs;	hydration	of	 the	underlying	epithelia;	and	protection	 from	

chemical	and	mechanical	damage	[20,22,23].	

	

The	molecular	weights	of	mucins	 range	 from	500	kDa	 to	20	MDa,	however	 they	

have	 a	 tendency	 to	 aggregate	 and	 form	 large	 supramolecules,	 driven	 by	

hydrophobic	 interactions	of	nonpolar	groups	and	the	hydrogen	bonding	of	sugar	

units	[24].	Generally	speaking,	all	mucins	are	derived	from	a	similar	structure	and	

will,	 to	 a	 certain	 degree,	 serve	 the	 same	 function	 of	 protecting	 the	 delicate	

underlying	 tissues.	However,	 there	 is	 large	 heterogeneity	 and	diversity	 between	

the	 complex	 structures	 of	 mucins	 [25]	 influenced	 by	 the	 variation	 of	 the	

environments	to	which	they	are	exposed,	such	as	pH.		

	

Mucins	found	in	the	oral	cavity	can	be	divided	into	high-molecular-weight	(MUC5B)	

and	low-molecular-weight	(MUC7)	fractions	[26,27].	MUC5B	mucins	are	produced	

by	all	salivary	glands	except	the	parotid	gland	[22]	and	has	similar	characteristics	

to	mucin	in	other	mucosal	secretions	in	the	body	[22].	The	MUC5B	mucins	are	one	

of	 the	 major	 mucins	 present	 in	 saliva	 and	 are	 associated	 with	 the	 gel-like	

formation	of	saliva,	which	is	attributed	to	entanglements	of	these	mucin	molecules	

with	 one	 another	 [26,28].	 The	 interactions	 thought	 to	 be	 important	 for	 this	 gel	

formation	 include	hydrophobic	 interactions	between	 the	hydrophobic	 regions	of	

the	 core	 proteins	 [29],	 van	 der	 Waals	 and	 hydrogen	 bonds	 between	
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oligosaccharide	 side	 chains	 and	 calcium-mediated	 crosslinks	 [30].	MUC7	mucins	

are	 thought	 to	 be	 uniquely	 found	 in	 salivary	 secretions	 [22],	 produced	 by	 the	

submandibular,	sublingual	and	palatine	glands	[31].			

	

The	 protein	 core	 of	 mucin	 is	 glycosylated	 by	 many	 oligosaccharide	 side	 chains	

covalently	linked	in	areas	of	clustered	proline,	threonine	and	serine	(PTS)	amino	

acids	 [27].	 These	 highly	 branched	 oligosaccharides	 contribute	 up	 to	 80%	 of	 the	

dry	weight	of	mucin.	There	is	heterogeneity	within	and	between	mucin	types	and	

the	 saccharides	 that	 glycosylate	 them,	 with	 MUC5B	 possessing	 a	 more	 diverse	

range	 than	 MUC7	 [27].	 The	 O-linked	 chains	 are	 initiated	 with	 N-

acetylgalactosamine	with	up	 to	20	more	 residues	extending	 from	 this.	The	 large	

variations	 of	 sugar	 units	 that	 may	 be	 attached	 include	 N-acetylglucosamine,	 N-

acetylgalactosamine	 and	 other	 glucose,	 galactose	 and	 fructose	 derived	 residues	

[25].	 The	 chains	 are	 terminated	 with	 sialic	 acid,	 sulfonic	 acid,	 or	 l-fructose	

residues,	with	the	first	two	possessing	a	net	negative	charge	at	neutral	pH	[32,33].	

This	 is	 important	 for	 the	 adhesion	 of	 positively	 charge	 polymers	 that	 can	 form	

ionic	 bons	 with	 the	 mucin	 but	 also	 for	 negatively	 charged	 polymers	 as	 it	 will	

facilitate	polymer	and	mucin	chain	uncoiling	due	to	electrostatic	repulsion.	Recent	

studies	 have	 confirmed	 the	 presence	 of	 both	 types	 of	 salivary	 mucins	 in	 the	

mucosal	pellicle	that	lines	the	oral	epithelia	[34,35].	The	pellicle	is	a	biological	film	

adhered	to	the	epithelial	cells	which	serves	to	protect	the	underlying	tissue	from	

abrasions	and	plays	a	role	in	bacterial	colonisation	[36].			

	

1.2.1.2.	Theories	of	mucoadhesion	

Mucoadhesion	occurs	due	to	a	range	of	physicochemical	interactions	between	the	

polymeric	 material	 and	 the	 mucosal	 environment.	 The	 properties	 of	 the	
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environment,	 such	 as	 the	 pH	 and	 flow	 rate	 of	 the	 mucosal	 secretion,	 will	

determine	polymer-mucin	interactions.	Generally,	there	are	two	stages	considered	

to	 be	 essential	 in	 establishing	 mucoadhesion	 [25].	 Firstly,	 the	 initial	 intimate	

contact	 between	 the	 polymeric	 material	 and	 the	 mucosal	 surface	 is	 required.	

Secondly,	the	consolidation	period	can	ensue	which	reinforces	the	mucoadhesive	

bonding.	There	are	six	main	theories	of	mucoadhesion,	which	have	been	proposed	

and	 evaluated	 in	 the	 literature	 [37–43].	 These	 include:	 adsorption,	 wetting,	

electronic,	 diffusion,	 dehydration	 and	 mechanical	 theories	 (Figure	 2).	 These	

theories	can	be	thought	of	as	complementary,	describing	different	phenomena	that	

occur	 simultaneously	 or	 at	 different	 stages	 of	 the	 process,	 which	 facilitate	

mucoadhesion.		

	

• Wetting	 theory	 is	 concerned	with	polymer	 spread	 and	 ability	 to	 swell	 on	

the	 wet	 mucosal	 surface.	 A	 higher	 affinity	 to	 spread	 on	 the	 mucosa	 results	 in	

stronger	 mucoadhesion.	 Typically,	 the	 wetting	 phenomena	 are	 important	 for	

liquid	mucoadhesives.		

•	 Dehydration	 theory	 describes	 the	 process	 where	 a	 material	 capable	 of	

gelling	is	brought	into	contact	with	a	moist	mucosal	membrane.	The	movement	of	

water	 from	 the	mucus	 gel	 to	 the	 water-absorbing	material	 reaches	 equilibrium	

and	facilitates	an	adhesive	joint.	An	example	of	this	is	the	water	uptake	by	a	solid	

dosage	 form	 containing	 a	 hydrophilic	 polymer,	 such	 as	 poly(acrylic	 acid),	 when	

placed	on	a	moist	surface.	Once	in	contact	with	the	wet	mucosa,	the	dosage	form	

will	rapidly	dehydrate	the	surface	and	adhesion	will	occur	[41].			

•	 Diffusion	theory	considers	the	entanglement	of	polymer	and	mucin	chains	

due	 to	 interpenetration,	 allowing	 for	 further	 primary	 and	 potentially	 secondary	

bonds	to	form,	strengthening	the	adhesion	[41,43].		
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•	 Adsorption	theory	considers	interactions	between	the	mucosal	surface	and	

polymer;	 including	 Van	 der	 Waals	 forces,	 hydrogen	 bonds,	 and	 hydrophobic	

interactions	 [42].	 These	 non-covalent	 interactions	 are	 likely	 to	 form	 most	

interactions;	 however,	 covalent	 bonding	 is	 possible	 depending	 on	 the	 chemical	

properties	 of	 the	 polymer.	 Thiolated	 polymers	 can	 form	 disulphide	 bonds	 with	

cysteine	 groups	 in	mucins	 via	 thiol	 exchange	 reactions,	 or	 the	 oxidation	 of	 free	

thiol	 groups	 [44].	 The	 protein	 backbone	 of	 some	mucins	 contains	 large	 regions	

high	 in	 cysteine	 residues	 and	 low	 in	oligosaccharides,	which	provide	 a	potential	

area	for	strong	chemical	bonds	to	occur	[45].		

•	 Electronic	 theory	 describes	 the	 transfer	 of	 electrons	 between	 the	

mucoadhesive	and	the	mucus	layer,	resulting	in	the	formation	of	a	charged	double	

layer	at	the	interface	of	the	mucin	and	polymer	networks	[37,38].		

•	 Mechanical	 theory	 describes	 the	 effect	 of	 contact	 area	 on	 the	 interaction	

between	 the	 polymer	 and	 mucosal	 surface	 [9].	 The	 effect	 of	 this	 will	 be	

particularly	 relevant	 in	 the	 oral	 cavity,	 which	 has	 a	 very	 thin	 layer	 of	 saliva	 in	

some	 areas;	 therefore,	 the	 mucoadhesive	 is	 more	 likely	 to	 contact	 the	 rough	

underlying	 tissue.	 Irregular	 surfaces	 and	micro-cracks	 give	 a	 larger	 contact	 area	

and	 thus	mucoadhesive	 strength.	 The	 papillae	 on	 the	 tongue	 provide	 a	 suitably	

rough	 surface	 and	 therefore	 greater	 surface	 area	 for	 penetration	 by	

mucoadhesives.		

	

Buccal	mucoadhesion	is	extensively	researched	in	the	pharmaceutical	field	[10,46]	

due	to	the	ease	of	application	and	the	ability	to	bypass	the	first-pass	metabolism	in	

drug	 delivery.	 Whilst	 buccal	 mucoadhesion	 is	 an	 important	 area	 to	 consider,	

regarding	relevance	to	the	food	industry,	adhesion	occurring	on	the	tongue	may	be	

more	 revealing.	 There	 has	 been	 much	 interest	 in	 the	 interactions	 of	 food	
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emulsions	on	the	tongue	including	the	adhesion	of	emulsion	droplets	and	how	this	

corresponds	 to	 the	 lubricating	 properties	 of	 the	 system.	 A	 body	 of	 work	 by	

Dresslehuis	et	al	and	Silletti	et	al	have	found	that	adhesion	of	emulsion	droplets	is	

dependent	on	the	sensitivity	of	coalescence	with	a	higher	sensitivity	resulting	in	a	

higher	retention	of	fat	in	the	mouth	[47–50].	This	body	of	work	is	important	when	

considering	the	perception	of	fat	in	foods	and	when	considering	ways	to	reduce	fat	

content	whilst	maintaining	the	lubricating	mouthfeel.		

	

Recent	work	 suggesting	 that	milk	 proteins	 bind	 to	 the	 tongue	 by	mucoadhesive	

interactions	 has	 lead	 the	 authors	 to	 suggest	 that	 mucoadhesion	 plays	 a	 role	 in	

creating	negative	sensory	attributes	associated	with	milk	products	such	as	drying	

and	astringency	[51,52].	Conversely,	this	adhesion	to	the	tongue	may	be	useful	for	

incorporating	 mucoadhesive	 polymers	 into	 food	 products	 to	 produce	 positive	

sensory	 results.	 An	 example	 of	 this	 application	 would	 be	 the	 utilisation	 of	

mucoadhesives	to	prolong	the	retention	and	consequent	perception	of	tastants	on	

the	tongue.	

	

1.2.1.3.	Properties	of	mucoadhesives	

The	 mucoadhesive	 strength	 of	 a	 polymeric	 material	 is	 dependent	 on	 various	

factors	including	the	size	and	physicochemical	properties	of	the	polymer,	and	the	

environment	 in	 which	 it	 will	 reside.	 Polymer	 characteristics	 such	 as	 molecular	

weight	 and	 viscosity	 show	 positive	 correlation	 with	 mucoadhesive	 strength	

[53,54].	Bond	formation	between	the	polymer	and	mucin	chains	is	dependent	on	

the	 ability	 of	 the	 polymer	 to	 diffuse	 into	 the	 mucus	 layer,	 therefore,	 higher	

polymer	 flexibility	 results	 in	 better	 diffusion	 into	 the	 mucus	 network	 and	

consequently	 stronger	 mucoadhesion	 [39].	 Along	 with	 flexibility,	 hydrogen-
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bonding	moieties,	such	as	carboxylic	acids,	are	essential	for	strong	mucoadhesion,	

enabling	 interactions	 between	 the	 polymer	 and	 the	 mucin	 oligosaccharide	

hydroxyl	groups	[55].		

	

The	ionic	charge	of	a	polymer,	which	can	influence	the	mucoadhesive	strength,	is	

dependent	 on	 the	 pH	 of	 the	 medium	 in	 which	 it	 resides,	 which	 varies	 among	

different	mucosal	environments.	In	the	case	of	oral	mucoadhesion	the	medium	is	

saliva	where	the	pH	is	typically	between	7.0	and	7.5	or	slightly	acidic	between	5.9	

and	 7	 dependent	 on	 disease	 state	 [56].	 Anionic	 polymers	 such	 as	 some	 PSs	

possessing	carboxyl	groups	will	be	partially	negatively-charged	at	a	near	neutral	

pH;	 their	 strong	 mucoadhesive	 properties	 is	 thought	 to	 be	 due	 to	 hydrogen	

bonding	and	Van	der	Waals	forces	[43].	Cationic	polymers,	such	as	chitosan,	which	

possess	amino	functional	groups	(pKa	~	6.5),	are	also	strong	mucoadhesives.	Due	

to	the	relatively	high	pKa,	chitosan	forms	a	gel	in	acidic	conditions,	such	as	those	

found	in	the	stomach.	However,	chitosan	is	insoluble	at	neutral	pH,	and	therefore	

is	suitable	for	oral	delivery	of	APIs	targeting	the	GI	tract,	as	it	is	insoluble	in	saliva	

[57].	 Neutral	 polymers	 such	 as	 starch	 or	 dextran	 generally	 exhibit	 poorer	

mucoadhesive	properties	compared	to	polyelectrolytes	[8].	

	

Thiolated	polymers,	which	 can	be	either	 cationic	or	 anionic,	 form	mucoadhesive	

bonds	via	disulphide	bonding,	 therefore	 the	 concentration	of	 thiolate	 ions	 is	 the	

key	factor	in	forming	mucoadhesive	interactions.	In	situ	cross-linking	of	thiomers	

could	 also	 contribute	 to	 their	 mucoadhesive	 properties,	 as	 disulphide	 bonds	

within	 the	 polymer,	 strengthening	 bonds	 made	 with	 the	 mucosa.	 Another	

important	factor	in	determining	thiomer	mucoadhesive	strength	is	the	molecular	

mass	of	the	polymer	chains.		
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The	 concentration	 of	 polymer	 is	 an	 important	 consideration	 for	 optimum	

mucoadhesion.	 If	 the	 concentration	 is	 too	 low	 the	 interaction	 between	 polymer	

and	mucin	 is	unstable	 [43],	whereas	 too	high	will	 result	 in	 the	polymer	network	

being	impervious	to	the	solvent	resulting	in	a	 lack	free	polymer	chains	to	diffuse	

into	 the	 mucus	 interface,	 due	 to	 the	 highly	 coiled	 and	 compact	 structure	 [10].	

Hydration	of	 the	polymer	chains	within	 the	mucus	 layer	 is	 influenced	 largely	by	

the	concentration	and	is	required	for	the	polymer	to	expand	and	form	a	network	

with	the	mucus	to	form	a	strong	adhesive	joint.	Salivary	flow	and	constituents	can	

vary	considerably	between	individuals	[56]	and	therefore	may	explain	some	of	the	

variability	 in	mucoadhesion	test	results	obtained	 in	the	 literature.	The	hydration	

of	 the	 dosage	 form	 and	 the	 solutes	 in	 the	 solvent	 will	 impact	 mucoadhesive	

strength	[58,59].	

	

1.2.2.	Mucoadhesives	and	food	

The	mucoadhesive	properties	of	food	ingredients	may	be	important	in	explaining	

perceptual	 changes.	Although	mucoadhesion	per	 se	 is	 seldom	 investigated	 as	 an	

influencing	 factor	 to	explain	outcomes	reported	within	 food	and	sensory	science	

research,	 attributes	 such	 as	 mouthcoating,	 stickiness	 and	 creaminess	 are	 more	

than	 likely	 pertaining	 to	 this	 phenomenon.	 	 The	 phenomenon	 is	 becoming	

increasingly	 recognised	 and	 investigated	 in	 the	 literature	 [60,61]	 and	 has	 been	

implicated	in	considering	the	astringency	of	tannins	[52,62]	and	drying	nature	of	

milk	 proteins	 [52,63].	 Furthermore,	 Silletti	 and	 Dresselhuis	 have	 studied	

interactions	 between	 emulsions	 and	 the	 oral	 cavity	with	 regard	 to	 the	 adhesive	

interactions	[48,49,64,65].		
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1.2.2.1.	Mucoadhesive	polysaccharides	

Many	PSs	substantially	increase	the	viscosity	of	aqueous	solutions.	This	property	

has	made	 them	an	attractive	 ingredient	 to	use	 in	manufactured	 liquid	and	semi-

solid	products	 to	add	bulk	and	 improve	texture,	stability,	and	appearance.	These	

PSs	 include:	 carboxymethyl	 cellulose	 (CMC),	 pectin,	 alginate,	 xanthan	 gum	 (XG),	

guar	 gum	 and	 carrageenan.	 They	 come	 from	 a	 variety	 of	 sources	 and	 exhibit	

diverse	 chemical	 properties.	 Many	 of	 these	 PSs	 have	 been	 evaluated	 as	

mucoadhesives,	and	are	reported	extensively	in	pharmaceutical	literature	[66–70]	

and	 are	 utilised	 for	 their	 mucoadhesive	 capability	 in	 various	 pharmaceutical	

applications.	 Table	 1.1	 details	 commonly	 used	 PS	 characteristics	 and	

mucoadhesive	strength	based	on	the	current	literature.	

	

Mucoadhesive	strength	is	a	continuum	dependent	on:	the	polymer	chemistry	and	

molecular	weight;	dosage	form	(e.g.	particulates,	tablets,	 films,	 liquids	etc);	other	

ingredients	 present	 in	 the	 formulation;	 and	 how	 it	 is	 measured.	 Studies	

investigating	the	best	formulation	for	a	mucoadhesive	dosage	form	will	often	use	a	

combination	of	polymers	for	optimum	mucoadhesion,	comparing	many	polymers	

in	 one	 study.	 Therefore,	 it	 is	 impossible	 to	 attribute	 a	 definitive	 value	 of	

mucoadhesive	 strength	 to	 any	 particular	 mucoadhesive,	 as	 the	 variables	 are	

seemingly	 infinite.	 Grabovac,	 Guggi,	 and	 Bernkop-Schurch	 (2005)	 published	 a	

study	 of	 the	 nineteen	 most	 commonly	 used	 mucoadhesive	 polymers	 and	

conducted	a	large	study	comparing	the	difference	in	small	intestine	mucoadhesive	

strength,	giving	a	guide	to	the	mucoadhesive	strength	of	commonly	used	polymers	

for	mucoadhesive	formulations.	Table	1.1.	outlines	the	mucoadhesive	strength	and	

ranking	 of	 commonly	 used	 PS	 in	 the	 food	 industry	 based	 on	 the	 type	 of	

formulation	 tested.	 The	 studies	 referenced	 are	 restricted	 to	 those	 that	 have	
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investigated	buccal	 or	 gingival	mucoadhesion.	As	 can	be	 seen	 in	 table	 1.1.	 there	

are	a	variety	of	PS	that	have	been	assessed	for	mucoadhesion,	each	with	differing	

results	depending	on	the	formulation.	

	

Table	1.1.	Polysaccharides	commonly	used	in	the	pharmaceutics	and	food	industry	

for	 various	 applications.	 Details	 of	 the	 chemical	 properties	 and	 mucoadhesive	

strength,	according	to	current	literature.		

Polysaccharide	type	 Characteristics	 Mucoadhesion	studies	

Acacia	gum	 Also	known	as	gum	Arabic,	

a	 complex	 mixture	 of	

glycoproteins	 and	

polysaccharides.	

Few	 studies	 to	 date	 have	

been	 produced	 with	 acacia	

gum;	 however	 one	 study	

found	 it	 to	 be	 a	 very	 weak	

mucoadhesive	 in	 a	 patch	

formulation	[72].	

Carboxymethyl	

cellulose	(CMC)	

An	 anionic	 polysaccharide	

produced	 by	 reacting	

alkali	 cellulose	 with	

sodium	

monochloroacetate.	Comes	

in	 varying	 degrees	 of	

substitution	 of	 hydroxyl	

groups.	

CMC	has	been	the	subject	of	

many	mucoadhesive	studies	

as	it	is	a	good	mucoadhesive	

in	both	solid	[73–77],	 liquid	

[78]	 and	 gel	 [79,80]	

formulations.	

Carrageenan	 A	 linear	 sulphated	 PS	 that	

forms	 helical	 structures.	

The	 chain	 is	 made	 up	 of	

repeating	units	of	galactose	

and	 3,6-anhydrogalactose.	

The	 degree	 of	 sulphation	

can	 differ:	 it’s	 denoted	 by	

the	 prefix	 (kappa,	 iota,	

lambda).	

Carrageenan	has	been	found	

to	 be	 moderately	

mucoadhesive	 [76]	 and	 a	

good	 mucoadhesive	 in	

combination	 with	 other	

polymers	[130-133].	This	PS	

with	 charged	 sulphur	

groups	has	potential	 to	be	a	

good	mucoadhesive.	
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Carboxymethyl	starch	 An	 anionic	 derivative	 of	

starch	 with	 carboxylic	

group.	

Ionic	 derivatives	 of	 starch	

have	 shown	 good	

mucoadhesion	 in	 solid	 form	

[74].	

Chitosan	 A	 cationic,	 linear	

polysaccharide	 composed	

of	 randomly	 linked	 D-

glucosamine	 and	N-acetyl-

D-glucosamine.	 Made	 by	

treating	 chitin	 shells	 of	

crustaceans	 with	 alkaline	

substances.	

Chitosan	 is	 one	 of	 the	most	

extensively	 studied	

mucoadhesives	 and	 is	 a	

good	 mucoadhesive,	

particularly	 in	 solid	 form	

when	 studied	 for	 the	 oral	

cavity	[77,81,82].		

Guar	gum	 A	 non-ionic,	 branched	

polysaccharide	 composed	

of	 galactose	 and	 mannose	

sugars.	Produced	 from	the	

endosperm	of	guar	beans.	

Guar	gum	has	been	found	to	

enhance	 the	 mucoadhesion	

of	 solid	 formulations	 when	

with	 a	 mixture	 of	 other	

mucoadhesive	 polymers	

[54].	 Studies	 have	 found	

guar	 gum	 to	 range	 from	

being	 a	 relatively	 poor	

mucoadhesive	 [83]	 to	

exhibiting	 good	

mucoadhesion	[84].		

Gellan	gum	 Anionic	 polysaccharide	

made	 of	 repeating	

tetrasaccharide	 units	 of	

two	 D-glucose	 residues,	

one	 L-rhamnose	 and	 one	

D-glucuronic	acid.	

In	solid	form,	gellan	gum	has	

been	 found	 to	 be	 a	 weak	

mucoadhesive	 in	 the	 oral	

cavity	[85].	

	 	 	

Hydroxyethyl	

cellulose	(HEC)	

A	 non-ionic	

polysaccharide	 made	 by	

reacting	 ethylene	 oxide	

with	alkali	cellulose.	

In	 solid	 form	HEC	 has	 been	

found	 to	 exert	 low	

mucoadhesive	 strength	 [73]	

but	 in	 gels	 exhibits	
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moderate	 mucoadhesion	

[79,80].	

Hydroxypropyl	

cellulose	(HPC)	

A	non-ionic	cellulose	ether	

in	 which	 some	 hydroxyl	

groups	 in	 the	 repeating	

glucose	 units	 have	 been	

hydroypropylated	 using	

propylene	oxide.	

HPC	has	been	found	to	show	

moderate	 mucoadhesive	

strength	[75].	

Hydroxypropylmethyl	

cellulose	(HPMC)	

A	non-ionic	cellulose	ether	

in	 which	 some	 hydroxyl	

groups	 in	 the	 repeating	

glucose	 units	 have	 been	

replaced	 with	

hydroxyproply	 or	 methyl	

groups.	

There	 are	 mixed	 results	

obtained	 for	 HPMC	 with	

some	showing	strong	[84]	to	

moderate	 mucoadhesion	

[73,75,77]	 in	 solid	 for	 and	

good	 [73]	 to	 weak	

mucoadhesive	 strength	 in	

gel	form	[80].	

Pectin	 An	 anionic	 hetero-

polysaccharide	 rich	 in	

galacturonic	 acid.	 80%	 of	

the	 carboxyl	 groups	 of	

galacturonic	 acid	 are	

esterified	 with	 methanol,	

however,	 this	 can	 be	

artificially	 manipulated	 to	

change	 the	 behavioural	

properties.	 Such	as	gelling	

in	 the	 presence	 of	 Ca2+	

ions.	

Pectin	 has	 been	 found	 to	

show	good	mucoadhesion	in	

solid	 and	 liquid	

formulations	 [77,78,81,82].	

The	 different	 degrees	 of	

esterification	 have	 all	 been	

shown	 to	 be	 relatively	

mucoadhesive	[86].	
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Sodium	alginate	(SA)	 An	 ionic	 polysaccharide	

found	 in	 cell	 walls	 of	

brown	 algae.	 It	 is	 a	 linear	

copolymer	 with	

homopolymeric	 blocks	 of	

mannuronate	 (M)	 and	

guluronate	 (G).	 This	 M:G	

ratio	 is	 important	 in	

determining	 the	 polymers	

properties.	 SA	 gels	 in	 the	

presence	of	Ca+	ions.	

SA	 has	 been	 studied	

multiple	 times	 for	 its	

mucoadhesive	 abilities	 and	

is	 generally	 regarded	 as	 an	

excellent	 mucoadhesive	 in	

both	 solid	 [73,74,85]	 and	

liquid	formulations	[78].	

Xanthan	gum	(XG)	 An	 anionic	 polysaccharide	

composed	 of	

pentasaccharide	 repeat	

units	 of	 glucose,	 mannose	

and	glucuronic	acid.	

Xanthan	 gum	 has	 mixed	

results	 with	 regard	 to	 its	

mucoadhesive	strength	with	

some	 studies	 of	 buccal	

patches	 showing	 poor	

mucoadhesion	 [69,87],	

whereas	others	found	it	was	

an	 excellent	 mucoadhesive	

in	tablet	form	[83].	

	

1.2.3.	Polysaccharides	as	fat	replacers	

PSs	are	a	popular	ingredient	in	reduced	fat	products	as	they	add	bulk	and	increase	

viscosity,	whilst	contributing	fewer	calories	than	fat.	Fat	plays	a	significant	role	in	

the	overall	sensory	experience	and	thus,	satisfaction	and	acceptability	of	the	food	

product.	 As	 well	 as	 structural	 impacts	 with	 regards	 to	 providing	 hydrophobic	

matrices,	 fat	 affects	 all	 sensory	 aspects	 of	 food	 including	 appearance,	 texture,	

mouthfeel	 and	 flavour	 profile.	 Fat	 is	 not	 only	 a	 source	 of	 flavour	 itself,	 but	

contributes	to	the	temporal	release	and	perception	of	flavours	in	the	food	matrix.	

Additionally,	mounting	evidence	is	suggesting	that	fatty	acids	should	be	regarded	

as	 the	 sixth	 basic	 taste	 [88].	 Therefore,	 reducing	 fat	 content	 of	 a	 food	 will	
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undoubtedly	alter	 these	aspects,	which	must	be	characterised	 in	order	 to	 rectify	

them.	From	here	on	the	term	“flavour”	will	refer	to	both	taste	(tastants)	and	aroma	

(volatile	compounds)	perception.	

	

The	 food	 choice	 of	 consumers	 is	 influenced	 by	 many	 factors	 [89];	 however,	

ultimately	 consumers	 select	 food	 because	 they	 like	 the	 taste	 and	 an	 important	

factor	 in	 this	 is	 a	 high	 quality,	 balanced	 flavour	 profile	 [90].	 Consumers	 can	

become	 highly	 attuned	 to	 flavour	 imbalances,	 especially	 in	 familiar	 products,	 so	

maintaining	a	sensory	balance	is	integral.	Therefore,	it	is	important	to	consider	the	

impact	 to	 the	 food	microstructure,	 flavour	 release	 and	 subsequent	 physiological	

perception	of	aroma	and	taste	when	attempting	to	develop	lower	fat	alternatives	

with	 PSs.	 A	 lower	 fat	 content	 will	 reduce	 the	 binding	 of	 lipophilic	 aroma	

compounds	 to	 the	 food	 matrix,	 whilst	 the	 increase	 of	 water	 content	 to	

counterbalance	 the	 reduction	 of	 fat	 will	 relatively	 dilute	 tastants	 and	 more	

hydrophilic	aromas,	leading	to	alterations	in	flavour	perception.		

	

There	 are	many	 examples	 of	 this	 change	 in	 flavour	 perception	 in	 the	 literature.	

Shamil,	 Wyeth,	 and	 Kilcast	 (1991)	 used	 a	 time	 intensity	 study	 to	 compare	 the	

sensory	 profiles	 of	 reduced-fat	 cheese	 and	 salad	 cream	 to	 their	 full-fat	

counterparts.	 They	 found	 that	 maximum	 intensity	 and	 total	 intensity	 perceived	

(area	under	the	curve,	AUC)	of	bitterness,	sharpness	and	astringency	was	higher	in	

reduced	 fat	 products.	 Saltiness	 on	 the	 other	 hand	was	 reduced	 in	 the	 lower	 fat	

products.	Since	then	other	studies	regarding	salt	perception	and	thickeners	in	low	

fat	 systems	 have	 shown	 similar	 results	 and	 is	 thought	 to	 be	 due	 to	 the	 relative	

dilution	of	hydrophilic	compounds	when	fat	 is	reduced	[92].	More	recent	studies	

investigated	 the	effects	of	different	 fat	 levels	 in	oil	 in	water	emulsions	and	dairy	
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desserts	 on	 perception	 and	 flavour	 release	 in	vivo	 [93,94].	 Their	 findings	 show	

that	 the	 release	 and	 perception	 of	 a	 lipophilic	 aroma	 compound,	 linalool,	 was	

quicker	 when	 fat	 was	 reduced;	 whereas	 the	 release	 and	 perception	 of	 a	 more	

hydrophilic	compound	(cis-3-hexen-1-ol)	was	less	effected	by	fat	but	depended	on	

the	thickness	of	the	medium.			

	

As	 fat	 content	 is	 reduced,	 rate	 of	 release	 of	 lipophilic	 aroma	 compounds	 is	

increased,	which	alters	time	intensity	flavour	perception	[95].	Generally,	reducing	

fat	not	only	impacts	the	initial	intensity	of	aroma	but	also	the	intensity	over	time,	

usually	 resulting	 in	 the	 former	 being	 initially	 higher	 and	 the	 latter	 diminished.	

Aroma	perception	 in	 high	 fat	 foods	 is	 generally	 lower	 in	 intensity	 but	 sustained	

over	 a	 longer	period	of	 time,	 compared	 to	 an	 initial	 burst	 of	 intense	 aroma	 that	

rapidly	 disappears	 in	 lower	 fat	 counterparts.	 This	 change	 in	 aroma	 release	 can	

result	 in	 an	 unbalanced	 flavour	 profile;	 therefore,	 attempts	 at	 controlling	 the	

release	of	lipophilic	flavour	compounds	have	been	made	by	encapsulation	of	these	

compounds	 [95,96].	 Conflicting	 results	 have	 been	 found	 when	 investigating	

flavour	 release	 in	 regards	 to	 fat	 replacement	with	PS	 and	 some	of	 these	 studies	

will	be	discussed.		

	

Another	 barrier	 for	 the	 food	 industry	 to	 overcome	 regarding	 fat	 reduction	 is	

maintaining	the	creamy,	fatty	mouthfeel	associated	with	higher	fat	products.	This	

is	a	particularly	difficult	endeavour	as	 it	 is	not	entirely	certain	what	aspects	of	a	

food	product	are	associated	with	the	perception	of	 these	attributes	but	adhesion	

and	spreading	over	oral	surfaces	is	thought	to	be	important	[48,97].	Whilst	there	

is	a	relationship	between	creaminess	perception	and	viscosity	in	liquid	and	semi-

solid	food	[98],	there	is	mounting	evidence	that	viscosity	is	not	the	only	important	
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aspect	 [99–101].	Frictional	 forces	between	the	 food,	saliva	and	oral	mucosa	may	

be	equally	as	important.	The	lubrication	of	oral	surfaces	has	been	of	great	interest	

to	 many	 researchers	 in	 this	 field	 in	 an	 attempt	 to	 identify	 the	 mechanisms	

important	for	an	enhanced	perception	of	fattiness	in	lower	fat	products.	Relevant	

to	 the	 mucoadhesion	 discussion,	 Dresslehuis	 et	 al.	 identified	 that	 the	 adhesion,	

spreading	 and	 coalescence	 of	 emulsion	 droplets	 on	 oral	 tissues	 is	 important	 in	

reducing	 the	 in-mouth	 frictional	 forces	 and	 thus	 enhances	 the	 lubricating	

properties	 [49,97,97,102].	As	 some	mucoadhesive	PS	also	enhance	 lubrication,	 a	

better	 understanding	 and	 employment	 of	 mucoadhesives	 may	 lead	 to	 better	

product	design	with	respect	to	these	properties	[99,103].		

	

1.2.4.	Flavour	modulated	by	mucoadhesives	

The	 perception	 of	 flavour	 is	 complex,	 however,	 in	 the	 simplest	 terms	 it	 is	 a	

combination	 of	 the	 senses	 of	 smell	 and	 taste	 (Image	 1.2)	 .	 Of	 course,	 there	 are	

other	 influencing	 factors	 on	 the	 perception	 of	 flavour,	 such	 as	 texture	 [104],	

temperature,	 health,	 memory	 and	 emotional	 states;	 however,	 the	 physiological	

interactions	 concern	 the	 mouth	 and	 nose.	 The	 release	 of	 aroma	 and	 taste	

compounds	 from	 food	 is	 initiated	 by	 the	 breakdown	 of	 the	 matrix	 upon	

mastication	and	dilution	with	the	saliva.	Therefore,	flavour	release	and	perception	

is	largely	dependent	on	the	matrix	with	which	these	compounds	reside	and	their	

interactions	with	the	saliva	and	mucosa.		



	

	 21	

	

Image	1.2.	Cross	section	showing	the	location	of	taste	buds	and	olfactory	receptors.		

	

PS	 thickeners	 are	 known	 to	 alter	 perception	 and	 release	 of	 both	 tastants	 and	

aroma	 molecules	 [91].	 Perception	 of	 tastants	 is	 primarily	 influenced	 by	 their	

ability	 to	 travel	 through	 the	 food	matrix	 and	 saliva,	 diffusing	 into	 the	 taste	 bud	

lumen	to	activate	taste	receptor	cells.	Conversely,	aroma	compounds	are	released	

due	 to	 masticatory	 processes	 breaking	 up	 the	 food	 matrix	 allowing	 these	

compounds	 to	 escape	 and	 be	 mixed	 with	 the	 saliva.	 Depending	 on	 the	

hydrophobicity	 and	 volatility	 of	 these	 compounds	 they	 will	 travel	 to	 the	 nasal	

cavity	upon	swallowing,	where	aroma	is	perceived	by	the	olfactory	bulb	via	signals	

received	 from	 nerve	 endings	 in	 the	 nasal	 cavity,	 which	 are	 coated	 in	 olfactory	

mucosa.	The	eventual	perception	will,	therefore,	 largely	depend	on	the	affinity	of	

the	aroma	compound	for	 the	 food	matrix	and	saliva.	 In	addition	to	 these	 factors,	

aroma	compounds	themselves	can	adsorb	directly	to	oral	and	pharyngeal	mucosa	

[105,106]	or	to	food	residues	adsorbed	to	the	mucosa	[61,107].	Furthermore,	the	

expiration	 of	 breath	 after	 swallowing	 the	 food	 bolus	 facilitates	 the	 transport	 of	

these	 compounds	 retronasally	 to	 olfactory	 receptors.	 The	 perception	 of	 odours	

can	occur	 for	 a	 prolonged	period	once	 the	 food	has	 been	 swallowed	 [107].	 This	

Olfactory	receptors	

Taste	buds	
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mechanism	is	responsible	for	the	aroma	persistence	of	certain	foods	as	opposed	to	

the	first	aroma	impression	when	the	food	is	still	in	the	mouth.	

	

Flavour	compounds	vary	significantly	in	their	chemical	structure	and	their	target	

receptors.	Tastants	require	access	to	taste	buds,	predominantly	on	the	tongue,	and	

aroma	compounds	need	to	be	released	from	the	food	matrix	in	order	to	travel	to	

the	 olfactory	 epithelium.	 The	 heterogeneity	 of	 these	 molecules,	 ranging	 from	

highly	 charged	 metal	 ions	 to	 polar	 hexose	 sugars	 to	 lipophilic	 aromatic	 rings,	

makes	it	impossible	for	a	universal	theory	describing	the	matrix	changes	affecting	

their	perception	and	release.	For	example,	saltiness	is	perceived	due	to	the	direct	

uptake	of	sodium	ions	into	sodium	channels	in	taste	bud	receptor	cells.	As	sodium	

ions	 are	 small	 and	 hydrophilic,	 they	 will	 reside	 in	 aqueous	 solutions	 and	

preferentially	 move	 to	 the	 saliva	 components	 during	 consumption	 of	 a	 high	 fat	

food,	thereby	increasing	the	perception.		On	the	other	hand,	aroma	molecules	are	

volatile	 with	 a	 tendency	 to	 be	 lipophilic,	 so	 have	 lower	 affinity	 for	 saliva	 and	

mucosa.	 Therefore,	 during	 the	 consumption	 of	 high	 fat	 products,	 the	 aroma	

compound	will	reside	with	the	food	matrix	and	be	released	more	slowly.		

	

There	 are	 numerous	 studies	 investigating	 the	 influence	 of	 PS	 thickeners	 on	

viscosity,	 in	vitro	 and	 in	vivo	 flavour	 release,	 and	 sensory	 perception.	 The	 effect	

that	any	particular	PS	will	have	on	a	food	will	depend	largely	on	the	food	matrix,	

the	concentration	(and	thus	viscosity)	and	state	of	the	PS.	Investigations	into	the	

adhesive	nature	of	them	rarely	advance	further	than	the	assessment	of	attributes	

such	 as	 mouthcoating	 or	 stickiness.	 The	 vast	 amount	 of	 literature	 using	 an	

exhaustive	 combination	 of	 PSs,	 viscosity	 grades,	 concentrations	 and	 matrix	

constituents	 makes	 it	 difficult	 to	 draw	 any	 real	 conclusions	 of	 the	 effect	 of	
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mucoadhesion	 in	 these	 findings,	 as	 this	 aspect	 is	 seldom	 assessed	 or	 discussed.	

Table	1.2	outlines	some	of	the	studies	that	compare	various	PS	thickeners	and	the	

effect	they	have	on	sensory	perception	of	various	aromas	and	tastants.	This	table	

is	not	exhaustive	but	is	to	illustrate	the	vast	combinations	of	PS,	flavours	and	food	

matrices	studied	in	the	literature.		

Table	1.2.	Effect	of	polysaccharide	thickeners	on	sensory	attributes.		

Food	matrix	 Polysaccharide(s)	used	 Effect	on	sensory	perception	

Fermented	whey	

drink	[108]	

Propylene	 glycol	 (PG)	

alginate	

CMC	

High-methoxy	pectin	

XG	

CMC	 and	 PG	 alginate	 ↑	 sweetness	

and	 ↓	 acidity	 and	 yoghurt	

attributes	 compared	 to	 other	

polysaccharides	 and	 control.	

Mouthcoating	 was	 most	 strongly	

associated	with	CMC	

Custard	dessert	

[109]	
CMC	 with	 varying	

viscosity	 grades	 and	

concentrations	used	

Increasing	 concentration	 and	

viscosity	 ↓	 sweetness	 perception	

and	↑	the	in-nose	total	release	and	

Imax	 of	 ethyl	 butyrate,	 ethyl	 3-

methylbutanoate,	 ethyl	 hexanoate	

compared	 to	 lower	 concentration	

of	the	same	viscosity	grade.		

