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Abstract 

Built-up areas tend to comprise a variety of buildings with diverse and complex shapes, 

functions and construction characteristics. This variety is the source of significant challenges 

when calculating building energy use at the building stock level. Moreover, the process of 

developing stock models usually requires large amounts of data that are frequently scarce, 

nonexistent or at least not publicly available. Under these circumstances, defining a limited set 

of reference buildings representing the stock is useful to study the actual energy consumption 

and the potential effects of different energy conservation measures. This paper presents a new 

method for developing typical residential reference buildings at district level for bottom-up 

energy modeling purposes. By means of widely and freely available satellite images, an 

information database of building shapes is created and a clustering analysis of the geometrical 

features is performed to define a number of archetypes representative of the heating and cooling 

energy demand of the district. The method is tested and demonstrated through the case study 

of the Yuzhong District in Chongqing (China) by comparing the Energy Use Intensity (EUI) of 

the archetypes derived in this way against detailed dynamic simulations. Results show very 

small differences in the estimated stock energy consumption (+0.03% in heating energy 

consumption and +2.97% in cooling energy consumption).  

 

Keywords: Residential building benchmark; building shape; cluster analysis; built-up area; 

bottom-up approach 

 



 

 

1 Introduction  

The residential building stock, defined as a group or population of residential 

buildings according to Kohler and Hassler [1], accounts for 48% of total building 

energy consumption in China in 2015 [2]. China has imposed an ambitious carbon 

reduction target of reducing carbon dioxide emissions by 60-65% per unit of GDP 

based on the 2005 baseline, by 2030 [3] whilst simultaneously promoting 

improvements in the population's living standards [4]. Local authorities face 

difficult challenges in decision-making about planning for energy retrofit for 

residential buildings at a community-scale to meet both objectives.  

Bottom-up modeling ‘calculates the energy consumption of individual or groups of houses 

and then extrapolates these results to represent the region or nation’[5].  The approach has 

been widely employed for evaluating the impact of energy conservation measures 

at both national and local scales. It can assess the effect of the implementation of 

building energy policies on different types of buildings. On the other hand, this 

approach needs extensive building information data and heavy computation time, 

in particular for the stock-level energy assessment.  

Developing a set of prototypical reference buildings to act as a building benchmark, 

enables the representation of a reasonable percentage of buildings with detailed 

specifications [6].  This will help policymakers to examine the effect of national 

energy policies on building energy consumption more effectively.  

A building benchmarking approach is popularly employed for building stock 

energy simulation. Nationwide large-scale stock surveys are usually the first source 

of data about building characteristics. Such information includes building types, 



 

 

year of construction, floor dimensions, and number of occupants. These 

information  ideally  is coupled with a breakdown of the energy consumption 

features derived from Energy Performance Certificates for generating residential 

stock energy models [7-10]. Examples are the Residential Energy Consumption 

Survey (RECS) carried out in the US by the Energy Information Administration [11] 

and the English House Survey for England’s residential stock reported by the 

Department for Communities and Local Government [12]. However, for many 

countries, this kind of national scale residential survey does not exist, as is the case 

for China and due to historical reasons connected with statistical data collection, 

no official statistical data for residential building operational energy consumption 

in China exists even on a macroeconomic level [13]. 

To close this gap, the aim of this research is to develop an easy-to-follow building 

archetype approach to construct a residential building stock model for energy 

consumption calculation and evaluation purposes using the limited information 

available.  

The main novelty of the method is given by the use of a purely geometric 

characterization of the buildings derived using freely-available satellite images. In 

this way, not only are the input data required and the time needed for modeling 

significantly reduced, but the method’s applicability is very wide since it only 

requires satellite images. The method developed in this paper is tested in the 

Yuzhong district in Chongqing, China. 

1.1 Archetype approach   

Two main building stock aggregation approaches for bottom-up models, namely, 



 

 

building-by-building and archetypes, are classified [14]. The detailed building-by-

building aggregation approach usually involves GIS data [15-17] and is very precise 

in retaining the peculiarities of every building, but it is very often impractical 

because of the burden of collecting the detailed data needed [18] and GIS data is 

not publicly available in many countries, including China. Thus, its applicability is 

rather limited.  

According to Mata, et al. [19], archetypes (or archetypical buildings) are ‘statistical 

composites of the features found within a category of buildings in the stock’. The archetype 

aggregation approach aims at defining typical buildings able to represent the 

studied stock, which is a preferential option under the circumstances of 

scarce/unavailable data.  

