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Abstract  

 

Existing surface water flood forecasting methods in Scotland are based on indicative depth-

duration rainfall thresholds with limited understanding of the likelihood of inundation or 

associated impacts. Innovative risk-based solutions are urgently needed to advance surface 

water forecasting capabilities for improved flood resilience in urban centres.  

A new model based solution was developed for Glasgow linking 24 hour ensemble rainfall 

predictions from the Met Office Global and Regional Ensemble Prediction System for the UK 

(MOGREPS-UK) with static flood risk maps through the Grid-to-Grid hydrological model. This 

new forecasting capability was used operationally by the Scottish Flood Forecasting Service 

during the 2014 Commonwealth Games to provide bespoke surface water flooding guidance 

to responders. The operational trial demonstrated the benefits of being able to provide 

targeted information on real-time surface water flood risk. It also identified the high staff 

resource requirement to support the service due to the greater uncertainty in surface water 

flood forecasting compared to established fluvial and coastal methods.  
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DSWFF Daily Surface Water Flood Forecast 

ERA Extreme Rainfall Alert 

FEWS Delft Flood Early Warning System 

FFC Flood Forecasting Centre for England and Wales 

FGS Flood Guidance Statement 

G2G Grid-to-Grid distributed hydrological model 

MACC Multi Agency Control Centre 

MOGREPS-UK Met Office Global and Regional Ensemble Prediction System for UK 

NFRA National Flood Risk Assessment 

NHP Natural Hazards Partnership 

NSWWS Met Office National Severe Weather Warning Service 

NWP Numerical Weather Prediction 

SCC SEPA Communication Centre 

SCG Strategic Co-ordinating Group 



SEPA Scottish Environment Protection Agency 

SFFS Scottish Flood Forecasting Service 

SGoRR Scottish Government Resilience Room 

STEPS Short Term Ensemble Prediction System  

SWFDST Surface Water Flooding Decision Support Tool 

UKV Met Office NWP Variable resolution UK forecasting model 
 

 

 

Introduction 

 

There is a growing demand for more robust, accurate and timely forecasts for surface water 

flooding to facilitate effective mitigation actions. In Scotland the National Flood Risk 

Assessment (NFRA) published in December 2011 estimated that around 125,000 properties 

are at risk of flooding from rivers, the sea and surface water. Surface water accounts for 

approximately 38% of the predicted impacts (SEPA, 2011). 

 

Following widespread flooding in England and Wales in summer 2007, The Pitt Report 

(Cabinet Office, 2008) identified a requirement to improve forecasting tools for surface water 

flooding. The Environment Agency and the Met Office first launched a rainfall threshold-based 

Extreme Rainfall Alert (ERA) service for England and Wales in 2009. This was superseded in 

2011 by the Surface Water Flooding Decision Support Tool (SWFDST, Halcrow, 2011) which 

is used within the Flood Forecasting Centre (FFC) for England and Wales, along with expert 

hydrometeorological judgement, to provide guidance on surface water flood risk. In addition to 

rainfall thresholds, the SWFDST takes some account of soil wetness and rainfall duration. In 

Scotland the Scottish Flood Forecasting Service (SFFS), a partnership between SEPA and 

the Met Office established in 2011, provides daily guidance on surface water flooding through 

the Flood Guidance Statement (FGS) available to emergency responders and via regional 

flood alerts (of which there are 19 in Scotland) for the public. The tools used to inform existing 

surface water flood forecasting in Scotland are based on indicative depth-duration impact 

thresholds (Halcrow, 2012) for both deterministic and probabilistic rainfall forecasts.  

 

Feedback from responders and the public (Cabinet Office, 2008; Halcrow, 2011; Ipsos MORI, 

2013; Ochoa-Rodriguez et al., 2013) has identified that although current guidance on surface 

water flooding is perceived as useful, more targeted information would be beneficial. There is 

also an established economic benefit from improving surface water flood warning, for 

example to support property level protection schemes (JBA Consulting, 2014a). 

Improvements in computational ability (e.g. Glenis et al., 2013; Lamb et al., 2009; Neal et al., 

2010) and in convection-permitting numerical weather prediction (NWP) and ensemble 

forecasts (Golding et al., 2014) mean that it is now potentially possibly to develop innovative 

approaches to surface water flood forecasting in urban areas. However, due to the rapid 

onset and localised nature of surface water flooding, the predictability of the probability of 

occurrence is likely to remain low at lead-times beyond a few hours.  

 

This paper considers recent developments in convection-permittingNWP and real-time 

surface water modelling in urban areas. A review (Ghimire et al., 2013a) was used to inform 

the development of a fully risk-based surface water forecasting model for Glasgow that met 

end-user requirements to provide specific impact information with a 6 to 24 hour lead-time, 

and that could be integrated with existing SFFS tools. Details are provided of the technical 

set-up of the model. Two case studies of heavy rainfall events during the 2014 

Commonwealth Games serve to illustrate the operational use of the model by the SFFS and 



to highlight the benefits and challenges of providing targeted surface water forecasts at a city 

scale.  