	

Gels	with	

differing	

rigidities	[2]	

Pectin	

Gelatin	

Increased	 gel	 rigidity	 ↓	 in-nose	

release	rates,	perception	of	odour,	

strawberry	 flavour	and	sweetness	

but	 ↑	 total	 release	 and	 intensity	

for	hexanal,	ethyl	butanoate,	ethyl	

3-methylbutanoate	 and	 ethyl	

hexanoate.	 Pectin	 gels	 ↑	 AUC	 and	

Imax	 compared	 to	 gelatin	 gels	 for	

all	aromas.		
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Pastes	with	

differing	

viscosities	at	a	

shear	rate	of	50	

s-1	[110]	

HPMC	

Starches:	 wheat,	 waxy	

maize,	and	modified	waxy	

maize	

HMPC	 ↓	 salt	 and	 basil	 flavour	

perception	 compared	 to	 all	

starches.	Waxy	maize	starch	↓	salt	

and	 basil	 flavour	 compared	 to	

other	starches.	

Dairy	dessert	

containing	

carrageenan	and	

starch	[111]	

Pectin	-	with	differing	Ca2+	

reactivities	

Perception	 of	 adhesiveness	 ↑	 in	

desserts	 with	 pectin	 compared	 to	

control	 without.	 Sweetness	 and	

vanilla	perception	were	unaltered.		

Lemon	

flavoured	dairy	

dessert	

[93,94,112]	

CMC	

Modified	starch	

CMC	 ↓	 linalool	 and	 cis-3-hexen-1-

ol	 in	vivo	aroma	release	compared	

to	 samples	 thickened	 with	 starch	

but	had	a	similar	release	to	the	fat	

only	 samples.	 CMC	 ↓	 overall	

flavour	 and	 sweetness	 perception	

compared	to	starch	samples.		

	

Aqueous	

solutions	with	

aspartame	[113]	

CMC	

SA	

CMC	 ↓	 sweetness	 perception	 of	

aspartame,	particularly	beyond	c*.	

SA	 did	 not	 influence	 sweetness	

perception.	

Sucrose	

solutions	

thickened	with	

low,	medium	

and	high	

molecular	

weight	PS	[114]	

Guar	gum	 Below	 c*	 there	was	 no	 impact	 on	

sweetness	 or	 flavour	 perception	

but	 above	 this	 there	 was	

significant	 reduction	 in	 flavour	

intensity.	 No	 differences	 were	

found	 between	 the	 different	

molecular	weights.		

	

1.2.4.1.	Effect	on	tastant	perception	

Malkki,	Heinio,	 and	Autio	 (1993)	alluded	 to	mucoadhesion	as	an	explanation	 for	

their	 findings	 on	 flavour	 release	 and	perception	 in	 PS	 thickened	 solutions.	 They	

compared	 three	 thickeners,	 CMC,	 oat	 gum	 and	 guar	 gum	 with	 respect	 to	 their	



	

	 25	

impact	 on	 sweetness	 and	aroma	perception	over	 time.	They	 found	 that	 oat	 gum	

was	sweeter	than	CMC	and	guar	gum	solutions	and	proposed	that	adherence	of	the	

solution	to	the	taste	buds	for	longer	could	provide	an	explanation	for	the	apparent	

increase	in	sweetness,	although	they	did	not	carry	out	any	experiments	to	test	this	

hypothesis.	 The	 viscosities	 were	 matched	 at	 the	 shear	 rate	 of	 50	 s-1,	 which	 is	

considered	 to	be	 the	 shear	 rate	of	 the	mouth,	 and	oat	 gum	showed	 the	weakest	

shear	thinning	behaviour	indicating	that	at	lower	shear	rates,	the	viscosity	would	

be	 lower	 than	 the	 other	 two	 samples.	 This	 could	 affect	mass	 transfer	 of	 glucose	

molecules	 to	 the	 receptors;	 however,	 they	 do	 report	 that	 even	 the	most	 viscous	

sample	was	 sweeter	 than	 the	 least	 viscous	 CMC	 and	 guar	 samples.	 Interestingly	

they	also	found	that	oat	gum	solutions	had	the	lowest	aroma	perception	over	time.	

This	may	suggest	that	the	benefit	obtained	from	adherence	of	the	matrix	at	taste	

buds,	 prolonging	 tastant	 perception,	 may	 also	 reduce	 aroma	 release	 from	 the	

matrix	of	the	food.	However,	there	was	no	control	used	for	aroma	perception	data	

so	it	is	difficult	to	draw	this	conclusion	as	all	PSs	may	have	altered	perception	over	

time	compared	to	the	aroma	compounds	in	water.		

	

Hydroxypropylmethyl	cellulose	(HPMC)	is	a	non-ionic,	cellulose	derivative	and	is	a	

relatively	weak	mucoadhesive	 in	 the	 oral	 cavity	 compared	 to	 other	 PSs	 such	 as	

chitosan	and	CMC	[77].	This	PS	is	used	in	many	studies	as	a	viscosity	modifier	so	

that	 there	 is	 limited	 chemical	 interaction	 occurring	 between	 the	 PS	 and	 flavour	

compound.	 Studies	 have	 found	 that	 this	 thickener	 decreases	 the	 perception	 of	

saltiness,	 sweetness	 and	 aroma	 compounds	 in	 liquid	 systems	 due	 to	 the	

enhancement	 in	 viscosity	 [92,116].	 These	 studies	 found	 that	 by	 increasing	 the	

concentration	 of	 HPMC,	 above	 a	 critical	 concentration,	 named	 the	 coil	 overlap	

concentration	(c*),	a	decrease	in	perception	of	tastants	and	aromas	was	observed.	
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c*	 refers	 to	 the	 concentration	 above	which	PS	molecules	 physically	 interact	 and	

overlap,	 and	 is	 determined	 by	 a	 sharp	 increase	 in	 viscosity	 after	 this	 point	

[114,117].	 The	 authors	 propose	 that	 the	 reduction	 in	 taste	 intensity	was	 due	 to	

entrapment	 of	 the	 compounds	 within	 the	 polymer	 network,	 slowing	 the	 mass	

transfer	to	taste	buds	and	nasal	receptors.	

	

This	effect	could	be	advantageous	in	low	fat	systems	where	flavour	is	unbalanced.	

Taste-aroma	interactions	have	been	documented	in	the	literature	with	the	former	

usually	enhancing	the	latter	in	congruent	pairings	[92,118–120].	This	interaction	

could	be	taken	advantage	of	by	intelligently	designing	food,	using	mucoadhesives	

to	 change	 the	 temporal	 perception	 of	 flavour	 through	 controlled	 delivery	 of	

tastants.		

	

1.2.4.1.	Effect	on	aroma	perception	

Gallardo-Escamilla	et	al.	(2007)	investigated	the	sensory	impact	of	various	PSs	in	a	

fermented	whey	drink.	The	selected	PSs	were	high	methyl-ester	pectin,	propylene	

glycol	 alginate	 (PGA),	 CMC	 and	 XG	 (Table	 2).	 The	 viscosities	 of	 the	 drinks	were	

matched,	 although	 the	 authors	 recognise	 the	 high	 shear	 rate	 used	 to	 match	

viscosity	may	have	affected	results.	They	found	that	the	presence	of	all	PS	reduced	

the	 overall	 typical	 yoghurt	 aroma	 released	 in	 headspace	 analysis	 compared	 to	

control,	 however,	 perception	 data	 showed	 only	 a	 significant	 decrease	 when	

thickened	 with	 PGA.	 The	 perception	 of	 acidity	 was	 decreased	 in	 all	 samples	

(except	XG)	compared	to	the	control,	and	sweetness	was	perceived	to	be	higher	in	

the	CMC	and	PGA	samples	[108].	Mucoadhesion	may	explain	part	of	the	results	in	

this	 study,	 as	 the	 enhanced	 sweetness	 found	 by	 adding	 known	 mucoadhesives	

(pectin,	 CMC	 and	 alginate)	 could	 play	 an	 important	 role	 in	 prolonging	 the	
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residence	of	the	sugar	molecules	in	close	proximity	to	the	taste	receptors.	Bayarri,	

Chulia,	and	Costell	(2010)	also	found	that	carrageenan	enhanced	the	perception	of	

sweetness	and	vanilla	aroma	intensity	in	model	fat-reduced	custards	compared	to	

a	full-fat	counterpart.		

	

Cook	 et	 al.	 (2003)	 and	 Hollowood	 et	 al.	 (2002)	 investigated	 the	 impact	 of	

thickeners	on	flavour	perception	and	coupled	the	experiments	to	in	vivo	release	of	

aroma	 compounds.	 Their	 findings	 suggest	 that	 although	 flavour	 perception	was	

decreased	 in	 thickened	 samples,	 the	 in	vivo	 aroma	 release	was	 not	 significantly	

reduced.	The	authors	concluded	that	the	perception	decrease	of	aroma	was	due	to	

aroma-taste	 interactions,	 where	 a	 decrease	 in	 the	 perception	 of	 saltiness	 or	

sweetness	 decreases	 the	 perception	 of	 the	 congruent	 aromas,	 even	 though	 the	

same	amount	of	aroma	may	be	delivered	to	the	nasal	cavity	[92,116].	As	with	most	

studies	 of	 this	 nature,	 the	 sensory	 perception	 data	 collected	 is	 a	 static	

measurement.	 Although	 some	 measures	 were	 taken	 to	 control	 the	 time	 the	

panellists	scored	at,	such	as	not	holding	the	sample	for	longer	than	a	few	seconds,	

the	 panellist	 only	 scored	 once.	 This	 means	 that	 any	 change	 in	 delivery	 of	 the	

tastant	or	aroma	compounds	is	not	captured.		

	

The	 decrease	 in	 tastant	 perception	 in	 solutions	 thickened	 with	 HPMC	 may	 be	

because	it	is	non-ionic	and	therefore	will	not	interact	with	the	tastant	compounds	

compared	 to	 ionic	 mucoadhesives	 such	 as	 CMC.	 Therefore,	 the	 salt	 and	 sugar	

molecules	may	favour	partitioning	into	the	salivary	phase	during	mastication	and	

be	swallowed	before	activating	taste	receptors	on	the	tongue	that	may	be	shielded	

by	the	viscous	PS.	Conversely,	a	mucoadhesive	PS	that	is	ionic	may	associate	with	

the	tastant	and	therefore	retain	it	in	close	proximity	to	the	mucosa.		
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There	 is	 abundant	 research	 in	 the	 field	 of	 viscosity,	 thickeners,	 and	 flavour	

perception	and	release.	However,	most	studies	investigating	these	parameters	use	

a	 model	 thickener	 and	 do	 not	 necessarily	 consider	 the	 differences	 between	

thickener	 types	 in	 terms	 of	 mucoadhesion.	 Much	 like	 the	 differing	 strengths	 of	

mucoadhesion	each	thickener	will	possess,	the	interaction	between	the	thickener	

and	 flavour	 molecules	 will	 differ.	 Therefore,	 it	 is	 difficult	 to	 draw	 conclusions	

about	the	role	mucoadhesion	plays	in	many	of	these	studies,	as	the	mucoadhesive	

strength	 of	 the	 thickeners	 is	 not	measured.	 This	 oversight	 is	 a	 limitation	 as	 the	

mucoadhesive	 strength	 of	 the	 thickeners	 could	 be	 a	 factor	 in	 the	 difference	 in	

aroma	release	between	different	thickeners,	which	is	only	assessed	as	the	sensory	

perception	 of	 adhesiveness	 [108,110,121,122].	 These	 studies	 mentioned	 above	

and	detailed	 in	 table	1.2	emphasize	 the	complex	relationship	between	thickener,	

flavour	perception	and	flavour	release.	

	

To	 further	complicate	 the	picture,	aroma	adsorption	 to	 the	oral	mucosa	has	also	

been	investigated	for	many	years.	A	study	by	Hussein,	Kachikian,	and	Pidel	(1983)	

was	 one	 of	 the	 first	 to	 investigate	 the	 effect	 of	 aroma	 persistence	 after	

consumption.	In	this	study,	participants	rinsed	their	mouths	after	1	and	5	minutes	

post-consumption,	 and	 measured	 the	 amount	 of	 volatile	 left	 in	 the	 mouth.	 The	

authors	found	the	most	persistent	aromas	to	be	menthol	and	anethole;	however,	it	

was	unclear	whether	the	extraction	technique	was	suitable	to	remove	all	volatile	

compounds,	 especially	 those	 adhered	 to	 the	 mucosa.	 More	 recently,	 Esteban-

Fernandez	 et	 al.	 (2016)	 used	 intra-oral	 SPME/GC-MS	 to	 investigate	wine	 “after-

aroma”.	 The	 authors	 found	 that	 the	 strength	 of	 the	 aroma-mucosa	 interactions	

was	more	important	that	the	actual	amount	of	aroma	adsorbed.	
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1.2.5.	Polysaccharides	and	texture	

Trained	 sensory	 panels	 often	 describe	 the	 textural	 aspects	 of	 high	 fat	 foods	 as	

creamy,	fatty,	slippery,	oily	and	smooth;	dependent	on	the	type	of	food.	It	can	be	

difficult	 for	panellists	 to	distinguish	between	these	types	of	words;	partly	due	to	

the	 difficulty	 in	 classifying	 these	 perceptions	 by	 experimental	 means.	 Factors	

including	 rheology,	 tribology,	 colloidal	 behaviour	 and	 flavour	 all	 have	 an	

important	influence.		

	

As	mentioned	 previously,	 fat	 serves	many	 purposes	 in	 food	with	many	 textural	

cues	 that	 are	 difficult	 to	 mimic	 without	 it.	 Emulsions	 are	 designed	 with	 this	 in	

mind	in	an	attempt	to	mimic	the	lubricating,	thick	and	creamy	properties	that	fat	

imparts	[61,124,125].	Many	studies	highlight	the	importance	of	thin	film	rheology	

and	 tribology	 as	 well	 as	 bulk	 rheology	 when	 comparing	 thickeners	 to	 fuller	 fat	

systems.	 In	 order	 to	 understand	 perceived	 textural	 changes	 to	 food	 when	

incorporating	mucoadhesives,	 it	 is	 vital	 to	 establish	 a	way	 to	 characterise	 these	

changes.	Malone	et	al.	(2003)	studied	the	adsorption	of	oil-in-water	emulsions	to	a	

mucin-coated	film.	The	authors	found	that	the	addition	of	mucoadhesive,	chitosan,	

enhanced	 the	affinity	of	 the	oil	 to	 the	mucin	 film.	The	authors	also	note	 that	 the	

presence	of	chitosan	resulted	in	an	astringent	mouthfeel	when	given	to	a	trained	

sensory	 panel,	 which	 was	 attributed	 to	 chitosan	 binding	 to	 mucin	 molecules	

causing	 precipitation	 [99].	 This	 is	 one	 of	 the	 few	 studies,	 which	 attempts	 to	

directly	employ	mucoadhesives	as	a	way	to	modulate	the	organoleptic	properties	

of	 food	 by	 texture	 modulation.	 There	 are,	 of	 course,	 many	 other	 studies	

investigating	 the	 textural	 aspects	 of	 liquid,	 semi-	 liquid	 and	 semi-	 solid	 foods,	

some	 of	 which	 specifically	 investigate	 the	 interaction	 between	 the	 food	 and	

mucosa	 [50,105,124–126].	 Many	 of	 these	 refer	 to	 the	 specific	 interactions	 of	
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flavour	molecules	with	the	food	matrix	and	oral	anatomy,	however,	select	studies	

have	 investigated	 the	 influence	 of	 hydrocolloids	 on	 the	 textural	 perception	 of	

emulsions	[50,124,125,127].		

	

Most	of	the	studies	regarding	the	effect	of	PS	thickeners	on	texture	are	focused	on	

liquid	products	as	this	is	where	they	are	most	utilised	[6,128,129].		However,	the	

results	from	these	studies,	and	the	likely	role	of	mucoadhesion	in	contributing	to	

the	 changes	 in	 sensory	perception,	may	generate	 interest	 in	 incorporating	 these	

mucoadhesives	 into	dry	 food	products.	 For	many	mucoadhesives,	 the	 solid	 form	

has	the	highest	mucoadhesive	strength,	due	to	swelling	and	spreading	behaviour	

upon	contact	with	 the	moist	mucosal	 surface	of	 the	oral	 cavity.	This	 results	 in	 a	

strong,	lubricating,	adhesive	joint.		

	

To	 date,	 and	 to	 the	 best	 of	 the	 authors’	 knowledge,	 there	 aren’t	 any	 studies	

specifically	 investigating	 the	 impact	on	 flavour	 retention,	 release	and	perception	

of	mucoadhesive	PSs	in	liquid	and	solid	food	products.	The	work	in	this	thesis	was	

the	 first	 to	 assess	 the	mucoadhesive	 strength	 of	 PSs	 in	 an	 aqueous	 solution	 on	

different	 areas	of	 porcine	 tongue	 and	 related	 that	 to	 the	 effect	 of	 in	vivo	 flavour	

perception	with	a	 sensory	panel.	 It	 is	also	 the	 first	 to	 incorporate	mucoadhesive	

PSs	into	popcorn	seasoning	to	assess	the	effect	on	flavour	perception	over	time.		

	

1.2.6.	Concluding	remarks	

The	understanding	of	mucoadhesion	in	food	substances	could	have	many	impacts	

on	the	food	industry,	whether	mucoadhesives	are	added	as	a	functional	ingredient,	

or	whether	native	mucoadhesives	in	the	food	are	manipulated	to	control	sensory	

properties.	By	understanding	the	properties	of	mucoadhesive	food	components,	a	
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higher	 level	 of	 control	 could	 be	 achieved	 in	 the	 texture	 and	 flavour	 of	 a	 food	

product.	Mucoadhesion	 could	 also	play	 a	 significant	 role	 in	 the	 future	 of	 low-fat	

foods	utilising	fat	replacers.	

	

In	 conclusion,	mucoadhesion	 is	 an	 important	 consideration	 for	 food	 researchers	

and	 product	 developers	 and	 has	 the	 potential	 to	 be	 utilised	 in	 enhancing	 the	

organoleptic	 properties	 of	 foods.	 The	 impact	 of	 mucoadhesive	 ingredients	 on	

sensory	perception	is	beginning	to	be	elucidated,	however	further	research	in	this	

area	is	required	for	a	better	understanding.		
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Chapter	1.3:	Thesis	aims,	objectives	and	hypotheses	

This	 PhD	 work	 investigates	 the	 impact	 of	 mucoadhesive	 PSs	 in	 food	 products	

considering	the	literature	above.		

	

1.3.1.	Aims	

The	overall	aims	of	the	work	were	as	follows:	

• To	 develop	 a	 method	 to	 compare	 the	 retention	 of	 a	 range	 of	 PS	

formulations	on	tongue	tissue.		

• To	assess	changes	that	solutions	thickened	with	mucoadhesive	PSs	have	on	

tastant	perception	and	in	vivo	retention.	

• To	investigate	the	role	of	mucoadhesive	PSs	in	solid	formulations	to	control	

the	release	flavours	over	time.	

• To	 attempt	 an	 application	 for	 mucoadhesive	 PSs	 relevant	 to	 industrial	

sponsor	of	this	project.	

	

1.3.2.	Objectives	

The	objectives	to	complete	these	aims	were	as	follows:	

• Development	 of	 an	ex	vivo	 retention	model	with	porcine	 tongue	 tissue	 as	

the	substrate	to	test	a	variety	of	PS	materials	for	their	retention	ability.		

• In	 vivo	 time	 intensity	 sensory	 perception	 testing	 of	 the	 taste	 of	 aqueous	

solutions	containing	sodium	or	glucose,	with	and	without	mucoadhesive.		

• Collection	 of	 saliva	 at	 set	 time	 points	 after	 consumption	 to	 measure	 PS	

ability	to	retain	tastants	in	the	mouth.		

• Time	 intensity	 sensory	 testing	 for	 PS	 films	 with	 tastant	 and	 aroma	

compounds.		
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• Characterisation	 of	 the	 PS	 films	 including	 swelling	 and	 disintegration	

studies,	dissolution	testing	and	in	vitro	mucoadhesion	tests.		

• Incorporation	of	mucoadhesive	PSs	 into	popcorn	seasoning	and	assessing	

the	impact	on	flavour	perception.		

	

1.3.3.	Hypotheses	

The	hypotheses	of	this	work	are	as	follows:	

• Ionic,	viscous	PS	will	be	adhesive	to	oral	tissues	such	as	the	tongue.		

• Solutions	 thickened	with	mucoadhesive	PSs	will	 decrease	 the	 intensity	of	

the	 perception	 of	 tastants	 but	 will	 prolong	 their	 residence	 and	 therefore,	 give	

sustained	perception	of	them	compared	to	water.		

• Mucoadhesive	PSs	in	aqueous	solutions	will	retain	tastants	in	the	mouth	for	

longer	than	less	mucoadhesive	PS	and	water.		

• The	 properties	 of	 the	 PS	 such	 as	 swelling	 degree,	 dissolution	 speed	 and	

adhesiveness	 will	 impact	 the	 release	 and	 subsequent	 perception	 of	 flavours	 in	

solid	formulations.		
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Chapter	2:	Mucoadhesive	materials	and	their	characterisation		

In	 this	 chapter,	 the	materials	 used	 throughout	 the	 thesis	 are	 discussed	 in	 detail	

and	some	background	theory	behind	the	rheology	used	to	characterise	PSs.		

	

2.1.	Structure,	functionality	and	uses	of	polysaccharides	

PSs	 are	 employed	 across	 many	 different	 industries	 as	 adhesives,	 thickeners,	

binders,	 film-formers,	 water-retention	 agents,	 lubricants,	 emulsifiers	 and	

stabilisers.	 Naturally-derived	 PSs	 commonly	 used	 include;	 gums,	 starches,	

cellulose	 derivatives,	 chitosan,	 pectins,	 alginates	 and	 pullulan.	 The	 structures	 of	

these	 PSs	 vary	 in	 complexity	 dependent	 on	 the	 type.	 For	 example,	 starch	 and	

cellulose	are	made	up	of	glucose	monomers	connected	by	alpha	and	beta	linkages,	

respectively.	Whereas,	alginates	are	copolymers	of	β-D-mannuronate	(M)	and	 its	

epimer	 α-L-guluronate	 (G)	 arranged	 in	 various	 combinations	 of	 homopolymeric	

blocks.		

	

Depending	on	their	chemical	and	physical	properties,	PSs	are	employed	in	a	wide	

range	 of	 products.	 In	 the	 food	 industry,	 they	 are	 commonly	 used	 as	 viscosity	

enhancers	 in	 liquid	 and	 semi-solid	 products,	 particularly	 those	with	 reduced	 fat	

contents,	 as	 a	way	 to	 compensate	 for	 lost	 bulk.	 Furthermore,	 they	 are	 useful	 in	

dairy	 drinks	 and	 desserts	 with	 reduced	 fat	 contents	 to	 compensate	 for	 loss	 of	

viscosity	 and	 creaminess.	 Other	 common	 uses	 for	 carboxymethyl	 cellulose	 in	

particular	 are	 in	 bakery	 products	 to	 retain	 moisture	 and	 confectionary	 for	

structural	properties.		

	

In	addition	to	 the	many	other	uses	 in	 the	pharmaceutical	 industry,	many	PSs	are	

used	for	their	adhesive	nature.	Mucoadhesive	PSs	are	those	that	adhere	to	mucosal	
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surfaces	in	the	body	for	a	prolonged	period.	As	described	in	chapter	1,	section	1.2.	

mucoadhesion	is	a	well-characterised	phenomenon	and	is	used	in	pharmaceutics	

to	control	drug	delivery	at	mucosal	surfaces	[1–4].	Due	to	the	retention	of	such	PSs	

at	mucosal	surfaces,	they	can	be	incorporated	into	formulations	containing	active	

pharmaceutical	 ingredients.	 The	 PSs	 chosen	 for	 experiments	 in	 this	 work	 were	

selected	from	those	frequently	used	in	the	pharmaceutical	industry,	based	on	their	

mucoadhesive	strength,	viscosity	enhancing	abilities	and	their	suitability	for	food	

use.	The	structural	characteristics	and	functions	of	the	PSs	used	will	be	reviewed	

below.	Information	provided	by	the	manufacturers	regarding	the	properties	of	the	

PS	are	detailed	in	table	2.1.		

	

Table	2.1.	Details	of	polysaccharides	used	in	experiments.		

Manufacturer	 Product	

code	

Polysaccharide	 aMw	

(kDa)	

Other	 Apparent	

viscosity*	

Herbstreith	 &	

Fox	

CU	701	 Pectin	(LMEP)	 54	 bD.E	 36%	

Galacturonic	

acid	 content	

89%	

-	

Kimica	

Corporation	

ALGIN	I-5	 Sodium	 alginate	

(SA)	

250	 cM:G	 ratio	

1.1:0.9	

1%	

solution	

517	mPa.s	

Dow	 METHOCEL	

F450	

Hydroxypropyl-

methyl	cellulose	

(HPMC)	

300	 methoxyl	
dD.S	 1.8	

hydroxyprop

yl	 molar	

substitution	

0.13	

2%	

solution	

4584	cp	

Akzonobel	 AKUCELL	

AF	0305	

Carboxymethyl	

cellulose	

(LCMC)	

140	 D.S	0.8	 -	
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Dow	 WALOCEL	 Carboxymethyl	

cellulose	

(HCMC)	

950	 D.S	0.8	 2%	

solution	

5200	mPa.s	

Hayashibara	 PULLULAN	 Pullulan	(PUL)	 250	 -	 2%	

solution	 10	

cp	

Nutricia	 Nutilis	 Starch	 -	 Contains	

maltodextrin,	

modified	

starch	

(E1442),	 tara	

gum,	xanthan	

gum,	 guar	

gum.	

	 	-	

	amolecular	weight	(Mw),	bdegree	of	esterification	of	pectin	(D.E),	cM	=	mannuronate,	G	=	
guluronate,	ddegree	of	substitution	(D.S).	

*Viscosity	determined	on	Brookfield	viscometers	at	a	shear	rate	of	7	rad/s-1.		

	

All	PS	were	kindly	provided	by	the	manufacturers	stated	apart	from	Nutilis,	which	

was	purchased	from	a	local	boots	store.	The	characterisation	data	were	provided	

by	the	manufacturers	(Table	2.1.).	Further	characterisation	was	carried	out,	and	is	

discussed	in	the	appropriate	chapters.		

	

2.1.1.	Sodium	carboxymethyl	cellulose	

Sodium	carboxymethyl	 cellulose	 (CMC)	 is	 a	water-soluble	derivative	of	 cellulose.	

The	glucose	monomer	units	of	cellulose	are	linked	via	glycosidic	β	–	linkages.	Each	

monomer	has	 three	hydroxyl	groups	 that	have	 the	potential	 to	be	substituted	by	

carboxymethyl	groups.	This	is	termed	the	degree	of	substitution	(DS).	Substitution	

is	 achieved	 during	 the	manufacturing	 process	 by	 reacting	 cellulose	with	 sodium	

monochloroacetate	 to	 substitute	 up	 to	 3	 of	 the	 hydroxyl	 groups	 with	
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carboxymethyl	 groups,	 forming	 CMC	 (Figure	 2.1.).	 This	 process	 renders	 the	

polymer	 water-soluble	 by	 decreasing	 the	 amount	 of	 hydroxyl	 groups	 that	 can	

hydrogen	bond	with	each	other	in	a	complex	network,	excluding	water	and	making	

it	insoluble.		

	

Figure	2.1.	Sodium	carboxymethyl	cellulose	structure.		

	

CMC	is	a	long	chain,	linear	PS.	The	solution	characteristics	depend	on	the	DS	and	

molecular	weight	of	the	product.	Reducing	the	DS	of	CMC	will	result	in	a	decreased	

solubility	 and	 therefore	 the	 product	 swells	 and	 does	 not	 completely	 dissolve,	

leading	 to	 an	 enhanced	 viscosity.	 As	 with	 most	 PS,	 a	 larger	 molecular	 weight	

results	in	an	increase	in	solution	viscosity.	Similarly,	as	the	concentration	of	CMC	is	

increased	 so	 is	 the	 viscosity.	 Neutralisation	 of	 carboxymethyl	 groups	 will	 also	

affect	viscosity;	therefore,	the	pH	of	the	solution	is	important.		

	

CMC	 is	 used	 for	many	 applications	 in	 the	 food	 industry	 including	 cake	mixes	 to	

retain	moisture,	confectionary	to	control	sugar	crystallisation,	ice	cream	to	control	

ice	 crystallisation,	 and	pet	 foods	 for	 its	 gelling	properties	 [5].	 Furthermore,	CMC	

has	 many	 applications	 in	 the	 pharmaceutics	 industry	 in	 a	 variety	 of	 drug	
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formulations.	 Properties	 that	 are	 useful	 include,	 but	 are	 not	 limited	 to,	 film	

forming,	 stabilising,	 binding,	 dispersing	 agent	 and	 adhesive.	 The	 mucoadhesive	

nature	of	CMC	is	well	documented	in	the	literature	and	is	thought	to	be	due	to	its	

high	viscosity	and	ionic	nature	[6–9].	

	

2.1.2.	Hydroxypropylmethyl	cellulose	

Hydroxypropylmethyl	 cellulose	 (HPMC)	 is	 a	 non-ionic,	 water-soluble	 cellulose	

ether	 similar	 to	 CMC.	 The	 structure	 of	HPMC	 is	 a	 cellulose	 backbone	with	 ether	

linked	 methoxyl	 and	 hydroxypropyl	 side	 group	 substituents	 attached	 through	

ether	 linkages	 to	 the	 cellulose	 chain	 hydroxyl	 groups	 (Figure	 2.2.).	 This	

modifcation	is	achieved	by	heating	cellulose	fibres	with	a	sodium	hydroxide,	which	

in	turn	is	treated	with	methyl	chloride	and	propylene	oxide	to	produce	the	methyl	

and	 hydroxpropyl	 ethers,	 respectively.	 HPMC	 products	 possess	 varying	 ratios	 of	

methyl	and	hydroxypropyl	substitutions	that	affect	solubility	and	thermal	gelation	

temperature.		

	

The	 HPMC	 used	 for	 experiments	 in	 this	 PhD	 thesis	 were	 obtained	 from	 DOW	

(product	 code	 F450)[10].	 This	 product	 has	 an	 average	 degree	 of	 methoxyl	

substitution	of	1.8.	The	average	molar	substitution	(MS)	of	hydroxypropyl	groups	

per	mole	of	anhydroglucose	for	this	product	is	0.13.	These	substitutions	render	the	

cellulose	 ether	 water-soluble.	 The	 molecular	 weight	 of	 HPMC	 will	 affect	 the	

rheological	 behaviour	 but	 generally,	 HPMC	 exhibits	 pseudoplastic	 behaviour,	

although	at	very	low	shear,	it	will	appear	to	be	Newtonian.	The	apparent	viscosity	

of	solutions	of	HPMC	is	directly	related	to	the	molecular	weight	or	chain	length	of	

the	PS.	The	manufacturer	determines	apparent	viscosity	in	water	at	20	°C,	with	a	
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concentration	 of	 2%	of	 the	 product.	 The	 product	 F450	used	 for	 this	work	 has	 a	

molecular	weight	of	300,000	Daltons.		

	

Figure	2.2.	Hydroxypropyl	methyl	cellulose	structure.	

	

For	pharmaceutical	 applications	HPMC	 is	 regularly	used	as	a	 film-forming	agent,	

thickener,	binder,	sustained-release	agent,	emulsifying	agent	and	suspending	agent	

in	 a	 variety	 of	 dosage	 forms.	 HPMC	 is	 not	 generally	 regarded	 as	 a	 strong	

mucoadhesive	 on	 its	 own,	 as	 it	 is	 non-ionic,	 however,	 it	 is	 frequently	 used	 in	

mucoadhesive	 formulations	 for	 its	 film	 forming	 abilities	 and	 slow	 disintegration	

[8,11].	Furthermore,	HPMC	possesses	hydrogen	bonding	groups	and	has/exhibits	

a	high	viscosity,	which	 lends	 itself	 to	mucoadhesion	 in	 the	presence	of	moisture.	

Rheological	 factors	 such	 as	 viscosity,	 spreading	 on	 the	 mucosal	 surface	 and	

hydration	 leading	 to	 interpenetration	 of	 polymer	 chains	 where	 interactions	 can	

occur	with	mucins	will	facilitate	this	adhesion.		

	

2.1.3.	Pectin	

Pectins	 are	 a	 complex	 group	 of	 heteropolysaccharides	 found	 in	 the	 primary	 cell	

walls	 and	middle	 lamella	of	many	plants.	 	Most	 commonly,	 pectins	 are	 extracted	

from	the	peel	of	 citrus	 fruit.	Galacturonic	acid	units	make	up	 the	majority	of	 the	
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structure	of	pectin	(Figure	2.3.)	and	the	carboxylic	acid	groups	of	the	uronic	units	

can	 be	 free	 or	 associated	with	 various	 counter-ions	 such	 as	 sodium,	 potassium,	

calcium,	 or	 ammonium,	 or	 naturally	 esterified	 with	 methanol.	 Pectins	 are	

polyelectrolytes	 so	 are	 sensitive	 to	 pH	 fluctuations.	 Pectins	 exhibit	 acidic	 pH	 in	

solutions	due	to	the	charged	carboxylic	groups	[12].	

	

Figure	2.3.	Pectin	structure	with	various	functional	groups.		

	

The	galacturonic	backbone	of	pectin	has	many	neutral	sugars	branching	from	it	at	

varying	 degrees.	 The	 galacturonic	 backbone	 is	 also	 interjected	 with	 rhamnose	

sugars	 at	 a	 substitution	 of	 between	 1	 and	 4	 %.	 Between	 20	 and	 80%	 of	 these	

rhamnose	units	are	substituted	at	C-4	with	neutral	and	acidic	oligosaccharide	side	

chains,	mainly	consisting	of	arabinofuranosyl	and	galactopyranosyl	residues	[13].	

	

The	 carboxylic	 acid	 functional	 groups	 on	 each	 galacturonic	 monomer	 unit	 can	

react	 with	 methanol,	 either	 naturally	 or	 during	 the	 manufacturing	 process,	 to	

produce	different	levels	of	methyl	esterification.	The	degree	of	esterification	(DE)	

is	defined	as	the	%	of	carboxylic	groups	that	are	esterified	with	methanol,	and	 it	

influences	the	physical	characteristics	of	pectin.	Pectins	with	a	DE	above	50%	are	

referred	 to	 as	 high	methyl	 ester	 pectins	 (HMEP)	 and	 below	 this	 are	 low	methyl	

ester	pectins	(LMEP).	Pectin	can	also	be	treated	with	ammonia	to	product	differing	
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degrees	of	amidation	(DA)	of	 the	carboxylic	acid	groups;	 these	are	referred	to	as	

amidated	pectins.		

	

LMEP	and	amidated	pectins	exhibit	 increased	gelling	response	in	the	presence	of	

divalent	 cations	 such	 as	 calcium	 ions.	 Gelation	 is	 due	 to	 the	 formation	 of	

intermolecular	 junctions	 of	 homogalacturonic	 regions	 of	 different	 pectin	 chains	

with	 the	 divalent	 cation	 being	 the	 “egg”	 in	 the	 hypothetical	 “egg	 in	 box”	 theory	

[13].	Furthermore,	amidated	pectins	show	an	enhanced	resistance	to	precipitation	

when	 high	 concentrations	 of	 the	 cations	 are	 in	 solution,	 unlike	 other	 forms	 of	

pectin.		

	

Pectins	 are	 used	 in	 a	 variety	 of	 applications	 in	 the	 food	 industry	 but	 most	

commonly	 they	 are	used	 for	 their	 gelling	 abilities	 in	 high	 sugar	 systems	 such	 as	

jams	 and	 vegetarian	 jellies.	 Pectins	 can	 also	 be	 used	 in	 acidic	 fruit	 juices	 and	

protein	beverages	 as	 a	 stabiliser.	Besides	 the	 common	uses	 in	 the	 food	 industry,	

pectins	 have	 proven	 useful	 in	 the	 pharmaceutics	 industry	 as	 a	 carrier	 for	 active	

ingredients	 in	 controlled	 release	 formulations	 [14]	 and	 in	 mucoadhesive	

formulations	[15,16].		

	

The	mucoadhesive	strength	of	different	kinds	of	pectin	has	been	investigated	with	

some	 contradictory	 results.	 Some	 studies	 investigating	 specific	 interactions	with	

mucins	to	colonic	mucosa	[17]	using	atomic	force	microscopy	[18],	have	suggested	

that	LMEP	exhibits	the	strongest	mucoadhesion	compared	to	other	types	of	pectin.	

However,	 Thirawong	 et	 al.	 (2007	 &	 2008)	 conducted	 texture	 analysis	 and	

rheological	synergism	tests	and	found	HMEP	formulations	showed	better	potential	

as	 mucoadhesives.	 This	 discrepancy	 might	 be	 explained	 by	 the	 fact	 that	 these	
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studies	use	different	methods	to	assess	mucoadhesion	with	a	range	of	in	vitro	and	

in	vivo	tests.	Furthermore,	it	is	likely	that	the	type	of	mucin	or	tissue	used	to	assess	

mucoadhesion	will	have	a	significant	effect	on	the	mucoadhesive	strength.			

	

At	neutral	pH,	 the	 free	carboxylic	groups	of	 the	LMEP	will	be	negatively	charged	

and	the	mucins	will	also	be	negatively	charged.	The	charged	groups	may	result	in	

electrostatic	 repulsion	of	 the	polymer	chains	 leading	 to	uncoiling.	This	may	 then	

facilitate	 chain	 entanglements	 and	 bond	 formations.	 SEM	 images	 of	 pectin	 and	

mucin	interactions	by	Liu	et	al.	(2005)	support	this	and	the	authors	conclude	that	

entanglement	of	PS	chains	with	mucin	chains	is	the	dominant	mode	of	interaction	

facilitating	mucoadhesion.				

	

2.1.4.	Pullulan	

Pullulan	 (PUL)	 is	 a	 water	 soluble,	 non-ionic,	 linear	 PS	 consisting	 of	 maltotriose	

residues.	 α	 1-	 4	Glycosidic	 bonds	 link	 the	 three	 glucose	molecules	 that	make	up	

maltotriose	and	each	maltotriose	unit	in	turn	is	connected	to	another	maltotriose	

via	α	1-	6	linkages	(Figure	2.4.).	PUL	is	a	fungal	exopolysaccharide	produced	from	

starch	 by	 the	Aureobasidium	pullulans.	 The	molecular	 weight	 of	 pullulan	 can	 be	

between	10	and	400	kDa	[20]	depending	on	the	growth	conditions.	In	water	PUL	

quickly	dissolves	 to	 form	a	stable,	non-gelling,	viscous	solution.	Solutions	of	PUL	

are	Newtonian	and	the	viscosity	is	relatively	low	compared	to	other	PS.	
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Figure	2.4.	Pullulan	structure.		

PUL	 is	 used	 in	 the	 food	 industry	 due	 to	 its	 chemical	 properties	 and	 range	 of	

applications	 that	 can	 take	 advantage	 of	 these	 properties.	 PUL	 is	 tasteless	 and	

odorless	 and	 is	 therefore	 attractive	 for	 use	 in	 low	 fat	 products	 as	 a	 bulking	 and	

stabilizing	 agent.	 It	 is	 a	 soluble	 dietary	 fibre,	 has	 excellent	 water	 retention	

properties	and	provides	an	oxygen	permeation	barrier.	Furthermore,	PUL	has	good	

adhesive	 and	 film	 forming	 properties.	 These	 properties	 make	 PUL	 an	 attractive	

additive	for	the	food	industry	and	has	been	used	for	over	20	years	in	Japan	[21].		

	

Fast	dissolving,	mucoadhesive	films	made	with	PUL	are	used	in	the	pharmaceutical	

industry	to	deliver	drugs	systemically	whilst	bypassing	first	pass	metabolism	and	

as	alternatives	 to	 tablets	and	capsules,	which	can	be	difficult	 to	swallow	 [22,23].	

PUL	 based	 films	 can	 also	 be	 used	 to	 deliver	 active	 ingredients	 to	 treat	 halitosis	

causing	bacteria	combined	with	a	range	of	flavorings	at	the	same	time.	PUL	is	used	

in	 this	 way	 for	 Listerine	 Pocketpacks®	 as	 pullulan	 films	 are	 adhesive	 and	 fast	

dissolving.	 The	 films	 quickly	 dissolve	 in	 contact	 with	 saliva,	 releasing	 the	

flavourings	and	active	ingredients	to	fight	bad	breath.	More	recently,	PUL	is	being	

investigated	 for	 its	 applications	 in	 the	 biomedical	 field	 including	 targeted	 drug	

delivery,	tissue	engineering	[24]	and	wound	healing	[21].		
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2.1.5.	Sodium	alginate	

Sodium	 alginate	 (SA)	 is	 a	 naturally	 occurring,	 anionic	 PS	 extracted	 from	 brown	

algae	 (Phaeophyceae).	 It	 is	 a	 linear	 copolymer,	 consisting	 of	 two	 epimeric	

monomers,	b-D-mannuronic	acid	 (M)	and	a-L-guluronic	acid	 (G)	 residues	 (figure	

2.5.).	The	proportions	and	distribution	of	these	epimers	vary	within	each	polymer	

chain	with	differing	combinations	of	M-	blocks,	G-	blocks	and	MG-	blocks.	The	M:G	

ratio	is	important	as	only	the	G	blocks	are	thought	to	be	involved	in	intermolecular	

interactions	between	divalent	cations	(calcium),	which	results	in	gelation	[25,26].	