Even though the representative archetype selection has been criticized by Brøgger 

and Wittchen [20] for a lack of reasoning, the archetype approach for residential 

building stock aggregation has still been widely utilized [7-10, 21-32] due to its 

practical advantages. The indexes used for archetype classification include very 

different features, such as construction period, building type, building size, and 

HVAC systems characteristics, resulting in a varying number of archetype 

definitions. However, the building shape characteristics selection for archetypes 

still mainly remains in the gray zone. Some archetypes [7-9, 22, 26] do not present 

any information about the shape characteristics, while others [10, 21, 23-25, 27-31, 

33] are based on authors’ expertise and assumptions. Apart from this, Monteiro, et 

al. [32] used the average geometric information from buildings which belongs to 

the archetype for building shape definition. The TABULA project [30, 33] takes 



 

 

advantage of the available statistical data, their archetypes’ shape characteristics 

remain the same as the real buildings, which show similar shape characteristics to 

the mean geometrical features of the statistical sample, or they define “virtual” 

buildings by using properties statistically detected in the stock. There is no evidence 

to support the idea that statistically averaged shape characteristics can fully represent 

the residential building stock given its huge variations from the energy 

consumption evaluation point of view. However, building shape characteristics are 

of paramount importance to define the building energy demand since the amount 

of externally exposed surfaces determines the magnitude of the heat exchanged 

between indoor and outdoor environments.  

To overcome the lack of explicitly-stated evidence or reasoning that supports the 

building shape archetype selection for stock energy consumption aggregation, 

clustering was considered for its inherent advantages. Clustering is an 

unsupervised machine-learning approach that automatically divides data into sub-

groups (clusters) [34], and it has been widely used in the building energy research 

field for different purposes, such as identifying typical occupancy profiles [35], 

behavior patterns [36], load profiles [37], key building energy efficiency explanatory 

factors [38], and energy performance benchmarking [39]. It has also been applied 

in building archetypes development. For example, Ghiassi, et al. [40] applied the 

hierarchical agglomerative clustering method (with Euclidean distance as the 

distance function and Ward’s method as the similarity measure) to cluster 

residential and office buildings by means of physical and contextual properties. 

These properties included effective average envelope U-value, effective window-to-



 

 

wall ratio, thermal compactness, heated volume, and effective floor height. 

Ballarini, et al. [41] proposed the development of archetypes by using hierarchical 

clustering techniques (using the Mahalanobis distance in conjunction with the 

Centroid Linkage algorithm). The variables considered in their cluster analysis 

included the energy needs for space heating, obtained from Energy Performance 

Certificates; primary energy for space heating; net floor area; opaque envelope 

average U-value, and window average U-value. Ghiassi and Mahdavi [42], [43] 

instead used multivariate cluster analysis to generate a reductive bottom-up urban 

energy computing model. Multivariate cluster analysis methods, including 

hierarchical agglomerative clustering, K-means clustering, and model-based 

clustering, are used to identify archetype buildings. Descriptive indicators 

considered include geometry, solar gains, thermal quality, and operational 

parameters such as net volume, effective floor height, thermal compactness, 

effective glazing ratio, effective average envelope U-value, fraction of the year used, 

etc. Monthly heating demand calculated by simple steady-state computation [42] 

and simplified annual heating demand calculation [43] are used respectively in 

comparison  evaluation of the clustering methods. These aforementioned studies 

confirmed the suitability of using the cluster analysis method for building 

archetype generation. However, they are heavily reliant on existing GIS data or an 

energy performance certification database to provide building shape 

characteristics information. Moreover, they only considered heating energy needs 

without accounting for the cooling needs, maybe because of the geographic 

location of the study areas where heating is of major concern.  



 

 

For residential buildings located in the Hot Summer and Cold Winter (HSCW) 

climate zone in China, both heating and cooling are required for maintaining 

indoor comfort conditions. Moreover, the GIS data or other types of building 

information database are not available. Therefore, this study will develop an easy-

to-apply approach to collect building shape characteristics from freely-available 

satellite images. Dynamic building simulation had been utilized to replace 

simplified heating demand calculation to account for both heating and cooling 

energy consumption, as cooling energy consumption requires an iteration process 

to calculate [44]. Representative buildings of the studied residential stock are 

defined through cluster analysis. The validation of the method involves comparing 

the energy consumption calculated using the representative buildings with that of 

the building-by-building calculation method.  