 

Quantitative Precipitation Forecasting (QPF) for convective events 

 

The accuracy of real-time surface water flood forecasting is constrained by rainfall forecast 

accuracy. Beyond six hours ahead, NWP provides the most accurate forecasts of rain-rate. A 

characteristic of many atmospheric motions, including those that generate convective rainfall, 

is that the lifetime of a disturbance gets shorter as its size gets smaller, and that the lead-time 

for which the disturbance can be usefully predicted with a perfect model, is related to its 

lifetime (Germann and Zawadzki 2002, 2004). Thus, while average properties of a 1000km by 

1000km area of tropical air giving rise to convective rainstorms may ultimately be predictable 

by an NWP model up to nine days ahead, an individual 10km by 10km rainstorm is unlikely 

ever to be deterministically predictable beyond 3 hours ahead, and the most intense 1km by 

1km part of the storm may only ever be deterministically predictable for 30 minutes ahead. On 

the other hand, given a sufficiently accurate prediction of the larger area, the probability of 

intense rainfall occurring at particular times and places should be predictable (Golding, 2009).  
A NWP model is called “convection-permitting” if it directly represents the upward and 

downward motions within convective clouds, rather than representing their net effect on the 

atmosphere using a parameterisation. Several studies have shown the benefits of this (Done 

et al., 2004; Clark et al., 2009). Convective-scale models are used to add detail about 

convective rainstorms and other small-scale weather phenomena over a small area. The 

location, timing and character of the predicted rainstorms depend critically on larger scale 

information imported from a global model through boundary conditions. The United Kingdom 

Variable resolution (UKV) model with a 1.5km grid (Tang et al., 2013) is often very skilful at 

predicting maximum rainfall accumulations. However, the timing and location are subject to 

substantial uncertainty (typically one hour and 25km respectively). 

Convection-permitting NWP models are expensive to run and are currently only able to 

approximately match the observations of the initial state due to the dependence on large-

scale initial conditions and perturbations. Therefore, for lead-times of less than six hours, 

nowcasting is commonly used. Nowcasts combine current observations from radars with an 

estimate of the speed and direction of movement to forecast the weather a short period 

ahead. Nowcasts however do not account for the growth and decay of rain areas over the 

forecast horizon. A widely adopted solution at very short lead-times (less than six hours) is to 

blend forecasts from the two methods. The Met Office have used blending in very short-range 

forecasts since the Nimrod system (Golding, 1998) was introduced. The current approach 

uses the UK Short Term Ensemble Prediction System (STEPS, Bowler et al., 2004; 2006) 

nowcast to provide useful radar-rainfall extrapolation ensemble forecasts, blended with the 

deterministic UKV model. During 2012 a trial was conducted of an hourly update cycle of the 

UKV over a small area of the southern UK using a 4D-Var data assimilation scheme, 

enhanced to incorporate additional radar and satellite data (Golding et al., 2014). The trial 

was run through the summer period, which was characterised by a high frequency of intense 

convective rainstorms. Analysis of the results is still in progress, but the application of 4D-Var 

showed clear benefits in converging the initial state and the first few hours of forecast towards 

the observed state. Operational computing resources however are not currently available to 

run 4D-Var on an hourly cycle for the whole UK.  

 

In most situations, the predictability of individual convective rainstorms is limited to a few 

hours ahead. Beyond that time, it is necessary to know the range of uncertainty in the 

location, timing and intensity of the storms. An ensemble of NWP forecasts is typically created 

by making small changes to the initial state and to the parameters of the model for each of a 

set of forecast scenarios. The MOGREPS-UK ensemble with a 2.2km grid length (Golding et 



al., 2014) was introduced by the Met Office for the Olympic Games in 2012 and has since 

been made operational. Research studies using convective-scale ensembles have explored 

the sensitivity of the results to a variety of aspects of the ensemble system (Leoncini et al., 

2013; Clark et al., 2010). At present, MOGREPS-UK uses global-scale initial conditions and 

perturbations and so is unable to represent uncertainties in the first few hours of the forecast 

without incorporation of STEPS.  

 

Results from a study of the July 2011 Edinburgh flooding (Leoncini et al., 2012) and 

preliminary results from summer 2012 (Golding et al., 2014) indicate that, in atmospheric 

situations suitable for heavy convective rainfall, the twelve hour ensemble forecast is likely to 

identify quite a wide area of Scotland to be at risk from intense rainfall. The ensemble 

prediction system is able to identify days when intense rainfall occurs somewhere with a high 

degree of reliability (typically around 60%). However, hourly predictions at city or district scale 

are characterised by much lower forecast probabilities (typically less than 40%). It has also 

been noted that probabilities are much lower for “random” convection than for more uniform 

rain areas, even when the observed rates are actually higher in the former case.  

 

 

Real time flood inundation modelling in urban areas 

 

Flood risk modelling in urban areas has developed rapidly over recent years. Urban areas are 

vulnerable to major flood damages due to the density of population and economic and social 

assets. Urban flooding is becoming more frequent as a consequence of several factors 

including continued catchment development increasing impervious surfaces, population 

growth and climate change (Schubert and Sanders, 2012). In recent years, demand for 

prediction of flooding and flood risk assessment in urban environments has therefore 

increased markedly (Tingsanchali,2012; Schubert and Sanders, 2012; van Herk et al., 2011; 

Fernandez and Lutz, 2010; Chen et al., 2009). Advances in remote sensing and computing 

power have enabled urban flood modelling using high quality terrain data to simulate detailed 

flow dynamics in local areas (Chen et al., 2012; Schumann et al., 2011).  

 

Published examples of real-time forecasting of surface water flooding in urban areas are 

limited (Rene et al., 2014). Those that do exist primarily focus on short-term forecasts 

employing data from local raingauges or weather radar rather than forecast NWP products 

and have limited surface and subsurface connectivity (Schellart et al., 2011; Henonin et al., 

2013; Simoes et al., 2011). The difficulty in delivering surface water forecasting is attributed to 

both uncertainties in forecasting the type of convective rainstorms that causes surface water 

flooding and the difficulty in running urban flood inundation models in real-time which limits 

model complexity.  