The	viscosity	of	SA	solutions	 increase	as	pH	decreases	due	 to	protonation	of	 the	

carboxylate	 groups	 resulting	 in	 hydrogen	 bonding	 between	 chains	 [27].	 SA	 has	

many	 applications	 across	 lots	 of	 different	 fields	 including;	 food,	 pharmaceutics,	

bioengineering	and	cosmetics.		

	

In	 the	 food	 industry	 alginates	 have	 various	 applications	 including;	 thickening,	

stabilising,	 film	 former,	 pre-	 and	 probiotic	 encapsulation	 [28]	 and	 aroma	

encapsulation	[29,30].	As	SA	gels	in	the	presence	of	calcium	it	has	been	a	popular	

ingredient	 in	 fine	 dining	 for	 experimenting	 with	 textures	 and	 flavours.	 SA	 is	 a	

soluble	 fibre	 and	 has	 been	 investigated	 for	 satiety	 enhancing	 effects	 when	

consumed	in	a	drink	[31].	

	

Figure	2.5.	Sodium	alginate	structure.	
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In	 pharmaceutics,	 SA	 is	 one	 of	 the	 most	 commonly	 used,	 naturally	 occurring,	

mucoadhesive	materials	[8,32,33].	The	mucoadhesive	properties	of	SA	have	been	

exploited	 in	 a	 variety	 of	 formulations	 including;	 buccal	 discs,	 tablets	 and	 films	

[8,34,35],	liquid	formulations	[36,37]	and	gels	[38].		

	

2.1.6.	Modified	maize	starch	

Starch	is	a	plant	PS	stored	in	roots	and	seeds.	Unlike	the	other	PS	mentioned	in	this	

chapter,	 starch	 provides	 energy	 as	 it	 is	 broken	 down	 into	 glucose	 units	 by	 the	

enzyme	amylase.	Starch	is	insoluble	in	cold	water	and	will	form	swelled	granules	

that	create	a	temporary	suspension	as	each	granule	absorbs	water.	There	are	many	

types	 of	 starch	 and	modified	 starches,	 each	 possessing	 different	 properties	 and	

suited	to	different	applications	[39].		

	

Starch	 is	made	up	of	 two	polymers,	 amylose	 and	 amylopectin.	Amylose	 typically	

makes	up	about	25%	of	the	PS	and	the	amount	of	amylose	in	starch	is	responsible	

for	 its	 gelation	 ability	 and	 resistance	 to	 degradation	 by	 amylase.	 	 	 Amylose	 is	 a	

long,	linear	chain	of	α	1-4	linked	glucose	units	(Figure	2.6.).	Amylose	usually	forms	

stiff,	 left-handed	helices	 in	solution	 [40].	The	majority	of	 starch	 is	made	up	with	

amylopectin	 molecules.	 Similarly	 to	 amylose,	 amylopectin	 is	 made	 up	 of	 many	

glucose	molecules	with	α	1-4	glycosidic	linkages,	however,	every	15-30	units	there	

is	a	branching	α	1-6	linkage	[39].	This	branching	makes	the	amylopectin	molecules	

highly	branched	and	bushy.		

	



	

	 61	

	

Figure	2.6.	Starch	structure.		

	

Nutilis	is	a	brand	of	modified	maize	starch	that	is	resistant	to	amylase,	meaning	it	

does	not	breakdown	 into	glucose	units	as	readily.	 In	solution,	 like	most	starches,	

nutilis	 starch	 granules	 swell	 and	 form	 heterogeneous,	 insoluble	 granules	 [41].	

Modified	 starches	 are	 produced	 by	 chemically	 treating	 native	 starch	 to	 alter	 the	

physical	 properties.	 These	 changes	 will	 affect	 the	 stability,	 appearance	 and	

performance	 of	 the	 starch	 in	 food	 products.	 Nutilis	 is	 a	 product	 for	 adults	with	

dysphagia.	 It	 is	 used	 to	 thicken	 liquids	 and	 resist	 amylase	 therefore	 aiding	with	

swallowing.		

	

Starches	are	 frequently	used	 in	 the	pharmaceutical	 industry	as	diluents,	 binders	

and	 lubricants.	 Starch	 is	 not	 particularly	 useful	 as	 a	 mucoadhesive	 due	 to	 the	

granular	nature	in	solution.	However,	various	modified	forms	of	starches	such	as	

carboxymethyl	starch	[33]	and	conjugated	copolymers	with	poly	acrylic	acid	[42]	

have	been	investigated	for	the	use	in	mucoadhesive	formulations.	These	starches	

will	have	enhanced	water	solubility	due	to	 the	 increased	polarity	of	 the	polymer	

by	 the	charged	groups	 (carboxylic	acid).	Furthermore,	 the	addition	of	a	negative	

charge	 to	 it	 will	 enable	 interactions	 between	 the	 polymer	 and	 mucins	 via	

electrostatic	interactions	and	hydrogen	bonds.		
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2.2.	Rheological	characterisation	of	polysaccharide	solutions	

Throughout	 this	 work	 a	 rheometer	 was	 used	 to	 characterise	 the	 rheological	

aspects	of	the	PS	solutions	used.	A	brief	description	of	the	theory	behind	the	tests	

is	described	here.	Rheology	is	used	to	assess	the	behaviour	of	a	liquid,	suspension	

or	 slurry	 under	 applied	 stress.	 It	 allows	 observation	 of	 the	 flow	 of	 a	 fluid	 that	

cannot	be	defined	by	a	single	value	such	as	those	obtained	from	a	viscometer.	The	

way	 a	 fluid	 responds	 to	 applied	 stress	 over	 dynamic	 parameters	 such	 as	 time,	

temperature	 and	 strain	 is	 elucidative	 and	 valuable	 for	 scientists.	 There	 are	 two	

types	of	rheometers	commonly	used,	rotational	rheometers	are	those	that	apply	a	

shear	strain	or	stress	and	extensional	rheometers	are	those	that	apply	extensional	

stress	or	strain	are.		

Rheology	 was	 used	 to	 match	 the	 viscosities	 of	 solutions	 used	 in	 this	 work.	

Viscosity	 is	 defined	 as	 the	 resistance	 of	 a	material	when	placed	 shear	 or	 tensile	

stress.	 The	 resistance	 exerted	 by	 the	material	 is	 a	 result	 of	 the	 inter-molecular	

friction	of	molecules	in	the	fluid	as	they	attempt	to	slide	passes	one	another.	The	

equation	for	viscosity	is:	

η	=	δ/	γ	

Where	η	represents	viscosity,	δ	represents	the	shear	stress	and	γ	represents	strain.	

	

Many	 polymers	 in	 solution	 exhibit	 viscoelastic	 behaviour,	meaning	 they	 possess	

both	 viscous	 and	 elastic	 properties	 under	 stress.	 This	 viscoelastic	 behaviour	 of	

polymer	samples	can	be	characterised	by	observing	the	storage	(G’)	and	loss	(G”)	

moduli,	 which	 correspond	 to	 the	 solid-	 like	 (elastic)	 and	 liquid-like	 (viscous)	

contributions	of	a	stress	response	in	a	fluid,	respectively.		When	G''	is	higher	than	

G',	tan	(δ)	is	>	1,	the	sample	is	more	viscous	than	elastic	or	more	liquid	like.	The	

opposite	is	true	when	and	G'	is	higher	and	δ	is	<	1,	the	sample	is	more	solid	like.	
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When	δ	=1	this	is	considered	the	crossover	or	gel	point	of	fluid	from	a	liquid-like	

substance	to	a	more	solid-like	substance.		

	

A	Newtonian	fluid	is	one	that	has	linear	strain	to	stress.	Some	PS	in	solution	will	

exhibit	Newtonian	behaviour	at	very	low	shear	and	concentrations	[43],	however,	

most	 are	 non-Newtonian	 as	 their	 viscosity	 is	 shear	 dependant.	 The	majority	 of	

non-Newtonian	 PS	 solutions	 are	 shear	 thinning	 (pseudoplastic)	 however,	 some	

cane	be	shear	thickening	(dilatant).			

	

A	rotational	TA	AR2000x	rheometer	was	used	for	all	experiments	described	in	this	

body	of	work.	Oscillatory	rheology	was	used	for	all	experiments	to	determine	the	

viscosity	of	PS	solutions.	Oscillatory	was	chosen	as	opposed	to	rotational	tests	so	

that	 low	shear	viscosity	could	be	understood	where	 the	 internal	structure	of	 the	

sample	 was	 not	 destroyed.	 The	 basic	 principle	 of	 oscillatory	 rheometry	 is	 to	

induce	 a	 sinusoidal	 shear	 deformation	 in	 the	 sample	 and	measure	 the	 resultant	

stress	response.	The	test	sample	is	placed	between	two	parallel	plates;	the	bottom	

plate	 remains	 stationary	 whilst	 the	 top	 one	 oscillates.	 The	 test	 material	 is	

subjected	 to	oscillatory	movements	 that	are	controlled	by	altering	 the	 frequency	

(speed	of	 the	 turning	plate)	and	amplitude	 (how	 far	 the	 turning	plate	moves)	of	

the	oscillation.		

	

The	complex	viscosity	(η*)	of	solutions	was	determined	for	solutions	used	in	this	

work.	 η*	 is	 a	 dynamic	 measurement	 where	 viscosity	 is	 shear	 dependent.	 The	

complex	viscosity	of	a	fluid	can	be	calculated	by	the	following	formula:	

η*	=	G*/ω	
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Where	G*	is	the	complex	(dynamic)	modulus	and	ω	is	the	angular	frequency.	G*	is	

calculated	by	the	storage	(G’)	and	loss	moduli	(G”):	

G*	=	G’+	iG”	

Where	i	is	the	imaginary	unit.		

	

In	order	to	test	the	PS	solutions	that	were	used	for	experiments	in	this	work	the	

linear	 viscoelastic	 region	 (LVR)	 for	 the	 highest	 concentration	 samples	 was	

determined,	 first.	Within	 the	 LVR,	 the	materials	 response	 is	 independent	 of	 the	

stress	applied	and	the	materials	internal	structure	is	maintained	intact.	The	LVR	is	

determined	by	performing	an	amplitude	sweep	at	a	set	 frequency	and	observing	

the	G’	and	G”	moduli.	Within	the	LVR	the	G’	and	G”	moduli	are	 linear.	Frequency	

sweeps	were	then	carried	out	at	a	1%	strain	(amplitude	within	the	LVR)	to	obtain	

η*	over	a	range	of	frequencies.	
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Chapter	 3:	 In	 vitro	 method	 for	 assessing	 the	 mucoadhesion	 of	 food	 grade	

polysaccharides	on	porcine	tongue	

	

3.1.	Introduction	

The	adhesive	nature	of	PSs	has	been	known	for	some	time	[1].	Therefore,	PSs	are	

utilized	 in	 a	plethora	of	different	 industries	 for	 this	 adhesive	property	 including	

food,	pharmaceutics,	 engineering	and	 textile.	The	mucoadhesive	nature	of	PSs	 is	

well	 defined	 for	 pharmaceutical	 applications,	 and	 countless	 studies	 have	 been	

performed	 to	 understand	 the	mechanisms	 and	 uses	 of	many	 different	 polymers	

[2–4].	 However,	 those	 studies	 focus	 on	 mucosal	 surfaces	 that	 allow	 good	 drug	

absorption	such	as	buccal,	oesophageal,	stomach	and	intestines.	The	tongue	is	not	

ordinarily	used	for	drug	absorption	due	to	its	epithelial	structure	and	mechanical	

role	during	eating	and	speaking.			

	

Many	 PSs	 that	 are	 known	 to	 be	 mucoadhesive	 are	 commonly	 used	 in	 the	 food	

industry,	 particularly	 in	 liquid	 and	 semi-solid	 foods,	 as	 viscosity	 modifiers,	

stabilizers,	 and	 emulsifiers.	Only	 recently	 the	 role	 of	mucoadhesion	 is	 becoming	

recognized	 as	 a	 factor	 that	 may	 contribute	 to	 sensory	 perception	 of	 foods	

containing	 such	 ingredients	 [5–8].	 Polymer	 adhesion	 to	 the	 tongue	mucosa	 has	

only	been	explored	by	Withers	et	al.	(2013),	who	investigated	the	binding	of	milk	

proteins	to	the	tongue	epithelia,	in	an	attempt	to	explain	mouth	drying	attributes	

of	milk	products.		

	

This	chapter	investigates	the	mucoadhesive	properties	of	three	commonly	used	PS;	

LCMC,	 LMEP	 and	 SA,	 on	 different	 areas	 of	 ex	 vivo	 porcine	 tongue.	 Whilst	

mucoadhesion	 tests	 have	 been	 carried	 out	 on	 other	mucosal	 tissues	 in	 the	 oral	
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cavity,	such	as	sublingual	and	buccal,	the	mucoadhesion	of	PSs	to	the	dorsal	of	the	

tongue	 has	 not	 yet	 been	 investigated.	 The	 ability	 of	 mucoadhesive	 polymers	 to	

retain	 small	molecules	on	 these	mucosal	 surfaces	may	be	of	 interest	 to	 the	 food	

industry.		

	

The	tongue	is	the	primary	tissue	responsible	for	taste	sensations	as	this	is	where	

most	 taste	 receptor	 cells	 are	 located.	 Therefore,	 if	 a	 PS	 sample	 adheres	 to	 the	

tongue	for	a	prolonged	duration	it	may	facilitate	the	retention	of	tastant	molecules	

such	as	glucose	and	sodium	chloride.	This	retention	could	result	in	changes	in	the	

rate	of	delivery	and	subsequently,	the	temporal	perception	of	tastants.		

	

There	is	no	standardised	way	to	measure	the	mucoadhesive	strength	of	a	material.	

However,	there	are	a	variety	of	 in	vitro	and	in	vivo	methods	used	in	the	literature	

to	investigate	various	aspects	of	the	adhesion	process.	In	vitro	methods	range	from	

the	observation	of	physical	interactions	between	polymer	and	mucin	chains	using	

techniques	such	as	rheology	[9–11],	AFM	[12]	and	BIACORE	[13],	to	detachement	

measurements	 with	 a	 texture	 analyser	 [14,15].	 The	 substrates	 used	 to	 test	

adhesion	 of	 polymers	 can	 vary	 from	 purified	mucin	 [16,17]	 to	mucosa-mimetic	

materials	 [18].	An	 important	 consideration	 for	 these	 in	vitro	methods	 is	 that	 the	

results	of	one	test	does	not	necessarily	match	with	results	from	another	[19].	

	

Many	studies	use	ex	vivo	tissue	from	animal	models	to	more	accurately	represent	

in	 vivo	 adhesion.	 Mucoadhesion	 can	 be	 measured	 by	 placing	 a	 formulation	 in	

contact	with	 the	 tissue,	washing	 it	with	 an	 eluent	 and	 collecting	 the	wash	off	 to	

measure	the	amount	of	active	ingredient	in	the	wash	off	[20,21].	Ex	vivo	tissue	can	

also	be	used	as	a	substrate	for	mucoadhesion	testing	using	a	texture	analyser	[22].		
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In	 this	 chapter,	we	have	developed	 a	dynamic	 retention	method	 to	measure	 the	

retention	of	 liquid	 formulations	by	using	 fluorescence	 imaging.	The	objective	 for	

this	 chapter	was	 to	 assess	whether	 PSs	 in	 solutions	were	 adhesive	 on	 different	

areas	 of	 porcine	 tongue	 by	 developing	 a	 method	 to	 evaluate	 the	mucoadhesive	

strength	 of	 the	 PSs.	 Labelled	 and	 unlabelled	 PSs	 in	 solution	 were	 assessed	 to	

determine	if	chemical	labelling	of	PSs	is	necessary.	It	was	hypothesised	that	liquid	

mucoadhesives	would	adhere	 to	 the	 tongue	dependent	on	 the	area	being	 tested.	

For	 example,	 the	 front	 of	 the	 tongue	 contains	 many	 papillae	 that	 provide	 an	

increased	 surface	 area	 so	 according	 to	 the	mechanical	 theory	 of	mucoadhesion,	

this	 area	 should	 retain	more	 solution.	 Furthermore,	 it	was	 hypothesised	 that	 as	

viscosity	increases	so	does	the	mucoadhesive	strength.		

	

3.2.	Methods	

3.2.1.	Materials	

LMEP,	 SA,	 and	 LCMC	 (detailed	 in	 Chapter	 2)	 were	 the	 PSs	 used	 for	 these	

experiments.	All	other	chemicals	and	reagents	were	purchased	from	Sigma	Aldrich.		

3.2.1.1	Sample	preparation		

PSs	were	dissolved	in	deionised	water	(DW)	and	left	overnight	in	the	fridge	before	

testing	 took	 place	 to	 ensure	 full	 hydration	 of	 polymer	 chains	 and	 remove	 air	

bubbles.	If	the	PS	chains	are	not	fully	hydrated	this	will	have	a	huge	impact	on	how	

mucoadhesive	 it	 will	 be	 as	 hydration	 will	 free	 up	 the	 polymer	 chains	 enabling	

interaction	 with	 the	 mucin	 molecules.	 Ensuring	 there	 were	 no	 air	 bubbles	 was	

essential	 as	 the	 amount	of	PS	used	 for	 each	experiment	was	done	by	volume	 so	

bubbles	would	have	introduced	variability.		LMEP	samples	were	adjusted	to	pH	7	

with	NaOH	to	have	the	same	pH	as	the	SA	and	LCMC	samples.	
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The	concentrations	of	PSs	used	 for	retention	 tests	are	detailed	 in	 tables	3.2.	and	

3.3.	The	samples	were	matched	for	viscosity	rather	than	concentration	as	viscosity	

is	 a	 major	 influencer	 of	 mucoadhesive	 strength	 with	 an	 increase	 in	 viscosity	

resulting	in	an	increase	of	mucoadhesion.	Concentration	will	also	have	an	impact	

but	for	these	experiments	it	was	decided	that	viscosity	would	be	more	important.	

Each	experiment	in	this	chapter	was	repeated	3	times	for	each	sample.		

	

3.2.2.	Rheology	of	polysaccharide	solutions	

PS	samples	were	removed	from	the	fridge	at	least	an	hour	before	the	test	to	bring	

it	 up	 to	 room	 temperature.	 Three	 separate	 batches	 were	 made	 for	 each	

concentration	and	3	analytical	repeats	were	carried	out	so	 there	was	a	 total	of	9	

readings	for	each	PS	at	each	concentration.	The	solution	was	stirred	before	600	µL	

was	taken	up	with	a	plastic	syringe	and	placed	onto	the	bottom	parallel	plate	of	the	

rheometer.	The	rheometer	was	set	to	equilibrate	the	sample	to	temperature	(37°C)	

before	beginning	sweeps.	The	linear	viscoelastic	region	(LVR)	was	determined	for	

the	most	viscous	PS	(Figure	3.1.).	The	LVR	was	determined	by	using	an	oscillatory	

test	with	a	40	mm	parallel	plate	at	a	constant	frequency	of	1	Hz	with	a	400	µm	gap.	

An	 appropriate	 strain	 of	 1	 %	 was	 chosen	 as	 this	 was	 well	 within	 the	 LVR.	 A	

frequency	sweep	from	0.6	to	6.3	rad/s	was	carried	out	for	each	PS.		
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Figure	 3.1.	 Strain	 sweep	 for	 5.5%	 LCMC	 to	 determine	 linear	 viscoelastic	 region.	

Dashed	line	represents	loss	modulus	and	solid	line	represents	storage	modulus.		

	

All	 the	 samples	 were	 shear	 thinning	 and	 differed	 from	 each	 other	 in	 their	

behaviour.	Therefore,	 it	 is	impossible	to	match	the	rheological	behaviour	of	these	

samples	 over	 a	 range	 of	 shear.	 A	 somewhat	 arbitrary	 angular	 frequency	 of	 1.3	

rad/s	was	chosen	at	which	the	viscosities	were	matched.	This	low	frequency	was	

selected	as	during	the	retention	experiments	there	 is	 little	shear	 force	applied	to	

the	 sample.	 Readings	 at	 a	 lower	 frequency	 were	 unreliable	 and	 had	 huge	

variations	between	repeats.	It	is	important	to	control	for	viscosity	as	increases	in	

viscosity	enhance	the	mucoadhesive	strength	of	solutions	[23].		

	

3.2.3.	Ex	vivo	retention	model	

A	method	 to	 assess	mucoadhesion	 using	 fluorescent	microscopy	 to	 visualise	 PS	

retention	has	been	developed	in	our	group	[6,18].	The	method,	adapted	from	Cave	

et	al.	(2012)	 [24],	 is	 a	 dynamic	 procedure	 that	 enables	 indirect	 quantification	 of	

solid	or	liquid	polymeric	formulations	retained	on	mucosal	membranes	after	being	

washed	with	an	artificial	eluent.	PSs	are	either	labelled	with	a	fluorophore	or	have	

unbound	sodium	fluorescein	mixed	into	the	solution.	The	labelling	of	PS	was	done	
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so	 that	 the	 retention	of	 the	PS	 chains	 could	be	visualised	under	 the	microscope,	

however,	 the	 labelling	 process	 changes	 the	 chemical	 properties	 of	 the	 PS	 (e.g.	

linking	the	fluorophore	to	the	carboxylic	acid	group),	therefore,	unlabelled	PS	with	

free	 fluorophore	were	also	tested	and	compared	to	the	 labelled	samples	to	see	 if	

there	were	 any	differences	 observed.	 Each	 retention	 experiment	was	 repeated	3	

times	for	each	PS	type	and	concentration.		

	

3.2.3.1.	Fluorescent	labelling	of	polymers	

A	method	for	labelling,	LCMC,	SA	and	LMEP	was	developed	by	the	conjugation	of	

the	 PS	 carboxylic	 acid	 groups	 with	 the	 amine	 group	 of	 fluorescein	 amine.	

Calculations	 were	 made	 so	 that	 1	 mol	 %	 of	 monomer	 units	 was	 labelled	 if	 the	

reaction	was	100	%	efficient.	It	was	thought	that	this	low	labelling	would	limit	the	

impact	on	mucoadhesion.	Labelling	was	achieved	by	dissolving	PSs	for	3	hours	at	

room	 temperature	 in	 phosphate	buffered	 saline	 (PBS)	 at	 pH	6.	 	 After	which,	 the	

addition	of	1	equivalent	 (to	 the	amount	of	 fluorescein	 to	be	added)	1-ethyl-3-(3-

dimethylaminopropyl)	 carbodiimide	 facilitated	 the	 reaction	 between	 carboxylic	

acid	groups	of	the	PS	and	the	amino-groups	of	the	fluorescein	amine.	To	stabilise	

the	reaction	intermediate,	2	equivalents	of	N-hydroxysulfosuccinimide	sodium	salt	

was	 added	 to	 the	 solution.	 This	 was	 left	 for	 15	 minutes	 stirring	 at	 room	

temperature	 before	 adjusting	 to	 pH	 7	 and	 adding	 1	 equivalent	 of	 fluorescein	

amine.	 The	 mixture	 was	 left	 stirring,	 in	 the	 dark,	 at	 room	 temperature	 for	 24	

hours.	To	purify	 the	PSs	 from	any	unreacted	 fluorescein	amine,	 the	 solution	was	

dialysed	 in	 3L	 bottles	 for	 2-3	 days,	 changing	 the	 dialysis	water	 3-4	 times	 a	 day,	

until	the	dialysis	water	did	not	contain	any	fluorescence.	This	was	checked	with	UV	

spectrophotometry.	 Solutions	 were	 freeze-dried,	 sealed	 and	 stored	 in	 the	 dark	

until	required.		
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Purity	of	labelled	polymers	was	determined	by	thin	layer	chromatography	(TLC)	to	

confirm	 there	 wasn’t	 any	 unbound	 fluorescein	 in	 samples.	 A	 drop	 of	 labelled	

polymer	 sample	 was	 placed	 onto	 the	 TLC	 paper	 next	 to	 a	 free	 fluorophore	

reference	sample.	The	TLC	paper	was	looked	at	under	UV	light	to	confirm	that	the	

fluorescence	of	 the	 labelled	PS	 stayed	at	 the	bottom	of	 the	TLC	paper	whilst	 the	

reference	 sample	 travelled	 upwards	 indicating	 that	 the	 fluorophore	 was	 indeed	

conjugated	to	the	PS.		

	

3.2.3.2.	Tissue	preparation	

Porcine	 tongues	 were	 collected	 from	 P	 &	 D	 Jennings	 butchers	 (Hurst,	 UK)	 a	

maximum	 of	 24	 hours	 after	 slaughter.	 During	 transportation	 and	 preparation	 in	

the	lab	the	excised	tongues	were	kept	in	a	bag	on	ice	whilst	the	majority	of	muscle	

and	 connective	 tissue	was	 removed	with	 razor	 blades	 and	medical	 scalpels.	 The	

remaining	epithelia	and	connective	tissue	measured	around	2-	3	mm	thick.	Tissue	

was	taken	from	the	front,	rear	and	side	portions	of	the	tongue	(Image	3.1.).	Tissue	

sections	 were	 sealed	 in	 airtight	 bags	 and	 frozen	 at	 -20	 ºC	 until	 required.	 Many	

studies	 have	 supported	 the	 claim	 that	 there	 is	 no	 difference	 between	 fresh	 or	

frozen	 tissue	when	 testing	 for	mucoadhesion	 [25,26].	When	required,	 tissue	was	

thawed	in	the	fridge	for	2	hours	and	cut	into	1	cm²	samples	from	three	areas	of	the	

tongue;	 front,	 side	 and	 rear.	 Samples	 were	 kept	moist	 with	 artificial	 saliva	 (AS)	

during	thawing.		
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Image	3.1.	Schematic	drawing	of	the	different	areas	of	the	tongue	selected	due	to	

the	differing	morphologies	and	characteristics.		

	

Image	3.2.	Example	 fluorescent	 images	of	 the	a)	 front,	b)	 rear	and	c)	 side	of	 the	

porcine	tongue	tissue.	Images	(x8	magnification)	were	captured	after	0.1%	sodium	

fluorescein	solution	was	added	to	the	tissue.	Arrows	indicate	papillae	in	a)	and	c),	

and	finger-like	protrusions	in	b).		

	

The	different	areas	of	the	tongue	were	selected	due	to	their	different	morphologies	

and	properties	(Image	3.1.	&	3.2.).	The	apex	of	the	tongue	is	densely	packed	with	

filliform	and	fungiform	papillae.	Filliform	are	small,	keratinized	papillae	that	play	a	

mechanical	role	in	food	manipulation	due	to	the	roughness	they	contribute.	Their	

presence	results	in	an	increased	surface	area	at	the	front	of	the	tongue.	Fungiform	

are	 mushroom	 shaped	 papillae	 interspersed	 within	 the	 filliform	 papillae	
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throughout	the	tongue,	which	contain	many	taste	buds	and	are	innervated	by	the	

submandibular	ganglion.		The	side	of	the	tongue	has	fewer	papillae	and	is	mostly	

smooth	 non-keratinised	 mucosa.	 The	 rear	 portion	 is	 populated	 by	 a	 few	 large	

circumvallate	papillae	and	foliate	papillae.		

	

3.2.3.3.	Artificial	saliva		

A	buffer	 solution	 to	 simulate	 saliva	was	 adapted	 from	 (Madsen	et	al.,	2013)	 and	

was	 used	 as	 the	 eluent	 to	wash	 over	 the	 tissue.	Madsen	 et	al	(2013)	 tested	 this	

artificial	saliva	(AS)	in	wash	off	experiments	and	found	that	the	retention	results	

were	 like	 those	when	 they	used	human	saliva.	As	 this	 current	 study	 is	using	 the	

same	principle	experiment,	this	AS	was	chosen	to	best	simulate	conditions	in	the	

mouth.	 The	 AS	was	 comprised	 of	 4	mM	 CaCl2,	 10	mM	KCl,	 2mM	NaHCO3,	 7mM	

NaCl,	 6.7mM	KH2PO4	and	 2.5%	pig	 gastric	mucin	 (PGM)	 (SigmaAldrich).	 The	 pH	

was	 adjusted	 to	 7	 after	 PGM	 addition.	 	Table	 3.1.	 shows	 the	 concentrations	 of	

solutes	present	in	the	AS	compared	to	human	saliva	[27].		

	

Table	3.1.	Concentrations	of	 constituents	present	 in	 artificial	 saliva	 compared	 to	

those	found	in	human	saliva	from	Dawes	&	Dong	(1995)	[27]	.			

Constituent	

	

Artificial	saliva	

(mmol/L)	

Unstimulated	human	

saliva	(mmol/L)	

Calcium	 1.44	 1.32	±	0.11	

Potassium	 7.1	 19.42	±	0.79	

Sodium	 3.27	 4.66	±	0.79	

Chloride	 11.63	 15.10	±	0.79	

Phosphate	 4.6	 5.4	±	0.48	
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3.2.3.4.	Labelled	vs	unlabelled		

Retention	 experiments	 took	 place	 in	 an	 incubator	 set	 to	 37	 °C	 (Image	 3.3.).	 An	

automatic	 pump	with	 a	 syringe	 filled	with	 AS	was	 used	 to	wash	 over	 the	 tissue	

sample	at	a	set	 flow	rate	of	6	mL/min.	A	movable	plastic	slide	was	made	to	hold	

the	tissue	section,	which	was	mounted	on	a	microscope	slide,	so	that	when	the	AS	

ran	over	 the	 tissue	 the	AS	 flowed	 into	 a	waste	beaker.	 Images	of	 the	 fluorescent	

sample	on	the	tissue	sections	were	taken	on	a	Leica	MZ10F	fluorescent	microscope	

before	washing	and	then	after	set	amounts	of	washing.		

	

Image	3.3.	Retention	experiment	set	up.	

	

PS	that	were	either	labelled	with	fluorophore	or	mixed	with	unbound	fluorophore	

were	 dissolved	 at	 concentrations	 necessary	 for	 all	 to	 be	 similar	 viscosity	 at	 low	

shear	in		DW	(Table	3.2.).	The	viscosity	chosen	was	based	mainly	on	the	labelled	PS	

needing	to	be	concentrated	enough	to	visualise	the	fluorescence.		

	

The	 AS	 in	 the	 syringe	 and	 the	 tissue	 was	 brought	 up	 to	 37	 °C	 before	 each	

experiment.	 Tissue	 sections	 were	 conditioned	 with	 1	 mL	 AS	 (pump	 speed	 6	

mL/min)	to	ensure	that	all	tissue	started	with	the	same	amount	of	hydration	and	

AS	 coverage.	 The	 pump	 speed	 was	 selected	 after	 trying	 various	 speeds	 and	
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determining	this	speed	allowed	for	continuous	drops	of	AS	onto	the	tissue.	Before	

the	PS	solution	was	applied	with	a	syringe,	a	photograph	was	taken	of	the	tissue	to	

adjust	 for	 background	 fluorescence.	 This	 was	 necessary	 for	 the	 labelled	 PS	

experiments	as	the	exposure	needed	to	be	high	to	visualise	the	fluorescence.	After	

depositing	a	30	μL	drop	of	fluorescent	PS,	another	photo	was	taken	that	was	later	

normalised	 to	 be	100%.	 	 The	 tissue	 section	was	 then	washed	with	AS	using	 the	

automatic	 pump	 and	 photographs	were	 taken	 after	 1,	 2,	 3,	 5,	 10,	 15	 and	 20	mL	

washes.	 The	 photographs	 were	 analysed	 using	 ImageJ	 software	 to	 quantify	 the	

mean	 fluorescence	 intensity	 of	 the	 area	 where	 the	 PS	 was	 applied.	 Using	 this	

information,	the	retention	of	the	sample	can	be	quantified	in	terms	of	fluorescence	

intensity.	

	

Table	3.2.	Labelled	polysaccharide	concentrations	used	and	η*	at	1.3	rad/s	shear	

rate.	Each	sample	was	tested	3	times	with	standard	deviation	(SD)	shown.		

Polysaccharide	

	

Labelled	

	

Concentration	

(w/w	%)	

η*	

(Pa.s)	

LCMC	 �	 5	 0.49	 ±	0.05	

LCMC	 -	 5	 0.57	 ±	0.03	

SA	 �	 1.5	 0.41	 ±	0.02	

SA	 -	 1.25	 0.49	 ±	0.11	

LMEP	 �	 2.5	 0.44	 ±	0.09	

LMEP	 -	 5	 0.47	 ±	0.18	

	

Control	 experiments	 were	 carried	 out	 to	 ensure	 that	 the	 relationship	 between	

fluorescence	intensity	and	PS	concentration	was	linear.	These	control	experiments	

were	done	in	a	96	well	plate.	A	series	of	dilutions	were	made	of	a	 fluorescent	PS	

sample	 and	 images	 were	 taken.	 To	 ensure	 that	 the	 fluorescence	 was	 linearly	
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correlated	 to	 the	volume	of	 the	 liquid,	different	volumes	of	a	PS	 sample	was	put	

into	each	well	and	images	were	taken.		

	

Sodium	fluorescein	in	water	(0.01%)	was	used	as	a	negative	control	to	ensure	that	

there	 was	 no	 retention	 of	 the	 fluorophore	 without	 PS.	 Furthermore;	 unlabelled	

starch	 at	 matched	 viscosity	 was	 used	 as	 a	 non-ionic	 PS	 that	 does	 not	 form	 a	

viscous	interconnected	polymer	chain	network.		

	

3.2.3.5	Unlabelled	polymers	at	different	concentrations	

PS	 were	 mixed	 with	 sodium	 fluorescein	 instead	 of	 being	 chemically	 labelled	 to	

determine	 if	 this	 is	 necessary	 or	 if	 the	 same	 results	 are	 obtained.	 A	 concern	 for	

using	unbound	fluorophore	in	these	experiments	is	that	the	fluorophore	may	wash	

off	without	 the	polymer	or	conversely,	penetrate	 the	 tissue,	making	 it	difficult	 to	

determine	what	is	being	measured.	However,	drawbacks	of	labelling	the	polymers	

include	 alterations	 that	 the	 labelling	 procedure	 may	 have	 on	 the	 chemical	

properties	 of	 the	 polymer	 and	 hydrolysis	 of	 polymer	 chains	 during	 the	 long	

dialysis.	Furthermore,	 the	fluorophore	 is	attached	to	the	carboxylic	groups	of	 the	

monomer	 units,	 which	 will	 decrease	 the	 overall	 availability	 of	 these	 groups	 to	

interact	with	the	mucosa.		

	

In	 addition	 to	 comparing	 between	 labelled	 and	 unlabelled,	 three	 different	

viscosities	of	unlabelled	PS	were	tested	on	the	front	of	ex	vivo	porcine	tongues	to	

determine	the	 impact	of	 the	viscosity	of	solutions	on	the	mucoadhesive	strength.	

The	concentrations	and	viscosity	of	solutions	at	1.3	rad/s	shear	are	shown	in	Table	

3.3.	The	same	experiment	was	carried	out	as	explained	in	section	3.2.3.4.		

	



	

	 82	

As	a	negative	control,	0.01%	fluorophore	in	deionsed	water	was	used	as	well	as	a	

starch	sample	matched	at	the	same	viscosity	at	1.3	rad/s	(Figure	3.8.).	Starch	was	

chosen	 as	 the	 PS	 negative	 control	 as	 it	 increases	 viscosity	 but	 is	 not	 necessarily	

noted	 for	 its	mucoadhesive	 abilities.	 This	 is	most	 likely	 because	 starch	 does	 not	

fully	 hydrate	 in	 water,	 rather	 it	 forms	 swollen	 granules,	 and	 therefore	 does	 not	

form	 a	 viscous	 polymer	 network	 where	 mucin	 chains	 can	 interpenetrate.	

Furthermore,	 starch	 is	 non-ionic	 and	 does	 not	 contain	 any	 strong	 hydrogen	

bonding	 groups	 unlike	 the	 other	 PS.	 Therefore,	 starch	 was	 to	 control	 for	 the	

viscosity	as	a	factor	in	mucoadhesion	and	the	water	negative	control	was	to	ensure	

that	 the	 free	 fluorophore	 was	 not	 penetrating	 the	 tissue.	 Table	 3.3.	 shows	 the	

concentrations	of	the	PS	used	and	their	viscosities.		

	

3.2.4.	Statistical	analysis	

For	 the	 rheology	 experiments	 two-way	 ANOVA	was	 used	 for	 the	 different	 PS	 at	

various	 concentrations	with	PS	 type	and	viscosity	 as	 treatment	effects.	Two-way	

ANOVA	with	 3	 factors	 was	 used	 for	 retention	 experiments	 to	 assess	 differences	

between	 PS	 and	 area	 over	 time.	 Two-way	 ANOVA	 was	 used	 for	 determining	

differences	of	WO50	values	with	WO50	and	 tongue	area	or	PS	as	 factors.	A	p<0.05	

was	used	to	determine	significance.	

	

3.3.	Results	and	Discussion	

3.3.1.	Rheology	of	labelled	and	unlabelled	polysaccharides	

Figure	3.2.	shows	the	viscosities	of	the	different	concentrations	of	each	labelled	PS	

solutions.	The	labelled	PS	were	tested	at	the	following	concentrations:	for	SA	1.5,	

2.5,	3	and	3.25	%	were	tested;	for	LMEP,	2.5,	3,	4	and	5	%	were	tested;	for	LCMC,	2,	

5,	3	and	5.5%.	These	measurements	were	taken	in	order	to	find	the	concentrations	
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where	 the	 viscosities	 were	 matched	 at	 low	 shear	 rate.	 Figure	 3.3.	 shows	 the	

viscosities	of	unlabelled	PS	samples	at	different	concentrations.	The	unlabelled	PS	

were	 tested	 at	 the	 following	 concentrations:	 for	 SA	 0.45,	 1,	 1.25	 and	 1.5%;	 for	

LMEP	1.25,	 4.25,	 4.5,	 5	 and	6	%;	 for	LCMC	1.4,	 2.5,	 5	 and	5.5	%.	The	viscosities	

chosen	for	retention	experiments	are	detailed	in	tables	3.2.	&	3.3.		

	

Figure	3.2.	Complex	viscosity	(η*)	of	labelled	polysaccharide	solutions	at	1.3	rad/s	

against	concentration	(w/v	%).	Error	bars	are	too	small	to	be	seen	here.		
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Figure	 3.3.	 Complex	 viscosity	 (η*)	 of	 unlabelled	 polysaccharide	 solutions	 at	 1.3	

rad/s	against	concentration	(w/v	%).		Error	bars	shown	are	standard	deviation.		

	

All	PS	samples	increased	in	viscosity	exponentially	as	the	concentration	increased.	

The	concentration	of	labelled	LMEP	required	to	match	the	other	PS	viscosities	was	

lower	 than	 the	unlabelled	LMEP	of	 the	 same	viscosity	 (Table	3.2.).	 	 This	 is	most	

likely	 due	 to	 the	 pH	 of	 the	 solutions.	 The	 labelled	 LMEP	 was	 adjusted	 to	 pH	 7	

during	 the	 labelling	 process,	 however,	 when	 dissolved	 in	 	 DW	 to	 the	 desired	

concentration	 it	was	 found	 to	 have	 a	 pH	of	 only	 6.	 The	 unlabelled	 LMEP,	 on	 the	

other	hand,	was	adjusted	to	pH	7	after	sodium	fluorescein	addition.	As	 the	pH	 is	

decreased	for	LMEP	solutions,	the	viscosity	also	increases	[28].	