 

2 Methodology 

The building benchmark for the residential stock energy calculation will include 

building shape, the glazing ratio, building envelope properties, occupancy pattern 

and heating/cooling equipment. The method proposed to develop the residential 

building shape archetype for the community in this paper consists of the following 

five steps: 

Step 1: General study of the area: obtaining building functions, building window-to-

wall ratio (WWR), and ages of construction from publicly available sources and a 

ground survey; 



 

 

Step 2: Geometric characteristics database: developing a 3D building information model 

inferred from satellite images; 

Step 3: Characteristics of building shapes: creating geometric information containing 

building shape characteristics; 

Step 4: Clustering analysis: building shape variables correlation analysis and clustering 

for representative buildings for clusters; 

Step 5: Energy analysis for clustering performance evaluation: Evaluation of clustering 

performance by comparing the results of energy consumption from the clustered 

archetype reference building aggregation methods and the building-by-building 

simulation method.  



 

 

 

Figure 1: Research framework: the process for generating typical residential 

reference buildings. 



 

 

The detailed description of the method is presented in the following section using a case study 

of the Yuzhong District in Chongqing, China, as an example.  

 

3 General study of the area 

Yuzhong district is a well-established built area with a population of around 649.5 

thousand people in 2015 [45] that hosts a complex variety of residential and public 

buildings. More than 60% of residential buildings with a combined floor area of 

9,679,167m2 [45, 46] were built before the release of the first energy conservation 

standard [47] in 2001. There is a huge energy savings potential in retrofitting old 

residential buildings in this district because of the poor quality of building 

envelopes and of the mechanical systems in use. So the local government plans to 

inject financial support of 90 million RMB to refurbish 4.3 million m2 floor area of 

the existing residential buildings [48].  

Within the framework of a UK-China collaborative research project entitled ‘Low 

Carbon Climate Responsive Heating and Cooling of Cities’(LoHCool) funded by the 

Natural Science Foundation China (NFSC) and the Engineering and Physical 

Sciences Research Council (EPSRC), UK, a stripe within the district has been 

randomly chosen for analysis (see Figure 2). The total study area is 3.4km2, 

accounting for about 17% of the total land area of the district (20.08km2 [49]).  



 

 

 

Figure 2: GoogleMap view of the Yuzhong district with the case study stripe 

highlighted in a black box.  

According to the National Education Association [50]and Robert and Daryle [51], the 

representative sample size of a given population can be calculated using the 

following formula: 

S =
𝑋2∗𝑁∗𝑝∗(1−𝑝)

𝑀𝐸2∗(𝑁−1)+𝑋2∗𝑝∗(1−𝑝)
       (1) 

Where S is the suggested sample size, X2 is the table value of chi-square for 1 degree 

of freedom at the desired confidence level, N is the population size, ME is the 

designed margin of error (%), p is the population proportion (%) (assumed as 50% to 

provide the maximum sample size [52]).  

Given a confidence level of 99% and an ME of 1%, S is calculated as 16,560m2 for N 

equals 9,679,167m2. Meanwhile, the pre-2001 residential buildings within the 

studied area reached 4,069,813m2, which is 245 times the suggested sample size. 

Therefore, the sampling of the selected strip is deemed representative and 

appropriate.  

A team of ten people carried out a field survey from July 2015 to September 2015; 



 

 

building information including building geographic location (longitude and 

latitude), building function, building construction age, number of floors, window-

to-wall ratio (WWR), and building ownership were collected for the purpose of 

generating a building information database.  

There are 575 buildings within the stripe and 334 of them are residential buildings, 

accounting for 60% of the total, while the remaining are public buildings including 

offices, shopping malls, hotels, hospitals, and schools. Given the predominance of 

residential buildings, the method is employed to develop residential archetypes, 

although it is applicable to every building type. 

 

4 Geometric characteristics database 

The paucity or lack of digital information for existing buildings in most countries 

prevents performing a numerical simulation that could be beneficial to understand 

fully the current stock characteristics and weaknesses, especially in terms of 

energy efficiency and renovation policies. 

Although a significant effort has been made in recent years in the field of digital 

building reconstruction techniques, there still exist challenges to overcome in 

terms of i) conversion from captured building data to semantic rich information, 

ii) possibility of updating the information and iii) definition of an acceptable 

uncertainty level according to the specific modeling task [53]. 

It therefore emerges how a case-by-case approach should be followed when 

tackling the issue of building a semantic 3D model for clusters of buildings. To this 



 

 

aim, several different techniques can be successfully employed, broadly divided 

into on-site data acquisition (aerial photographs, city building images, 3D laser 

scanning, and mobile applications) and data from existing building documentation 

(architectural sketches, 2D scanned paper plans, and CAD plans)[54].  

On-site data techniques are usually preferred because of their broad availability 

and ease of use if compared to data extraction and manipulation from existing 

building documentation. GIS [55-57] and 3D laser scanning [58-61]  are the most 

employed. 