 

A further consideration for real-time application is the need for continuous running of a model, 

involving maintaining model states (e.g. antecedent conditions of water volumes) across all 

time-steps up to the time the forecast is made. Not all inundation models originally 

implemented for design and planning are well suited in this respect for real-time application, 

and may require considerable development and restructuring of the code (Moore et al., 1997). 

Also, their inputs may relate to an “effective rainfall” design storm profile and may not include 

an explicit space-time representation of runoff production and water loss accounting. As a 

result, areas of inundation are not necessarily drained and fully evacuated in the aftermath of 

a surface water flooding episode, remaining inundated indefinitely.  

 

Modelling in urban areas also embodies additional uncertainties due to the challenge of 

representing a non-stationary urban environment. For example  ongoing land use change and 



re-development as well as ephemeral channel blockages due to urban debris,  which are not 

considered in this paper.  

 

 

Assessment of impacts 

 

Flood forecasting in the UK is increasingly risk-based (Dale et al., 2012). The overall risk level 

is assigned based on expected severity and likelihood of impacts (Figure 1). Therefore an 

assessment of inundation area alone is not sufficient and further information on expected 

impacts is required. The definition of impact and likelihood for each cell in the grid matrix is 

broadly consistent in the UK across the SFFS, FFC and Met Office National Severe Weather 

Warning Service (NSWWS) (as detailed in SFFS, 2015). 

 

 
Figure 1 Flood Risk Matrix used by the SFFS for the FGS  

 

The EU Floods Directive 2007/60/EC on the assessment and management of flood risks 

required all European Member states to produce both flood hazard and flood risk maps 

including impacts. This is a step change from previous assessments which had mainly 

focused on flood hazard (de Mole et al., 2009). In Scotland, a strategic assessment of flood 

impacts from fluvial, coastal and surface water flooding (SEPA, 2013) was made as part of 

the Flood Risk Management (Scotland) Act 2009, which transposed the EU Directive,. The 

relevant receptors included in the assessment are: Number of people, Type of economic 

activity, Businesses and Transport (roads, railways and airports).  

 

Recently there has been a focus on explicitly coupling impact assessments with flood 

forecasts (Cole et al., 2013). A major modelling issue in relation to surface water flooding is 

gaining information on impacts and flood extent in order to validate the efficacy of a given 

modelling approach. A variety of stakeholders collect evidence of surface water flooding in a 

variety of forms but collation and use of these data for model validation is not straightforward. 

The use of social media sources is increasingly being considered as a means of collecting 

evidence of flooding and its impact (Smith et al., 2015). 

 

Developing a surface water forecasting model for Glasgow 

 

Glasgow has a known history of summer surface water flooding. The most notable, and 

significant, event occurred in 2002 (MWH, 2002) with subsequent smaller events experienced 

in 2007, 2011, 2012 and 2013. With the 2014 Commonwealth Games being held in the city, 

the SFFS judged that if heavy rain was to occur, the existing surface water forecasting 

capabilities would not be sufficient to meet the expected increased briefing requirements. A 

project was set up to develop a surface water forecasting model for a 10km by 10km area of 

Glasgow to be used in an operational pilot by the SFFS during the Commonwealth Games. 



The experience of setting up and running this pilot service will be used to explore potential 

future surface water flood forecasting methods for Scotland. The reporting area covered by 

the operational model is shown in Figure 2.   

 

 
Figure 2 Reporting area of the operational surface water forecasting model for 

Glasgow  

 

Requirements 

 

To help ensure the pilot service would meet the priority needs of end-users in relation to the 

Commonwealth Games, SEPA established a Steering Group of key responders in Glasgow 

including the City Council, Transport Scotland, Scottish Water and those involved in the 

Commonwealth Games organisation. This Steering Group provided an excellent forum for 

project scientists and operational responders to discuss the challenges of surface water flood 

forecasting from different perspectives, to engage end-users with the project at an early 

stage, and to set realistic expectations for the operational output.   

 

The Steering Group requirements were to focus on the 6 to 24 hour lead-time to enable 

proactive preparations. Twelve hours was seen as a critical forecast horizon. Responders 

wanted guidance on event timings, locations that might be affected, possible impacts and 



severity and, crucially, a stand-down message when the event is over or the risk level 

reduced. The challenge was to balance the end-user requirements with the scientific 

capabilities, operational scheduling (e.g. Met Office NWP scheduled run times), and to 

provide sufficient time for forecaster interpretation and production of a guidance product.  

 

Based on the reviews of NWP for convective events and of real-time flood risk modelling for 

urban areas, the technical requirements for the operational forecasting model were to: 

 Make best use of recent advances in convective NWP by using the Met Office 

blended short-range ensemble (including MOGREPS-UK and STEPS) and blended 

nowcast ensembles 

 Be capable of regular model initialisation, preferably by continuous running with 

data assimilation 

 Include an explicit assessment of impacts 

 Integrate with existing SFFS tools and models 

 Be computationally efficient to enable processing in real-time 

 Provide surface water flood risk forecasts with a 24 hour lead-time 

 Support timely and informed decision-making 

 

 

Methodology 

 

The first stage in developing the operational model was to identify a suitable hydraulic and 

hydrological modelling approach. Ghimire et al. (2013b) details the initial review made of 

available models and recent urban flood modelling applications based on the CIWEM (2009) 

guidelines for integrated urban drainage modelling with additional consideration of the 

potential for use in real-time flood forecasting. Even with recent advances, it was concluded 

that detailed 2-D hydraulic modelling of surface water flooding remained infeasible to meet 

the needs of the project and that the sustained investment required to support a robust and 

verified operational system would be considerable.  