	

3.3.2.	Labelled	polymers	retention		

Figures	3.4.	–	3.6.	show	the	wash	off	profiles	of	labelled	PS	samples	on	the	different	

areas	 of	ex	vivo	 porcine	 tongue.	Overall,	 the	PS	 adhered	most	 to	 the	 front	 of	 the	

tongue	(p<0.05)	(Figure	3.4.).	This	is	most	likely	due	to	the	increased	surface	area	

due	 to	 the	many	 small,	 protruding	papillae	present	on	 this	 surface.	According	 to	

the	mechanical	 theory	of	mucoadhesion,	 an	 increased	 surface	 area,	 produced	by	

micro-cracks	and	rough	surfaces,	increases	the	mucoadhesive	strength.	Therefore,	

a	 smooth	 surface,	 such	 as	 the	 side	 of	 the	 tongue,	 is	 not	 as	 susceptible	 to	

mucoadhesion.	 This	 is	 reflected	 in	 the	 results,	 the	 retention	 on	 the	 side	 of	 the	

tongue	was	 significantly	 (p>0.05)	 less	 than	 the	 front	 and	 rear	 (Figure	 3.4.).	 The	

rear	 of	 the	 tongue	 also	 shows	 good	 mucoadhesion	 (Figure	 3.4.	 b)	 and	 this	 has	

fewer,	larger	papillae	and	finger-like	protrusions.	
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Figure	3.4.	Labelled	polysaccharide	retention	on	the	front	a),	rear	b)	and	side	c)	of	

porcine	tongue.	Error	bars	represent	standard	deviation.	*	Signifies	p<0.05.		

	

The	labelled	PS	used	here	are	polyelectrolytes	due	to	the	many	charged	carboxylic	

acid	groups	they	possess.	LMEP	and	SA	are	known	to	gel	in	the	presence	of	calcium	

ions	[29,30].	The	AS	used	contained	calcium	chloride	so	although	the	viscosities	of	
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the	 solutions	 were	 matched	 before	 application	 to	 the	 tissue,	 once	 the	 AS	 was	

washed	over	samples,	the	Ca+	ions	were	free	to	interact	with	the	PS	chains	to	form	

a	gel	on	the	outer	layer	of	the	droplet.	This	may	make	it	more	difficult	to	remove	by	

washing	over	the	tissue	with	little	force.	However,	this	does	not	seem	to	be	the	case	

with	 the	SA	samples	as	 they	were	not	 significantly	 (p<0.05)	more	 retentive	 than	

LCMC	samples,	which	do	not	gel.		

	

An	 explanation	 for	why	LMEP	was	more	 retentive	 compared	 to	 SA	might	 be	 the	

higher	 concentration	used.	LMEP	was	at	2.5%	(w/v)	and	SA	was	at	1.5%	(w/v).	

Therefore,	 the	 total	 amount	 of	 polymer	 chains	 available	 to	 form	 a	 gel	 in	 the	

presence	 of	 calcium	 and	 to	 interact	 with	 the	 mucin	 and	 tissue	 topology	 was	

reduced	in	the	SA.	

	

3.3.3.	Comparison	of	labelled	and	unlabelled	polymers	retention	

The	 viscosities	 and	 shear	 thinning	 behaviour	 of	 the	 labelled	 and	 unlabelled	

polymers	 were	 not	 significantly	 (p<0.05)	 different	 (Figure	 3.5.	 a,	 3.6.	 a,	 3.7.	 a),	

however,	the	concentrations	needed	to	be	at	that	same	viscosity	was	different	for	

SA	 and	 LMEP	 (Table	 3.2).	 The	 retention	 profiles	 of	 the	 labelled	 and	 unlabelled	

polymers	did	not	differ	significantly	from	one	another	on	the	front	and	rear	of	the	

tongue	for	all	PS,	which	suggests	 that	 free	fluorophore	 is	a	good	way	to	measure	

retention	 of	 the	 PS.	 Table	 3.2.	 shows	 the	 concentrations	 of	 the	 labelled	 and	

unmlabelled	PS	and	their	viscosities.		
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Table	3.2.	Labelled	polysaccharide	concentrations	used	and	η*	at	1.3	rad/s	shear	

rate.	Each	sample	was	tested	3	times	with	standard	deviation	(SD)	shown.		

Polysaccharide	

	

Labelled	

	

Concentration	

(w/w	%)	

η*	

(Pa.s)	

LCMC	 �	 5	 0.49	 ±	0.05	

LCMC	 -	 5	 0.57	 ±	0.03	

SA	 �	 1.5	 0.41	 ±	0.02	

SA	 -	 1.25	 0.49	 ±	0.11	

LMEP	 �	 2.5	 0.44	 ±	0.09	

LMEP	 -	 5	 0.47	 ±	0.18	

	

	

	

Figure	3.5.	 Complex	 viscosity	 (η*)	 of	 LMEP	 samples	 a)	 and	 retention	profiles	 on	

the	front	b),	rear	c)	and	side	d)	of	porcine	tongue.	Labelled	polysaccharide	(dark)	

and	 unlabelled	 PS	 (light).	 N	 =	 3	 for	 retention	 experiments.	 Error	 bars	 show	

standard	deviation,	*	denotes	significant	difference	p	<0.05.		

The	retention	profiles	 for	 labelled	and	unlabelled,	LMEP	and	LCMC	did	not	differ	

accross	all	three	areas	of	the	tongue	(Figures	3.5.	&	3.6.).	The	retention	profiles	for	
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SA	did	not	significantly	differ	between	the	labelled	and	unlabelled	PS	on	the	front	

and	rear	of	the	tongue	(Figure	3.7.	b	&	c).	However,	there	were	significant	(p<0.05)	

differences	 found	 on	 the	 side	 of	 the	 tongue	 (Figure	 3.7.	 d).	 The	 unlabelled	 SA	

concentration	 was	 1.25%	 for	 a	 viscosity	 of	 0.49	 Pa.s	 (+/-0.11)	 at	 1.3	 rad/s	

compared	to	1.5%	concentration	required	for	the	labelled	SA	for	a	similar	viscosity	

of	 0.41	 Pa.s	 (+/-0.02)	 at	 the	 same	 frequency	 (figure	 3.7.	 a).	 The	 rheology	 of	

unlabelled	SA	at	a	concentration	of	1.5%	is	almost	doubled	to	0.88	Pa.s	(+/-	0.28)	

compared	 to	 1.25	 %	 unlabelled.	 This	 could	 suggest	 that	 during	 the	 labelling	

process,	 the	 SA	 underwent	 some	 hydrolysis	 to	 reduce	 its	 viscosity.	 However,	 as	

there	is	only	a	significant	difference	on	the	side	of	the	tongue	and	not	the	front	and	

rear	it	may	be	an	artefact	of	the	tissue.		

	

	

Figure	3.6.	Complex	viscosity	(η*)	of	LCMC	samples	a)	and	retention	profiles	on	the	

front	b),	rear	c)	and	side	d)	of	porcine	tongue.	Labelled	polysaccharide	(dark)	and	

unlabelled	PS	 (light).	N	=	3	 for	 retention	experiments.	Error	bars	show	standard	

deviation,	*	denotes	significant	difference	p	<0.05.		
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Figure	3.7.	Complex	viscosity	(η*)	of	SA	samples	a)	and	retention	profiles	on	 the	

front	b),	rear	c)	and	side	d)	of	porcine	tongue.	Labelled	polysaccharide	(dark)	and	

unlabelled	PS	 (light).	N	=	3	 for	 retention	experiments.	Error	bars	show	standard	

deviation,	*	denotes	significant	difference	p	<0.05.		

	

From	the	wash	off	graphs,	for	labelled	and	unlabelled	PS	samples,	a	trend	line	was	

fitted	 and	 the	 amount	 of	 AS	 needed	 to	wash	 off	 50%	 of	 the	 sample	 (WO50)	was	

calculated	for	each	repeat	and	each	area	of	the	tongue	(Table	3.4.).	WO50	values	are	

used	to	give	more	information	about	the	retention	of	the	sample,	especially	if	the	

experiment	ended	before	50%	was	washed	off	[21].	The	WO50	values	are	higher	for	

unlabelled	 LMEP	 on	 the	 front	 and	 rear	 of	 the	 tongue	 than	 the	 other	 samples.	

Labelled	LMEP	was	 found	to	be	the	most	retentive	(p<0.05)	compared	to	SA	and	

LCMC,	 however,	 the	difference	 in	 retention	was	 found	 to	 be	 after	 50%	had	been	

removed	(Figures	3.5.,	3.6.	&	3.7.).		
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Table	 3.4.	WO50	(mL)	 values	 for	 labelled	 and	 unlabelled	 polysaccharides	 (PS)	 on	

the	different	 areas	 of	 pig	 tongue.	Different	 letters	 in	 the	 same	 column	 represent	

significant	(p<0.05)	differences	between	samples.		

	Labelled		 	PS	 	Front	WO50	(±SD)	 	Rear	WO50	(±SD)	 	Side	WO50	(±SD)	

�	 LCMC	 2.35	(1.43)	a	 1.81	(0.10)	a	 1.25	(0.24)	a	

-	 LCMC	 2.48	(1.69)	a	 2.11	(0.45)	a	 2.12	(0.38)	b	

�	 SA	 1.40	(0.40)	a	 2.25	(1.12)	a	 0.76	(0.22)	a	

-	 SA	 3.44	(1.71)	a,	b	 1.89	(0.79)	a	 1.60	(0.40)	a	

�	 LMEP	 2.54	(1.43)	a	 1.93	(0.31)	a	 1.37	(0.51)	a	

-	 LMEP	 7.09	(4.51)	b	 3.64	(1.47)	b	 1.37	(0.30)	a	

	

A	limiting	factor	when	comparing	labelled	and	unlabelled	samples	is	the	intensity	

of	the	fluorescence.	The	labelled	PS	had	very	low	labelling	efficiency	equivalent	to	

a	concentration	of	below	0.001	%	fluorescein	amine,	whilst	the	unlabelled	PS	had	

0.01%	 sodium	 fluorescein	 final	 concentration.	 This	 meant	 that	 the	 fluorescent	

microscope	had	to	be	set	to	a	higher	exposure	time	to	get	a	bright	enough	image	to	

measure	intensity.	Due	to	the	higher	exposure	time,	the	background	fluorescence	

from	the	tissue	became	a	factor.	This	was	not	an	issue	with	the	unlabelled	PS	as	the	

flourophore	was	 bright	 enough	 to	 be	 visualised	with	 a	 very	 low	 exposure	 time.	

Further	 to	 this,	 the	 fact	 that	 so	 few	 of	 the	 monomers	 were	 labelled	 for	 each	

polymer	means	 that	 it	 is	 possible	 that	 not	 every	 PS	 chain	was	 labelled	 and	 the	

degree	of	labelling	may	vary	from	one	polymer	chain	to	another.	Therefore,	it	may	

be	 difficult	 to	 draw	 a	 conclusion	 that	 once	 the	 fluorescence	 detected	 had	

disappeared	that	meant	that	all	of	the	polymer	chains	had	been	washed	off.			

3.3.4.	Unlabelled	polymers	with	negative	controls	

Table	3.3.	shows	the	concentrations	of	the	PS	used	and	their	viscosities.	Figure	3.8.	



	

	 91	

shows	the	rheology	profile	of	PS	compared	to	the	starch.	Starch	is	a	lot	more	shear	

thinning	than	the	other	PS	which	will	have	an	effect	when	the	PS	is	masticated.		

	

Table	3.3.	Unlabelled	polysaccharide	concentrations	used	and	η*	at	1.3	rad/s	shear	

rate.	9	measurements	were	 taken	 for	 each	polymer	 sample	±	 standard	deviation	

(SD).	 Viscosity	 ranking	 for	 each	 PS	 refers	 to	 high	 (H),	medium	 (M)	 and	 low	 (L)	

viscosity.		

Polysaccharides	

	

Viscosity	

Rank	

Concentration	

(w/w	%)	

η*	

(Pa.s)	

LMEP	 H	 6	 0.89	 ±	0.12	

LMEP	 M	 5	 0.47	 ±	0.18	

LMEP	 L	 1.25	 0.011	 ±	0.002	

LCMC	 H	 5.5	 0.98	 ±	0.08	

LCMC	 M	 5	 0.57	 ±	0.03	

LCMC	 L	 1.4	 0.015	 ±	0.002	

SA	 H	 1.5	 0.88	 ±	0.28	

SA	 M	 1.25	 0.49	 ±	0.11	

SA	 L	 0.45	 0.024	 ±	0.004	

	

	

Figure	 3.8.	 	 Complex	 viscosity	 (η*)	 of	 unlabelled	 PS	 and	 starch	 over	 increasing	

frequency.	Error	bars	represent	SD.	Red	circle	is	where	viscosities	were	matched.		
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Figure	3.9.	shows	the	retention	of	the	samples	on	the	different	areas	of	the	tongue.	

The	 negative	 water	 control	 shows	 that	 the	 unbound	 fluorophore	 does	 not	

penetrate	into	the	tissue	as	the	majority	of	 it	washes	off	after	the	first	wash.	The	

starch	sample	is	somewhat	retentive	but	is	still	significantly	(p>0.05)	less	retentive	

compared	to	the	other	PS.		

	

3.3.5.	Viscosity	dependant	retention	of	unlabelled	polymers		

The	 concentration	 and	 thus	 viscosity	 of	 a	 polymer	 solution	 is	 an	 important	

consideration	for	mucoadhesion.	The	concentration	of	polymer	is	thought	to	reach	

an	optimum	when	 the	strength	of	mucoadhesion	 is	at	maximum.	Past	 this	point,	

the	 polymer	 chains	 may	 become	 impervious	 to	 hydration	 and	 therefore,	 mucin	

chains	 are	 unable	 to	 penetrate	 and	 interact	 [31,32].	 Generally,	 an	 increase	 in	

viscosity	 will	 lead	 to	 an	 increased	 mucoashesive	 bond	 between	 the	 polymer	

substance	and	the	mucosa	and	the	formulation	becomes	more	resistant	to	applied	

stress.		
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Figure	3.9.	Retention	profiles	of	polysaccharide	samples	and	sodium	fluorescein	in	

water	on	the	 front	(a),	rear	(b)	and	side	(c)	of	ex	vivo	porcine	tongue.	Error	bars	

are	SD.		

	

Three	viscosities	of	 each	PS	were	 tested	 in	 the	 retention	experiment	 to	measure	

the	 effect	 of	 viscosity	 on	 mucoadhesive	 strength.	 For	 each	 PS,	 viscosities	 were	
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chosen	to	be	low,	medium	and	high	viscosity	(Table	3.3.).	The	results	show	that	for	

all	PS	 the	 lowest	 viscosity	 solutions	were	 significantly	 (p>0.001)	different	 to	 the	

medium	 and	 high	 concentrations	 (Figure	 3.10.).	 	 This	 suggests	 that	 higher	

viscosity	 increases	 the	 mucoadhesive	 strength.	 More	 concentrations	 would	 be	

required	to	investigate	this	further	for	this	experimental	method.		
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Figure	3.10.	Retention	profiles	of	different	concentrations	of	a)	LCMC,	b)	SA	&	c)	

LMEP.	All	 lowest	concentration	 for	each	polysaccharide	are	significantly	different	

(p<0.05)	than	medium	and	high	concentrations.		

	

There	 are	 no	 significant	 differences	 between	 the	 medium	 and	 high	 viscosity	

solutions	 for	 all	 polymers	 on	 the	 front	 of	 the	 tongue	 (Figure	 3.10.).	 This	 could	

suggest	 that	 an	 optimum	 concentration	 has	 been	 reached	 for	 these	 polymers.	

Another	 possibility	 is	 that	 the	 concentration	 required	 to	 make	 a	 significant	

difference	 increases	 exponentially	 as	 viscosity	 increases.	 Futhermore,	 the	 gap	

between	concentrations	used	was	not	equal	between	low,	medium	and	high	as	the	

relationship	between	concentration	and	viscosity	is	not	linear	(Figures	3.2.	&	3.3.).		

	

The	 lowest	 viscosity	 samples	 for	 each	PS	 retained	 significantly	 (p<0.001)	 less	 at	

after	 each	 wash	 (Figure	 3.10.).	 The	 high	 and	 low	 viscosity	 samples	 had	

significantly	 (p<0.05)	 different	 WO50	 values	 for	 all	 three	 PS	 (Figure	 3.11.).	

Furthermore,	Figure	3.11.	shows	the	linear	relationship	between	η*	and	WO50	for	

LCMC	(r2	=	0.98)	and	SA	(r2	=	0.91)	samples.	The	medium	viscosity	LMEP	sample	

does	 not	 follow	 the	 trend	 and	 is	 due	 to	 one	 repeat	 having	 a	much	 higher	WO50	

value	than	the	others.		
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Figure	3.11.	The	relationship	between	the	WO50	values	and	the	complex	viscosity	

(η*)	of	samples.	Eorror	bars	represent	±	standard	deviation.			

	

3.4.	Conclusions	

Food	grade	polymers	were	tested	for	their	mucoadhesive	strength	on	the	tongue,	a	

tissue	 rarely	 investigated	 in	 these	 types	 of	 tests.	 All	 three	 mucoadhesives	 were	

found	to	exhibit	good	mucoadhesion	properties	in	liquid	formulations,	on	different	

areas	of	the	tongue	compared	to	starch	and	water	as	negative	controls.	The	limited	

differences	between	the	labelled	and	unlabelled	polymers	suggest	that	it	may	not	

be	necessary	to	label	the	polymers	for	this	experiment.	However,	it	will	depend	on	

the	polymer	and	what	is	being	measured.	A	good	approach	may	be	to	use	labelled	

polymers	 and	 free	 fluorophore	 of	 different	 excitation	 wavelengths	 in	 the	 same	

experiment	to	compare	the	difference.	The	different	concentrations	used	confirm	

the	 sensitivity	 of	 this	 experiment,	where	 a	 low	 viscosity	 is	washed	 off	 relatively	

quickly	compared	to	higher	viscosity	solutions.		
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Chapter	 4:	 Time	 intensity	 of	 tastants	 in	 mucoadhesive	 polysaccharide	

matrices	

4.	1.	Introduction	

The	 mucoadhesive	 nature	 of	 LMEP,	 LCMC	 and	 SA	 was	 established	 in	 chapter	 3	

using	an	 in	vitro	method	to	assess	retention	of	 liquid	 formulations.	The	ability	of	

these	PSs	to	retain	tastants	in	the	mouth	for	longer	has	not	yet	been	investigated.	

This	 chapter	 is	 the	 preliminary	 work	 to	 elucidate	 whether	 mucoadhesive	 PSs	

retain	 the	 tastants,	 sodium	 and	 glucose,	 for	 longer	 compared	 to	 water.	

Furthermore,	 the	 impact	 on	 tastant	 perception	was	measured	 by	 time	 intensity	

profiling	with	a	trained	sensory	panel.		

	

4.1.1.	Taste	perception	

The	 perceived	 flavour	 experience	 of	 a	 given	 food	 is	 influenced	 by	many	 factors.	

These	 include	physicochemical	 interactions	between	 the	 flavour	 compounds	and	

the	 food	matrix,	 physiochemical	 interactions	with	 the	oral	 anatomy,	 cross	modal	

interactions	 between	 the	 senses,	 and	 psychological	 factors	 such	 as	 expectation,	

emotion	and	familiarity.	Therefore,	flavour	perception	can	be	influenced	at	any	of	

these	levels.		

	

Chemosensory	flavour	perception	can	be	broken	up	into	two	distinct	parts;	aroma	

and	 taste	 perception.	 Taste	 is	 experienced	 due	 to	 the	 tastants	 present	 in	 the	

foodstuff.	Five	basic	taste	perceptions	are	confirmed	to	exist,	these	are	salty,	sweet,	

bitter,	sour	and	umami.	These	perceptions	are	elicited	by	tastants.	Tastants	are	the	

molecules	that	bind	to	the	receptors	on	taste	cells	which,	 following	transduction,	

result	 in	 the	perception	of	one	of	 the	 five	 tastes.	For	example,	 sucrose	 is	a	sweet	

tastant	and	monosodium	glutamate	is	an	umami	tastant.	At	a	purely	physiological	



	

	 102	

level,	for	perception	of	any	of	these	five	tastes	to	occur,	the	tastant	must	reach	the	

appropriate	receptor	or	ion	channel.	For	this	to	occur,	the	tastant	must	be	released	

from	the	food	matrix,	diluted	in	the	saliva	and	diffuse	into	the	taste	bud	pores	of	

the	 papillae,	 where	many	 taste	 receptor	 cells	 are	 located.	 Fungiform	 and	 foliate	

papillae	house	many	taste	buds.	Each	taste	bud	contains	between	50	and	100	taste	

cells	with	receptors	and	ion	channels	capable	of	eliciting	a	taste	response	[1].		

	

Salt	taste	is	elicited	by	cations	such	as	sodium,	passing	through	ion-gated	channels,	

such	as	the	epithelial	sodium	channel	(ENaC),	located	on	taste	cells	[2].	This	influx	

of	 positively	 charged	 ions	 leads	 to	 depolarisation	 of	 the	 taste	 cell	 membrane,	

which	in	turn	causes	an	influx	of	Ca+.	This	leads	to	the	release	of	neurotransmitters	

that	 activate	 the	 neurons	 associated	 with	 the	 taste	 cell,	 leading	 to	 an	 action	

potential.	 Glucose,	 on	 the	 other	 hand,	 is	 perceived	 as	 sweet	 when	 the	 glucose	

molecules	 bind	 to	 Type	 I	 G-coupled	 protein	 receptors	 (T1R2	 and	 T1R3)	 on	 the	

outside	of	the	cell,	which	leads	to	a	signal	cascade	inside	the	cell.	This	too	ends	in	a	

depolarisation	of	the	cell	membrane	causing	an	action	potential	to	be	fired	[3].		

	

4.1.2.	Salt	reduction	in	industry	

Over	 the	 past	 few	 decades,	 the	 food	 industry	 has	 reduced	 the	 salt	 content	 of	

processed	food	products.	The	pressure	for	the	industry	to	reduce	sodium	is	due	to	

the	 relationship	 between	 high	 sodium	 diets	 and	 hypertension,	 leading	 to	

cardiovascular	 disease	 [4].	 Various	 methods	 have	 been	 employed	 in	 order	 to	

reduce	salt	whilst	maintaining	an	acceptable	taste	and	flavour	profile.	One	of	 the	

most	successful	approaches	taken	was	an	industry	wide	gradual	reduction	of	salt	

contents,	thereby	easing	the	change	on	the	consumers.	This	gradual	adaptation	has	

been	reflected	in	the	literature	[5]	where	a	gradual	decrease	of	salt	added	to	white	
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bread	 over	 several	 weeks	 maintained	 consumer	 acceptance.	 Similarly,	 repeated	

exposure	 studies	 have	 shown	 that	 consumers	 learn	 to	 like	 the	 lower	 salt	

alternatives	[6].	

	

Another	 option	 for	 salt	 reduction	 is	 the	 replacement	 with	 other	 salts	 such	 as	

potassium	chloride,	although	the	perception	of	saltiness	is	weaker	and	potassium	

has	 also	 been	 shown	 to	 be	 perceived	 as	 bitter	 [7].	 Aroma	has	 also	 been	used	 to	

enhance	the	saltiness	of	 food	with	a	combination	of	salt	replacers	and	congruent	

aromas	[8].	Other	methods	to	further	reduce	salt	content	whilst	maintaining	salty	

perception	include	reducing	salt	particle	size	for	topically	applied	flavourings	such	

as	 those	used	on	crisps	 [9,10].	Heterogeneous	distribution	of	 salt	 and	congruent	

aromas	have	also	been	found	to	enhance	saltiness	 in	a	variety	of	snacks	[11–13].	

Air	 fillers	have	been	 investigated	as	a	means	 to	enhance	 the	saltiness	perception	

within	hydrogels	and	have	been	found	to	successfully	reduce	salt	content	by	80%	

without	a	loss	of	salt	perception	[14].	

	

4.1.3.	Perception	alterations	due	to	polysaccharides	

Flavour	and	textural	alterations	caused	by	the	addition	of	PSs	to	food	have	been	of	

interest	for	a	long	time.	PSs	are	highly	water-soluble,	thickening	and	gelling	agents	

that	impart	desired	textural	characteristics	to	a	food	product.	Most	PSs	used	in	the	

food	 industry	 are	 virtually	 tasteless,	 however,	 the	 impact	 they	 have	 on	 flavour	

perception	of	the	foods	to	which	they	are	added	can	be	drastic.	Where	PSs	are	used	

to	increase	viscosity,	this	will	have	a	subsequent	effect	on	aroma	release	from	the	

fluid	matrix	and	may	reduce	mobility	of	tastants	and	hence	reduce	their	ability	to	

bind	to	taste	receptors.		
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Much	 of	 the	 literature	 investigating	 the	 impact	 of	 PSs	 on	 flavour	 perception	 has	

used	 simple	 systems	 such	 as	 aqueous	 solutions	 [15–17],	 emulsions	 [18,19]	 or	

model	dairy	drinks	and	desserts	[20–23].	The	type	of	PSs	used	has	been	found	to	

show	 variability	 in	 flavour	 perception	 independent	 of	 viscosity	 factors	 [24].	

Specifically,	PSs	that	exhibit	random	coil	structure	in	solution	have	a	larger	impact	

on	 taste	 perception	 than	 granular	 PSs	 such	 as	 starch	 [24].	 Furthermore,	 chain	

length	 of	 the	 PS	 is	 important	 to	 consider	 as	 longer	 chains	 will	 overlap	 more	

creating	 a	 mesh	 of	 polymer	 chains	 that	 can	 physically	 trap	 flavour	 molecules	

within	[25].			

	

Although	it	is	generally	accepted	that	as	viscosity	increases,	the	perception	of	taste	

and	 flavour	 decreases	 and	 there	 are	 various	 theories	 that	 account	 for	 these	

phenomena.	Baines	&	Morris	(1988	&	1987)	[26]	[27]	were	the	first	to	show	that	

flavour	perception	decreased	when	 the	PS	 concentration	 reached	a	 critical	point	

such	 that	 the	 polymer	 chains	 overlapped	 with	 one	 another,	 deemed	 the	 coil	

overlap	concentration	(c*).	At	c*	an	abrupt	increase	in	viscosity	is	observed	along	

with	a	decrease	in	flavour	perception.	However,	they	did	not	offer	an	explanation	

as	to	why	both	tastant	and	aroma	were	affected	when	the	mass	transfer	of	 these	

molecules	is	very	different.		

	

Later,	Cook	et	al.	[15,16]	added	to	this	theory	by	observing	perception	changes	in	

solutions	 thickened	 with	 hydroxypropylmethyl	 cellulose	 (HPMC).	 One	 study	

investigated	 the	 impact	 on	 basic	 tastes	 and	 found	 that	 above	 c*,	 perception	was	

decreased	 for	 sweet	 and	 salty	 attributes	 but	 not	 for	 bitter	 and	 sour	 [16].	 The	

authors	 suggest	 psychological	 factors	 may	 play	 a	 role	 with	 tactile	 tri-geminal	

stimulus	being	altered	by	enhanced	viscosity.	Increases	in	viscosity	are	associated	
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more	with	sweet	foods	rather	than	bitter	or	sour,	which	tend	to	be	thinner;	so	an	

enhanced	viscosity	may	be	associated	with	a	 stronger	sweet	 taste	which	 the	PSs	

will	not	provide	[16].	A	follow-on	study	investigated	the	delivery	of	aromas	to	the	

nasal	cavity	as	well	as	perceptual	changes	occurring	above	c*	in	HPMC	thickened	

solutions.	 The	 authors	 found	 that	 although	 perception	 of	 aromas	 decreased	 for	

solutions	above	c*,	the	amount	delivered	was	not	influenced	by	PS	concentration.	

Instead	 the	 authors	 conclude	 that	 a	 reduction	 in	 congruent	 tastant	 delivery	 and	

thus	perception,	has	a	cross	modal	impact	to	reduce	the	associated	aroma	[15,28].		

	

The	 studies	 investigating	 changes	 in	 sensory	perception	of	 foods	 thickened	with	

PSs	 are	 somewhat	 limited	 in	 their	 experimental	 design.	 The	 large	 majority	 ask	

panellists	to	score	the	sample	intensity	of	any	given	attribute	at	a	static	time	point	

[17,27,29,30].	 Whilst	 some	 measure	 in-nose	 or	 headspace	 aroma	 release	 over	

time,	 the	 dynamic	 flavour	 perception	 is	 not	 usually	 investigated.	 Usually	 scoring	

takes	 place	 whilst	 the	 sample	 is	 in	 the	 mouth	 and	 a	 reduction	 in	 intensity	 is	

recorded	 with	 PS	 thickeners.	 The	 aim	 of	 this	 work	 is	 to	 explore	 the	 change	 in	

flavour	delivery	over	time,	which	may	be	altered	by	the	addition	of	mucoadhesive	

PSs	as	food	additives.		

	

How	 PS	 thickeners	 influence	 the	 organoleptic	 properties	 has	 been	 the	 topic	 of	

many	 research	 papers.	 However,	 due	 to	 the	 variety	 of	 PSs	 and	 infinite	

combinations	of	PS,	 food	 types	and	 flavour	 compounds,	 the	 food	 industry	would	

benefit	 from	 further	 research	 into	 the	underlying	mechanisms	governing	 flavour	

perception.	 The	 fact	 that	many	 PSs	 are	 also	mucoadhesive	 is	 seldom	 taken	 into	

consideration.	The	aim	of	this	chapter	is	to	elucidate	the	impact	of	mucoadhesive	

PSs	 in	 thickened	 solutions	 on	 salt	 and	 sweet	 perception.	 Furthermore,	 the	
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concentration	 of	 tastant	 present	 in	 the	 mouth	 over	 time	 was	 investigated	 to	

determine	if	mucoadhesive	PSs	retain	tastant	molecules	within	their	matrix	in	the	

oral	cavity.		

	

4.2.	Methods	

4.2.1.	Materials		

LMEP,	SA,	and	LCMC	were	used	as	detailed	in	Chapter	2.	All	other	chemicals	and	

reagents	 were	 purchased	 from	 Sigma	 Aldrich.	 The	 viscosity	 of	 the	 PS	 solutions	

were	 matched	 at	 1.3	 rad/s	 for	 a	 viscosity	 of	 17	 mPa.s	 (±	 6)	 (Chapter	 3).		

Concentrations	required	for	this	viscosity	are	in	Table	4.1.	

	

4.2.2.	Sample	preparation	

PS	were	dispersed	in	DW	and	stirred	for	3	hours	before	either	sodium	chloride	or	

glucose	was	added.	LMEP	was	adjusted	to	pH	7	with	sodium	bicarbonate,	in	order	

to	be	the	same	pH	as	the	other	PS.	For	the	salt	perception	experiment	the	amount	

of	 sodium	 in	 each	 sample	 was	 controlled.	 The	 PS	 inherently	 contains	 varying	

amounts	of	sodium	so	an	Economical	Flame	Photometer	(230	VAC,	50/60	Hz)	was	

used	to	determine	sodium	content	of	each	PS	solution.		

	

Standards	 were	 made	 ranging	 from	 2	 mg/L	 to	 10	 mg/L	 sodium	 with	 sodium	

chloride	(Sigma	Alridch,	Poole,	UK)	in	DW.	DW	was	used	as	a	blank	to	set	the	flame	

photometer	to	0	and	the	highest	standard	was	set	to	100.	A	calibration	curve	was	

produced	 with	 a	 R2	of	 0.99	 (Appendix	 1).	 	 PS	 containing	 samples	 were	 diluted	

1000	times	with	DW	and	read	on	the	flame	photometer.	The	appropriate	amount	

of	NaCl	was	added	 to	each	sample	so	 that	 the	 final	 concentration	of	 sodium	was	

0.3%	(Table	4.1).	
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Table	 4.1	 Sample	 formulation.	 NaCl	 added	 to	 achieve	 total	 sodium	 equivalence	

(0.3%w/v)	in	all	samples,	considering	the	sodium	inherent	in	each	PS.	

Sample	
	
	

Matrix	
	
	

Concentration	
(%	w/v	in	
water)	

mg/100mL	
NaCl	added	

	

g/100mL	
glucose	added	

	
1	 SA	 0.45%	 181	 0	
2	 LMEP	 1.25%	 111	 0	
3	 LCMC	 1.40%	 121	 0	
4	 Water	 -	 300	 0	
5	 SA	 0.45%	 0	 8	
6	 LMEP	 1.25%	 0	 8	
7	 LCMC	 1.40%	 0	 8	
8	 Water	 -	 0	 8	

	

4.2.3.	Perception	of	tastants	in	polysaccharide	matrices		

Sensory	experiments	were	designed	 to	elucidate	whether	viscous,	mucoadhesive	

PSs	prolonged	the	perception	of	sodium	and	glucose	over	time	compared	to	water.	

Eleven	 trained	 panellists	 from	 the	University	 of	 Reading	 Sensory	 Science	 Centre	

were	used	to	assess	the	samples.	Panellists	were	trained	to	assess	samples	using	a	

single	attribute,	either	 sweetness	 for	 the	glucose	containing	samples	or	 saltiness	

for	 the	NaCl	containing	samples.	Time	 intensity	 (TI)	 sensory	 testing	was	used	 to	

measure	 the	 intensity	of	salt	and	sweet	perception	over	defined	 time	periods.	TI	

testing	allows	the	panellists	to	record	the	dynamic	changes	in	perception	over	time	

for	the	attribute.	Prior	to	experiments,	panellists	were	trained	on	the	Compusense	

software	used	for	TI	testing.	

	

Each	 sample	 was	 tested	 in	 duplicate	 and	 labelled	 with	 3	 digit	 random	 codes.	

Panellists	 were	 seated	 in	 isolated	 sensory	 booths	 with	 a	 computer,	 filtered	

portable	water	(at	room	temperature)	and	crackers	(Carr’s	Water	Biscuits,	United	
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Biscuits,	 UK)	 for	 pallet	 cleansing.	 Panellists	 were	 presented	 the	 samples	

monadically	in	a	balanced	design	to	gather	data	for	3	time	points;	5,	30	and	120	s.	

Panellists	tested	either	the	salt	model	or	the	sweet	model	first	and	the	order	was	

balanced	throughout	all	panellists.	Panellists	held	the	sample	in	their	mouth	for	10	

s,	with	 little	manipulation	and	were	 then	prompted	 to	swallow	and	start	scoring	

instantly.	The	type	of	PS	 in	the	samples	was	fixed	each	session	so	that	 individual	

panellists	 had	 the	 same	 polymer	 for	 the	 salt	 test	 and	 the	 sweet	 test	 but	 the	 PS	

would	differ	between	panellists	each	session.	For	example,	a	panellist	could	have	

been	given	a	 sample	of	LCMC	with	glucose	and	asked	 to	 score	 sweetness	 for	5	 s	

then	another	of	the	same	sample	for	30	s	and	finally	120	s.	After	this	session	the	

panellist	would	test	LCMC	with	NaCl	at	all	three	time	points.		

	

4.2.4.	Saliva	collection		

Before	the	start	of	each	session,	panellists’	saliva	was	collected	to	determine	their	

baseline	sodium	concentration.	After	swallowing	each	sample	and	scoring	for	the	

predetermined	 time	 interval,	 panellists	 immediately	 scraped	 their	 tongue	 with	

their	teeth	and	expectorated	their	whole	saliva	into	labelled	tubes,	for	analysis	of	

tastant	concentration.	TI	data	and	saliva	was	collected	during	the	same	experiment	

so	 that	 real	 time	 perception	 of	 taste	 was	 recorded	 along	 with	 quantification	 of	

tastant	remaining	in	the	mouth.			

	

Whole	saliva	samples	were	diluted	with	DW;	40	ml	DW	for	salt	samples,	10	ml	DW	

for	 glucose	 samples.	 All	 saliva	 samples	 were	 centrifuged	 at	 3000rpm	 for	 30	

minutes	to	remove	cells.	The	supernatant	was	stored	in	eppendorf	tubes	at	-20°C	

until	analysis.		
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4.2.5.	Flame	photometry	

Saliva	samples	were	analysed	by	flame	photometry	for	sodium	concentration	like	

that	described	in	4.2.2.	however,	most	samples	were	dilute	enough	to	be	within	the	

calibration	so	no	further	dilution	was	needed.	Those	that	has	readings	higher	than	

100	were	diluted	2-fold	and	were	then	within	the	calibration	range.		

	

4.2.6.	Capillary	electrophoresis	

The	capillary	electrophoresis	(CE)	method	used	was	adapted	from	Soga	(2000).	

Briefly,	a	HP3D	CE	with	diode-array	detector	and	Agilent	ChemStation	software	

(Santa	Clara,	CA,	USA)	was	used.	Electrophoretic	separation	was	performed	at	a	

constant	pressure	of	50	mbar,	with	a	6	second	injection	of	sample,	followed	by	a	

four	second	injection	of	buffer.	A	fused	silica	capillary	(Agilent,	Stockport,	UK)	was	

used	which	measured	50	μm	i.d.,	112.5	cm	in	length,	with	an	effective	length	of	

104	cm	to	the	detector,	maintained	at	15	°C.	An	anionic	buffer	(pH	12.1)	purchased	

from	Agilent	(Palo	Alto,	CA)	was	used	for	sample	separation	and	the	column	was	

preconditioned	for	10	minutes	with	buffer	before	each	run.	A	constant	voltage	of	

30	kV	was	applied	with	a	negative	polarity.	Detection	was	at	350/20	nm	for	40	

min.	External	standards	were	used	for	the	quantification	of	the	analytes	of	interest.	

These	standards	were	0,	0.5,	1,	3	and	4	mg/mL	glucose	in	DW.		

	

4.2.5.	Statistical	analysis	

Time	 intensity	 parameters	 (Figure	 4.1.)	 were	 extrapolated	 from	 the	 raw	 data	

produced	 in	 the	 experiments.	 Imax,	 Tmax,	 AUC,	 decline	 angle,	 incline	 angle,	

plateau	 and	 duration	 were	 analysed	 using	 one-way,	 repeated	 measures	 ANOVA	

(rmANOVA)	 with	 PS	 as	 a	 treatment	 effect	 and	 panellists	 as	 random	 effect.	 The	
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saliva	concentrations	of	tastants	were	analysed	using	two-way,	rmANOVA	with	PS	

and	 time	as	 treatment	 effects.	Data	were	 analysed	 in	 SPSS	version	21	 (IBM,	UK)	

and	a	value	of	p<0.05	was	used	to	determine	significance.	

	

Figure	 4.1.	 Example	 time	 intensity	 curve	 with	 extracted	 parameters	 indicated.	

Imax	 is	 the	 maximum	 intensity	 reached,	 Tmax	 is	 the	 time	 it	 took	 to	 reach	 the	

maximum	intensity,	the	area	under	the	curve	(AUC)	is	the	“total”	perception	value,	

duration	 is	how	 long	 the	attribute	was	experienced	 for,	 incline	angle	 is	 the	angle	

created	 between	 the	 start	 time	 and	 the	maximum	 intensity	 time	 and	 value,	 and	

decline	angle	is	the	angle	from	the	peak	intensity	value	to	the	end	of	perception.		

	

4.3.	Results	and	Discussion	

	4.3.1.	Salt	perception	of	samples	

Eleven	 trained	 panellists	 scored	 3	 different	 PS	 matrices	 and	 a	 water	 control	

containing	sodium	on	the	saltiness	of	the	sample	over	time	post	swallowing.	Table	

4.2.	 shows	 the	 extrapolated	 parameters	 from	 time	 intensity	 curves	 produced	 by	

each	 panellist	 for	 the	 120	 second	 experiment	 scorings.	 There	was	 no	 significant	

(p<0.05)	 difference	 between	 the	 samples	 for	 the	 duration,	 time	 to	 maximum	

intensity	(Tmax)	and	rate	of	 increase	of	salty	taste	(incline	angle).	The	maximum	
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intensity	(Imax)	scored	for	the	LCMC	and	water	only	samples	were	higher	than	for	

the	 SA	 samples.	 Furthermore,	 the	 area	 under	 the	 curve	 (AUC)	 for	 LCMC	 was	

significantly	(p>0.05)	higher	than	for	the	LMEP	and	SA	matrices.	This	suggests	that	

the	LCMC	and	water	 samples	did	not	differ	 from	each	other	 in	 the	perception	of	

saltiness	 over	 time,	 but	 the	 SA	 sample	was	 significantly	 (p<0.05)	 reduced	 in	 the	

perception	of	saltiness.	