In this work, building geographic location data collected from the ground survey 

helped locate the buildings on the Baidu map. The web map version used in this 

study is dated as May 2016. Building footprints have thus been drawn by 

superimposing Baidu map screenshots in the AutoCAD software, and then scaling 

them according to a real field measurement. The location of the residential 

buildings in the stripe is shown in Figure 3, where the different colors stand for 

different construction ages: orange (pre-2001 buildings), green (2001-2010 

buildings) and yellow (post-2010 buildings) respectively. The grey-shaded ones are 

non-residential buildings that are outside the scope of this study. The construction 

period classification adopted is consistent with the residential building energy 

standards in force in the Hot Summer Cold Winter (HSCW) zone to which 

Chongqing belongs [47, 62]. By looking at the map in Figure 3, it is easy to notice 

how the pre-2001 buildings form the vast majority (321 premises), accounting for 

around 95% of the whole residential building stock in the selected sample area. The 

pictures taken during the ground survey for two pre-2001 residential buildings are 



 

 

shown in Figure 4 to give an example of the appearance of the old residential 

buildings. 

 

Figure 3: Age-band distribution of residential buildings within the study area 

 

Figure 4: The example views of two pre-2001 residential buildings 

A MATLAB script based on the Corner Shadow Length Ratio (CSLR) method 

described in [63, 64] has been used for estimating the height of the buildings. This 

approach makes use of shadow analysis from Google Earth images, and derives the 

building height by linking the corner shadow lengths with satellite position 

information from the acquisition tool of Google Earth and with the help of 

traditional solar astronomy relationships for the study site [65]: 

  sinh sin sin cos cos coss          (2) 
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where hs = solar elevation, Φ = latitude, δ = solar declination, and Ω = solar hour 

angle. (See Figure 5). 

  

Figure 5: Relations between satellite and sun angles (on the left) and application to 

a generic building (on the right) [64] 

 

Once one real building height is known, it is possible to calculate the ratio of the 

building height (red line in Figure 6) to the shadow length of the roof corner (yellow 

line in Figure 6), known as the Rcs ratio. Because this ratio is proved a constant for 

a given satellite image [63], the other building heights can be obtained by just 

multiplying the corner height measured in Google Earth (red line in Figure 6) by 

the Rcs ratio. 



 

 

 

Figure 6: Test buildings in London (on the left) and Chongqing (on the right) 

This approach has been tested first by comparing the real building height of a 

building located in a regular urban layout in London (Figure 6, left), namely the 

Holiday Inn Kensington Forum building (LAT. 51° 29’N, LON. 0° 11’ E), with the one 

estimated by using the CSLR method. 

For the sake of evaluating the variations in the computed height due to different 

satellite picture parameters, three different Google Earth shots have been analyzed 

and processed under the conditions reported in Table 1. 

Table 1: Satellite pictures parameters for the London test building 

 Date of 

shooting 

Solar 

azimuth 

angle (°) 

Satellite 

azimuth angle 

(°) 

Computed 

height (m) 

Picture 1  8/4/2017 149.52 108.91 85.5 

Picture 2 19/7/2013 138.42 110.6 84.6 

Picture 3 27/6/2010 104.83 338.16 86.1 



 

 

average height 85.4 

 

The average computed height from the three pictures is 85.4m, which is less than 

2% higher than the real value of 84m and can be considered accurate enough for 

clustering purposes. In order to see if the method is also applicable to a dense and 

non-regular urban layout such as that of Chongqing, a building located within the 

study stripe (right side of Figure 6, LAT. 29° 33’N, LON. 103° 33’E) has been selected 

and tested. During the shooting date of 27/11/2016, the azimuth angle was 165.45°, 

the satellite azimuth angle was 176.73° and the resulting computed height is 73.2m, 

just 1.2m bigger than the real figure of 72m obtained from the ground survey.   

The above-mentioned tests demonstrate that the method can be successfully 

applied in building up a database of building heights for stock modeling purposes 

when actual data is not available, although the reader is invited to refer to refs. [63, 

64] for a thorough understanding of the underlying hypotheses and limitations. 

 

5 Characteristics of building shapes  

The shape of the Chinese residential buildings is more regular than that of public 

buildings, with most of them being rectangular and parallelepiped [63]. So building 

shape variables including building height, aspect ratio and compactness ratio are 

selected as critical factors defining the surfaces and volume of a building and, 

consequently, its energy consumption [66-70]. The building compactness ratio (CR) 

is calculated using Equation (5): 



 

 

  

 /CR S V    (5)  

 

Where, S is the building surface area;  

V is the enclosed volume. 