 

Only ISIS FAST (CH2MHILL, 2014) and Grid-to-Grid (G2G, Moore et al., 2006, 2007; Bell et 

al., 2009) were assessed to have the potential at the present time to be computationally fast 

enough to run in real-time. G2G has the additional advantage that national versions are used 

for flood forecasting across the UK (Cranston et al., 2012; Maxey et al., 2012; Price et al., 

2012) meaning that operational familiarity with the modelling methodology already exists as 

well as the technical framework required to run the model. In the G2G model, surface runoff 

generated within each grid-cell is routed from cell-to-cell to represent flow through the river 

network and obtain fluvial flood forecasts. Surface runoff is also available to be configured as 

a G2G output to support forecasting of surface water flooding. The current limitations are its 

1km2 resolution-scale of application and limited verification for surface water flooding; work is 

ongoing to address the latter whilst finer-scale configuration has been trialled for some G2G 

applications. Existing approaches for real-time surface water flooding alerts are based on 

rainfall threshold-exceedance methods. By bringing in dependence on surface cover, soil 

properties and antecedent wetness condition, G2G offers a potential advance on such 

approaches. Under the Natural Hazard Partnership (NHP, 2013), a case study has pointed to 

the potential value of G2G for surface water flooding alerts and further development is 

ongoing (Cole et al., 2013, 2015). Therefore G2G was selected for use in this application.  

 

The G2G Glasgow model was run on a 1km grid over a 22km by 22km domain of southwest 

Scotland to reduce the effect of boundary effects on the reporting area (Figure 2). The model 

was run within the real-time forecasting platform Delft-FEWS (Flood Early Warning System, 

Werner et al., 2013) and referred to as FEWS Glasgow. Initial model states were imported 



from the national G2G Scotland model run in FEWS Scotland with observed rainfall as input. 

Rainfall forecasts from the Met Office Best Data short-range ensemble (based on 

MOGREPS-UK and STEPS) at a 2km resolution were separately used as input to the FEWS 

Glasgow four times a day. The coupling frequency was 15 minutes and 27 hours of forecast 

rainfall were used (of a possible 32). A length of 27 hours was chosen to mitigate effects of 

increasing uncertainty in forecasting convective events with increasing lead-time while 

maintaining 24 hours of useable forecast after the delivery and processing of the forecast. 

Most of this three hour delay was attributable to processing and data transfer from the Met 

Office supercomputer to SEPA; because of the small Glasgow model domain the FEWS 

Glasgow processing time at SEPA was approximately 2.5 minutes. Although the main focus 

was on the six to 24 hour lead-time, the nowcast ensemble was also used as forecast input to 

FEWS Glasgow four times a day between the short-range ensemble runs. This enabled the 

SFFS to review model performance and provide updated forecasts during the working day.  

 

G2G does not provide inundation or impact modelling. This component was provided using a 

library of existing static inundation and impact assessments from SEPA’s Regional Pluvial 

Flood Hazard maps. The maps were produced as part of the national surface water flood 

mapping required under the Flood Risk Management (Scotland) Act 2009.  Five different 

rainfall return periods (10, 30, 50, 100 and 200 years) for two different storm durations (one 

and three hours), as well as two climate change scenarios for the 30 and 200 year event were 

available.  The maps were produced using the inundation model JFlow+ (Lamb et al., 2009) 

supported by a DTM constructed from LiDAR/NEXTMap data with ground levels raised by 

0.3m to represent buildings. Gridded rainfall depth inputs to the JFlow+ model were based on 

the Depth-Duration-Frequency rainfall model within the Flood Estimation Handbook (FEH) 

provided by the Centre for Ecology & Hydrology (CEH).  These were converted to rainfall 

hyetographs based on the summer rainfall profile described in the FEH to represent the 

convective storms with short periods of high intensity rainfall that urban catchments are more 

sensitive to. Rainfall losses were applied to the gross hyetographs to account for differences 

in drainage and runoff for rural and urban areas. For urban areas the percentage runoff was 

set to 70% and losses to the drainage system were assumed to be equivalent to the average 

5-year rainfall for the catchment. Areas with flood depths of less than 0.1m were removed due 

to the relatively low risk these depths pose and the associated uncertainty of the modelling 

approach (JBA Consulting, 2014b).  

 

Surface runoff for each 1km grid cell was simulated by the G2G Glasgow model. Similar to 

Cole et al. (2012) it was assumed that the surface runoff from the G2G model was equivalent 

to the effective rainfall used to produce SEPA’s regional pluvial flood maps. This meant that 

for each 1km grid square the most appropriate flood inundation map and impact assessment 

from the offline library could be identified. The three hour surface runoff accumulations were 

linked to the three hour storm duration impact assessments. A conceptual challenge of this 

approach was how to convert impact to specific receptors in individual grid cells to an overall 

assessment of risk. Table 1 shows the SFFS guidance on impacts used in the national Flood 

Risk Matrix (Figure 1) and the grid-cell impact thresholds used in this application. The grid-cell 

impact thresholds are specific to Glasgow and if the model was to be applied to other cities 

the thresholds would need review. The impacts were grouped into people and property 

impacts (population, utilities, commercial properties and community services) and transport 

(road and rail). A separate category for transport was required as transport impacts would not 

be limited to the particular flooded cell and therefore could be deemed to cause significant 

disruption across a wider area. 