	

This	reduction	in	saltiness	may	be	explained	by	the	slightly	higher	viscosity	of	the	

SA	 sample.	 	 Samples	 were	 matched	 at	 a	 high	 shear	 rate	 of	 50	 rad/s	 as	 this	 is	

quoted	as	the	shear	rate	of	the	mouth	[32,33].	However,	below	this	shear	rate,	SA	

had	 a	higher	 viscosity	 than	 the	other	 two	PS	 samples.	The	 relationship	between	

the	 shear	 rate	 and	 flavour	 perception	 in	 viscous	 solutions	 is	 not	 completely	

understood	 and	 the	 shear	 rates	 in	 the	 mouth	 are	 thought	 to	 vary	 drastically	

[34,35].	Therefore,	 the	viscosity	of	 these	samples	above	and	below	50	rad/s	may	

also	be	important.		

	

Table	 4.2.	 Time	 intensity	 parameters	 from	 salt	 perception	 experiments	 from	 11	

panellists	 scoring	 each	 sample	 in	 duplicate.	 Different	 letters	 vertically	 represent	

statistically	different	groupings.			

Matrix	

	

Tmax	

(s)	

Imax	

	

Plateau	

(s)	

Incline	

(°)	

Decline	

(°)	

AUC	

	

Duration	

(s)	

LMEP	 19.58	 a	 37.13	 a,	b	 10.8	 a	 40.31	 a	 19.54	 a,	b	2490.77	 a	 101.89	 a	

SA	 19.58	 a	 32.96	 a	 19.15	 a	 34.71	 a	 13.44	 a	 2315.63	 a	 109.78	 a	

LCMC	 19.67	 a	 44.96	 b	 11.15	 a	 45.4	 a	 16.6	 a,	b	3314.52	 b	 104.61	 a	

Water	 14.71	 a	 44.91	 b	 9.95	 a	 42.01	 a	 17.5	 b	 3089.48	 a,	b	 115.94	 a	
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4.3.2.	Sodium	retention	in	the	mouth	

The	 panellists’	 saliva	 was	 collected	 5,	 30	 and	 120	 s	 after	 the	 sample	 was	

swallowed.	 For	 each	 time	 point	 a	 new	 sample	 was	 given	 as	 the	 panellists	 had	

removed	all	their	saliva	by	scraping	for	each	time	point.	As	saliva	contains	sodium	

ions,	baseline	concentrations	were	established	and	subtracted	from	the	results	for	

each	 panellist	 (mean	 1.1mg/	 whole	 saliva	 ±	 0.3).	 The	 amount	 of	 sodium	 in	

panellists’	 saliva	after	 swallowing	decreased	with	 time	 (5,	30	and	120	s)	 (Figure	

4.2.).	In	addition,	at	5s	and	30	s,	the	sodium	content	of	the	saliva	was	higher	when	

LCMC	was	used,	compared	to	the	other	three	matrices.	At	30	s,	the	sodium	content	

of	the	saliva	was	higher	when	LMEP	was	used	compared	to	SA	and	water.	 	There	

was	no	difference	between	SA	containing	samples	and	the	water	only	samples	at	

any	time.		

	

Figure	 4.2.	 Sodium	 concentration	 in	 panellists’	 saliva	 at	 3	 time	 points	 after	

swallowing.	Error	bars	represent	standard	error	of	 the	mean.	N=	11	 in	duplicate	

and	*	signifies	p	<0.05.	

	

As	 all	 PS	 containing	 samples	 were	 matched	 for	 sodium	 content,	 the	 amounts	

present	 in	 the	panellists’	 saliva	 is	representative	of	 the	amount	 left	 in	 the	mouth	

after	swallowing	minus	the	individuals’	baseline	sodium	concentration.	The	results	
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suggest	that	mucoadhesive	PSs	(LCMC	and	LMEP)	retain	sodium	ions	better	than	

water	samples.	However,	 the	results	also	show	that	samples	with	a	SA	matrix	do	

not	retain	sodium	ions	better	than	water	alone.	A	possible	explanation	for	this	 is	

that	 the	 SA	 containing	 samples	 were	 less	 mucoadhesive,	 however,	 the	 in	 vitro	

retention	 studies	 conducted	 in	 Chapter	 3	 would	 suggest	 otherwise.	 Another	

consideration	 is	 the	 concentration	 of	 the	 PS	 in	 the	 samples.	 LCMC	 and	 LMEP	

contained	 1.4	 and	 1.25	%,	 respectively	whereas	 SA	was	 used	 at	 only	 0.45	%,	 in	

order	 to	 achieve	 equivalent	 sample	 viscosity.	 This	 difference	 in	 concentration	

means	there	are	less	PS	chains	to	interact	with	Na+	in	solution	or	physically	entrap	

the	Na+	so	if	the	PS	is	being	retained	on	the	oral	surfaces,	the	Na+	associated	with	it	

will	be	less	if	the	concentration	of	the	PS	is	lower.		

	

When	comparing	the	in	vivo	retention	and	salt	perception	data	it	is	interesting	that	

although	 both	 LMEP	 and	 LCMC	 appeared	 to	 retain	 sodium	 after	 swallowing	

(Figure	4.2.)	 they	were	perceived	differently.	This	perceptual	 difference	 suggests	

that	the	amount	of	sodium	in	the	panellists’	saliva	does	not	necessarily	represent	

how	much	is	reaching	the	taste	receptor	cells	necessary	to	elicit	a	salt	perception.	

The	 LMEP	 sample	 may	 retain	 the	 sodium	 but	 if	 it	 is	 not	 in	 contact	 with	 the	

receptor	cells	then	it	will	not	result	 in	a	salty	perception.	 Interestingly,	 the	LCMC	

containing	 samples	did	not	differ	 in	 the	perception	of	 saltiness	 compared	 to	 the	

water	samples,	but	retained	the	sodium	for	longer	in	the	panellists’	mouths.	This	

may	 be	 because	 although	 LCMC	 reduced	 mass	 transfer	 of	 sodium	 ions	 to	 the	

receptors,	more	sodium	ions	will	be	swallowed	from	the	water	only	samples.			

	

4.3.3.	Sweet	perception	of	samples		

All	 the	 parameters	 extrapolated	 from	 the	 time	 intensity	 curves	 for	 the	 sweet,	
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except	decline	angle,	were	not	significantly	different	between	samples	(Table	4.3.).	

The	decline	angle	for	the	water	only	matrix	was	significantly	(p<0.05)	higher	than	

that	 for	 the	 LMEP	matrix.	 This	 indicates	 that	 the	 perception	 decreased	 quicker	

after	the	water	only	sample	compared	to	the	LMEP	containing	sample.		

	

Apart	 from	the	decline	angle	of	water	and	LMEP	matrices	 the	sweetness	scoring	

over	time	for	the	different	matrices	containing	glucose	did	not	differ.	This	suggests	

that	 the	 perception	 was	 not	 greatly	 altered	 by	 the	 presence	 of	 the	 PSs	 at	 this	

viscosity.	 The	 minimal	 differences	 in	 perception	 may	 be	 due	 to	 the	 PS	

concentration	being	low	enough	not	to	interfere	with	mass	transfer	of	the	glucose	

molecules	 to	 the	 taste	 buds.	 Hollowood	 et	 al.	 (2002)	 [17]	 found	 that	 as	 the	

concentration	of	PS	in	solution	increased	above	a	critical	point	(c*),	the	perception	

of	salt	and	sweet	was	stunted.	This	decrease	in	intensity	was	more	pronounced	in	

the	salt	samples	with	the	sweet	samples	needing	a	higher	viscosity	to	reduce	the	

perception	significantly.	This	could	explain	the	results	from	this	chapter.		

	

Table	4.3.	Time	intensity	parameters	from	sweet	perception	experiments	from	11	

panellists	 scoring	 each	 sample	 in	 duplicate.	 Different	 letters	 vertically	 represent	

statistically	different	groupings.			

Matrix	

	

Tmax	

(s)	

Imax	

	

Plateau	

(s)	

Incline	

(°)	

Decline	

(°)	

AUC	

	

Duration	

(s)	

LMEP	 24.83	 a	 42.91	 a	 11.38	 a	 42.86	 a	 15.93	 a	 2959.27	 a	 117.88	 a	

SA	 24.75	 a	 39.21	 a	 19.5	 a	 37.96	 a	 19.22	 a,	b	 2807.35	 a	 117	 a	

LCMC	 15.96	 a	 43	 a	 17.25	 a	 53.77	 a	 19.46	 a,	b	 3212.31	 a	 116.31	 a	

Water	 19.75	 a	 44.33	 a	 24.25	 a	 42.32	 a	 21.58	 b	 3347.60	 a	 118.31	 a	
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4.3.4.	Glucose	retention	in	the	mouth	

A	complete	set	of	results	were	collected	for	concentrations	of	glucose	in	saliva	only	

at	 the	 30	 s	 after	 swallowing	 time	 point,	 therefore,	 statistical	 analysis	 was	

performed	 only	 on	 this	 data	 (Data	 incomplete	 at	 remaining	 time	 points	 due	 to	

instrumental	break	down).	At	30	s	after	swallowing,	the	glucose	concentration	in	

panellists’	 saliva	was	higher	after	 the	LCMC	containing	samples	compared	 to	 the	

LMEP	matrix	(Figure	4.3.).		

	

Figure	 4.3.	 Glucose	 concentration	 in	 panellists’	 saliva	 at	 3	 time	 points	 after	

swallowing.	Error	bars	represent	standard	error	of	 the	mean.	N=	11	 in	duplicate	

and	*	signifies	p	<0.05.	

	

The	 data	 are	 inconclusive	 due	 to	 the	 lack	 of	 time	 points	 other	 than	 30	 s	 post	

swallow.	 It	 is	 therefore	 difficult	 to	 draw	 any	 firm	 conclusions	 relating	 the	

perception	data	to	the	in	vivo	retention	data.	However,	for	the	30	second	time	point	

the	 LCMC	 containing	 samples	were	 significantly	 (p<0.05)	 higher	 than	 the	 LMEP	

samples	with	a	similar	trend	for	other	samples.	Although	it	appears	that	there	may	

have	been	more	glucose	retained	after	the	LCMC	samples,	the	perception	data	did	

not	differ	from	the	other	PS	or	water	samples.	This	could	be	because	the	amount	

that	 was	 retained	 was	 not	 high	 enough	 to	 produce	 a	 measurable	 difference	 in	
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perception	or	it	could	be	that	the	LCMC	created	a	barrier	between	the	glucose	and	

its	receptor,	essentially	inhibiting	diffusion.		

	

As	 the	 saliva	 samples	 are	 no	 longer	 available	 from	 this	 experiment	 the	missing	

data	can	not	be	recovered.	However,	an	experiment	could	be	set	up	where	saliva	is	

collected	from	a	smaller	number	of	participants	after	swallowing	a	sample	with	PS	

and	 glucose.	 A	 glucose	 oxidase	 assay	 could	 be	 used	 to	 analyse	 the	 glucose	

concentration	 instead	 of	 CE,	which	would	 be	 time	 efficient	 and	 be	 less	 likely	 to	

encounter	technical	failures.		

	

4.4.	Conclusions	

Aqueous	 PS	 matrices	 alter	 the	 temporal	 perception	 and	 retention	 of	 sodium.	

Increasing	the	viscosity	of	samples	with	LMEP	and	SA	resulted	in	reduced	intensity	

and	 overall	 perception	 of	 sodium	 compared	 to	 LCMC-containing	 samples	 and	

water	alone.	The	retention	of	sodium	in	the	mouth	was	found	to	be	higher	in	two	

of	 the	 mucoadhesive	 samples,	 LCMC	 and	 LMEP;	 but	 the	 SA	 sample	 was	 not	

different	to	the	water	sample.	This	evidence	suggested	a	complicated	relationship	

between	the	concentration	of	tastant	present	 in	the	mouth	and	the	perception	of	

that	 tastant.	 This	 disconnect	 between	 actual	 amount	 of	 tastant	 present	 and	 the	

perception	of	the	tastant	may	be	due	to	physical	effects	such	as	a	reduction	in	mass	

transfer	 of	 the	 tastant	 or	 adaptation	 effects.	 There	 was	 not	 a	 difference	 in	

perception	of	 sweetness	 in	 samples	 thickened	with	PSs.	The	data	 is	 inconclusive	

for	 the	 retention	 of	 glucose	 in	 the	 mouth,	 however,	 the	 trend	 was	 like	 the	 salt	

experiments	where	LCMC	tended	to	retain	more	tastant.		
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Chapter	 5:	 Mucoadhesive	 polysaccharides	 modulate	 sodium	 retention,	

release	and	taste	perception	

	

5.1.	Introduction	

Results	from	chapter	4	suggested	that	samples	with	a	LCMC	matrix	retained	more	

sodium	 in	 the	mouth	 after	 swallowing.	 Therefore,	 in	 this	 chapter	 samples	 with	

LCMC	as	 the	matrix	was	 compared	 to	a	 relatively	non-mucoadhesive	matrix	and	

water	 only.	 Amylase	 resistant	 starch	 (detailed	 in	 Chapter	 2)	 was	 used	 as	 a	

relatively	non-mucoadhesive	control.	LCMC	is	a	linear	polysaccharide	made	of	β	1	

-4	 linked	 glucose	 units	 with	 some	 of	 the	 hydroxyl	 groups	 substituted	 with	

carboxymethyl	groups	to	render	it	soluble	in	water.	Starch,	on	the	other	hand,	is	a	

branched	 polysaccharide	 consisting	 of	 many	 glucose	 units	 joined	 by	 α	 1	 -	 4	

glycosidic	bonds	 in	 the	 form	of	 amylose	 (helical)	or	 amylopectin	 (linear).	Unlike	

LCMC,	starch	swells	within	granules,	unless	gelatinised,	 limiting	the	 formation	of	

interconnecting	chains.		

	

Flavour	 balance	 is	 a	 challenge	 presented	 in	 low	 fat	 food	 formulations	 as	 the	

reduction	of	 the	hydrophobic	matrix	of	a	 food	results	 in	 the	 increased	release	of	

hydrophobic	aroma	compounds	from	food	matrices[1–3].	This	results	in	an	aroma	

release	that	peaks	and	rapidly	falls	compared	to	higher	fat	counterparts	where	the	

release	 is	 more	 uniform	 over	 time	 [4].	 Some	 studies	 have	 found	 that	 although	

perception	of	aroma	from	higher	viscosity	solutions	can	be	lower,	 in-nose	aroma	

concentration	stays	the	same	and	that	the	determining	factor	for	perception	is	the	

congruent	 tastant	 perception	 [5,6].	 Therefore,	 if	 mucoadhesives	 can	 deliver	

tastants	 at	 a	 lower	 rate	 over	 time,	 then	 aroma	 perception	 may	 be	 adjusted	



	

	 122	

accordingly,	 resulting	 in	 a	 product	 with	 a	 flavour	 profile	 like	 that	 of	 a	 high	 fat	

product.		

	

Lian	et	al.	(2004)	and	Malone	and	Appelqvist	(2003)	attempted	to	prolong	aroma	

delivery	 using	 gelled	 emulsion	 particles	 of	 calcium	 alginate.	 The	 results	 suggest	

that	aroma	release	can	be	controlled	by	particle	size.	Emulsions	and	encapsulation	

of	 aromas	 have	 been	 widely	 researched,	 however,	 utilising	 mucoadhesion	 to	

prolong	 flavour	 delivery	 is	 a	 relatively	 novel	 concept.	 For	 the	 past	 few	 decades	

mucoadhesion	 has	 been	 researched	 in	 relation	 to	 pharmaceutical	 applications,	

however,	 more	 recently	 the	 potential	 for	 their	 use	 in	 food	 products	 to	 prolong	

flavour	delivery	has	been	considered	[8–10].	The	work	in	this	chapter	investigates	

the	temporal	retention,	release	and	subsequent	perception	of	sodium,	a	tastant,	in	

a	model	aqueous	food	prepared	with	either	starch,	LCMC	or	just	water.		

	

The	work	 in	 this	 chapter	 is	 the	 first	 to	 show	that	 food	grade	mucoadhesives	are	

retained	on	the	tongue	ex	vivo,	alter	the	temporal	perception	of	saltiness	over	time	

compared	 to	 non-mucoadhesives,	 and	 prolong	 sodium	 retention	 in	 the	 mouth	

despite	a	reduction	in	perception.	Perception	data	was	collected	after	consuming	

samples	 using	 a	 sensory	 method	 called	 progressive	 profiling	 to	 understand	

changes	 in	 perception	 over	 time.	 Furthermore,	 an	 in	 vivo	 retention	 experiment	

was	 developed	 to	 ascertain	 the	 differences	 in	 sodium	 levels	 retained	 by	 the	

mucoadhesive	 sample	 compared	 to	 non-mucoadhesive	 samples.	 Chapter	 4	 was	

used	as	preliminary	evidence	that	LCMC	can	retain	sodium	ions	for	 longer	in	the	

mouth	 and	 the	work	 in	 this	 chapter	builds	 on	 that	 evidence.	The	hypothesis	 for	

this	 work	 was	 that	 a	 mucoadhesive	 PS	 would	 retain	 sodium	 for	 longer	 in	 the	
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mouth	delaying	 clearance	and	prolonging	 flavour	perception	 compared	 to	 a	non	

mucoadhesive	control	and	water	alone.		

	

5.2.	Methods	

5.2.1.	Materials	

Three	aqueous	matrices	containing	the	same	amount	of	sodium	were	prepared	for	

all	parts	of	 this	experiment;	 the	samples	were	made	with	DW	alone,	or	DW	plus	

LCMC	 as	 the	 mucoadhesive	 polysaccharide,	 or	 an	 amylase	 resistant	 starch	

(detailed	 in	 Chapter	 2).	 The	 aqueous	 samples	were	 freshly	 prepared	on	 the	day	

they	were	used	as	the	starch	containing	samples	needed	to	be	assessed	within	2	

hours	of	hydration.	Both	LCMC	and	starch	were	dispersed	in	DW	to	obtain	a	final	

concentration	 of	 2.6%	 (w/w).	 This	 concentration	 was	 chosen	 as	 the	 samples	

resembled	 drink	 consistency	 that	 one	 might	 encounter.	 LCMC	 samples	 were	

prepared	on	 the	morning	before	experiments	and	 left	 in	 the	 fridge	 for	at	 least	3	

hours	to	remove	air	bubbles.	Starch	and	water	samples	were	prepared	no	longer	

than	30	min	before	commencing	experiments	to	prevent	the	starch	from	thinning.		

	

All	samples	contained	the	same	concentration	of	sodium	(final	concentration	0.18%	

Na+	 or	 786	 μM)	 either	 from	 NaCl	 salt	 added	 or	 Na+	 inherently	 present	 in	 the	

polysaccharide.	 	 The	 LCMC	 contains	 a	 high	 amount	 of	Na+	 to	make	 it	 soluble	 in	

water.	 Flame	 photometry	 (Economical	 Flame	 Photometer;	 230	 VAC,	 50/60	 Hz)	

was	used	to	determine	the	amount	of	Na+	in	LCMC	(51.5	mg/g)	and	therefore,	the	

amount	of	NaCl	added	to	these	samples	was	adjusted	to	account	for	this	inherent	

sodium	concentration	 (method	detailed	 in	Chapter	4.2.2.).	 This	 ensured	 that	 the	

dosage	of	sodium	in	each	sample	was	the	same,	but	the	amount	of	accompanying	

chloride	was	different.	
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5.2.2.	Viscosity	

The	 viscosities	 of	 the	 LCMC	 and	 the	 starch	 sample	were	 determined	 using	 a	 TA	

AR2000	 rheometer	 with	 40mm	 parallel	 plate	 geometry	 (TA	 Instruments,	 Herts,	

UK).	LCMC	samples	were	removed	from	the	fridge	at	least	an	hour	before	the	test	

to	bring	it	up	to	room	temperature.	The	starch	sample	was	measured	no	more	than	

half	an	hour	after	it	was	made.	Solutions	were	stirred	before	600	µL	was	taken	up	

with	a	plastic	syringe	and	placed	onto	the	bottom	parallel	plate	of	the	rheometer.	

The	 rheometer	 was	 set	 to	 equilibrate	 the	 sample	 to	 temperature	 (37°C)	 before	

beginning	sweeps.	A	40	mm	parallel	plate	was	used	with	a	400	µm	gap	between	

the	 plates.	 Each	 sample	 was	 tested	 9	 times,	 3	 batch	 repeats	 and	 3	 analytical	

replicas.		

	

After	the	initial	amplitude	sweep	to	determine	the	linear	viscoelastic	regions	of	the	

samples,	 the	amplitude	was	set	to	1%	strain	and	frequency	sweeps	were	carried	

out	to	determine	the	complex	viscosity	(h*)	over	increasing	frequency	(Figure	S1a	

&	b).	Various	 concentrations	of	 LCMC	were	measured	 to	match	 the	2.6%	 (w/w)	

starch	 viscosity	 (55	 mPa.s)	 at	 a	 shear	 rate	 of	 50	 rad/s	 (Figure	 S3)	 as	 this	 is	

typically	quoted	as	the	shear	rate	of	the	mouth	[11–13].		

	

5.2.3.	Ex	vivo	retention	experiments	

The	 experiment	 detailed	 in	 Chapter	 3	 (3.2.3.)	 was	 used	 for	 the	 work	 in	 this	

Chapter	 also.	 The	 retention	 experiment	 allows	 indirect	 quantification	 of	 the	

amount	 of	 sample	 retained	 on	 a	mucosal	 surface	 after	 being	 repeatedly	washed	

with	an	artificial	eluent.	Sodium	fluorescein	was	added	to	the	aqueous	samples	to	

visualise	retention	of	the	matrix.	Ex	vivo	porcine	tongue	was	used	as	the	mucosal	

substrate	and	an	AS	 formulation	was	used	adapted	 from	Madsen	et	al	(2013),	as	
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the	 eluent	 (Chapter	 3.2.3.3.).	 Each	 experiment	 was	 repeated	 3	 times	 on	 three	

different	tongues.		

	

5.2.4.	Progressive	profile	

The	University	of	Reading	screened	and	trained	sensory	panel	of	11	people	were	

trained	 to	 assess	 three	 attributes	 in	 the	 samples	 using	 a	 progressive	 profile	

method.	A	progressive	profile	is	a	temporal	method	that	allows	panellists	to	score	

the	 intensity	 of	 attributes	 after	 swallowing	with	 scoring	 carried	 out	 at	 set	 time	

points.	This	is	opposed	to	using	a	quantitative	descriptive	analysis	(QDA)	which	is	

a	static	assessment	made	by	the	panellist	immediately	after	consumption.	A	QDA	

is	not	able	to	capture	information	about	the	development	of	attributes	over	time.		

Each	sample	was	tested	in	duplicate	on	separate	days.		

	

The	panel	were	given	the	samples	in	training	so	they	could	decide	which	attributes	

they	 would	 use	 to	 differentiate	 samples.	 They	 chose	 saltiness,	 adhesion	 and	

mouthcoating	 to	 best	 describe	 the	 samples.	 Panellists	 were	 trained	 on	 the	

saltiness	 attribute	 with	 a	 range	 standard	 samples	 that	 varied	 in	 concentration.	

They	were	given	0.4%	NaCl	in	water	as	their	extreme	anchor.	Two	more	standards	

0.2%	and	0.1%	were	given	that	were	approximately	50%	and	25%	of	the	line	scale.	

These	 were	 given	 to	 the	 panellists	 during	 training	 sessions	 and	 for	 reference	

before	experiments.	Adhesion	was	defined	as	 the	stickiness	of	 the	sample	 to	 the	

roof	 of	 the	 mouth	 and	 mouthcoating	 was	 defined	 as	 the	 feeling	 of	 something	

present	on	the	mouth	lining.	

	

Progressive	profiling	produces	a	 time-dependent	descriptive	profile	 showing	 the	

intensity	of	attributes	over	specific	time	during	or	after	consumption.	The	test	was	
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made	in	Compusense	using	standard	unstructured	line	scales.	In	this	experiment,	

the	progressive	profile	scoring	took	place	after	the	sample	was	swallowed	to	gain	

insights	into	the	influence	of	adhesion	on	salt	perception.	Panellists	were	given	5	

mL	 of	 each	 sample	 in	 opaque	 shot	 glasses	 and	 asked	 to	 score	 the	 attributes	

immediately	 after	 swallowing.	 They	 were	 then	 instructed	 to	 sit	 quietly	 and	

swallow	 a	 consistent	 number	 of	 times	 (dependant	 on	 the	 panellists	 individual	

defined	 times	 in	 1	min),	 predetermined	 during	 training,	 for	 20	 s	 until	 the	 next	

scoring	 session.	 Panellists	 took	 an	 average	 of	 10	 s	 to	 score	 the	 samples	 and	

therefore	 the	 time	 interval	 between	 scores	 was,	 on	 average,	 30	 s.	 Compusense	

collected	data	and	the	raw	data	was	exported	and	analysed	in	SPSS.		

	

5.2.5.	In	vivo	sodium	retention	

An	 in	 vivo	 retention	 study	 was	 designed	 to	 determine	 the	 actual	 amounts	 of	

sodium	 retained	 in	 the	 mouth	 after	 consumption.	 It	 is	 well	 known	 that	

mucoadhesives	 retain	 small	 compounds	 at	 mucosal	 sites,	 hence,	 it	 was	

hypothesised	that	this	would	be	the	case	with	sodium	ions.	Five	participants	were	

recruited,	1	female	and	4	males,	between	the	ages	of	22	and	30.	Ethical	approval	

was	sought	and	granted	by	the	University	of	Reading’s	School	of	Chemistry,	Food	

and	 Pharmacy	 ethics	 committee	 prior	 to	 experiments	 (project	 code	 27/15).		

Participants	 were	 asked	 to	 brush	 their	 teeth	 and	 rinse	 their	 mouth	 thoroughly	

with	 filtered	 water	 15	 min	 before	 they	 started	 each	 session.	 Each	 sample	 was	

tested	in	triplicate	so	each	data	point	reported	was	a	mean	of	15	individual	saliva	

collections.		
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5.2.5.1.	Saliva	collection	

For	each	session,	the	participants	were	given	one	of	the	three	matrices	containing	

sodium.	 Compusense	 software	 was	 used	 for	 timing	 each	 experiment	 and	 the	

breaks	between	each	sample.	For	each	sample,	the	participant	was	presented	with	

5	mL	and	asked	to	hold	the	sample	 in	the	mouth	for	10	s	before	spitting	out	the	

sample	 into	 a	 disposable	 spittoon.	 To	 avoid	 excessive	 consumption	 of	 sodium	

chloride	 participants	 spat	 out	 the	 sample	 instead	 of	 swallowing.	 This	 first	

expectoration	 was	 not	 measured	 as	 this	 was	 in	 place	 of	 the	 participants	

swallowing.	After	this	initial	spitting,	a	timer	started	and	once	it	had	finished,	the	

participant	 was	 prompted	 to	 scrape	 their	 tongue	 with	 their	 teeth	 and	 rid	 their	

whole	mouth	of	saliva	into	a	pre-weighed,	appropriately	labelled	tubes	that	would	

later	be	weighed	and	analysed.	The	timer	counted	down	from	either	5,	30,	60,	120,	

180,	 240	 or	 300	 s	 to	 gather	measurements	 of	 sodium	 retained	 at	 each	 of	 these	

time	points.	For	every	time	point,	a	new	sample	was	presented	to	the	participant	

to	accurately	measure	how	much	would	be	 retained	at	 each	 time	point	over	 the	

total	5	min	period.	There	was	at	least	a	two-minute	break	between	each	sample	in	

the	series.	Timings	were	randomised	and	swallowing	was	controlled	during	each	

experiment	so	that	each	 individual	participant	was	swallowing	the	same	amount	

of	times	for	each	sample	and	all	time	points.	Due	to	individual	variances	of	saliva	

production	the	number	of	swallows	per	person	was	different.		

	

5.2.5.2.	Analysis	of	sodium	in	saliva	

The	 tubes	were	weighed	before	and	after	 collection	 to	determine	 the	amount	of	

saliva	collected.	The	saliva	samples	were	diluted	with	40	mL	DW	and	agitated	so	

the	 sodium	 concentration	 could	 be	 determined	 by	 flame	 photometry	 set	 for	

sodium	 detection.	 Sodium	 chloride	 standards	 were	 used	 for	 a	 calibration	 curve	
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ranging	from	0	mg/	L	to	10	mg/	L	Na+	which	was	in	the	linear	range.	A	blank	saliva	

sample	 was	 taken	 each	 day	 before	 experiments	 started	 to	measure	 the	 sodium	

present	in	resting	saliva.	These	blanks	were	averaged	over	the	9	sessions	to	give	a	

value	 for	baseline	sodium	content	of	each	participant’s	saliva.	The	average	blank	

was	then	subtracted	from	the	results	obtained	from	the	experiments.			

	

5.2.6.	In	vivo	retention	

Five	 volunteers	were	used	 for	 testing	 the	 in	vivo	 retention	of	 samples.	Data	was	

collected	by	asking	participants	to	consume	the	sample	and	then	at	set	time	points	

to	 expectorate	 their	 whole	 saliva	 into	 pre-weighed	 tubes,	 which	 were	 later	

analysed	using	flame	photometry.	Each	time	point	was	carried	out	in	triplicate	for	

each	matrix	type.	Saliva	was	collected	to	measure	how	much	sodium	was	retained	

after	 the	 bulk	 of	 the	 sample	 had	 been	 swallowed.	 It	 was	 hypothesised	 that	 the	

presence	of	the	mucoadhesive	polysaccharide,	LCMC,	would	enhance	the	retention	

of	sodium	ions	in	the	oral	cavity.	

	

5.2.7.	Statistical	analysis	

For	all	 experiments	 two	way	 rmANOVA	was	used.	Time	and	 sample	were	 set	 as	

treatment	effects.	Bonferroni	adjustments	were	made	for	multiple	comparisons	of	

time	 points.	 Fisher’s	 Least	 Significant	 Difference	 was	 used	 when	 comparing	

between	the	three	matrices.	Data	were	analysed	in	SPSS	version	21	(IBM,	UK)	and	

a	value	of	p<0.05	was	used	to	determine	significance.	
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5.3.	Results	&	Discussion	

5.3.1.	In	vitro	retention	of	solutions	

Rheology	results	found	that	LCMC	is	relatively	non-shear	thinning	whereas	starch	

was	very	shear	thinning	(Figure	5.1.).	Although	viscosity	can	be	quoted	at	a	single	

shear	 rate,	 the	 shear	 behaviour	 of	 the	 sample	will	 be	 an	 important	 factor	when	

considering	the	impact	on	mucoadhesion	and	retention	of	molecules.		

	

Figure	5.1.	Complex	viscosity	(h*)	of	LCMC	and	Starch	over	increasing	frequency.		

	

Figure	5.2.	shows	the	retention	profiles	of	the	LCMC,	starch	(matched	viscosities)	

and	water	samples	on	different	areas	of	ex	vivo	pig	tongue.	The	different	areas	of	

the	tongue	have	different	retention	profiles	with	the	front	of	the	tongue	retaining	

the	polysaccharide	matrices	longer	than	the	rear	and	side	of	the	pig	tongue.	This	is	

in	 accordance	 with	 previous	 results	 investigating	 milk	 protein	 retention	 on	

different	tongue	areas	[15].	This	difference	is	probably	due	to	the	morphology	of	

the	 front	 surface	 of	 the	 tongue,	 as	 it	 possesses	 a	 high	 density	 of	 fungiform	 and	

filiform	 papillae,	 increasing	 the	 surface	 area	 and	 surface	 roughness,	 facilitating	

mucoadhesion.	 The	 rear	 of	 the	 tongue	 has	 larger	 protrusions	 and	 the	 side	 is	

mostly	smooth,	non-keratinised	tissue	with	few	papillae	present.		
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Figure	5.2.	Retention	profiles	of	matrices	on	the	front	(a),	rear	(b)	and	side	(c)	of	

ex	vivo	pig	tongue.	Statistically	significant	differences	(p	<0.05)	represented	by	*.	

Error	bars	are	±	standard	deviation.		

As	 a	 control,	 SF	 in	 water	 was	 applied	 to	 the	 tissue	 and	 washed	 off.	 Figure	 5.2.	
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the	first	wash	with	1	mL	AS.	This	shows	that	the	dye	is	not	being	retained	on	the	

tissue	without	the	presence	of	 the	PS	matrix.	The	starch	sample	was	retained	on	

the	 tongue	 longer	 than	 the	 water	 sample,	 which	 is	 most	 likely	 due	 to	 viscosity	

factors.	 On	 the	 front	 of	 the	 tongue	 most	 of	 the	 sample	 containing	 starch	 was	

washed	off	after	5	mLs	of	AS,	whereas	for	the	rear	and	side	of	the	tongue	3	and	2	

mL	was	sufficient,	respectively.		LCMC	on	the	other	hand	was	still	visible	after	20	

mL	of	AS	washing	on	the	front	of	the	tongue.		

	

During	these	experiments	the	shear	force	that	the	sample	is	put	under	is	that	from	

the	 droplet	 encountering	 the	 tissue.	 The	 shear	 rate	 that	 the	 sample	 viscosities	

were	matched	at	was	relatively	high	to	emulate	the	reported	shear	conditions	 in	

the	mouth.	Therefore,	 at	 lower	 shear	 rates	 there	 is	 a	 large	discrepancy	between	

viscosities,	with	 starch	 having	 a	much	 higher	 viscosity	 than	 LCMC	 (Figure	 5.1.).	

Despite	 this	 higher	 viscosity	 at	 lower	 shear,	 LCMC	was	 retained	 for	 longer	 than	

starch	 on	 the	 front	 of	 the	 tongue	 with	 a	 similar	 trend	 in	 the	 other	 areas.	 This	

suggests	that	viscosity	is	not	the	only	driving	factor	for	mucoadhesion,	though	an	

increase	in	viscosity	does	result	in	enhanced	mucoadhesion	(Chapter	3)	[16].	The	

solubility	 of	 a	 polymeric	 substance	 in	 the	 mucosal	 secretion	 will	 also	 play	 an	

important	 role	 in	 the	 mucoadhesion	 observed.	 In	 this	 study	 both	 PS	 are	

hydrophilic	and	will,	therefore,	be	soluble	in	saliva,	which	has	a	neutral	pH.		

	

There	 are	 many	 possible	 reasons	 why	 LCMC	 is	 more	 retentive	 on	 the	 tongue	

mucosa	than	starch.	Starch	is	a	shear	thinning	PS	used	for	its	thickening	properties	

in	 a	 range	 of	 liquid	 and	 semi	 solid	 food	 applications.	 Starch	 was	 chosen	 as	 a	

negative	 control	 for	 mucoadhesion	 in	 this	 experiment	 as	 it	 thickens	 solutions	

whilst	 being	 relatively	 non-	 adherent	 to	 the	 mucosal	 surface	 of	 the	 mouth,	 as	
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illustrated	by	the	in	vitro	retention	(Figure	5.2.).	Starch	has	a	granular	structure	in	

solution	 as	 the	 polymer	 chains	 swell	 and	 form	 colloidal	 hydrated	 particles	 that	

exhibit	 limited	 chain	 entanglement	 [17].	 Nutilis	 is	 a	 modified	 form	 of	 starch	 to	

make	 it	 amylase	 resistant,	 however,	 it	 still	 exhibits	 a	 granular,	 swollen	 texture	

rather	than	a	continuous	network	of	polymer	chains	[18].		This	granular	structure	

will	 affect	 the	 ability	 of	 the	 polymer	 chains	 to	 interpenetrate	within	 the	mucus	

layer	to	form	physical	entanglements	with	mucin,	promoting	adhesion.	Conversely,	

LCMC	polymer	chains	can	settle	 into	the	micro	cracks	(papillae)	that	are	present	

on	the	surface	of	 the	tongue	 leading	to	an	 increased	polymer	–	surface	 interface.	

Furthermore,	 LCMC	 is	 an	 anionic	 polysaccharide	 due	 to	 the	 presence	 of	 COO-	

groups.	 This	will	 contribute	 to	mucoadhesion	 through	 hydrogen	 bonds	 and	 van	

der	Waals	forces	with	the	mucin	oligosaccharide	side	chains.		

	

5.3.2.	Sensory	perception:	Saltiness		

The	saltiness	intensity	of	samples	was	scored	on	unstructured	line	scales	several	

times	 over	 6	minutes.	 The	 results	 for	 this	 attribute	 show	 that	 all	 three	 samples	

decreased	in	the	intensity	of	saltiness	over	time	(Figure	5.3.).	Saltiness	perception	

was	 significantly	 (p<0.001)	higher	 in	 the	water	 samples	 compare	 to	 starch	over	

time	 (p	 <0.05),	 however,	 after	 2	min	 the	 difference	 between	 them	became	non-

significant.	The	saltiness	of	the	LCMC	sample	was	reduced	compared	to	starch	(p	

<0.01)	 and	 water	 (p	 <0.001)	 initially,	 and	 this	 difference	 persisted	 over	 time	

(Figure	 5.3.).	 Saltiness	 intensity	 was	 significantly	 (p<0.001)	 higher	 for	 water	

samples	 compared	 to	 samples	with	LCMC	at	 all	 time	points.	 The	 starch	 samples	

were	significantly	(p<0.001)	higher	than	LCMC	until	480	s	after	which	the	scores	

were	not	significantly	different.		
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There	are	various	factors	to	consider	with	salt	taste	perception	such	as	viscosity,	

matrix-tastant	 interactions	 and	 adaptation.	 An	 increase	 in	 viscosity	 is	 known	 to	

reduce	the	diffusion	of	tastant	molecules	as	predicted	by	the	Stokes-Einstein	and	

Wilke-	 Chang	 equations	 [19]	 and	 subsequently	 decrease	 taste	 perception	 in	

foods[20–23].	 The	 Stokes-Einstein	 equation	 predicts	 that	 diffusion	 is	 dependent	

on	 the	 square	 root	 of	 the	 viscosity.	 Furthermore,	 interactions	 between	 ionic	

thickeners	 can	 slow	 the	 diffusion	 of	 charged	 molecules	 and	 recent	 research	

suggests	 that	 sodium	 ion	 availability	 from	 food	matrices	 is	 the	 most	 important	

factor	to	consider	for	salt	taste	[24].	The	interactions	are	often	due	to	adsorption,	

entrapment	in	microregions,	complexation,	encapsulation,	and	hydrogen	bonding	

[25].	 Therefore,	 if	 the	 tastant	 is	 being	 chemically	 or	 physically	 prevented	 from	

diffusing	out	of	the	food	matrix	to	reach	taste	bud	receptors,	then	perception	will	

be	stunted.		

	

How	well	the	matrix	mixes	with	saliva	has	also	been	proposed	as	an	explanation	to	

why	 starch	 does	 not	 impede	 perception	 like	 random	 coil	 polysaccharides	 [17].	

Another	 possibility	 is	 that	 adaptation	 effects	 are	 artificially	 turning	 down	 the	

saltiness	 signal	 [26],	 however,	 apdaptation	 would	 be	 more	 likely	 with	 stronger	

tasting	solutions	than	weaker	more	prolonged	taste.		
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Figure	5.3.	Progressive	profiling	data	for	Saltiness.	Each	data	point	represents	the	

mean	for	the	11	panellists	and	their	duplicate	tests.	Error	bars	are	not	included	in	

this	 graph	 as	 there	 is	 large	 individual	 variation	 in	 scores	 over	 time.	 The	 letters	

next	to	the	sample	key	represent	statistically	significant	groupings	(p	<0.05).		

	

The	most	 likely	 explanation	 for	 the	 results	 found	 in	 this	 study,	 however,	 is	 the	

anion	 effect	 restricting	 the	 perception	 of	 sodium	 [27].	 Although	 sodium	 ions	

themselves	are	responsible	for	activating	taste	cells	for	a	salt	response,	the	anion	

associated	with	it	serves	an	important	purpose.	To	be	perceived,	sodium	ions	must	

diffuse	 from	 the	 food	 matrix	 into	 the	 saliva	 where	 they	 then	 diffuse	 into	 the	

papillae	where	the	taste	bud	receptor	cells	are	located.	The	anion	associated	with	

the	 sodium	 cation	 has	 great	 implications	 on	 the	 amount	 of	 saltiness	 perceived	

from	 a	 given	 concentration	 of	 sodium.	 The	 anion	 effect	 explains	 why	 smaller	

anions	such	as	chloride	facilitate	a	salty	perception	and	larger	anions	do	not	[27–

30].	Briefly,	as	the	sodium	ions	diffuse	paracellularly	to	permeate	the	basolateral	

cells	of	a	taste	bud	pore,	anions	larger	than	chloride	do	not	diffuse	as	readily.	This	

leads	 to	 the	 development	 of	 a	 transepithelial	 potential	 and	 hyperpolarisation	 of	
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the	taste	cell	preventing	an	action	potential.	In	the	experiments	in	this	study,	the	

sodium	levels	were	matched	regardless	of	the	counter	ion	so	it	makes	sense	that	

with	LCMC	being	the	anion	in	this	circumstance,	the	sodium	ions	will	not	produce	

a	salty	perception.	[17].	