 

 



Table 1 SFFS national impact descriptions and associated grid-cell impact thresholds 

Impact 

category 

National description Expected 

National 

Partner 

Response 

Glasgow people 

and property 

threshold per grid 

cell 

Glasgow 

transport 

threshold per 

grid cell 

Minimal Generally no impact, however there 

may be: 

 Isolated  and minor flooding of low-

lying land and roads 

 

Business as 

usual 

 

  

Minor  Localised flooding of land and roads  

 Localised flooding affecting 

individual properties 

 Localised disruption to key sites on 

floodplains 

 Local disruption to travel 

 

Single 

agency 

operational 

response 

 

1 – 100 residential 

properties 

1-2 community 

services 

1-2 utilities 

1-20 commercial 

properties 

 

 

Significant  Flooding affecting parts of 

communities 

 Damage of buildings/structures is 

possible 

 Possible danger to life due to fast 

flowing/deep water/ wave 

overtopping/ wave inundation 

 Disruption to infrastructure 

 Small-scale evacuation of properties 

may be required 

 

Multi-agency 

response 

likely to be 

needed at 

tactical level. 

SGoRR may 

be 

considered. 

 

1 – 100 residential 

properties 

> 2 community 

services 

> 2 utilities 

> 20 commercial 

properties 

> 5m road 

> 5m railway 

Severe  Widespread flooding  affecting whole 

communities  

 Collapse of buildings/structures is 

possible 

 Danger to life due to fast flowing/ 

deep water  

 Widespread disruption or loss of 

infrastructure 

 Large scale evacuation of properties 

may be required 

 

Multi-agency 

strategic 

response 

likely at SCG 

level or 

regional level. 

Mutual aid 

likely with 

perhaps 

national co-

ordination. 

SGoRR 

convened. 

 

> 100 residential 

properties 

 

  

SGoRR: Scottish Government Resilience Room 

SCG: Strategic Co-ordinating Group 

 

 

The process was repeated for each member of the rainfall ensemble such that the expected 

impacts could be combined with the probability of exceeding the threshold to allow the overall 

surface water flood risk to be identified within FEWS Glasgow. The complete methodological 

process is shown in Figure 3 and further details are provided in Moore et al. (2015). The code 

used in FEWS Glasgow forms part of the SFFS operational forecasting system; as such it is 

continually being tested and upgraded, but is not available in the public domain for external 

review. It was accepted that for the 10km by 10km domain there was limited skill in the 

forecast rainfall distribution and event-occurrence probabilities were expected to be low. 

However the topographic and land-cover data supporting G2G helped identify areas of high 

surface runoff whilst the receptor data enabled identification of locations with high receptor 

vulnerability even if uncertainty in the rainfall distribution remained high.  

 



The approach presented in this paper is an example of pre-simulated scenarios of flood 

inundation and impact combined with real-time simulation of the hydrological conditions using 

observed and forecast rainfall data (Henonin et al., 2013). It offers a step change in capability 

from the existing rainfall thresholds based approached used by the SFFS which relies on 

empirical knowledge of previous events.  

 

 
Figure 3 Surface water forecasting methodology used in FEWS Glasgow 

 

Operational implementation 

 

The model outputs were displayed through html web reports generated by FEWS Glasgow. 

The web reports showed output for selected variables of interest over the full 24 hour time 

period (an example is shown in Figure 6) and also broken down into six hour time-steps. 

These time periods were determined to best reflect the skill associated with the 24 member 

ensemble. The full 24 hour period could show higher probabilities than the six hour output by 

accounting for the probability that the threshold would be exceeded in any of the contributing 

six hour periods. Forecasters were able to view any forecast from the past 36 hours enabling 

run-to-run variability to be assessed. Gridded data were available showing the: 

 probability of exceeding 20mm rainfall in 3 hours 

 probability of exceeding 13.5mm and 16mm of runoff in 3 hours 

 probability of people and property impacts exceeding the minor, significant or severe 

threshold 

 probability of transport impacts exceeding the significant threshold. 

 

Although the surface runoff reporting thresholds were set at 13.5mm and 16mm in three 

hours for low and high runoff (based on the thresholds used by Cole et al. 2013), in some 

individual cells impacts were shown to start occurring when surface runoff reached 8mm in 

three hours. The risk maps were colour-coded using the Flood Risk Matrix overall risk colours 

enabling flood risk to be easily identified. A 5% reporting threshold was set so that the output 

grids would only be populated if two or more ensemble members exceeded the threshold. 

This threshold was introduced to reduce the sensitivity of the model output for very low 

likelihood events. As well as the risk maps of gridded data, a surface runoff time-series 

display was produced showing the maximum surface runoff in any grid cell for each ensemble 

member over time (an example is shown in Figure 8). This enabled identification of the 



spread of ensembles in magnitude and time and was useful for adding additional information 

to the overall risk assessment.  

 

The model was run operationally throughout the summer of 2014 and used to support the 

national FGS and flood alerts for the Glasgow area. For the period of the Commonwealth 

Games between 18 July and 4 August 2014, SEPA provided additional flood forecasting 

services through the SFFS directly in support of the Commonwealth Games. These services 

consisted of a bespoke surface water flood guidance statement for Glasgow and an increased 

briefing and advisory service. 

 

The Glasgow Daily Surface Water Flood Forecast (DSWFF) was issued every afternoon at 

17:00 to responders. This guidance statement contained expert interpretation of the FEWS 

Glasgow output including a summary of surface water flood risk (based on the Flood Risk 

Matrix) for the next 24 hours, a weather summary, a detailed assessment of the surface water 

flood risk and information on the start and end time of heightened risk. When relevant a list of 

possible impacts was included. In addition to the guidance statement, expert trained 

recipients (such as SEPA’s Flood Advisors and Met Office Meteorologists and Civil 

Contingency Advisors) were provided with summary displays of the raw model output. These 

were accompanied by: a written brief explaining the key points in the forecast; comments on 

how the forecast should be interpreted; additional information on possible magnitude of 

impacts, uncertainty and timings; explanation of why there were differences to other products; 

some context to the forecast through comparison with previous events; and, stated when 

further updates would be available (an example is shown in Figure 10). The SFFS also 

provided a verbal brief to accompany each statement for the SEPA Resilience Officers 

working in the Multi Agency Control Centre during the Games.  

 

The 17:00 issue time was selected to balance the availability of rainfall forecast and the 

formal briefing schedule within the Games Multi Agency Control Centre. For future use, the 

Steering Group identified that if the restriction was lifted on scheduled meteorological forecast 

run times, a product issued earlier in the afternoon (~15:30) would be more beneficial to local 

councils. When required in increased risk situations an update was produced at 08:00 with 

the potential to produce further updates throughout the day if needed (this was not required 

during the Games period). In practice the written Briefing Note was updated more regularly 

than the formal guidance document as this was found to provide sufficient reassurance and 

information for briefings for the type of events experienced during the operational period.  

 

Forecasts during the Commonwealth Games 

 

Whilst the weather during the Commonwealth Games was largely fine, there were occasions 

when the additional surface water guidance provided a real benefit to the organisers and 

responders. This took two forms, firstly enabling the SFFS to advise that although heavy 

rainfall was forecast in the wider southwest Scotland region, flooding impacts in Glasgow 

itself were unlikely. Secondly, as was the case on the last weekend of the Games, providing 

information on the timing, likely impacts and possibility of flooding in Glasgow. Two examples 

are discussed here. 

 

Saturday 19 July 2014 

 

On Friday 18 July 2014 the potential for heavy and possibly thundery rain across southern 

Scotland was forecast for the next day (Figure 4). Based on this information a low overall 

flood risk, due to a very low likelihood of significant disruption from surface water flooding 

across a large area, was communicated through the National FGS (Figure 5). Because the 



National FGS highlighted this risk, there was a challenge to maintain consistency and clear 

messaging between the FGS and the Glasgow DSWFF. A regional flood alert was issued on 

Saturday 19 for surface water flooding.   

 

 

 

Figure 4 Heavy Rainfall Alert Tool Probability of 

greater than 20mm rainfall in 3 hours from 21:00 18 

July forecast 

 

 

 

 

 

 

Figure 5 FGS surface water flood 

risk from Friday 10:30 18 July 

assessment 

 

 
FEWS Glasgow forecast output showed that although heavy rainfall was possible there was a 
very low likelihood of impacts within the Glasgow area (Figure 6). There was some variability 
between sequential forecasts (Table 2) and this was communicated through the written and 
verbal briefs. The overall message to responders was that there was a very low likelihood of 
minor disruption in Glasgow and the increased risk identified in the FGS and flood alert was 
for higher ground to the south of Glasgow. FEWS Glasgow therefore enabled a more targeted 
message to be communicated to responders for Glasgow itself within the backdrop of the 
wide-area yellow warnings from the National FGS. In reality on 19 July the forecast 
thunderstorms did not materialise over Glasgow and no impacts were reported.  
 

Table 2 Description of run-to-run variability in FEWS Glasgow forecasts for 18 and 19 

July 2014 

Forecast 

time (GMT)  

Forecast type Summary of FEWS Glasgow output 

15:30 18 July  Blended short-

range ensemble 

One ensemble member exceeding the high surface 

runoff threshold. The other members were bunched 

together with peak runoff of up to 7mm in 3 hours. No 

impact threshold exceeded.  

21:30 18 July  Blended short-

range ensemble 

This forecast identified the highest risk of any forecast 

for the event. Six members contributed to the impact 



Forecast 

time (GMT)  

Forecast type Summary of FEWS Glasgow output 

threshold exceedances with three members exceeding 

the high runoff threshold (shown in Figure 6) 

03:30 19 July  Blended short-

range ensemble 

All surface runoff members below 9mm in 3 hours. No 

impact threshold exceeded.  

09:30 19 July  Blended short 

range ensemble 

Wide spread of ensemble members including one with 

a much later peak. Three of which were above 9mm in 

3 hours. Two cells were flagged as exceeding 

thresholds for transport and people & property.  

11:30 19 July  

 

Nowcast Heavy rainfall with an increased probability of 20-39% 

occurrence. Transport and people & property 

thresholds exceeded for approximately 25% of cells in 

the model domain. 

15:30 19 July  Blended short-

range ensemble 

The forecast rainfall had largely passed and no 
thresholds were exceeded.  
 

 



 
 

Figure 6 FEWS Glasgow 24 hour summary from 21:30 GMT 18 July MOGREPS-UK 

forecast run 

 

 

 

 



Saturday 2 August and Sunday 3 August 2014 

 

On the final weekend of the Games persistent rain was forecast with possible embedded 
heavier downpours. There was minor disruption to athletics events on Saturday evening and 
Sunday’s cycle road race was very wet with competitors describing the conditions as 
“atrocious”. There were isolated reports of flooding-related disruption across the city (Table 3) 
and temporary diversions at Glasgow Airport due to rain and wind. The Glasgow DSWFF was 
raised to low overall risk for the first time on the afternoon of Sunday 3 August. 
 

On Saturday the SFFS Heavy Rainfall Alert tool indicated that the heaviest rain was likely to 
fall in the northwest highlands (Figure 7a). However by Sunday morning the main area of 
concern was much further south (Figure 7b). There were two distinct rainfall events on 
Saturday evening and Sunday afternoon.  
 