	

Due	to	these	complications,	it	is	not	clear	whether	the	presence	of	a	mucoadhesive	

would	prolong	the	taste	perception	of	saltiness	as	the	salt	perception	was	already	

lower	 with	 LCMC	 at	 the	 start	 of	 the	 profile	 due	 to	 the	 large	 anion	 effect.	 The	

amount	of	added	NaCl	 to	 the	LCMC	samples	was	25%	of	 that	added	to	 the	other	

samples.	 The	 average	 intensity	 (0-100)	 recorded	 by	 participants	 at	 the	 first	

scoring	point	was	16	for	LCMC,	55	for	starch	and	66	for	water.	This	means	that	the	

LCMC	scores	were	29%	of	the	score	for	starch	and	24%	of	the	score	for	the	water	

samples.	 It	could	therefore	be	argued	 if	 the	amount	of	NaCl	added	was	the	same	

for	all	the	samples	then	the	LCMC	samples	may	not	have	had	such	a	reduction	in	

intensity.			

	

5.3.3.	Sensory	perception:	Adhesion	&	Mouthcoating	

Panellists	 scored	 the	 attributes	 adhesion	 and	mouthcoating	 at	 the	 same	 time	 as	

scoring	 the	 saltiness	 attribute.	 As	 these	 attributes	 are	 closely	 linked	 and	 have	 a	

similar	 response	 from	 the	panellists,	 they	will	be	discussed	 together.	The	 scores	

for	 adhesion	 (Figure	 5.4.a)	 and	 mouthcoating	 (Figure	 5.4.b)	 were	 significantly	

(p<0.05)	higher	for	LCMC	containing	samples	compared	to	starch	and	water	only	

samples.	 During	 training	 the	 panel	 described	 the	 LCMC	 samples	 as	 sticky	 and	

gummy	whereas	the	starch	was	described	as	globular	and	gritty	in	texture.		
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Immediately	after	swallowing	and	30	s	later	the	starch	samples	were	perceived	as	

more	 adhesive	 than	 water,	 which	 is	 unsurprising	 considering	 the	 increased	

viscosity	 and	 bulk	 it	 imparts	 to	 the	 sample.	 LCMC	 on	 the	 other	 hand,	 scored	

significantly	(p<0.05)	higher	for	adhesion	up	to	210	s	for	water	(p	>0.05)	and	480	

s	 for	 starch	 (p	 >0.05)	 (Figure	 5.4.a).	 Adhesion	 scores	 were	 paralleled	 by	

mouthcoating	scores	(Figure	5.4.b),	though	starch	scored	higher	for	this	attribute	

overall,	 presumably	 because	 it	 spreads	 throughout	 the	 oral	 cavity	 well	 but	 is	

extremely	shear	thinning	(Figure	5.1.)	so	not	particularly	sticky	when	manipulated	

with	 the	 tongue.	 Mouthcoating	 scores	 for	 starch	 were	 initially	 higher	 than	 the	

water	 samples	 but	 dropped	 quickly,	 whereas	 LCMC	 was	 significantly	 (p<0.05)	

higher	than	the	other	samples	for	over	2	minutes	after	swallowing	(Figure	5.4.b).		

	

Although	 panellists	 perceived	 that	 starch	 coated	 their	 mouth	 somewhat	 after	

swallowing,	it	was	not	adhesive	in	the	same	way	as	LCMC.	These	results	are	in	line	

with	 the	 in	 vitro	 retention	 experiments	 (Figure	 5.2.),	 where	 LCMC	 retained	 for	

longer	 on	 the	 tongue	 than	 starch.	 This	 prolonged	 adherence	 of	 the	 liquid	

formulation	 could	 be	 beneficial	when	 delivering	 flavour	molecules	 in	 liquid	 and	

semi	solid	food	products.		
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Figure	 5.4.	 Progressive	 profiling	 data	 for	 a)	adhesion	and	b)	mouthcoating.	 Each	

data	point	 represents	 the	mean	 for	 the	11	panellists	and	 their	duplicate	scoring.	

Error	bars	are	not	 included	 in	 this	graph	as	 there	 is	 large	 individual	variation	 in	

scores	 over	 time.	 The	 letters	 next	 to	 the	 sample	 key	 represent	 statistically	

significant	groupings.	Different	letters	represent	a	significant	difference	of	p	<0.05.	

	

5.3.4.	In	vivo	salt	retention	

	Figure	 5.5.	 shows	 the	 total	 amount	 of	 sodium	 present	 in	 the	 participants’	

expectorated	saliva	at	each	time	point.	The	total	sodium	amounts	in	the	panellists’	
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saliva	after	consuming	the	samples	containing	LCMC	were	higher	than	the	starch	

(p	<0.05)	and	water	(p	<0.05)	samples	(Figure	5.5.).	This	suggests	that	the	LCMC	

samples	were	better	at	retaining	the	sodium	ions	due	to	enhanced	adhesion	of	the	

matrix,	which	retains	the	ions	associated	with	the	PS	network	in	the	mouth	for	a	

prolonged	 period.	 This	 is	 supported	 by	 the	 results	 from	 the	 in	 vitro	 retention	

experiments	 (Figure	 5.2.)	 and	 the	 sensory	 perception	 scores	 for	 adhesion	 and	

mouthcoating	(Figures	5.4.	a	&	b).	Although	the	perception	of	sodium	was	stunted	

due	to	the	anion	effect,	the	actual	amounts	of	sodium	were	higher	and	retained	for	

longer.		

	

	

Figure	 5.5.	 Amount	 of	 sodium	 present	 in	 participants’	 whole	 saliva	 over	 a	 5-

minute	 period.	 Each	 data	 point	 represents	 the	 mean	 of	 15	 (5	 participants,	 3	

repeats)	 saliva	 collections	analysis.	Error	bars	 represent	±	 standard	error	mean.	

The	letters	next	to	the	sample	key	represent	statistically	significant	groupings	of	p	

<0.05	using	Bonferroni	correction.	

	

LCMC	is	an	ionic	PS	and	this	ionic	nature	lends	itself	to	mucoadhesion	due	to	ionic	

and	 hydrogen	 bond	 formation	 and	 Van	 der	 Waals	 interactions	 with	 the	 oral	
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mucosa.	However,	the	drawback	of	this	ionic	PS,	from	a	nutritional	perspective,	is	

that	 LCMC	 inherently	 has	 sodium	 associated	 with	 the	 negatively	 charged	

carboxylic	acid	groups.	This	 is	 the	 case	 for	many	 ionic	PSs	and	 therefore	adding	

these	 types	of	PSs	 to	 foods	will	 increase	 the	sodium	content	without	necessarily	

adding	 to	 the	 salty	 taste.	 In	 this	work,	 the	 sodium	contents	of	 the	 samples	were	

matched	in	order	to	ascertain	whether	the	inherent	sodium	in	LCMC	would	elicit	a	

salt	 response	 and	 prolong	 this	 perception	 over	 time.	 However,	 the	 amount	 of	

sodium	inherently	in	the	LCMC	samples	meant	that	the	amount	of	NaCl	added	to	

the	LCMC	samples	was	a	quarter	of	that	which	was	added	to	the	other	samples.	If	

there	were	equal	amounts	of	NaCl	added	then	the	anion	effect	would	be	minimized	

and	perhaps	 there	would	 be	 a	 prolonged	perception	 of	 saltiness.	Of	 course,	 this	

would	 then	mean	 that	 there	was	much	more	sodium	 in	 those	samples	making	 it	

less	ideal	from	an	application	point	of	view.		

	

As	 mucoadhesion	 is	 correlated	 with	 viscosity	 (Chapter	 3),	 a	 non-ionic	

polysaccharide	 could	 be	 used	 to	 overcome	 the	 excess	 sodium	 issue.	 The	

mucoadhesive	strength	of	polymers	does	not	solely	rely	on	viscosity;	however,	in	

liquid	 and	 semi	 solid	 formulations	 this	 may	 be	 an	 overriding	 factor.	 The	

rheological	behaviour	is	also	an	important	consideration	as	LCMC	is	relatively	less	

shear	thinning	compared	to	starch,	which	may	explain	the	retention	further.	The	

force	 required	 to	 remove	 the	LCMC	samples	may	need	 to	be	higher	 than	 for	 the	

starch	for	example.	Therefore,	similar	cellulose	derivatives	that	are	non-ionic	such	

as	 hydroxypropyl	 methylcellulose	 may	 be	 retentive	 due	 to	 the	 rheological	

behaviour	 but	 will	 not	 have	 the	 associated	 sodium	 with	 them.	 Liquid	

mucoadhesion	is	heavily	influenced	by	viscosity,	the	more	viscous	a	sample	is	the	

more	resistant	it	is	to	force.	It	is,	therefore,	difficult	to	control	for	viscosity	in	such	
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experiments	 as	 most	 polysaccharides	 that	 can	 form	 viscous	 solutions	 are	 also	

going	 to	 exert	 some	 mucoadhesive	 strength.	 Furthermore,	 polymer	 chain	

flexibility	 that	 facilitates	 chain	 entanglement	 is	 inherently	 related	 to	

mucoadhesion,	 so	 this	 further	 complicates	 the	 endeavour	 to	 find	a	polymer	 that	

exhibits	 flexibility	 in	 solution	 and	 is	 not	 mucoadhesive.	 Therefore,	 starch	 was	

chosen	 as	 one	 of	 the	 few	 polymeric	 substances	 that	 thicken	 solutions	 without	

forming	an	interconnecting	polymer	chain	network.	

	

Although	water	was	not	 statistically	 different	 to	 starch	 at	 retaining	 sodium	 ions	

there	was	 a	 general	 trend	 that	more	 sodium	was	 retained	 in	 the	water	 samples	

over	the	different	time	points	(Figure	5.5.).	This	retention	could	be	explained	due	

to	 the	 viscosity	 of	 starch;	 some	 of	 the	 sodium	 ions	 would	 reside	 in	 the	 starch	

matrix	and	be	swallowed	in	the	bolus	as	it	is	not	mucoadhesive,	thus	reducing	the	

amount	left	in	the	mouth.	As	there	is	no	bolus	formation	in	the	water	samples	and	

water	poses	no	physical	barrier	to	the	mucosa,	the	sodium	ions	are	free	to	diffuse	

into	the	taste	bud	pores	to	be	perceived	and	remain	in	the	mouth.		

	

5.4.	Conclusions	

The	 results	 from	 this	 work	 show	 that	 a	 matrix	 containing	mucoadhesive	 LCMC	

prolongs	 the	 adherence	 of	 the	matrix	 to	 the	mucosa	 in	vitro	 and	 in	vivo	 studies	

show	that	it	also	retains	the	model	tastant,	sodium,	within	it	for	longer	than	starch	

and	water	matrices.	However,	this	work	found	that,	due	to	the	large	anion	effect,	

the	 perception	 of	 the	 retained	 sodium	was	 diminished.	 This	work	 suggests	 that	

mucoadhesive	matrices	could	be	used	to	control	the	release	of	flavour	compounds	

after	consumption	when	the	anion	effect	is	not	an	issue.		
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Chapter	 6:	 Polysaccharide	 matrices	 control	 the	 release,	 retention	 and	

perception	of	flavours		

	

6.1.	Introduction	

In	previous	chapters	the	mucoadhesive	strength	of	various	PS	was	measured	and	

the	 effect	 of	mucoadhesive	 PSs	 on	 the	 perception	 and	 retention	 of	 tastants	was	

investigated.	 Evidence	 from	 Chapters	 5	 suggests	 that	 although	 LCMC	 retained	

sodium	longer	than	water	and	starch	samples,	the	perception	was	stunted	due	to	

the	 anion	 effect.	 Therefore,	 the	 work	 on	 this	 chapter	 investigated	 the	 effect	 of	

different	PS	matrices	on	sweet	based	flavourings	to	avoid	issues	due	to	the	anion	

effect.	 	One	of	 the	main	aims	 for	 this	body	of	work	was	 to	 investigate	 the	use	of	

mucoadhesives	 in	 solid	 food	systems.	The	previous	chapters	have	all	 focused	on	

liquid	 formulations,	 therefore,	 the	 work	 in	 this	 chapter	 investigated	 solid	 PS	

matrices	and	the	effect	of	flavour	release	and	perception	over	time.		

	

6.1.1.	Flavour	interactions	

Flavour	 perception	 occurs	 via	 the	 release	 of	 flavour	 compounds	 from	 the	 food	

matrix	 and	 the	 subsequent	 transport	 of	 those	 compounds	 to	 the	 respective	

receptors	 in	 the	 nose	 and	 mouth.	 This	 whole	 process	 is	 dependent	 on	 various	

factors	including	the	chemical	properties	of	the	flavour	compounds	(e.g.	polarity),	

the	nature	of	the	food	matrix,	the	physiological	conditions	of	the	mouth,	nose	and	

throat	during	consumption	of	the	food,	and	psychological	factors	such	as	memory	

and	 emotion.	 These	 play	 varying	 roles	 depending	 on	 the	 food	 that	 is	 being	

consumed	and	will	affect	the	amount	and	rate	of	flavour	compounds	reaching	the	

receptors.	 These	 factors	 result	 in	 a	 characteristic	 flavour	 profile	 for	 a	 particular	
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food.	 The	 rate	 and	 onset	 of	 flavour	 delivery	 is	 dependent	 on	 factors	 such	 as	

partitioning,	mass	transport	and	diffusion.		

	

In	liquid	food	systems	PSs,	proteins	and	fat	influence	the	structure	of	the	food.	The	

impact	they	have	on	smaller	molecules,	such	as	aroma	and	tastant	compounds,	has	

been	 investigated	 mainly	 in	 relation	 to	 viscosity	 increases	 [1–5]	 and	 physical	

entrapment	 of	 such	molecules	 [6–8].	 The	 impact	 of	 these	 structural	 changes	 on	

perception	 is	 well	 documented,	 however,	 perception	 does	 not	 always	 reflect	

flavour	release.	More	recently,	the	interactions	between	food	components	and	the	

oral	 and	 nasal	mucosa	 are	 being	 investigated.	 Specifically,	 interactions	 between	

flavour	 molecules	 and	 the	 oral	 and	 nasal	 mucosa	 may	 explain	 persistence	 of	

aromas	in	certain	foods	[9,10].		

	

To	 date,	 the	 literature	 on	 taste	 –	 texture	 and	 aroma-	 texture	 interactions	 has	

mainly	 focused	 on	 liquid	 and	 semi	 solid	 foods	with,	 often,	 contradictory	 results	

reported.	 The	 mixed	 findings	 are	 most	 likely	 due	 to	 the	 chemical	 and	 physical	

composition	 of	 the	 food	 matrix	 rather	 than	 purely	 an	 increased	 viscosity.	

Furthermore,	studies	often	 focus	on	changes	of	 fat	 levels	and/	or	 the	addition	of	

various	 PSs	 at	 various	 concentrations	 and	 combinations	with	 flavour	molecules.	

Although	mixed	results	have	been	obtained,	in	general,	an	increase	in	viscosity	by	

the	addition	of	PSs	 results	 in	a	decreased	perception	of	 sweet	and	salty	 tastants	

[11–14].	 For	 example,	 Cook	 et	 al.,	 (2002)	 found	 that	 HPMC	 samples	 above	 c*	

reduced	 the	 sweetness	 intensities	 of	 aspartame,	 sucrose,	 fructose	 and	

neohesperidin	 dihydrochalcone	 and	 the	 saltiness	 of	 sodium	 chloride.	

Physicochemical	 explanations	 have	 been	 proposed	 for	 the	 reduction	 in	 taste	

perception	 due	 to	 tastant	 interaction	 with	 the	 food	 matrix	 and	 physical	
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entrapment	 of	 the	 tastant	 molecules	 within	 the	 food	 matrix	 prohibiting	 the	

diffusion	to	the	taste	buds	in	order	to	be	perceived	[8,15].		

	

Aroma	–	texture	interactions	are	equally	as	troublesome	to	characterise	due	to	the	

countless	combinations	of	food	ingredients	and	aroma	compounds.	Clearly	there	is	

not	just	one	mechanism	to	describe	all	these	possible	combinations.	Some	studies,	

using	 real	 time	 in	 vivo	 measurements,	 found	 that	 although	 perceptual	 changes	

occurred	with	foods	thickened	with	PSs	the	aroma	release	and	amount	delivered	

was	unchanged	[6,16].	Aroma	–	tastant	–	cognition	interactions	are	thought	to	play	

a	role	in	aroma	perception	as	a	decrease	in	the	perception	of	a	tastant	caused	by	

an	 increase	 in	 viscosity	 has	 been	 found	 to	 lead	 to	 a	 decrease	 in	 the	 congruent	

aroma	despite	aroma	delivery	concentration	remaining	the	same	[16,17].		

	

Flavour	 molecules	 can	 be	 volatile	 (aromas)	 or	 non-volatile	 (tastants)	 and	 food	

matrices	range	tremendously.	While	the	physicochemical	properties	of	the	flavour	

compounds	 are	 important	 in	 determining	 their	 interaction	 with	 the	matrix,	 the	

state	 of	 the	 matrix	 is	 equally	 important.	 For	 example,	 polysaccharides	 can	 be	

present	in	viscous	liquids	(e.g.	mayonnaise),	rubbery	solids	(e.g.	bread	dough)	or	

glass	(e.g.	a	low	moisture	snack	product).	Therefore,	it	is	impossible	to	generalize	

the	interaction	of	a	particular	flavour	molecule	with	a	particular	polysaccharide	in	

all	its	forms.	

	

6.1.2.	Flavour	release	

In	 the	 mouth,	 flavour	 retention	 in	 the	 food	 matrix	 largely	 depends	 on	 the	

composition	 of	 food	 and	 how	 well	 it	 mixes	 with	 saliva.	 Retention	 of	 flavour	

compounds	 in	 the	 matrix	 will	 obviously	 decrease	 the	 perception	 of	 those	
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compounds	 as	 they	will	 not	 reach	 the	 respective	 receptors	 to	 be	 perceived	 and	

risk	 being	 swallowed.	Many	 studies	 that	 have	 investigated	 the	 impact	 on	 aroma	

release	 when	 reducing	 fat	 in	 foods	 [18,19]	 have	 found	 that,	 in	 general,	 aroma	

retention	 in	 the	matrix	 of	 a	 high	 fat	 food	will	 increase	 as	 the	 logP	 of	 the	 aroma	

increases	meaning	the	more	hydrophobic	aroma	compounds	will	 favour	being	in	

the	 fatty	matrix	rather	 than	partitioning	 into	 the	aqueous	saliva.	For	hydrophilic	

compounds	(log	P	equal	to	or	less	than	zero)	the	reverse	happens	as	an	increase	in	

fat	levels	may	increase	the	rate	of	release	from	the	matrix.	It	makes	sense	then	that	

the	release	of	hydrophobic	aromas	will	be	faster	 in	 lower	fat	systems,	which	can	

lead	 to	 an	 unbalanced	 flavour	 profile	 when	 attempting	 to	 develop	 low	 fat	

alternatives.		

	

Prolonging	the	retention	of	aromas	in	the	food	matrix,	without	a	high	fat	content,	

may	combat	this	issue.	The	encapsulation	of	aroma	compounds	with	hydrocolloids	

has	 been	 a	 popular	 research	 area	 in	 previous	 years	 for	 liquid	 foods,	 especially	

emulsions	[20–22].	Volatile	aroma	compounds	can	be	encapsulated	using	various	

hydrocolloids	to	physically	entrap	them	and	control	their	release	over	time.	Gelled	

emulsions,	 using	 cross-linked	 Ca-alginate,	 have	 worked	 reasonably	 well	 for	

controlling	 the	 release	 of	 hydrophobic	 aroma	 compounds	 to	 mimic	 higher	 fat	

emulsions	[23,24].		

	

6.1.3.	Mucoadhesive	films	

Buccal	films	are	commonly	used	to	deliver	drugs	either	locally	or	systemically	due	

to	the	ease	of	application,	avoidance	of	first-pass	metabolism	and	high	blood	flow	

[25].	The	use	of	mucoadhesive	PSs	in	these	formulations	means	that	the	film	will	

adhere	 to	 the	 buccal	 tissue	 and	will	 not	 be	 swallowed.	 Various	 films	 have	 been	
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designed	to	release	drugs	systemically,	such	as	propranolol	hydrochloride	for	high	

blood	pressure	[26],	and	locally	acting	metronidazole	for	periodontal	disease	[27].	

Polymers	such	as	carbopol,	CMC,	SA,	HPMC,	chitosan	and	modified	starches	have	

been	used	 in	 these	 formulations	 [28].	The	polymers	chosen	 for	 the	 formulations	

are	 based	 on	 their	 chemical	 properties	 depending	 on	 what	 drugs	 are	 being	

incorporated,	the	desired	rate	of	release	and	residence	time.		

	

As	mentioned	in	previous	chapters,	PSs	are	employed	in	a	variety	of	industries	and	

there	is	a	huge	overlap	between	the	food	and	pharmaceutics	industries.	Listerine	

Pocketpaks®	are	an	example	of	where	the	 food	and	pharmaceutical	applications	

overlap	 in	 terms	 of	 the	 use	 of	 PSs.	 Pocketpaks®	 are	 thin	 PS	 films	 containing	

essential	 oils	 to	 kill	 bacteria	 whilst	 simultaneously	 freshening	 breath	 with	 a	

variety	of	flavourings.	These	fast	dissolving	films	are	made	with	pullulan	(PUL)	as	

the	film	forming	excipient.	PUL	(detailed	in	Chapter	2)	has	a	very	low	viscosity	and	

excellent	film	forming	properties.	It	adheres	to	wet	surfaces,	most	likely	due	to	its	

rapid	 water	 uptake	 and	 disintegration.	 Pocketpaks®	 are	 designed	 to	 dissolve	

rapidly	when	 in	contact	with	a	moist	 surface	and	 this	 results	 in	a	quick	burst	of	

flavour.		

	

The	clear	majority	of	 studies	 investigating	 the	 impact	of	PSs	on	 flavour	relate	 to	

liquid	 and	 semi	 solid	 food	 products	 as	 this	 is	 where	 they	 are	 most	 frequently	

employed.	 The	 work	 in	 this	 chapter	 is	 concerned	 with	 how	 PSs	 effect	 flavour	

perception	 in	a	solid	system.	Various	food	grade	PSs	that	differ	 in	their	chemical	

and	physical	properties	were	cast	into	films	and	the	effect	on	the	release,	retention	

and	perception	of	glucose	and	vanillin	were	assessed.		
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PSs	 were	 cast	 into	 films	 containing	 glucose	 and/	 or	 vanillin.	 The	 release	 and	

perception	of	flavour	attributes	over	time	is	dependent	on	many	factors	including	

mass	 transfer	 and	 flavour-matrix	 interactions.	 Whilst	 this	 study	 takes	 those	

factors	 into	consideration,	a	 further	 interaction	between	the	food	matrix	and	the	

oral	 anatomy,	 mucoadhesion,	 is	 investigated.	 The	 hypothesis	 for	 this	 work	 was	

that	films	made	with	viscous,	slow	dissolving	polysaccharides	that	adhere	to	oral	

surfaces	for	a	prolonged	time	will	reduce	the	intensity	but	prolong	the	perception	

of	flavours	over	time.	This	work,	therefore,	provides	fundamental	data	relating	to	

how	food	ingredients	influence	the	perception	of	flavours	over	time	and	how	new	

products	may	be	developed.	

	

6.2.	Methods	

6.2.1.	Materials	

Four	 PSs	 were	 chosen	 for	 this	 study	 due	 to	 their	 differing	 chemical	 properties	

(Chapter	2).	PUL	was	chosen	as	a	non-	ionic,	low	viscosity	and	fast	dissolving	film	

former,	HPMC	was	chosen	as	a	high	viscosity,	non-ionic	film	former	and	two	CMC	

viscosity	 grades	 were	 used,	 one	 low	 viscosity	 (LCMC)	 and	 one	 high	 viscosity	

(HCMC).	Vanillin	was	purchased	 from	Sigma-	Aldrich	 (Missouri,	US)	 and	glucose	

powder	was	purchased	from	a	local	supermarket.		

	

6.2.2.	Samples	

Films	 were	 prepared	 by	 dissolving	 PS	 in	 DW	 (3	 %	 w/v)	 with	 either	 glucose,	

vanillin	or	glucose	and	vanillin	 (Table	6.2.).	PS	solution	(30	g)	was	weighed	 into	

circular	petri	dishes	and	placed	in	an	oven	at	65°C	for	20	hours.	After	this	time,	the	

films	 were	 dry	 and	 could	 be	 removed	 from	 the	 petri	 dish.	 They	 were	 cut	 into	

squares	 and	weighed.	 Glucose	 containing	 films	weighed	 100	mg	 and	 the	 aroma	
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only	films	weighed	30	mg.	This	weight	difference	was	to	ensure	that	each	sample	

contained	the	same	amount	of	PS.		

	

Table	6.2.	Final	concentrations	of	ingredients	in	each	type	of	film.	

Film	type	 Polysaccharide	

(%)	

Glucose	(%)	 Vanillin	(%)	

Sweet	 30	 70	 -	

Vanilla	 99.1	 -	 0.9	

Sweet	and	Vanilla	 29.5	 69.4	 0.9	

	

6.2.3.	Artificial	saliva		

AS	was	used	for	all	in	vitro	experiments	to	emulate	conditions	in	the	mouth.	This	

formulation	 was	 adapted	 from	 Madsen	 et	 al.	 (2013)	 and	 consisted	 of	 0.21	 g/L	

NaHCO3,	 0.43	 g/L	 NaCl2,	 0.75	 g/L	 KCl,	 0.22	 g/L	 CaCl2·2H2O,	 0.91	 g/L	

NaH2PO4·2H2O	and	2.5	g/L	pig	gastric	mucin	type	II	dispersed	in	DW.	The	pH	was	

adjusted	to	6.8	and	kept	at	37	°C	during	experiments	and	stored	at	4	°C	when	not	

in	use.		

	

6.2.4.	Swelling	profiles	of	films	

Swelling	 studies	 were	 carried	 out	 in	 an	 incubator	 set	 to	 37	 °C.	 Each	 film	 was	

placed	on	to	netting	and	fully	submerged	in	a	Petri	dish	with	40	mL	of	AS.	At	set	

time	 periods	 the	 sample	 and	 netting	 was	 removed	 from	 the	 AS	 and	 weighed.	

Excess	water	was	carefully	absorbed	with	tissue	paper	so	this	did	not	add	to	the	

weight.	 The	 process	 was	 repeated	 until	 the	 weight	 had	 returned	 to	 that	 of	 the	

netting	alone.	Each	sample	was	tested	6	times	with	duplicate	batch	repeats.	Film	

thickness	was	measured	before	these	experiments	with	a	micrometer.		
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6.2.5.	Dissolution	of	glucose	from	films	

Films	containing	glucose	were	placed	onto	netting	and	carefully	submerged	into	a	

beaker	 with	 200	 mL	 AS.	 The	 solution	 was	 kept	 stirring	 at	 a	 constant	 rate	

throughout	 the	 experiment.	 At	 set	 time	points,	 1	mL	 aliquots	 of	 the	AS	medium	

were	 removed	 and	 put	 into	 labelled	 epindorfs	 for	 analysis.	 The	 glucose	

concentrations	 in	 the	 samples	 were	 quantified	 spectrophotometrically	 using	 an	

Amplex	 Red,	 glucose	 oxidase	 kit	 (Fisher	 Scientific,	 Loughborough,	 UK).	 Each	

sample	was	tested	6	times	with	duplicate	batch	repeats.	

	

6.2.6.	Vanillin	headspace	analysis	from	films	

The	vanillin	in	the	films	was	analyzed	by	SPME/GC-MS.	Each	film	was	placed	in	a	

20	 ml	 SPME	 vial	 with	 5	 mL	 DW	 the	 volatiles	 were	 extracted	 using	 a	

DVB/Carboxen/PDMS	 Stableflex	 fibre	 (SupelCo,	 Poole,	 U.K.).	 The	 samples	 were	

equilibrated	at	60	°C	for	60	min	with	intermittent	stirring	prior	to	exposure	to	the	

fibre	for	10	min	at	40	°C.	The	fibre	was	desorbed	in	the	injection	port	for	20	min	

and	the	volatile	compounds	analysed	using	an	Agilent	7890A	gas	chromatograph	

equipped	 with	 a	 Zebron	 ZB-5MSi	 column	 (30	 m	 x	 0.25	 mm	 i.d.	 x	 1	 um	 film	

thickness)	 coupled	 to	 an	 Agilent	 5975C	 MSD.	 Helium	 was	 the	 carrier	 gas	 (1.2	

ml/min).	 After	 desorption,	 the	 oven	 was	 maintained	 at	 40	 °C	 for	 10	 min,	 then	

raised	to	250	°C	at	4°C/min.	Mass	spectra	were	recorded	in	electron	impact	mode	

at	an	ionization	voltage	of	70	eV	and	source	temperature	of	230	°C.	A	scan	range	of	

m/z	29-400	with	a	scan	time	of	0.69	s	was	employed	and	the	data	was	collected	by	

ChemStation.	Vanillin	was	identified	at	152	m/z.		

External	calibration	curves	were	prepared	 for	each	PS	with	vanillin	standards	at	

18,	50,	75	and	120	mg/L.	Standards	were	prepared	by	dissolving	30	mg	PS	in	DW	

water	 and	 spiking	 with	 the	 appropriate	 amount	 of	 vanillin	 to	 give	 the	 desired	
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concentrations.	Each	standard	was	made	up	at	 least	3	hours	before	testing.	Each	

standard	was	tested	in	triplicate	and	for	each	film	type,	6	different	samples	were	

tested,	two	batch	repeats	and	three	repeats	within	each	batch	of	different	areas	of	

the	film.		

	

6.2.7.	In	vitro	mucoadhesion	

Adhesion	 experiments	 were	 carried	 out	 on	 a	 TA-XT	 plus	 texture	 analyser	 (TA)	

with	a	10mm	cylindrical	probe.	Porcine	tongues	were	collected	from	P.D.	Jennings	

butchers	(Hurst)	less	than	24	hours	after	slaughter.	They	were	stored	on	ice	whilst	

most	of	the	muscle	and	connective	tissue	was	removed	leaving	a	thin	section	of	the	

surface	 mucosa.	 These	 sections	 were	 stored	 at	 -20°C	 until	 required	 when	 they	

were	 thawed	 in	 the	 fridge	 for	3	hours	before	use.	Each	 film	was	 tested	on	 three	

pieces	of	tissue	from	3	different	tongues.		

	

The	dorsal	of	the	tongue	was	cut	into	1	cm2	sections	and	each	section	was	secured	

on	the	bottom	platform	of	the	TA	with	a	metal	plate.	The	film	sample	to	be	tested	

was	secured	to	the	probe	with	double	sided	sticky	tape.	Before	each	experiment,	

the	tongue	tissue	section	was	conditioned	with	100μl	of	AS	and	incubated	at	37°C.	

The	contact	time	between	the	probe	and	the	tissue	was	set	for	60	s	with	a	removal	

speed	of	1mm/s.		

6.2.8.	In	vivo	retention	

Ethical	approval	was	sought	from	the	University	of	Reading,	School	of	Chemistry,	

Food	 and	 Pharmacy	 (Project	 27/15).	 Five	 volunteers	 (3	 males,	 2	 females.	 Age	

range,	23-30)	were	asked	 to	place	 each	 film	 sample	on	 their	 tongue	and	keep	 it	

between	 the	 tongue	 and	 roof	 of	 the	 mouth	 for	 the	 duration	 of	 the	 experiment.	

They	were	instructed	to	treat	the	film	like	a	boiled	sweet	with	some	manipulation	
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with	the	tongue.	During	each	experiment,	they	were	asked	to	note	if	the	film	stuck	

and	where	to,	when	the	film	began	to	adhere,	when	the	adhesion	ceased	and	when	

the	film	dissolved.	Adhesion	was	noted	as	an	inability	to	move	the	film	with	their	

tongue.	This	experiment	was	done	in	triplicate.		

	

6.2.9.	Time	intensity		

A	 three-part	 experimental	 design	 was	 used	 for	 these	 experiments.	 Over	 three	

weeks	8	trained	panellists	from	the	University	of	Reading’s	Sensory	Science	Centre	

panel	scored	each	of	the	film	samples	in	duplicate.	There	are	12	samples	in	total,	4	

with	glucose	alone,	4	with	aroma	alone	and	4	with	glucose	and	aroma.	Each	week	

was	 used	 for	 each	 set	 of	 films.	 For	 example,	week	1	was	 the	 glucose	 only	 films.	

Sensory	experiments	were	carried	out	in	duplicate.			

	

Training	took	place	before	each	week	to	familiarise	the	panel	with	the	samples	and	

the	 time	 intensity	 test.	Each	 film	was	presented	 to	 the	panel	and	a	discussion	of	

the	different	flavour	release	behaviours	for	each	of	them	took	place.	During	these	

sessions,	the	panel	were	given	3	standards	for	vanilla	and	sweet	attributes	varying	

in	intensity.	The	panellists	decided	where	these	standards	came	on	the	line	scale	

with	 their	 strongest	 standard	 representing	 100	 on	 a	 standard	 100-point	 scale.	

These	 standards	 were	 given	 to	 the	 panellists	 during	 all	 scoring	 sessions	 to	

familiarise	themselves	with	the	intensities.		

	

Panellists	were	 trained	on	 single	 and	dual	 attribute	 time	 intensity	 scoring	using	

Compusense	 at	 hand	 software	 and	 feedback	 was	 given	 to	 those	 who	 were	 not	

showing	good	reproducibility.	The	time	intensity	test	lasted	for	5	minutes,	which	

was	 the	agreed	amount	of	 time	 that	 the	panellists	could	concentrate	 for	without	
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fatigue	 or	 boredom.	 The	 attributes	 scored	 were	 sweet	 for	 glucose	 only	 films,	

vanilla	 for	 aroma	 only	 films	 and	 both	 sweet	 and	 vanilla	 for	 the	 combined	 films.	

Panellists	were	also	trained	on	how	to	manipulate	the	sample	in	the	mouth.	They	

were	 asked	 to	 gently	 rub	 the	 film	between	 the	 tongue	 and	 roof	 of	 the	mouth	 to	

facilitate	flavour	release.	Panellists	were	instructed	to	treat	each	sample	the	same	

to	avoid	biasing	release.		

	

Each	week	the	panellists	were	given	a	training	session	on	the	first	day	followed	by	

two	days	of	scoring	the	samples.	Four	samples	were	presented	in	a	balanced	order	

each	day	with	the	duplicate	being	served	on	a	consecutive	scoring	day.	Panellists	

were	 provided	 with	 an	 isolated	 sensory	 booth,	 a	 computer	 with	 Compusense	

Software	and	warm	water	for	palate	cleansing.	Panellists	were	instructed	to	place	

each	 sample	 on	 their	 tongue	 and	 start	 the	 time	 intensity	 timer	 immediately.	

Panellists	 scored	 the	 appropriate	 attribute	 that	 corresponded	 to	 the	 film	 they	

tasted.	 For	 example,	 for	 the	glucose	only	 films	 they	were	 just	 scoring	 sweetness	

but	 for	 the	 films	 with	 both	 glucose	 and	 aroma	 they	 scored	 both	 vanilla	 and	

sweetness	at	 the	 same	 time.	Panellists	were	asked	 to	 treat	 the	 film	 like	a	boiled	

sweet	 by	 keeping	 it	 between	 their	 tongue	 and	 roof	 of	 their	 mouth	 with	 gentle	

manipulation	 with	 the	 tongue.	 Time	 intensity	 curves	 were	 produced	 for	 each	

panellist	and	each	sample	in	duplicate.		

	

6.2.10.	Statistical	analysis	

Time	 intensity	 parameters	 (Figure	 4.1.)	 were	 extrapolated	 from	 the	 raw	 data	

produced	 in	 the	 experiments.	 Imax,	 Tmax,	 AUC,	 decline	 angle,	 incline	 angle,	

plateau	 and	 duration	 were	 analysed	 using	 one-way,	 repeated	 measures	 ANOVA	

(rmANOVA)	 with	 PS	 as	 a	 treatment	 effect	 and	 panellists	 as	 random	 effect.	
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Bonferroni	 correction	 was	 applied	 to	 multiple	 pairwise	 analysis	 for	 two-way	

rmANOVAs	to	account	for	multiple	comparisons	where	time	and	PS	were	factors.	

Data	were	analysed	in	SPSS	version	21	(IBM,	UK)	and	a	value	of	p<0.05	was	used	

to	determine	significance.	

	

6.3.	Results	&	Discussion	

6.3.1.	Film	characteristics	

A	range	of	standard	methods	was	used	to	characterise	the	polymeric	films	[30,31].	

Each	 film	 was	 measured	 for	 thickness,	 water	 activity	 (aw),	 glucose	 release,	 and	

swelling	and	disintegration	times	(Table	6.3.).		

	

The	thickness	of	the	films	varied	between	the	different	PSs	and	between	films	with	

and	 without	 glucose.	 Film	 thickness	 was	 dependant	 on	 viscosity	 and	 glucose	

content.	 HCMC	 and	 HPMC	 were	 thicker	 than	 LCMC	 and	 PUL,	 and	 glucose	 films	

were	thicker	than	those	without	glucose.	The	thickness	of	a	film	will	influence	the	

dissolution	 rate	as	a	 thicker	 film	will	have	a	 smaller	 surface	area	 to	volume	and	

this	 can	 slow	 water	 uptake	 from	 the	 surrounding	 medium.	 This	 will	 impact	

mucoadhesion	 as	 hydration	 of	 the	 dosage	 form	 is	 integral	 for	 polymer	 -	 mucin	

interactions	to	occur.		

	

	

	

Table	6.3.	Characteristics	of	films.	

Matrix	

	

	

Glucose	

content	

(%)	

aw	

(mean)	

	

Thickness	

(mm)	

	

Dissolve	

time	

(min)	

Max	

swelling	

ratio	

50%	

glucose	

release	

100%	

glucose	

release	
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	 	 	 	 	 	 (min)	 (min)	

PUL	 -	 0.451	 a	 0.071	 a	 5	 a	 5.8	 a	 -	 -	

LCMC	 -	 0.486	 b	 0.094	 a,	b	 4	 a	 11.6	 a	 -	 -	

HPMC	 -	 0.478	 b	 0.148	 b	 147	 b	 11.6	 a	 -	 -	

HCMC	 -	 0.474	 b	 0.104	 a,	b	 357	 c	 34.9	 b	 -	 -	

	 PUL	 70	 0.502	 b	 0.281	 a	 5	 a	 1.8	 a	 3.2	 a	 7.0	 a	

LCMC	 70	 0.491	 b	 0.369	 a,	b	 5	 a	 3.4	 b	 3.3	 a	 7.8	 a	

HPMC	 70	 0.460	 a	 0.429	 b	 153	 b	 4.4	 b	 14.4	 b	 186.1	 b	

HCMC	 70	 0.496	 b	 0.360	 a,	b	 210	 c	 16.0	 c	 150.0	 c	 300.0	 c	

Films	are	separated	 into	those	with	polymer	alone	and	those	with	polymer	and	glucose.	
Each	value	is	the	mean	of	6	replications	for	the	measured	parameters	(2	batch	repeats).		a,	
b	,	c		groupings	 signify	 significant	 (p<0.05)	 differences	 between	 the	mean	 values	 obtained	
using	 pairwise	 comparison	 with	 Tukey	 HSD	 correction.	 These	 comparisons	 are	 made	
within	each	group	(i.e.	polymer	films	without	glucose	and	polymer	films	with	glucose).	
	

PUL	 and	 LCMC	 films	 fully	 dissolved	 after	 a	 similar	 time;	 however,	 LCMC	 films	

swelled	more	before	beginning	to	disintegrate	(Figure	6.1.	&	6.2.).	This	is	because	

LCMC	 is	more	viscous	 than	PUL	and	possesses	 ionic	groups,	which	 interact	with	

water	molecules.	LCMC	and	HCMC	films	swelled	considerably	more	than	the	non-

ionic,	 PUL	 and	 HPMC	 films	 with	 relation	 to	 their	 disintegration	 time.	 The	 CMC	

films	 absorb	 more	 water,	 forming	 a	 swollen	 gel-like	 layer,	 before	 beginning	 to	

degrade.	HCMC	 samples	 took	 the	 longest	 time	 to	 dissolve	 and	 swelled	 the	most	

due	to	the	high	viscosity.	All	films	without	glucose	had	higher	swelling	ratios	than	

their	glucose	containing	counterparts	and	 took	 longer	 to	dissolve.	This	 is	mostly	

likely	 because	 the	 small,	 highly	 hydrophillic	 glucose	molecules	 contained	within	

the	 film	matrix	will	quickly	dissolve	 into	the	surrounding	medium,	 leaving	pores	

for	the	water	molecules	to	enter,	effectively	increasing	the	surface	area	of	the	film.	