 

a) Forecast origin at 09:00 2 August 2014 

 

b) Forecast origin at 09:00 3 August 2014 

 

Figure 7 Heavy Rainfall Alert probability of greater than 20mm in 3 hours for 3 August 

2014 

 

The surface runoff grids for Saturday 2 August (Figure 8) showed a large spread in magnitude 

and timing of surface runoff. It was therefore not possible to be confident that any flooding 

impacts would occur and the Glasgow DSWFF stated a low likelihood of minor impacts. In 

contrast, the forecasts for the event on Sunday 3 August showed more consistency in timing 

but the probability of exceeding the impact thresholds remained low until the rainfall had 

started (Figure 9). At this point the Glasgow DSWFF risk level was raised to a medium 

likelihood of minor impacts.  

 



 

a) Forecast 

origin at 0100 2 

August 

 

b) Forecast 

origin at 1300 2 

August 

 

c) Forecast 

origin at 0700 3 

August 

 

d) Forecast 

origin at 1300 3 

August 

Figure 8 FEWS Glasgow surface runoff ensemble for 2-3 August 2014 

 



 
 

Figure 9 FEWS Glasgow 24 hour summary from 13:00 3 August MOGREPS-UK forecast 

run 

 

The messaging requirements of this event were challenging. Again there was a (yellow) 

warning for medium confidence of minor impacts across much of Scotland supported by the 

National FGS, NSWWS and flood alerts. As discussed above, it is easier to identify the 



possibility of impacts over a large area than at a city scale and as such the likelihood for 

Glasgow remained lower than for the national products. However due to the high profile 

nature of the Games it was important to communicate the potential of impacts in Glasgow to 

responders. The briefing channel from the SFFS via SEPA’s Resilience Officers in the Multi 

Agency Control Centre to responders was proactively used to communicate this message. An 

example of one of the three minute briefs issued in support of the Glasgow DSWFF is shown 

in Figure 10.  

 

 

Figure 10 Example three minute brief issued by email in support of the Glasgow Daily 
Surface Water Flood Forecast on 1 August 2014 

 

Heavy rainfall did occur in Glasgow on both Saturday and Sunday with one SEPA raingauge 

at Waulkmill Glen recording a three hour maximum of 20mm. Collecting impact data to 

support surface water flood forecasting is difficult due to the transient nature of the impacts, 

unclear reporting channels, and lack of gauged surface runoff data. Table 3 lists impacts 

This is the three minute brief from the SFFS Commonwealth Games Flood Forecasting 
Hydrologist on 01/08/2014 17:00 
 
What? e.g. What is the briefing about? What is the current situation? What is known? What is the 
weather forecast? 

1. The GDSWFF has the surface water flood risk for Glasgow for Saturday as VERY LOW. 
2. A period of drier weather is expected on Friday evening then rain is forecast for Glasgow 

from Saturday afternoon and overnight. 
3. There is the potential for periods of heavier rain within this broader wet period, particularly 

during the evening (typically 20- 30mm is possible during Saturday) 
4. The national Flood Guidance Statement indicates a low flood risk for West Central 

Scotland however the main area of concern is over the higher ground rather than Glasgow 
itself 

5. A SEPA flood alert has been issued for West Central Scotland again this is not directly 
due to concerns over Glasgow itself 

6. A Met Office NSWWS warning is in place for heavy rain over a large part of the UK  
 

Now what? e.g. What does this mean? How can the situation be interpreted? Comment on 
uncertainty. What should the key message to responders be? 

1. At present, surface water flooding is not a major concern for Glasgow during the day on 
Saturday.  

2. If we are unlucky enough to get one of the heavier showers, impacts should only be 
isolated and minor in nature, possibly causing flooding of roads in known problem spots 

3. There is a high degree of uncertainty about the location and timing of the heaviest rainfall. 
This will be kept under review. 

4. The heaviest rainfall in Glasgow is currently forecast for Saturday evening and overnight. 
This is outside the model range. More details will be available on Saturday morning.  

5. For reference on 10 June 2014 (the event used in the FEWS Glasgow training session) 
the observed hourly rainfall rates were around 10-15mm per hour this caused localised, 
short lived, minor flooding of some roads in Glasgow. The forecast for tomorrow currently 
doesn’t suggest heavier rain than this, although it cannot be ruled out in a worst case 
scenario. 

 
So what? e.g. What can this lead to? What might the implications be for Glasgow and the Games? 
What do we need to do? When will update be available? Will any alerts be issued? 

1. Generally no disruption from flooding is expected during the day on Saturday. 
2. It is advisable to keep a close eye on forecasts in case of any change for the worse. 
3. A morning update of the Daily Surface Water Flood Forecasting may be issued if models 

start to indicate impacts for Saturday evening and overnight.  
4. Given the wider risk across southern Scotland transport to and from Glasgow may be 

affected (refer to the national Flood Guidance Statement and Flood alerts for details) 
 
Duty Commonwealth Games Flood Forecasting Hydrologist 

 



reported to the SFFS during this event and provides evidence to validate the forecast for 

minor impacts across Glasgow.  

 

Table 3 Reported flooding impacts over the weekend 

Time of report Impact Reported by 

2 August evening 
athletics 

Large puddles and small amounts of 
flowing water near Hampden Park 
around 6:30pm. Some minor 
disruption to athletics. 

Member of SEPA attending 
the Games 

21:17 2 August Giffnock flooding from drains/sewer 
and burn next to road. Not affecting 
property. 

Member of the public to 
SEPA SCC 

21:41 2 August Helensburgh drain overflow flooding 
shop  

Member of the public to 
SEPA SCC 

14:39 3 August Paisley flooding from small burn. 
Occurred last night and again today. 

Member of the public to 
SEPA SCC 

15:13 3 August Flooding on the M8 Junction 15 SEPA Resilience Officer in 
the MACC 

15:13 3 August Drains lifting on the A82 cut off from 
the M8 

SEPA Resilience Officer in 
the MACC 

16:59 3 August Large amount of surface water at the 
Baldinnie Road Park & Ride 

SEPA Resilience Officer in 
the MACC 

MACC:  Multi Agency Control Centre (for the Commonwealth Games)  SCC: SEPA Communication Centre  

 

 

 

 

 

Discussion 

 

This paper has demonstrated a new risk-based forecasting model for surface water flooding. 

It improves upon the existing rainfall thresholds approach in Glasgow by providing surface 

water flood guidance at a city scale with a 24 hour lead-time using emerging meteorological 

forecast products and hydrological tools. It is acknowledged that a further step-change could 

be possible with real-time 2D inundation modelling. However, to help meet the priority 

requirements of end-users for risk-based forecasts, as identified by the Glasgow Steering 

Group, any such model would need to be run using the full MOGREPS-UK rainfall ensemble. 

To justify the investment in computational capabilities, further evidence is required to 

demonstrate if the real-time inundation modelling approach would deliver any additional 

benefits beyond the static library approach presented in this paper; especially given the 

current uncertainty in convective rainfall forecasts at a sub city scale and understanding of 

impacts.  

 

The use of FEWS Glasgow during the Commonwealth Games highlighted that on occasions 

there is significant run-to-run variability in the forecasts for surface water events. This is in 

part to be expected given the relatively small 24 member MOGREPS-UK ensemble used as 

meteorological input. Operationally it was possible to mitigate for this by looking at 

consecutive model runs when assessing the surface water flood risk, effectively generating a 

larger time-lagged ensemble. In the long term, further increases in the ensemble size should 

help decrease the run-to-run sensitivity. 

 



While technical capabilities are continually advancing, it is clear that any method of 

forecasting surface water flooding for city-scale warnings at lead-times of greater than a 

couple of hours will be probabilistic. Alongside the technical developments there is a need to 

consider how to effectively communicate probabilistic flood forecasts to end-users, especially 

for low confidence events. Surface water flood forecasting is an example of a new generation 

of forecasting where it is accepted that the meteorologist cannot add value by modifying the 

rainfall forecast products themselves, but by interpreting the output and providing briefing 

material can offer a value-added service (Stuart et al., 2006; Pagano et al., 2014). The 

communication tools to support surface water flood forecasting need to take account of this. 

During the Commonwealth Games the briefing requirements around the Glasgow DSWFF 

were high. This was partly due to it being a new product and a high profile event, but 

communication will remain a long-term challenge due to the uncertainty in forecasting surface 

water events and will need to be considered in the operational design of surface water 

forecasting systems. 

  

The two events presented in this paper, along with experience of other low risk events in 

Glasgow during the summer of 2014, demonstrate that the tool is suitable for operational use 

and could be extended to other cities where there is a library of static flood impact 

assessments and an available hydrological model to convert forecast rainfall to surface water 

runoff. The operational pilot during summer 2014 only included forecasts for minor impact 

events. Further testing is required to confirm the suitability of the model for more severe 

events as the output is sensitive to the impact thresholds used. The focus of this study was to 

test an end-to-end operational model rather than to address the challenging question of how 

to validate probabilistic impact-based forecasts. Further quantitative validation of the model 

over a longer time period, or with case study data from historical events, would clearly be 

beneficial.  

 

In addition to forecasting applications, a detailed review of the model output compared to 

observations over longer durations (annual plus time scales) could be used to inform strategic 

decision making. For example if the model is consistently performing poorly in certain areas 

this could indicate a valuable location to install new monitoring equipment or to review the 

underlying flood risk mapping. Alternatively, areas which are shown not to suffer surface 

water flooding despite heavy rainfall could be identified as sensible locations to allow future 

development.  

 

 

Conclusions 

 

This paper has demonstrated an operational end-to-end risk-based process for surface water 

flood forecasting utilising emerging science and incorporating this within an existing 

operational framework. The operational pilot during the Commonwealth Games illustrated the 

high resourcing requirements needed to support surface water flood forecasting. Traditionally 

these resources have been assumed to be computational, and this is still the case with the 

run-to-run forecast variability evident in this study illustrating the need for larger ensembles. 

Further, the decision not to include real-time inundation modelling or explicit representation of 

the sewer network highlights the requirement for continued development aligned to advances 

in computing, including GPUs and Cloud services. It is also well acknowledged that surface 

water flood risk modelling requires a better understanding of impacts in urban areas. However 

this paper has argued that the challenge of the human resourcing requirement to support the 

communication of probabilistic forecasts has been underestimated. It demands further 

development of innovative solutions to support the increased uncertainty in surface water 



flood forecasting compared to the established methods used for traditional fluvial and coastal 

flood events. 

 

As articulated by René et al. (2014, p575) “the issue we need to address in flood forecasting 

is recognising and accepting that it is always uncertain, but provides valuable information to 

end users.” Despite the uncertainty and challenging communication requirements, the 

feedback from the Commonwealth Games Multi Agency Control Centre was positive with 

end-users valuing the surface water guidance in support of their decision-making when heavy 

rainfall was forecast. The experience gained from developing and using the Glasgow surface 

water flood forecasting tool will help inform the continued development of surface water flood 

forecasting capabilities in Scotland. 
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