As	 a	 film	 swells	 it	 takes	 up	water	 from	 the	 surrounding	 area.	 If	 this	 is	 a	moist	

mucosal	surface	then	this	will	facilitate	mucoadhesion	as	an	adhesive	joint	will	be	
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initiated	due	to	high	viscosity	of	the	sample.	Furthermore,	the	swelling	of	polymer	

chains	 leaves	 them	 free	 for	 interaction	with	 the	mucin	molecules,	 strengthening	

mucoadhesion.		

	

Figure	6.1.	Polysaccharide	films	without	glucose	swelling	and	disintegration.	Error	

bars	represent	SD.		

	

Figure	 6.2.	 Polysaccharide	 films	 with	 glucose	 swelling	 and	 disintegration.	 Error	

bars	represent	SD.		
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Glucose	 release	 from	 the	 films	 followed	a	 similar	pattern	 to	 the	dissolving	 rates	

(Figure	 6.3.).	 PUL	 and	 LCMC	 released	 glucose	 fully	 after	 7.0	 and	 7.8	 min	

respectively,	 followed	 by	 HPMC	 (186	 min)	 and	 then	 HCMC	 (300	 min).	 HPMC	

quickly	 released	50%	of	 the	 total	glucose	 in	 the	 film	over	a	mean	of	14	minutes	

(Table	6.3.	&	Figure	6.3.).	This	 is	most	 likely	due	to	crystallisation	of	 the	glucose	

molecules	 on	 the	 outside	 of	 the	 film.	 This	was	 visually	 observed,	 as	 these	 films	

were	cloudy	with	a	 fine	powder	covering	them.	Furthermore,	 the	HPMC	samples	

took	a	long	time	to	fully	dissolve,	most	likely	due	to	the	high	viscosity	gel	it	forms	

which	will	slow	permeation	of	water	molecules.		

	

Figure	6.3.	 	 Glucose	dissolution	 from	 films	over	 time.	 Inset	 graph	 is	 a	magnified	

view	of	PUL	and	LCMC	release	curves.	Error	bars	represent	SD.		

	

HCMC	 films	 released	 the	 glucose	 quickly	 in	 the	 first	 50	 min	 then	 more	 slowly	

thereafter.	The	HCMC	films	swelled	considerably	so	the	swelled,	gel-like	surface	of	

the	film	contained	loosely	associated	polymer	chains,	which	will	allow	the	glucose	

molecules	 to	diffuse	out	and	dissolve	 in	 the	surrounding	medium.	The	 increased	

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

%
	g
lu
co
se
	re
le
as
e

Time	(min)

HPMC

HCMC

PUL

LCMC
0

50

100

0 5 10%
	gl
uc
os
e	
re
le
as
e

Time	(min)



	

	 160	

surface	area	caused	by	the	high	swelling	degree	of	the	HCMC	films	may	facilitate	

glucose	release,	however,	the	thick	gel	layer	covering	the	outer	surface	of	the	film	

may	 also	 decrease	 diffusion	 by	 physical	 entrapment	 or	 viscous	 resistance.	

Additionally,	 the	 thick	 gel	 layer	 may	 prevent	 matrix	 disintegration	 and	 affect	

subsequent	 water	 uptake	 when	 unperturbed	 [32].	 HPMC	 did	 not	 swell	

substantially	 but	 took	 a	 long	 time	 to	 dissolve	 therefore	 the	 glucose	 molecules	

would	essentially	be	trapped	in	the	film	matrix	until	is	started	to	erode.	

	

It	was	expected	that	changes	in	flavour	perception	over	time	would	be	influenced	

by	 the	parameters	measured	 (Table	6.3.).	 For	 example,	 it	was	hypothesised	 that	

PUL	 films	 would	 result	 in	 a	 high	 intensity	 flavour	 that	 decreased	 in	 intensity	

quickly	 as	 they	dissolved	 faster	 and	 released	 glucose	quickly.	 Conversely,	 it	was	

expected	 that	 as	 the	 HCMC	 would	 slow	 the	 release	 of	 glucose	 and	 aroma	 and	

therefore	reduce	the	initial	intensity	of	flavour	but	prolong	the	delivery	over	time.		

	

6.3.2.	Headspace	concentrations	of	vanillin	from	films	

Standard	curves	were	produced	by	GC-MS	to	determine	the	amount	of	vanillin	in	

each	PS	film	(Figure	6.4.).	For	each	PS	set	(except	HCMC)	the	peak	value	obtained	

from	 the	 GC-	 MS	 analysis	 decreased	 linearly	 as	 the	 concentration	 of	 vanillin	

decreased.	 The	 peak	 area	 for	 HCMC	 did	 not	 change	 significantly	 for	 increasing	

concentrations.	These	results	show	that	the	release	of	vanillin	is	dependent	on	the	

PS	 matrix	 present.	 HCMC	 was	 by	 far	 the	 most	 viscous	 PS	 used	 for	 these	

experiments	and	 the	huge	variability	of	vanillin	 release	could	be	due	 to	physical	

entrapment	of	the	aroma	or	chemical	interactions	(e.g.	hydrogen	bonds)	occurring	

between	the	vanillin	hydroxyl	groups	and	the	carboxyl	groups	of	the	HCMC.		
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At	 the	 highest	 concentration	 (120	 mg/L)	 there	 were	 significant	 (p<0.05)	

differences	 between	 PS	 type.	 LCMC	 released	 less	 vanillin	 than	 PUL	 and	 HPMC	

suggesting	a	retention	of	the	compound	in	the	PS	matrix.	HPMC	is	higher	viscosity	

than	LCMC	so	it	is	possible	that	the	retention	was	caused	by	interactions	between	

the	CMC	and	vanillin	preventing	the	partitioning	into	the	headspace.			

	

Figure	6.4.	Standard	curves	of	vanillin	release	from	a)	PUL,	b)	LCMC,	c)	HPMC	and	

d)	HCMC	matrices.	Error	bars	represent	SD.	Each	value	is	a	mean	of	3	repeats.		

	

The	 concentration	 of	 vanillin	 in	 the	 films	 used	 for	 sensory	 analysis	 were	 not	

significantly	 (p>0.1)	 different	 from	 each	 other	 (Table	 6.4.).	 The	 variation	 of	 the	

films	 peak	 concentration	 was	 less	 than	 the	 standard	 solutions.	 A	 possible	

explanation	for	this	is	that	the	films	were	left	overnight	to	dissolve	in	the	5	mL	DW	

and	 therefore	 may	 have	 reached	 an	 equilibrium	 unlike	 some	 of	 the	 standards,	

some	of	which	were	left	to	equilibrate	for	just	3	hours	prior	to	testing.		
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Table	6.4.	Vanillin	concentration	in	polysaccharide	films	with	and	without	glucose.	

Concentrations	 determined	 by	 standard	 curves	 (Figure	 6.4.).	 Letters	 represent	

significantly	(p<0.05)	different	groupings.		

Polymer	

	

	

With	glucose	

	

	

Vanillin	

concentration	(mg/L)	

(±	SD)	

PUL	 Y	 110	(24)a	

PUL	 N	 125	(42)a	

CMC	 Y	 105	(23)a	

CMC	 N	 155	(59)a	

HPMC	 Y	 122	(20)a	

HPMC	 N	 163	(34)a	

HCMC	 Y	 161	(68)a	

HCMC	 N	 142	(76)a	

	

6.3.2.	Mucoadhesion	in	vitro		

Two	methods	were	used	to	assess	mucoadhesion	of	 the	 flavour	containing	 films.	

Firstly,	in	vitro	tensile	experiments	were	carried	out	based	on	previous	literature	

[31,33].	Two	values	were	obtained	from	the	TA	experiments;	the	maximum	forced	

required	 to	 separate	 the	probe	 from	 the	 tongue	 (peak	 force	of	detachment)	 and	

the	area	under	the	curve	(total	work	of	adhesion).	The	results	from	these	tensile	

experiments	found	the	order	of	mucoadhesion	to	be	LCMC>	HCMC>	PUL	>	HPMC	

for	 the	 films	 without	 glucose	 and	 LCMC>	 PUL>	 HCMC>	 HPMC	 for	 those	 with	

glucose	 (Figure	 6.5.	 a	 &	 b).	 The	 films	 without	 glucose	 required	 a	 significantly	

(p<0.05)	 higher	 force	 to	 separate	 the	 film	 from	 the	 tissue	 suggesting	 a	 stronger	

adhesive	 joint	 (Figure	 6.5.	 a).	 This	 is	 not	 surprising	 as	 the	 glucose	 content	was	

high	and	therefore	the	relative	amount	of	polymer	in	contact	with	the	tissue	was	
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smaller.	The	HPMC	films	with	glucose	exerted	the	lowest	work	of	adhesion	with	a	

similar	 trend	 for	peak	 force	of	detachment	 (Figure	6.5.).	This	 is	probably	due	 to	

the	non-ionic	nature	of	HPMC	along	with	the	large	molecule	size	and	slow	swelling	

(Table	6.3.	&	Figure	6.2.).		

	

Figure	6.5.	Total	work	of	adhesion	against	the	peak	force	of	detachment	for	films	a)	

without	glucose	and	b)	with	glucose.	Results	determined	by	texture	analysis.	Data	

points	 are	means	 of	 6	measurements	 and	 error	 bars	 are	 SD.	 Superscript	 letters	

represent	 statistically	 different	 groupings	 (p<0.05).	 Letters	 on	 top	 of	 the	 data	

point	refer	to	the	y	axis	and	those	to	the	right-hand	side	refer	to	the	x	axis.		

	

Mucoadhesion	of	solid	polymeric	substances	is	dependent	on	the	hydration	of	the	

formulation,	 which	 will	 create	 a	 polymeric	 mesh	 enabling	 the	 interactions	
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between	polymer	and	mucin	chains.	Furthermore,	an	adhesive	joint	is	formed	due	

to	 the	 viscous	 gel	 formed	 between	 the	 film	 and	 the	 moist	 mucosal	 surface.	

However,	over	hydration	of	the	film	will	lead	to	a	slippery	mucilage	being	formed	

and	 will	 result	 in	 an	 adhesive	 joint	 failure.	 The	 swelling	 ability	 of	 a	 polymeric	

substance	 is	 important	 for	 establishing	 a	 mucoadhesive	 bond	 as	 this	 enables	

polymer	chains	to	be	freed	up	to	interact	with	the	mucosa.		

	

6.3.3.	Mucoadhesion	in	vivo		

In	vivo	mucoadhesion	 experiments	were	 carried	 out	with	 5	 panellists	 that	were	

asked	 to	 record	 the	 following:	 where	 the	 film	 adhered,	 the	 length	 of	 time	 it	

adhered	 and	 when	 it	 dissolved.	 All	 films,	 except	 for	 HPMC	 with	 glucose,	 were	

reported	to	adhere	for	the	duration	of	the	time	the	film	was	in	the	mouth	(Figure	

6.6.	a	&	b).	Adhesion	was	mainly	to	the	roof	of	the	mouth	but	also	the	tongue.	The	

time	that	the	films	took	to	dissolve	reflected	the	in	vitro	dissolution	(Table	6.3.)	as	

PUL	and	LCMC	took	the	least	amount	of	time	to	dissolve	followed	by	HPMC	then	

HCMC.	For	films	without	glucose,	HPMC	and	HCMC	films	did	not	differ	in	time	for	

dissolution	 in	 vivo	 (Figure	 6.6)	 despite	 the	 difference	 in	 the	 in	 vitro	 test.	 This	

difference	 is	 probably	 due	 to	 the	 participants	 manipulating	 the	 film	 with	 their	

tongue	during	these	experiments,	thereby	exerting	mechanical	stress	on	the	film.	

Therefore,	as	the	HCMC	swells	and	takes	up	water	to	produce	a	gel–like	layer,	the	

tongue	pressure	will	remove	it	and	therefore	speed	up	the	time	of	erosion.		

	

	

	

	
a)	
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Figure	 6.6.	 	 In	vivo	 adhesion	 and	 dissolution	 times	 for	 a)	 polymer	 films	without	

glucose	and	b)	polymer	 films	with	glucose.	Each	bars	represents	 the	mean	of	10	

separate	data	points,	error	bars	represent	standard	deviation.	N=	5	in	duplicate.	*	

=	p<0.05,	***	=	p<0.001.		

	

The	HPMC	films	with	glucose	were	reported	to	adhere	for	a	significantly	(p<0.05)	

shorter	time	than	it	took	to	dissolve,	and	3	out	of	5	of	the	panellists	reported	that	

the	film	did	not	adhere	at	all	(Figure	6.6.	b).	These	results	reflect	the	in	vitro	tensile	

experiments	that	 found	HPMC	to	be	significantly	(p<0.05)	 less	adhesive	than	the	

other	 films.	 Contrary	 to	 these	 in	vitro	 tensile	 experiments,	 HPMC	 films	 without	

glucose	 were	 mucoadhesive	 in	 the	 in	 vivo	 experiments,	 with	 all	 panellists	

reporting	 adhesion	 after	 an	 initial	 delay.	 There	 are	 two	 explanations	 to	 this	
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discrepancy.	Firstly,	AS	was	used	in	the	in	vitro	experiments,	which	contained	pig	

gastric	mucin	 as	 opposed	 to	 human	 salivary	mucin.	 This	may	 affect	 interactions	

between	the	PS	matrix	and	the	saliva.	Secondly,	the	hydration	of	the	oral	cavity	in	

vivo	 may	 be	 different	 to	 that	 which	 was	 on	 the	 porcine	 tongue	 in	 the	 in	 vitro	

experiments.	This	difference	in	hydration	may	have	led	to	a	stronger	adhesion	 in	

vivo,	as	the	film	did	not	become	overhydrated.		

	

The	PUL	film	dissolving	and	adhesion	time	was	significantly	(p<0.05)	quicker	than	

LCMC	 films	 in	 these	 experiments.	 The	 PUL	 films	 dissolved	 on	 average	 at	 81	 s	

compared	to	145	s	 for	the	LCMC	films.	These	dissolution	times	contrast	with	the	

results	obtained	from	the	in	vitro	dissolution	tests	(table	6.3.)	where	they	were	not	

significantly	different.	The	differences	 found	 in	 the	 characterisation	of	 films	was	

expected	to	have	an	impact	on	flavour	release	from	LCMC	films	compared	to	PUL.	

	

6.3.4.	Perception	

Panellists	produced	time	intensity	curves	for	each	sample	and	repeat.	They	scored	

either	sweetness	or	vanilla,	or	both	attributes	at	the	same	time	over	the	course	of	

5	minutes	using	an	unstructured	line	scale.	Various	parameters	were	extrapolated	

from	 the	 curves	 including	 the	 area	 under	 the	 curve	 (AUC),	 time	 to	 maximum	

intensity	 (Tmax),	maximum	 intensity	 (Imax),	 duration	of	perception,	 and	 incline	

and	decline	angles	(Chapter	4,	Figure	4.1.).		

	

6.3.4.1.	Glucose	only	films	

Time	 intensity	 curves	were	 averaged	 for	 all	 panellists	 and	 their	 repeats	 for	 the	

sweetness	attribute	(Figure	6.7.	a).	The	AUC	and	Imax	of	sweetness	 for	 the	 films	

was	 PUL	 >LCMC	 >HPMC	 >HCMC	 with	 the	 reverse	 order	 for	 Tmax	 (Table	 6.5.).	
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These	 parameters	 suggest	 a	 fast	 onset	 of	 intensity	 for	 PUL	 and	 LCMC,	 which	 is	

supported	 by	 their	 larger	 incline	 angles	 compared	 to	 HPMC	 and	 HCMC.	

Furthermore,	PUL	and	LCMC	decline	 angles	were	also	 larger	 than	 the	other	 two	

film	types	suggesting	a	quicker	rate	of	decline.	These	results	were	expected	as	 in	

vitro	results	(Table	6.3.)	show	that	PUL	and	LCMC	films	were	faster	dissolving	and	

release	glucose	quicker	than	HPMC	and	HCMC	films.	Although	the	total	duration	of	

perception	was	 not	 significantly	 (p>0.05)	 different	 between	 the	 films,	 there	 is	 a	

trend	that	HPMC	and	HCMC	films	prolong	the	flavour	perception	compared	to	PUL	

and	LCMC	(Table	6.5.).		

	

Figure	6.7.	Time	intensity	curves	of	sweetness	and	vanilla	perception	over	 for	a)	

glucose	only	films,	b)	vanillin	only	films	and	c)	and	d)	for	glucose	and	vanillin	films	

scored	by	dual	attribute	time	intensity.		

	

	

	

Table	6.5.	Parameters	from	time	intensity	results.	
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Matrix	

	

	

Attribute	

	

	

Polymer	

	

	

AUC	

	

	

Imax	

	

	

Tmax	

(s)	

	

Duration	

(s)	

	

Incline	

angle	

(°)	

Decline	

angle	

(°)	

Glucose	 Sweet	

PUL	 8410	 b	 91	 d	 22	 a	 200	a	 73	 b	 30	 b	

LCMC	 7468	 a,	b	 75	 c	 48	 b	 201	a	 58	 b	 27	 b	

HPMC	 7126	 b	 54	 b	 61	 b	 231	a	 38	 a	 20	 a	

HCMC	 4834	 a	 31	 a	 88	 b	 249	a	 34	 a	 11	 a	

	 	 	 	 	 	 	 	 	 		 	 	 	 	

Aroma	 Vanilla	

PUL	 7291	 a	 68	 b	 41	 a	 196	a	 57	 a	 25	 b,	c	

LCMC	 7154	 a	 59	 a,	b	 40	 a	 195	a	 50	 a	 28	 c	

HPMC	 7622	 a	 53	 a,	b	 50	 a	 264	b	 47	 a	 14	 a	

HCMC	 6176	 a	 51	 a	 38	 a	 230	a,b	 54	 a	 19	 a,	b	

	 	 	 	 	 	 	 	 	 		 	 	 	 	

Aroma	

and	

Glucose	

Sweet	

PUL	 9154	 b,	c	 92	 d	 25	 a	 221	a	 73	 c	 28	 b,	c	

LCMC	 9295	 c	 82	 c	 32	 a	 224	a	 64	 b	 27	 c	

HPMC	 6661	 a,	b	 50	 b	 64	 b	 245	a	 41	 a	 17	 a,b	

HCMC	 5864	 a	 36	 b	 64	 b	 266	a	 34	 a	 12	 a	

	 	 	 	 	 	 	 	 		 	 	 	 	

Vanilla	

PUL	 9499	 a	 87	 b	 29	 a	 239	a	 67	 b	 21	 a	

LCMC	 10957	a	 82	 b	 35	 a	 254	a,	b	 67	 b	 23	 a	

HPMC	 10081	a	 56	 a	 54	 a,	b	 276	b	 46	 a	 14	 a	

HCMC	 10770	a	 54	 a	 73	 b	 292	b	 43	 a	 16	 a	

8	 panellists	 scored	 each	 sample	 in	 duplicate,	 therefore	 each	 result	 is	 the	 mean	 of	 16	

separate	results.	Statistical	analysis	was	done	for	each	attribute	separately	comparing	the	

different	polysaccharides.	Different	 letters	represent	significantly	different	groupings	for	

each	set	of	data.	

	

Regarding	mucoadhesion,	the	HPMC	films	containing	glucose	were	found	to	have	

poor	adhesive	abilities	(Figure	6.5.).	In	the	perception	experiments	panellists	were	

asked	 not	 to	 swallow	 these	 films	 and	 therefore	 the	 perception	 may	 have	 been	

artificially	 prolonged	 do	 to	 consciously	 keeping	 the	 film	 in	 the	 mouth.	 During	
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normal	 consumption	 in	 a	 real	 food	 system	 the	material	would	be	 chewed	 into	a	

bolus	and,	without	mucoadhesive	ability,	it	may	be	swallowed	with	the	food	bolus	

thereby	negating	any	release	afterwards.	On	the	other	hand,	HCMC	films	showed	

strong	adhesion	(Figure	6.5.)	and	therefore	would	be	more	likely	to	adhere	to	the	

oral	cavity	for	longer,	prolonging	the	release.		

	

6.3.4.2.	Vanillin	only	films	

For	 films	 containing	 the	 PS	 and	 vanillin	 the	 Imax	 intensity	 ordering	 was	

PUL>LCMC>HPMC>HCMC	(Table	6.5.).	Tmax	and	AUC	were	not	dependent	on	PS	

type.	 The	 duration	 of	 perception	was	 longest	 in	 the	HPMC	 samples	 followed	 by	

HCMC.	This	suggests	that	although	the	total	intensity	of	perception	was	the	same	

for	each	film,	 the	 flavour	was	delivered	at	a	slightly	 lower	 intensity	 for	 longer	 in	

the	HPMC	and	HCMC	samples.	This	assumption	is	supported	by	the	decline	angles	

being	larger	for	PUL	and	LCMC	samples	suggesting	the	intensity	decreased	quicker	

in	these	films.		

	

To	 date,	 the	 only	 studies	 investigating	 aroma	 release	 and	 perception	 in	 food	

thickened	 with	 PSs	 are	 liquid	 and	 semi	 solid	 foods.	 These	 studies	 have	 found	

mixed	results	with	regard	to	interactions	between	aroma	molecules	and	the	food	

matrix.	 Arancibia	 et	 al.	 (2011)	 found	 that	 thickener	 type	 affected	 total	 aroma	

release	from	dairy	desserts	with	CMC	thickened	samples	reducing	the	cumulative	

release	of	hydrophobic	aroma	(linalool)	compared	to	starch.	Furthermore,	a	follow	

up	 study	 by	 Arancibia,	 Castro,	 Jublot,	 Costell,	 &	 Bayarri	 (2015)	 found	 that	

thickener	 type	 affected	 both	 hydrophilic	 aroma	 (cis-3	 hexen	 1-ol)	 and	

hydrophobic	 (linalool)	 aroma.	 The	 CMC	 thickened	 dairy	 desserts	 reduced	 the	

release	 of	 both	 aromas,	 though	 it	 had	 more	 of	 an	 impact	 on	 the	 hydrophilic	
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compound.	 Cook,	 Linforth,	 et	 al.,	 (2003b)	 on	 the	 other	 hand	 found	 that	 in-nose	

measurements	 of	 hydrophobic	 aroma	 release	were	 not	 dependent	 on	 thickener	

type	or	an	increase	in	viscosity.	These	studies	exemplify	the	complex	behaviour	of	

aroma	release	and	its	dependence	on	the	food	matrix.		

	

In	this	current	study,	vanillin,	a	relatively	hydrophilic	molecule	with	a	log	P	of	1.2,	

was	 used	 as	 the	 aroma.	 Perception	 results	 show	 that	 films	 made	 with	 slow	

dissolving	polysaccharides	(HPMC	&	HCMC)	reduced	the	Imax	but	prolonged	the	

duration	 of	 perception.	 Perception	 results	 for	 the	 aroma	 only	 films	were	 not	 as	

distinguishing	 as	 the	 films	 containing	 glucose.	 This	 indiscrimination	 may	 be	

because	the	panel	found	scoring	the	aroma	only	films	particularly	difficult,	as	they	

contained	no	tastant	along	with	the	aroma,	which	does	not	normally	occur	in	food	

products.		

	

6.3.4.3.	Glucose	&	vanillin	films	

Dual	attribute	time	 intensity	was	used	to	simultaneously	monitor	sweetness	and	

vanilla	attributes	over	5	minutes.	Results	for	the	sweetness	attribute	were	similar	

for	 the	 dual	 attribute	 and	 single	 attribute	 tests	 (Table	 6.5.).	 The	 AUC	 and	 Imax	

were	highest	for	PUL	and	lowest	for	HCMC.	HPMC	and	HCMC	took	longer	to	reach	

Tmax	compared	to	PUL	and	LCMC.		

	

The	AUC	for	the	vanilla	attribute	did	not	significantly	differ	with	the	different	PSs	

(Table	 6.5.).	 HPMC	 and	 HCMC	 had	 reduced	 Imax	 and	 increased	 Tmax	 results	

compared	to	PUL	and	LCMC.	The	total	duration	of	perception	was	striking	in	these	

films	with	 the	 HCMC	 averaging	 53	 s	 longer	 than	 PUL.	 HPMC	 also	 increased	 the	

duration	 significantly	 (p<0.05)	 compared	 to	 PUL	 and	 LCMC.	 Although	 not	
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statistically	 significant,	 LCMC	 followed	 the	 trend	 of	 prolonging	 the	 perception	

compared	 to	 PUL.	 The	 incline	 angles	 for	 HPMC	 and	 HCMC	were,	 again,	 smaller	

than	PUL	and	LCMC	suggesting	a	slower	rate	of	onset.	

	

These	 results	 suggest	 that	 PUL	 films	 give	 a	 quick	 burst	 of	 flavour	 that	 declines	

quickly.	 LCMC	 films	 are	 almost	 as	 quick	 to	 release	 as	 PUL	 but	 take	 somewhat	

longer	to	reach	Imax.	HPMC	has	a	slower	on	set	to	reach	Imax	and	the	perception	

continues	 for	 longer	 than	 LCMC	 and	 PUL.	 Finally,	 HCMC	 films	 have	 the	 slowest	

onset	with	 a	 steady	 release	 over	 time.	 This	 delay	 is	 particularly	 evident	 for	 the	

vanilla	 attribute,	 which	 prolongs	 the	 perception	 for	 longer	 than	 the	 faster	

dissolving	films.		

	

Although	 from	 this	 perception	 data,	 HPMC	 films	 appear	 to	 give	 a	 sustained,	

medium	level	intensity	of	flavour,	this	formulation	was	not	mucoadhesive	(Figure	

6.6.)	and	therefore	it	would	most	likely	be	swallowed	along	with	the	bolus	in	a	real	

food	 system.	 Participants	 were	 instructed	 not	 to	 chew	 or	 swallow	 the	 film	 and	

many	 suggested	 that	 swallowing	 would	 have	 been	 possible	 if	 they	 were	 eating	

normally.	 However,	 the	 other	 formulations	 were	 firmly	 adhered	 to	 the	 roof	 or	

tongue	tissue	and	would	not	be	easily	swallowed.		

	

6.3.5.	Comparing	perception	results	to	in	vivo	dissolution	

During	 the	 in	 vivo	 experiments	 where	 participants	 were	 asked	 to	 record	 the	

adhesion	and	dissolving	 time	of	 the	 films,	PUL	was	reported	 to	dissolve	after	an	

average	of	57	s.	When	comparing	 these	 timings	 to	 the	perception	data	 it	 is	clear	

that	 perception	 of	 flavour	 is	 continuing	 after	 the	 film	 has	 completely	 dissolved	

(Table	6.5.	&	Figure	6.6.).	There	are	two	explanations	for	this.	Firstly,	the	glucose	
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and	 aroma	 molecules	 may	 still	 be	 present	 at	 the	 respective	 receptors,	 thereby	

initiating	 a	 response.	 Secondly,	 as	 the	 intensity	 of	 sweetness	 was	 very	 high,	 an	

adaptation	type	response	may	have	occured	where	the	sweet	signal	is	switched	on	

for	a	longer	time	even	after	the	stimulus	at	the	taste	bud	has	gone.		

	

6.3.6.	Comparisons	between	different	film	types	

Time	intensity	results	were	compared	between	5	panellists	who	were	consistent	

for	all	experiments.	The	AUC	for	the	vanilla	attribute	differed	between	films	with	

and	 without	 glucose	 (Figure	 6.8.).	 Significant	 (p<0.05)	 increases	 AUC	 of	 vanilla	

were	observed	for	LCMC,	HPMC	and	HCMC	films	containing	vanillin	plus	glucose	

compared	to	those	without	glucose.		

	

During	 single	 attribute	 time	 intensity,	 the	 attribute	 is	 scored	 horizontally	 but	

during	 dual	 attribute,	 one	 must	 be	 scored	 vertically.	 The	 vanilla	 attribute	 was	

scored	vertically	 in	 the	dual	attribute	 tests,	which	may	have	affected	 the	results.	

Duizer,	Bloom,	&	Findlay,	(1995)	investigated	this	issue	and	found	that	scoring	an	

attribute	vertically	lead	to	approximately	13%	increase	in	scores.	However,	as	the	

increase	is	more	substantial	it	is	unlikely	that	this	is	the	only	factor.		

	

A	more	likely	explanation	is	that	the	presence	of	glucose	in	the	films	enhanced	the	

aroma	 through	 cross	 modality	 [16,36,37].	 Tmax	 was	 also	 significantly	 (p<0.05)	

increased	for	vanillin	in	the	HCMC	films	incresasing	from	26	to	89	s	(Figure	6.7.).	

This	suggests	that	when	glucose	was	present	the	perception	had	a	longer	onset	of	

aroma	perception,	which	lasted	for	longer	and	was	sustained.		
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Figure	6.8.	Comparisons	of	 the	area	under	the	curve	for	vanilla	attribute	of	 films	

with	and	without	glucose.	*	denotes	significant	differences	p	<0.05.	

	

6.4.	Conclusions	

The	 work	 in	 this	 chapter	 has	 shown	 that	 PSs	 affect	 the	 retention,	 release	 and	

perception	of	flavour	compounds,	dependant	on	the	physicochemical	properties	of	

the	PSs	matrix.	The	viscosity	and	swelling	ability	of	the	PS	influences	the	release	of	

flavour	 molecules	 from	 the	 matrix.	 This	 in	 turn	 has	 an	 impact	 on	 the	 flavour	

perception	 accordingly.	 Fast	 dissolving	 PS	 films	 gave	 a	 quick	 burst	 of	 flavour	 at	

high	 intensity	 that	 tapered	quickly,	whereas	 slow	dissolving	 films	gave	 a	 slower	

onset	 and	 a	more	 consistent	 release	 over	 time.	 The	mucoadhesive	 ability	 of	 the	

films	will	 influence	how	 long	 the	matrix	 stays	 in	 the	mouth	whilst	 releasing	 the	

flavour	 compounds	 before	 being	 swallowed.	 Furthermore,	 in	 line	with	 previous	

literature,	this	study	shows	that	aroma	intensity	is	dependent	on	the	perception	of	

a	congruent	tastant,	giving	more	evidence	for	cross	modal	interactions.	This	is	the	

first	investigation	highlighting	the	importance	of	characterising	the	mucoadhesion	

properties	of	PSs	in	food	systems	regarding	their	influence	on	flavour	perception.	

Results	 from	 this	 study	 can	 be	 used	 to	 inform	 the	 food	 industry	 of	 the	 impact	

which	addition	of	such	PSs	can	have	on	temporal	flavour	perception.		
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Chapter	7:	Application	of	mucoadhesive	polysaccharides		

	

7.1.	Introduction	

Commercial	 snack	 seasonings	 are	 developed	 by	 blending	 base	 flavourings,	 fillers	

and	 top	 notes	 to	 produce	 well-balanced	 flavour	 profiles	 on	 a	 final	 product.	

Tastants	such	as	salt	and	sugar	make	up	the	majority	of	the	base	flavourings	and	

fillers	such	as	whey	permeate	powder	and	maltodextrin	are	used	to	add	bulk	and	

aid	 in	 the	blending	of	 ingredients	 [1].	 Sugar	and	salt	also	provide	 the	crystalline	

material	which	provides	a	suitable	structure	on	which	to	add	the	liquid	flavourings	

and	 enables	 good	 flow	 properties.	 Flavour	 enhancers	 such	 as	 monosodium	

glutamate	 (MSG)	 and	 yeast	 extract	 are	 also	 often	 used	 to	 enhance	 savoury	

seasonings	[2].	The	characteristic	notes	of	a	flavouring	are	usually	due	to	the	top	

notes	 that	 are	 in	 the	 seasoning	 such	 as	 a	 smokey	 note	 in	 a	 paprika	 flavouring.	

These	tend	to	be	more	expensive	 ingredients,	often	highly	volatile	and	oil-based.		

Some	 ingredients	 will	 give	 mouthfeel	 or	 textural	 characteristics	 such	 as	 cheese	

flavouring	to	give	a	fatty	mouthfeel	[3].		

	

There	 are	 various	 ways	 to	 apply	 the	 seasoning	 to	 a	 dry	 snack	 food	 and	 this	 is	

dependent	 on	 4	main	 factors;	 the	 type	 of	 snack,	 the	method	 of	 cooking	 it,	 how	

much	fat	is	required	in	the	final	product,	and	flow	properties	of	the	seasoning.	For	

example,	a	slurry	with	oil	and	the	seasoning	can	be	sprayed	directly	onto	extruded	

snacks	and	the	oil	is	used	as	the	adherent	for	the	seasoning	[3].	However,	in	snacks	

that	are	baked	to	reduce	the	fat	content,	a	small	amount	of	oil	is	typically	used	to	

sparingly	 coat	 the	 snack	 and	 the	 seasoning	 applied	 topically.	 This	 redcued	 fat	

content	obviously	results	in	more	seasoning	drop	off	than	the	slurry	method	and	

various	 attempts	 have	 been	 made	 to	 combat	 this	 issue	 including	 the	 use	 of	
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adhesive	 PSs	 [4].	 Furthermore,	 PSs	 have	 been	 used	 to	 reduce	 oil	 absorption	 in	

fried	snacks	by	forming	an	impenetrable	barrier	between	the	hot	oil	and	the	food	

matrix	[5].	

	

Popcorn	can	be	seasoned	in	a	variety	of	ways	depending	on	the	desired	nutritional	

outcome.	 For	 example,	 a	 sugar-based	 glaze	 can	 be	 applied	 to	 the	 popped	 corn	

containing	 the	 seasoning	 and	 further	 seasoning	 can	 then	 be	 added	 topically	 if	

required.	 The	 glazing	 step	 can	 be	 bypassed	 in	 order	 to	 create	 popcorn	 varieties	

with	 lower	 fat	 and	 sugar	 contents.	 The	 steam	 and	 moisture	 produced	 from	

popping	 the	 corn,	 along	with	 a	 limited	 amount	 of	 oil	 can	be	 used	 to	 adhere	dry	

seasonings	 to	 the	 popcorn,	 however,	 this	 too	 would	 lead	 to	 a	 large	 amount	 of	

seasoning	drop	off,	reducing	the	overall	flavour	impact	and	increasing	waste.		

	

The	 results	 from	chapter	6	 indicate	 that	PSs	 can	have	an	 impact	on	 the	delivery	

and	subsequent	perception	of	 flavours	over	time.	This	change	in	flavour	delivery	

could	 be	 utilised	 in	 solid	 snack	 food	 products	 to	 augment	 the	 	 delivery	 of	

flavourings	over	 time	[6–8].	The	work	 in	 this	chapter	aimed	to	 investigate	 if	PSs	

could	 be	 used	 as	 mucoadhesives	 within	 a	 snack	 seasoning	 to	 prolong	 flavour	

delivery	in	a	real	food	application.	Popcorn	was	chosen	as	the	base	food	due	to	its	

ease	 of	 application,	 absence	 of	 inherent	 tastants	 and	 oil,	 and	 relevance	 to	 the	

sponsor	of	this	PhD	thesis,	McCormick	(UK)	Ltd.		

	

7.2.	Methods	

7.2.1.	Seasoning	recipe,	snack	base	and	coating	method		

Recipes	for	vanilla	and	Eton	mess	seasonings	for	popcorn	were	formulated	using	

the	 ingredients	 listed	 in	 tables	 7.1.	 	 A	 vanilla	 flavouring	 and	 a	 strawberry	
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flavouring	 was	 obtained	 from	 Create	 (North	 Somerset,	 UK)	 to	 give	 the	

characteristic	 flavours	 to	 the	 popcorn,	 respectively.	 Seasonings	 contained	

maltodextrin	 as	 a	 base	 filler,	 where	 the	 control	 formulation	 contained	 43-56	%	

maltodextrin	Table	7.1.).	The	modified	formulations	replaced	the	majority	of	this	

maltodextrin	 (20%	 of	 by	 weight	 of	 the	 seasoning)	 with	 the	 mucoadhesive	 PS	

(HCMC)	

	

Table	 7.1.	 Vanilla	 and	 Eton	 mess	 popcorn	 seasoning	 ingredients	 and	 their	

proportions.	Seasonings	were	made	up	in	300g	batched.		

Ingredients	

Proportion	
(%w/w)	in	

vanilla	seasoning	

Proportion	
(%w/w)	in	Eton	
mess	seasoning	

NaCl	 6	 6	
Sucrose	 15	 15	
Rapeseed	oil	 0.8	 0.75	
Maltodextrin	 35.8	 22.9	

Whey	permeate	powder	 20	 20	
Vanilla	flavouring	 4	 0	

Butter	sweet	 1	 0	

Citric	acid	 0.4	 0.4	

Silicon	dioxide		 0.4	 0.4	

Strawberry	powder	 0	 3.3	

Beetroot	powder	 0	 1	

Strawberry	flavouring	 0	 2	

Creamy	mouthfeel	 0	 1.3	

Remaining	 bulk	 (maltodextrin	
in	 control;	 HCMC	 in	 modified	
formulation)	 20	 20	
Total	 100	 100	

	

Popcorn	(EastEnd,	Tesco,	UK)	was	popped	in	a	microwavable	popcorn	bowl	for	2	

min	30	s.	The	popped	corn	(100g)	was	transferred	into	a	large	metal	bowl	and	set	

aside.	All	the	ingredients	for	the	glaze	(Table	7.2.)	were	heated	on	an	electric	hob	
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(medium	heat)	in	small	saucepan	until	the	mixture	started	to	bubble.	Once	boiling,	

a	timer	was	started	and	the	mixture	simmered	for	5	minutes,	after	which	the	hot	

glaze	 was	 poured	 over	 the	 popcorn.	 The	 popcorn	 was	 stirred	 for	 2	 minutes	 to	

evenly	coat	the	popcorn	pieces	with	the	glaze.	The	coated	popcorn	was	transferred	

into	a	preheated	oven	at	100°C.	At	15	minute	intervals,	the	popcorn	was	stirred	to	

make	sure	 the	drying	process	was	uniform.	After	1	hour,	 the	bowl	was	removed	

from	the	oven,	 the	popcorn	was	spread	out	onto	greased	proof	paper	and	 left	 to	

cool	for	an	hour.		

	

Table	7.2.	Glaze	ingredients	and	their	proportions.	The	glaze	was	made	up	in	300g	

batches	for	covering	of	one	batch	of	popcorn.			

Ingredient	 Proportion	(%w/w)	
in	glaze	

Water	 14	
Glucose	syrup	 20.7	
Extra	fine	caster	sugar	 51.7	
Rapeseed	oil	 9.3	
Salt	 0.3	
Vanilla	or	Eton	mess	seasoning	 4	
Total	 100	

	

After	cooling,	the	popcorn	was	transferred	into	a	large	metal	spherical	seasoning	

drum	on	an	automatic	rotator.	The	drum	turning	speed	was	set	to	60	rpm	and	was	

heated	externally	with	a	heat	gun	during	the	seasoning	process.	This	heating	was	

to	warm	 the	 glaze	 to	 help	 the	 seasoning	 to	 adhere.	 The	 12g	 of	 seasoning	 to	 be	

topically	 applied	was	 put	 into	 a	 seasoning	 shaker	 and	 shaken	 over	 the	 popcorn	

whilst	 it	 was	 rotating.	 The	 seasoning	 contained	 either	 20%	 HCMC	 or	 solely	

maltodextrin	filler	as	the	standard.		

	

7.2.2.	Addition	of	polysaccharides	
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Various	 combinations	 and	ways	 to	 incorporate	 the	 polysaccharides	 and	 varying	

amounts	of	PS	substitution	were	trialled	(Appendix	2).	The	PS	(HCMC)	was	always	

added	 to	 the	 dry	 seasoning	 mix,	 replacing	 some	 of	 the	 maltodextrin	 used	 as	 a	

bulking	 agent.	 The	 various	 %	 (w/w)	 substitutions	 were	 made	 and	 tested	

(Appendix	 2),	 20%	 substitution	 was	 taken	 forward	 for	 further	 testing	 as	 the	

preliminary	test	showed	difference	between	the	products	(Table	7.3.).	There	were	

three	options	to	incorporate	the	PS	into	the	final	product.	These	were:	addition	of	

PS	 containing	 seasoning	 half	 in	 the	 glaze	 and	 half	 topically,	 standard	 seasoning	

addition	 to	 the	 glaze	 and	 PS	 containing	 seasoning	 topically	 or	 PS	 containing	

seasoning	in	glaze	and	standard	seasoning	applied	topically.	The	latter	option	was	

not	explored	in	this	chapter.	The	first	option,	addition	of	PS	containing	seasoning	

in	the	glaze	and	topically,	was	attempted,	however,	due	to	the	drastically	enhanced	

viscosity	 of	 the	 glaze	 it	 was	 decided	 this	 option	 was	 not	 viable	 from	 a	 food	

manufacturing	 perspective.	 Instead	 the	 second	 option,	where	 seasoning	without	

the	PS	was	 added	 to	 the	 glaze	 and	 seasoning	with	PS	was	 applied	 topically	was	

employed.		

	

7.2.3.	Quantitative	descriptive	analysis	of	vanilla	popcorn	

For	 all	 sensory	 experiments	 in	 this	 chapter	 the	 following	 was	 used.	 A	 trained	

sensory	panel	at	McCormick	(UK)	Ltd	consisting	of	10	women	and	2	men	with	an	

average	age	of	45	±	17	years.	Experiments	were	done	in	duplicate	with	15	minute	

intervals	between	each	sample.	Panellists	were	in	isolated	sensory	booths	at	20°C	

under	 artificial	 daylight	 lighting	 with	 fresh	 water	 as	 a	 pallet	 cleanser.	 Samples	

were	 presented	 monadically	 with	 a	 balanced	 order	 between	 panellists	 and	

sessions.	Panellists	were	instructed	to	taste	3	individual	pieces	of	popcorn	before	
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scoring	 the	 flavour	 attributes.	 Intensity	 scoring	was	 captured	with	 Compusense	

software	on	a	structured	line	scale	(Figure	7.1.).		

	

Figure	7.1.	The	 structured	 line	 scale	 that	panellists	used	 to	 score	 each	attribute.	

Numerical	values	were	assigned	to	where	the	panellists	clicked	ranging	from	0-15.		

	

Panellists	 were	 trained	 for	 4	 hours	 over	 two	 days.	 The	 two	 samples	 were	

presented	with	3	digit	random	number	blinding	codes.	Panellists	 first	tasted	and	

described	 the	 product	 individually	 and	 then	 refined	 their	 attributes	 into	 a	

consensus	vocabulary	with	the	help	of	 the	panel	 leader	and	reference	standards.	

Vanilla	 sugar	 (Taylor	 &	 Colledge)	 and	 vanilla	 frosting	 (Tesco)	 were	 used	 as	

reference.	 	 A	 consensus	 vocabulary	 was	 established	 incorporating	 4	 aroma,	 8	

flavour	and	5	aftertaste	attributes	(for	definitions	see	Appendix	3).	After	taste	was	

scored	30	seconds	after	panellists	swallowed	the	sample.		

	

7.2.4.	Progressive	profiling	of	vanilla	popcorn	

Progressive	profiling	is	a	temporal	sensory	method	that	allows	panellists	to	score	

up	to	5	attributes	at	set	time	points	during	the	eating	process.	During	training	the	

panellists	 and	 the	 sensory	 panel	 leader	 decided	 on	 three	 key	 attributes;	 toffee,	

vanilla	and	salt	to	be	used	for	the	profiling.	These	were	chosen	after	preliminary	

tests	on	paper	to	see	how	the	attributes	changed	over	time.	Training	in	the	booths	

on	the	Compusense	software	was	done	on	these	attributes,	concentrating	on	one	

attribute	at	a	time	at	first	then	all	three	together	so	the	panellists	became	familiar	

with	the	experiment	set	up.		

	

Very	slight Slight Moderate Intense Very	intense
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Panellists	were	instructed	to	place	3	individual	pieces	of	popcorn	in	their	mouths	

and	chew	whilst	 scoring	 the	 flavour	attributes	 then	after	20	 seconds	 to	 swallow	

the	 popcorn.	 For	 this	 experiment	 time	 intervals	 of	 10	 seconds	 were	 chosen	 to	

capture	 changes	 in	 the	 intensity	 of	 the	 attributes	 during	 mastication	 and	 after	

swallowing.	A	total	of	9	scores	were	taken	over	a	90	second	period.	Each	popcorn	

type	was	tested	in	duplicate.		

	

7.2.5.	Difference	testing	with	untrained	consumers	

A	 triangle	 test	 was	 carried	 out	 at	 the	 University	 of	 Reading	 with	 25	 untrained	

consumers	 (age	 range	 21-	 44).	 The	 vanilla	 flavour	 popcorn	 and	 the	 Eton	 mess	

flavoured	popcorn	were	tested.	The	test	was	explained	to	the	consumers	and	they	

were	 asked	 to	 rinse	 their	mouths	 thoroughly	with	water	 between	 each	 sample.	

Participants	were	sat	 in	 isolated	sensory	booths	at	20°C	under	artificial	daylight	

lighting	using	Compusense	software	to	record	the	data.	Samples	were	presented	in	

a	 balanced	 order	 between	 panellists.	 The	 participants	were	 asked	 to	 taste	 each	

sample,	 rinse	 thoroughly	 between	 samples	 and	 then	 decide	which	 they	 thought	

was	 the	odd	one	out	(the	different	sample).	This	was	a	preliminary	 test	 to	see	 if	

further	differentiation	testing	with	the	appropriate	number	of	assessors	(at	 least	

70	people)	was	required.		

	

7.2.6.	Statistical	analysis	

One-way	rmANOVA	was	used	for	QDA	results	with	sample	type	as	the	factor.	Two-

way	 rmANOVA	 were	 used	 for	 the	 progressive	 profiling	 results	 with	 time	 and	

sample	type	as	factors.	XLSTAT	version	2017.1	was	used	for	data	analysis.	Tukey	

HSD	was	used	as	a	correction	for	multiple	comparisons	and	a	significance	level	of	

p≤0.05	was	accepted.		
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7.3.	Results	&	discussion	

The	preliminary	testing	of	popcorn	samples	with	the	addition	of	mucoadhesive	PS	

showed	 differences	 with	 the	 modified	 popcorn	 being	 less	 crunchy,	 sweet	 and	

having	a	slimy	mouthfeel	(Table	7.3.).	These	were	with	5	assessors	of	the	flavour	

team	at	McCormick	(UK)	Ltd.		

	

Table	 7.3.	 Preliminary	 taste	 screening	 test	 of	 standard	 and	 modified	 vanilla	

popcorn	with	5	assessors.		

Product	 Summary	of	Comments	(5	assessors)	 Mean	Liking	Score		

(1-5)	

Standard	 Good	 TF,	 crunchy,	 sweet,	 creamy,	 nice,	

sticky,	less	slimy.	

4.7	

Modified			

(20%	HCMC)	

Less	 crunchy,	 longer	 AT,	 more	 toffee,	

sweet,	 caramel,	 soft	 crunch,	 softer,	

milky,	TF	down,	slimy	MF.	

3.9	

Key:	Total	flavour	(TF),	After	taste	(AT),	Mouthfeel	(MF).		

	

	

	

7.3.1.	Sensory	QDA	profiling	of	the	vanilla	popcorn	samples	

Of	 17	 attributes	 rated,	 5	 were	 significantly	 (p<0.05)	 different	 between	 samples	

(Figure	 7.2.).	 These	 attributes	 were	 overall	 aroma,	 flavour	 impact,	 coconut	 oil,	

toffee	and	umami	flavour	where	the	test	sample	scored	lower	than	the	standard.	

There	 was	 also	 a	 similar	 trend	 with	 the	 floral/	 perfume	 aroma	 and	 aftertaste.	

However,	 the	 aftertaste	 attributes	 did	 not	 differ	 significantly	 between	 the	 two	

samples.		
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Figure	7.2.	Quantitative	descriptive	analysis	results	of	the	test	sample	compared	to	

the	 standard.	 Significance	 values	 of	 p	 <0.1	 for	 *	 and	 p	 <0.05	 for	 **.	 	 Scored	 in	

duplicated	n=	12.		

	

The	reduction	of	flavour	impact	for	the	test	sample	was	not	surprising	as	results	

from	Chapter	6	demonstrated	that,	in	a	model	system,	HCMC	reduced	the	intensity	

of	 flavour	 but	 prolonged	 it	 over	 time.	 The	mucoadhesive	 PS	was	 applied	 to	 the	

popcorn	as	a	dry	topical	seasoning.	Once	the	PS	encountered	the	moist	oral	cavity,	

it	 is	 expected	 that	 the	PS	 chains	will	hydrate	and	 form	a	viscous	network	 in	 the	

mouth.	This	network	may	then	trap	the	tastant	and	aroma	molecules	and	prevent	

them	 from	 activating	 the	 appropriate	 receptors.	 However,	 due	 to	 the	

mucoadhesive	 nature	 of	 the	 PS	 it	 was	 hypothesised	 that	 although	 the	 intensity	

would	 be	 reduced,	 the	 flavour	 would	 be	 released	 slowly	 after	 swallowing	 the	

sample	as	the	PS	will	remain	in	the	mouth	with	some	of	the	seasoning.	The	results	

from	 this	 QDA	 do	 not	 support	 this	 hypothesis;	 however,	 the	 test	 was	 not	 time	

AR	Overall	aroma**
AR	Floral/perfume*

AR	Toffee

AR	Coconut	 oil

FL	Flavour	impact**
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constrained	so	panellists	would	be	scoring	the	aftertaste	at	different	times	to	each	

other.		

	

There	may	have	been	some	misunderstanding	between	panellists	about	the	floral	

aroma	 attribute	 which	 described	 the	 vanilla	 notes.	 Some	 of	 the	 panellists	 were	

scoring	the	vanilla	attribute	with	what	they	described	as	a	deep	and	dark	vanilla	

flavour	 in	 mind	 whilst	 others	 were	 using	 the	 references	 to	 score	 the	 vanilla,	

thinking	of	 lighter,	 fruity	 flavour	and	putting	any	 “dark”	attribute	 into	 the	 toffee	

score.	These	attributes	were	difficult	to	separate	due	to	the	complex	nature	of	the	

vanilla	flavouring	along	with	the	glaze.		

	

The	 panellists	 did	 not	 describe	 any	 mouthfeel	 attributes	 within	 the	 QDA	

vocabulary.	This	was	surprising	as	during	the	preliminary	screening	(Table	7.4.	&	

Appendix	2)	several	assessors	noted	a	slimy	mouthfeel	for	the	test	sample.	There	

are	 several	possible	 explanations	 for	 this	omission,	 firstly,	 the	panel	 are	used	 to	

concentrating	on	the	flavour	and	aroma	of	products	as	the	texture	of	the	products	

they	 frequently	 assess	 are	 very	 similar.	 However,	 they	 do	 assess	 mouthfeel	

characteristics	 and	 during	 training	 a	 few	 of	 the	 assessors	 mentioned	 a	 mouth-

watering	characteristic	of	the	test	sample	but	not	everyone	was	in	consensus.	This	

may	 mean	 that	 there	 is	 individual	 variability	 in	 perception	 of	 any	 altered	

mouthfeel.	This	could	be	due	to	individuals	saliva	production,	the	amount	of	mucin	

present	and	the	way	they	manipulate	their	food	[9].		

	

7.3.2.	Progressive	profiling	of	the	Vanilla	Popcorn	Samples	

Results	 from	 the	 progressive	 profiling	 show	 that	 the	 intensity	 of	 attributes	

changed	 significantly	 (p<0.001)	 over	 time,	 but	 there	 were	 no	 significant	
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differences	 between	 samples	 (Figures	 7.3.	 -	 7.5.).	 For	 all	 3	 attributes	 the	 peak	

intensity	 was	 before	 swallowing	 and	 the	 intensity	 dropped	 after	 swallowing.	

Although	there	was	a	tendency	of	the	test	sample	to	be	rated	higher	for	toffee	and	

salt	 perception	 over	 time	 compared	 to	 the	 standard,	 this	 was	 not	 significant	

(p=0.503	for	toffee	and	p=0.518	for	salt)	

	

Figure	 7.3.	 Progressive	 profiling	 results	 from	 trained	 panel	 for	 toffee	 attribute.	

Intensity	 scale	 was	 0-15.	 There	 were	 no	 significant	 differences	 between	 the	

samples	 over	 time	 (p=0.503	 for	 sample,	 p=>0.000	 for	 time	 and	 p=0.778	 for	

sample*time).	
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Figure	 7.4.	 Progressive	 profiling	 results	 from	 trained	 panel	 for	 vanilla	 attribute.	

Intensity	 scale	 was	 0-15.	 There	 were	 no	 significant	 differences	 between	 the	

samples	 over	 time	 (p=0.976	 for	 sample,	 p=>0.000	 for	 time	 and	 p=0.643	 for	

sample*time).	

	

Figure	 7.5.	 Progressive	 profiling	 results	 from	 trained	 panel	 for	 salt	 attribute.	

Intensity	 scale	 was	 0-15.	 There	 were	 no	 significant	 differences	 between	 the	

samples	 over	 time	 (p=0.518	 for	 sample,	 p=>0.000	 for	 time	 and	 p=0.376	 for	

sample*time).	
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The	results	from	the	training	for	progressive	profiling	showed	promising	trends	in	

the	data	(Appendix	4).	During	training,	the	panellists	ran	through	the	Compusense	

test	scoring	all	three	attributes	for	both	samples,	however,	all	panellists	received	

the	 same	 sample	 at	 the	 same	 time.	 These	 preliminary	 results	 show	 significant	

(p<0.05)	differences	between	the	test	and	the	standard	popcorn	with	the	former	

scoring	higher	 in	 toffee	and	 lower	 in	vanilla	over	 time.	The	differences	were	not	

reflected	 in	 final	 rating	where	 there	were	no	significant	differences	between	 the	

samples,	 although	 the	 trend	 for	 toffee	was	 the	 same.	 It	 was	 concluded	 that	 the	

panellists	 learnt	 to	 recognise	 the	 samples	 as,	 unfortunately,	 the	 same	 blinding	

codes	were	 used	 during	 the	 training	 session	 in	 the	 discussion	 room	 as	 and	 the	

training	 test	 in	 the	booths	but	different	ones	were	used	during	scoring	sessions.	

Therefore,	these	results	cannot	be	used	to	support	the	hypothesis.		

	

Although	the	panellists	said	that	they	perceived	differences	between	the	samples	

during	training,	neither	the	QDA	nor	the	progressive	profiling	tests	could	identify	

what	 those	 differences	 were.	 A	 possibility	 is	 that	 the	 panel	 were	 detecting	

differences	 in	 mouthfeel	 characteristics	 that	 they	 could	 not	 explain.	 Another	

possibility	 is	 that	 there	 are	 differences	 between	 the	 products	 but	 they	 are	 not	

obvious	enough	to	be	significant	when	in	a	blind	test.	Furthermore,	popcorn	as	a	

base	 is	difficult	 to	control	due	 to;	1.	 the	coverage	of	glaze	and	2.	 the	coverage	of	

seasoning.	 Therefore,	 the	 heterogeneous	 nature	 and	 piece	 to	 piece	 variability	

make	it	difficult	to	tell	subtle	differences	between	different	seasoning	blends.		
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7.3.3.	Difference	test	with	consumers	

Two	sets	of	samples	were	investigated	by	difference	test;	a	vanilla	set	and	an	Eton	

mess	set.	The	Eton	mess	flavour	was	introduced	as	it	was	thought	that	the	vanilla	

flavouring	may	be	too	complex	to	differentiate	the	different	samples.	Results	from	

the	triangle	test	show	that	the	assessors	were	not	able	to	distinguish	the	different	

samples	(Table	7.4.).	From	these	results,	it	was	decided	that	further	testing	would	

not	take	place	as	they	did	not	provide	promising	evidence	that	a	difference	would	

be	found.		

	

Table	7.4.	Results	from	triangle	test	of	untrained	assessors.		

Popcorn	flavour	 Correctly	

identified	the	

different	sample	

Did	not	correctly	

identify	the	

different	sample	

Significance	

(p	value)	

Vanilla	 7	 18	 0.778	

Eton	mess	 11	 14	 0.178	

	

More	 participants	 correctly	 identified	 the	 different	 sample	 for	 the	 Eton	 mess	

flavour	 which	 could	 mean	 there	 is	 variability	 in	 the	 effect	 of	 PS	 on	 different	

flavourings.	 The	 impact	 of	 PSs	 in	 the	 seasonings	 was	 clearly	 minimal	 despite	

differences	 being	 perceived	 by	 individuals	 that	 had	 some	 information	 about	 the	

project	(Table	7.4.).	Further	differentiation	tests	with	these	samples	would	require	

140	participants	to	have	enough	power	for	statistical	testing.	Comments	from	the	

triangle	 test	 did	 not	 concur	 with	 each	 other	 with	 some	 saying	 the	 test	 sample	

higher	 in	 sweetness	 and	 some	 saying	 the	 standard	was	higher.	 There	was	not	 a	

trend	with	what	 the	 participants	 thought	 the	 difference	was.	 In	 addition	 to	 the	

possible	explanations	set	out	in	section	7.3.3.	a	further	factor	that	may	have	played	

an	 essential	 role	 here	 is	 that	 the	 consumers	 may	 not	 have	 thoroughly	 rinsed	
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between	 samples	 and	 therefore,	 sample	 cross	 over	 would	 be	 detrimental	 to	

determining	any	differences	between	samples.		

	

7.4.	Conclusions	

The	results	from	the	application	work	suggest	that	the	addition	of	PS	in	this	way	to	

popcorn	may	 not	 be	 a	 worthwhile	 pursuit.	 Although	 preliminary	 testing	 with	 a	

small	number	of	people	suggested	there	were	differences	between	the	products,	in	

properly	executed	experiments	the	differences	were	minimal.	Furthermore,	those	

that	could	detect	a	difference	tended	to	like	the	test	sample	less	than	the	standard	

(Table	 7.4;	 4	 out	 of	 5	 assessors	 rated	 the	 test	 sample	 lower	 in	 liking	 than	 the	

standard).	At	least	100	people	should	be	used	for	a	hedonic	test,	however,	during	

the	preliminary	trials	the	test	samples	consistently	scored	lower	than	the	standard.	

These	 results	 may	 suggest	 that	 in	 larger	 studies	 this	 may	 also	 be	 the	 case.	

However,	in	the	preliminary	tests,	the	assessors	are	experts	as	finding	differences	

in	 the	 products	 and	 some	 had	 prior	 knowledge	 of	 the	 project	 to	 know	 which	

attributes	 to	 pay	 most	 attention	 to.	 When	 the	 assessors	 are	 unware	 of	 what	

attributes	might	be	changing,	no	effect	was	 found.	The	results	suggest	 that	 there	

may	be	subtle	differences	between	 the	products	such	as	 those	 found	 in	 the	QDA	

but	individual	variability	may	mean	that	the	differences	are	not	always	detectable.			
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The	literature	review	in	Chapter	1.2	exhibited	the	limited	research	into	the	area	of	

mucoadhesive	PS	and	food,	and	highlighted	opportunities	to	improve	the	apparent	

gap	in	knowledge.	Whilst	the	adhesion	of	native	food	ingredients	such	as	fat	[1,2]	

and	aroma	compounds	[3]	have	been	 investigated,	 the	role	of	mucoadhesive	PSs	

requires	more	 attention.	 The	 research	 described	 in	 chapters	 3	 –	 7	 for	 this	 PhD	

thesis	 was	 undertaken	 to	 elucidate	 the	 impact	 and	 potential	 benefits	 that	

mucoadhesive	 PSs	 have	 on	 flavour	 retention	 and	 perception	 in	 liquid	 and	 solid	

foods.			

8.1.	Food	grade	polysaccharides	are	mucoadhesive	

In	 agreement	with	 various	 studies	 in	 the	 literature	 [4–6],	 the	work	 in	 chapter	3	

found	 that	LCMC,	LMEP	and	SA	are	mucoadhesive	on	porcine	 tongue	 tissue.	The	

mucoadhesive	 strength	 was	 concentration	 and	 PS	 type	 dependant.	 The	 results	

showing	mucoadhesive	strength	increases	as	concentration	increases	(along	with	

viscosity)	 is	 in	 line	with	 current	 literature	 [7,8].	 The	 results	 in	 chapter	 3	 found	

starch	to	be	a	relatively	weak	mucoadhesive	compared	to	the	other	PSs	used.	This	

is	most	likely	due	to	the	granular	structure	of	starch	in	solution	[9]	which	does	not	

lend	itself	to	mucoadhesion.		

	

To	validate	the	retention	method	in	chapter	3,	PSs	were	either	 labelled	or	mixed	

with	sodium	fluorescein	and	the	retention	profiles	compared.	The	results	showed	

minimal	differences	between	labelled	and	unlabelled	PS	solutions.	Due	to	the	time	

and	difficulty	of	labelling	PS,	it	was	concluded	that	it	was	not	necessary	to	label	the	

PSs	for	the	experiments	in	this	work.	Using	unlabelled	PS	solutions	also	meant	that	

the	 amount	 of	 fluorescence	 could	 be	 controlled	 between	 samples	 whereas	 the	
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labelled	 PSs	 differed	 in	 their	 fluorescence	 intensities.	 The	 method	 was	 used	 in	

subsequent	chapters	for	unlabelled	PSs	including	the	starch	samples.		

	

The	mucoadhesive	 nature	 of	 many	 PSs	may	 be	 an	 important	 property	 that	 can	

affect	the	organoleptic	properties	of	a	food	product	that	contains	them.	The	strong	

adhesion	 to	 the	 tongue	may	 influence	 the	perception	of	 flavour	compounds.	The	

viscous	solution	could	either	prevent	flavour	compounds	reaching	the	respective	

receptors	 indefinitely	 or	 could	 facilitate	 a	 time	 dependant	 delivery	 of	 flavour	

compounds	as	they	are	held	near	the	taste	buds	rather	than	being	swallowed	in	a	

food	bolus.			

	

8.2.	Mucoadhesives	alter	flavour	delivery	and	perception	

The	 results	 from	 chapter	 4	 show	 that	 sodium	and	potentially	 glucose	molecules	

are	 retained	 in	 the	mouth	 longer	 after	 swallowing	 samples	with	 a	 LCMC	matrix	

compared	to	other	PSs	matrices	and	water.	The	LCMC	containing	solutions	did	not	

significantly	change	the	intensity	or	duration	of	sweetness	or	saltiness	perception	

over	 time	 compared	 to	water	 only	 samples.	 The	 results	 from	 this	work	 suggest	

that	 the	 in-mouth	 concentration	 of	 tastants	 does	 not	 necessarily	 reflect	 the	

intensity	 of	 the	 perception	 of	 them.	 This	 disconnect	 may	 be	 because	 the	 PSs	

reduce	the	mass	 transfer	of	 tastants	out	of	 the	matrix	and	therefore	never	reach	

the	receptor	to	elicit	a	sensory	response	[10,11].		

	

Chapter	 3	 results	 from	 the	 retention	 studies	 found	 that	 LCMC	washed	 off	more	

easily	 than	SA	LMEP	at	higher	viscosities.	However,	at	 the	 low	viscosity	used	for	

experiments	in	chapter	4,	there	was	minimal	difference	between	retention	profiles	

of	 all	 PSs	used.	A	possible	 explanation	as	 to	why	LCMC	 retained	more	 tastant	 is	
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that	 the	 concentration	 used	 was	 higher	 than	 the	 other	 two	 PS.	 The	 impact	 on	

tastant	 perception	 differed	 between	 the	 two	 tastants	 and	 the	 different	matrices	

used.	 For	 the	 salty	 solutions,	 there	 were	 some	 slight	 differences	 in	 perception	

between	 the	 different	 PSs.	 For	 example,	 the	 total	 perception	 of	 saltiness	 over	 a	

two-minute	period	was	reduced	in	SA	and	LMEP	containing	samples	compared	to	

LCMC	containing	samples.	However,	they	were	not	significantly	reduced	compared	

to	 water	 samples.	 If	 the	 effect	 was	 purely	 to	 do	 with	 viscosity	 then	 one	 would	

expect	the	water	sample	to	have	the	highest	intensity.	Furthermore,	for	the	sweet	

samples	 the	 parameters	 extrapolated	 from	 the	 time	 intensity	 curves	 found	 very	

few	 differences	 between	 the	 samples.	 This	 could	 suggest	 that	 the	 PS	 containing	

samples	 did	 not	 have	 much	 impact	 on	 tastant	 delivery	 at	 such	 low	 PS	

concentrations.		

	

Chapter	 5	 expanded	 on	 the	 preliminary	 results	 in	 chapter	 4	 by	 adapting	 the	

methods	 used	 to	 capture	 sensory	 data	 and	 weighing	 saliva	 to	 allow	 for	 more	

accurate	 quantification	 of	 saliva	 sodium	 levels.	 In	 chapter	 5,	 LCMC	 was	 tested	

against	a	starch	containing	sample	matched	at	the	same	viscosity	(50	rad/s)	and	a	

water	sample.	Results	 in	 this	chapter	 found	 that	LCMC	substantially	reduced	 the	

perception	 of	 saltiness	 over	 time	 compared	 to	 the	 water	 and	 starch	 containing	

samples	 but	 the	 mouthcoating	 and	 adhesion	 perception	 was	 scored	 higher	 for	

LCMC.	It	was	concluded	that	the	reduction	in	salt	perception	was	due	to	the	anion	

effect	for	the	LCMC	samples.	However,	the	in	vivo	sodium	concentrations	over	time	

were	higher	for	the	LCMC	containing	samples	than	starch	and	water.	This	suggests	

that	the	mucoadhesive	LCMC	can	retain	sodium	for	longer	in	the	mouth,	however,	

the	perception	of	saltiness	is	stunted	due	to	the	large	anion	effect.		
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Chapter	 6	 explored	 the	 impact	 of	 different	 PS	 matrices	 on	 the	 release	 and	

perception	of	 flavour	in	solid	films	based	on	pharmaceutical	 formulations.	 	Films	

were	 chosen	 as	 a	 model	 system	 to	 move	 towards	 the	 potential	 use	 of	

mucoadhesive	PSs	in	solid	foods.	The	results	show	that	the	release	and	subsequent	

perception	of	flavourings	can	be	controlled	by	the	composition	of	the	food	matrix.	

The	 swelling,	 dissolution	 and	mucoadhesion	 properties	 of	 the	 PS	matrices	were	

important	determining	factors	of	how	the	flavourings	were	perceived	over	time.		

	

Results	 from	 chapters	 3-	 6	 in	 this	 work	 found	 that	 mucoadhesive	 PSs	 have	

differing	 effects	 on	 flavour	 retention	 and	 delivery	 depending	 on	 the	 type	 of	

mucoadhesive	and	 the	viscosity	grade.	 In	 liquid	systems,	 the	saltiness	of	 sodium	

was	reduced	due	to	viscosity	and	anion	effects,	and	in	solid	systems	sweetness	and	

vanilla	 aroma	 can	 be	 controlled	 by	 using	 PSs	 with	 different	 mucoadhesive	

strength,	dissolving	and	dissolution	speeds.		

8.3.	Influences	on	the	food	industry	

Chapter	7	details	the	work	carried	out	at	McCormick	(UK)	Ltd,	Haddenham	as	part	

of	the	fulfilment	of	the	BBSRC	CASE	studentship	that	funded	this	PhD.	HCMC	was	

selected	as	 the	mucoadhesive	 to	use	 for	 the	studies	 in	 this	chapter.	Experiments	

were	 based	 on	 the	 results	 collected	 in	 chapter	 6	 where	 HCMC	 augmented	 the	

delivery	of	flavour	over	time.	Two	different	options	were	assessed	to	incorporate	

the	mucoadhesive	PS	into	a	popcorn	seasoning.	The	heterogeneity	of	the	popcorn	

pieces	 was	 thought	 to	 be	 the	 main	 contributing	 factor	 to	 why	 significant	

differences	 were	 not	 perceived	 for	 mucoadhesive	 PS	 containing	 snacks.	 	 The	

impact	of	having	mucoadhesive	PSs	in	snack	foods	may	be	better	elucidated	using	

another	type	of	snack	such	as	crackers	or	cereal	bars.		



	

	 199	

	

Although	 the	 application	 for	mucoadhesive	 PSs	 attempted	 in	 chapter	 7	was	 not	

successful,	 there	 are	many	 other	 avenues	 of	 applications.	 The	 understanding	 of	

mucoadhesion	 in	 food	 substances	 could	 have	 impacts	 on	 the	 food	 industry,	

whether	mucoadhesives	 are	 added	 as	 a	 functional	 ingredient,	 or	whether	native	

mucoadhesives	 in	 the	 food	 are	 manipulated	 to	 control	 sensory	 properties.	 By	

understanding	the	properties	of	mucoadhesive	food	components,	a	higher	level	of	

control	could	be	achieved	in	the	texture	and	flavour	of	a	food	product.		

	

8.4.	Future	work	

This	work	contained	in	this	thesis	can	be	used	as	a	foundation	for	the	investigation	

of	other	mucoadhesive	PSs	and	their	use	in	a	range	of	food	systems.	Further	work	

could	focus	on	the	impact	of	the	mucoadhesive	properties	of	PSs	(e.g.	xanthan	gum,	

carrageenan,	 pectin)	 already	 employed	 in	 the	 food	 industry	 for	 thickening	 and	

stabilising	liquid	and	semi	solid	food	products	or	focus	on	the	potential	for	using	

mucoadhesive	 PSs	 in	 new	 product	 design	 to	 control	 texture	 and	 the	 delivery	 of	

flavourings	 over	 time.	 Fields	 where	 new	 product	 design	 could	 benefit	 includes	

confectionary,	sports	products	and	health	foods.		

	

Chapter	 6	 investigated	 the	 impact	 on	 the	 release	 of	 vanillin,	 a	 relatively	

hydrophilic	 aroma	compound.	Vanillin	was	purposely	 chosen	 for	 its	 solubility	 in	

aqueous	 solutions	 so	 that	 it	would	not	partition	out	of	 the	PS	matrix	when	 they	

were	dehydrated	to	form	a	film.	The	way	this	experiment	was	designed	meant	that	

the	 impact	of	different	PS	matrices	 could	not	be	assessed	 for	more	hydrophobic	

compounds	 such	 as	 those	 mentioned	 above.	 However,	 this	 does	 not	 mean	 that	

they	would	not	have	an	effect	in	a	real	food	product	that	will	be	a	more	complex	
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matrix.	 There	 is	 potential	 that	 mucoadhesive	 PS	 could	 control	 the	 delivery	 of	

hydrophobic	 aroma	 compounds.	 Although	 some	 studies	 suggest	 that	 release	 of	

hydrophobic	aromas	are	not	effected	by	PSs	[12,13]	others	have	found	that	PSs	do	

reduce	the	release	[14].	This	highlights	the	complex	relationship	between	PSs	and	

the	 impact	 on	 aroma	 compound	 retention	 and	 release	 but	 also	 the	 potential	 for	

their	 use	 to	 control	 aroma	 release.	 	 Future	work	 could	 focus	 on	 elucidating	 the	

impacts	of	mucoadhesive	PSs	on	hydrophobic	aromas	over	time.		

	

Another	potential	 application	 is	 the	use	of	high	viscosity	mucoadhesive	PSs	 (e.g.	

CMC)	 for	 confectionary	 where	 a	 persistent	 flavour	 would	 be	 desirable.	 For	

example,	a	prolonged	sweet	flavour	may	reduce	the	amount	of	food	consumed	and	

therefore	aid	with	weight	loss.	Another	possibility	is	the	use	in	breath	fresheners	

such	 as	 mints.	 Quick	 dissolving	 films	made	 of	 pullulan	 have	 been	 used	 for	 this	

purpose	 (Listerine	 Pocketpacks®),	 however,	 slower	 dissolving	 films	 could	 be	

made	 so	 that	 the	 flavour	 lasts	 longer.	 This	 effect	 could	 be	 extended	 to	 many	

different	pleasant	flavours.		

	

The	potential	 for	 using	PSs	 as	 a	way	 to	 adhere	 topical	 seasonings	 to	 snacks	has	

been	explored	by	Armstrong	(2013)	[15].	 In	their	work,	they	apply	a	thin	film	of	

PS	to	a	cracker	and	this	is	used	to	adhere	the	seasoning	to	the	cracker.	The	results	

are	promising	with	regard	to	reducing	the	amount	of	seasoning	drop	off,	however,	

the	impact	of	these	hydrocolloid	coatings	on	the	sensory	properties	of	the	crackers	

was	not	 investigated.	 It	would	be	 interesting	to	see	 if	 there	were	any	changes	 to	

the	flavour	delivery	and	any	changes	to	the	textural	characteristics	of	the	crackers.		
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Finally,	 investigating	 the	 potential	 for	 mouthfeel	 and	 textural	 changes	 by	

mucoadhesive	PS	 could	be	useful.	 This	has	 already	been	explored	 for	 liquid	 and	

semi	solid	foods	such	as	dairy	products	and	desserts	[13,16,17]	but	the	impact	of	

mucoadhesion	 on	 the	 texture	 of	 these	 product	 still	 requires	 some	 attention.	

Tribology	techniques	can	be	employed	to	understand	the	lubricative	properties	of	

PSs	 with	 saliva	 in	 the	 mouth	 and	 how	 this	 may	 translate	 to	 an	 oily/	 slippery	

mouthfeel	when	reducing	fat.		
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Appendix	1:	Flame	photometry	standard	curve	
	

	

	
Figure	A1.1.	Sodium	standard	curve	produced	by	flame	photometry.		
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Appendix	2:	Screening	results	for	popcorn	with	different	formulations	

Table	A2.1.	Preliminary	screening	for	the	various	popcorn	formulations.		

Seasoning	 Product	 Summary	of	Comments		 Mean	

Liking	

Score		

(1-5)	

24g	in	glaze	

(n=5)	

Standard	 Sweet,	 less	 chewy,	 vanilla	 OK,	

crispy,	 butter,	 nice	 crunch,	

caramelised	sugar,	good	AT.	

4.5	

Modified	 (13.3	 %	

HCMC)	

Less	 crispy,	 less	 vanilla,	 more	

sweet,	 longer	 AT,	 TF	 down,	

chewy,	nice	AT.	

3.9	

12g	

(standard)	

in	 glaze	 and	

12g	topical	

(n=4)		

Standard	 Nice	 creamy	 vanilla,	 buttery,	

good	overall	impact.	

4.25	

Modified	 (13.3	 %	

HCMC)	topical	

Vanilla	 down,	 burnt	 up,	

caramel,	 TF	 down,	 slimy	 MF,	

greasy	MF,	buttery,	base	up.	

3.25	

12g	 in	 glaze	

and	 12g	

topical	

(n=4)	

Standard	 Very	 sweet,	 creamy	 vanilla,	

good	body,	clean.	

4.25	

Modified	 (13.3	 %	

HCMC)	12g	topical	

Woody,	 spicey,	 cooling,	 strange	

MF,	 slimy	 MF,	 buttery,	 less	

vanilla,	sweet,	creamy.		

3	

Modified	 (16.6	 %	

HCMC)	

12g	topical	

Toffee,	 caramel,	 vanilla	 ice	

cream,	 good	 MF,	 long	 AT,	

creamy,	 slimy	 MF,	 low	 vanilla,	

burnt,	TF	down,	 slimy	MF,	 jelly	

like.		

3.13	

Modified	 (13.3	 %	

HCMC)	 in	 12g	

glaze	 and	 12g	

topical	

Good	 MF,	 low	 TF,	 eggy,	 low	

vanilla,	low	sweet.		

2	

12g	 Standard	 Sweet,	 low	 vanilla,	 crispy,	 4	
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(standard)	

in	 glaze	 and	

12g	topical	

(n=3)	

chewy,	good	TF.	

Modified	 (16.6	 %	

HCMC)	

12g	topical	

Slimy	 MF,	 good	 TF,	 crunchy,	

less	 crunchy,	 buttery,	 low	

vanilla.	

2	

Modified	 (16.6	 %	

LCMC)	

12g	topical	

Good	 texture,	 bttery,	 low	

vanilla,	 crispy,	 TF	 down,	 light,	

sweeter.		

3.5	

Modified	 (16.6	 %	

HPMC)	

12g	topical	

Chewy,	slimy	MF,	vanilla,	sweet,	

good	TF,	less	vanilla,	less	sweet.		

2.83	

12g	

(standard)	

in	 glaze	 and	

12g	topical	

(n=5)	

Standard	 Good	 TF,	 vanilla,	 sweet,	 sticky,	

nice	crunch,	caramel.	

4.7	

Modified	 (20	 %	

HCMC)	

12g	topical	

Less	 crunchy,	 longer	AT,	 toffee,	

caramel,	more	 toffee,	 TF	 down,	

slimy	MF.		

3.9	

Key:	Total	flavour	(TF),	After	taste	(AT),	Mouthfeel	(MF).	1=	dislike	strongly,	2=	

dislike	moderately,	3=	neither	like	nor	dislike,	4=	like	moderately,	5=	like	strongly	

	

	

	

	

	

	

	

	

	Appendix	3:	Vanilla	popcorn	attributes	for	QDA	
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Attribute	 Definition	

AR	Aroma	Impact	 Overall	aroma	impact,	rated	from	weak	to	intense	

AR	Floral	

perfumed	

	

Aroma	associated	with	vanilla,	perfumed	notes	rated	from	

weak	to	intense	

Vanilla	flavoured	frosting	(Tesco),	vanilla	bean	dusting	

sugar	(Taylor	&	Colledge)	

AR	Toffee		

	

Aroma	associated	with	toffee,	caramel,	butterscotch,	rated	

from	weak	to	intense	

AR	Coconut	oil	

	

Aroma	associated	with	coconut	butter,	coconut	oil,	rated	

from	weak	to	intense	

FL	Flavour	Impact	

	
Overall	flavour	impact,	rated	from	weak	to	intense	

FL	Sweet	

	
Basic	flavour	of	sweet,	from	weak	to	intense	

FL	Salt	

	
Basic	flavour	of	salt,	rated	from	weak	to	intense	

FL	Umami	

	
Basic	flavour	of	umami,	rated	from	weak	to	intense	

FL	Floral	perfumed	

Flavour	associated	with	vanilla,	perfumed	notes,	fruity	

notes,	rated	from	weak	to	intense		

Vanilla	flavoured	frosting	(Tesco),	vanilla	bean	dusting	

sugar	(Taylor	&	Colledge)	

FL	Toffee		

	

Flavour	associated	with	toffee,	caramel,	butterscotch,	rated	

from	weak	to	intense	

FL	Coconut	oil	

	

Flavour	associated	with	coconut	butter,	coconut	oil,	rated	

from	weak	to	intense	

FL	Corn	base	

	

Flavour	associated	with	the	base,	rated	from	weak	to	

intense	

AT	Overall	

aftertaste	

	

Overall	aftertaste,	rated	from	weak	to	intense	

AT	Floral	perfumed	

	

Aroma	associated	with	vanilla,	perfumed	notes	rated	from	

weak	to	intense	
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Key:	Aroma	(AR),	Flavour	(FL),	Aftertaste	(AT).		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Vanilla	flavoured	frosting	(Tesco),	vanilla	bean	dusting	

sugar	(Taylor	&	Colledge)	

AT	Sweet		

	

Overall	sweetness,	basic	of	sweetness,	rated	from	weak	to	

intense	

AT	Coconut	oil	

	

Aroma	associated	with	coconut	butter,	coconut	oil,	rated	

from	weak	to	intense	

AT	Corn	base	

	
Aroma	associated	with	the	base,	rated	from	weak	to	intense	
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Appendix	4:	Training	for	progressive	profiling		
	

	
Figure	A4.1.	Training	results	for	toffee	attribute	over	100	seconds.	N=	11,	p	>0.000	for	
time	and	p	0.003	for	sample.	Sample	x	time	interaction	is	p>0.000.		
	

	
Figure	A4.2.	Training	results	for	vanilla	attribute	over	100	seconds.	N=	11,	p	>0.000	for	
time	and	p	0.011	for	sample.	Sample	x	time	interaction	is	p>0.000.	
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Figure	A4.3.	Training	results	for	salt	attribute	over	100	seconds.	N=	11,	p	>0.000	for	
time	and	p	0.003	for	sample.	Sample	x	time	interaction	is	p>0.000.	
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