 

The building’s aspect ratio (AR) can be calculated using Equation (6): 

  /AR L M    (6) 

where, L is the longer side width of the building floor plan and M is the width of 

the shorter side.  

The real shape of the residential building had been rounded to a rectangular shape 

to measure these widths. 

According to the Code for Design of Civil Buildings [71], residential buildings can 

be classified into 4 types according to the number of floors: low-rise (from one to 

three floors), multi-storey (from four to six floors), middle high-rise (from seven to 

nine floors) and high-rise (ten and more floors). Middle high-rise (38%) and high-

rise (36%) typologies account for more than 70% of the total pre-2001 residential 

buildings within the studied area, with low-rise and multi-storey accounted for only 

10% and 16% respectively (see Figure 7). 



 

 

Figure 7: Distribution of pre-2001 residential building height characteristics 

The aspect and compactness ratios distribution of these buildings are presented in 

Figure 8, where it emerges that most of them have a compactness ratio ranging 

from 0.1 to 0.4, with more than 50% in the range of 0.15 to 0.25. For the aspect 

ratio, the majority of the buildings are found in the range of 1 to 2, although the 

highest value recorded is 7.63. 
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Figure 8: Compactness and aspect ratios distribution of pre-2001 residential 

buildings 

The database has been generated including building’s name (building number 

codes are used), geographic location, building function, number of floors, building 

height, construction age, total floor area, aspect ratio, and compactness ratio. 

Clustering analysis will be based on the collected characteristics of the buildings’ 

shapes. 

 

6 Clustering analysis 

6.1 Correlation analysis for cluster variable selection 

As highly correlated variables cause problems for clustering analysis results, 

variable elimination should be done to discount redundant variables before 

clustering [72]. Therefore, the aforementioned three building shape variables: 



 

 

building height, aspect ratio, and compactness ratio, are tested through correlation 

analysis. Correlation analysis is a method to measure the strength of association 

between two variables and the direction of the relationship. A numeric index 

ranging from -1 to +1, called a correlation coefficient, is used to quantify the 

correlation strength. A value close to -1 or +1 indicates a strong negative/positive 

correlation between the variables, while a value close to 0 indicates a very weak 

correlation. The Shapiro-Wilk normality test has been conducted as a test for the 

normal distribution of the variables and the results are shown in Table 2. From the 

table, we can see that three selected variables all reject the normal distribution 

assumption, as the p-value is smaller than the commonly used significance level of 

0.05. Therefore, Spearman correlation, typically used for evaluating the monotonic 

relationship between two continuous or ordinal variables, is employed instead of 

traditional Pearson correlation that only works with normally distributed variables.   

Table 2: Results of the Shapiro–Wilk normality test 

Building shape 

variable 

p-value 

Building height 0 

Building aspect ratio  0 

Building compactness 

ratio 

1.58E-

14 

 

The Spearman correlation coefficient p can be calculated using Equation 7 [73]: 
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Here,  𝑅𝑖 is the rank of the ith x; 

 𝑆𝑖 is the rank of the ith y; 

 �̅� and 𝑆̅ are the average of 𝑅𝑖 and 𝑆𝑖. While x and y are the two variables subject 

to correlation analysis. 

The results of the Spearman correlation calculation for the three variables of 

building height, building aspect ratio and building compactness ratio are shown in 

Table 3. A p-value lower than 0.05 indicates that the correlation coefficient is 

significantly not zero, i.e. the correlation between the two parameters is 

statistically significant (these cases are marked in bold in the table). Correlation 

coefficient values over 0.9 or lower than -0.9 indicate very high correlation, while 

correlation coefficients between 0.7 to 0.9 or -0.9 to -0.7 indicate high correlation 

[74]. The correlation analysis shows that the building height and the building 

compactness ratio are highly correlated (Spearman coefficient of -0.74251), 

whereas the building aspect ratio is not significant correlated with the other 

variables. So, to eliminate correlated variables from the cluster analysis, two non-

correlated variables selection schemes were used, including:   

 Scheme 1: building height and building aspect ratio; and  

 Scheme 2: building aspect ratio and building compactness ratio. 



 

 

Table 3: Spearman correlation analysis for building shape characteristics 

 
Building 

height 

Building aspect 

ratio 

Building 

compactness ratio 

Building height 

Spearman 

Corr. 
1 -0.18753 -0.74251 

p-value __ 7.33E-04 0 

Building aspect 

ratio 

Spearman 

Corr. 
-0.18753 1 0.21289 

p-value 7.33E-04 __ 1.21E-04 

Building 

compactness ratio 

Spearman 

Corr. 
-0.74251 0.21289 1 

p-value 0 1.21E-04 __ 

 

6.2 Cluster methods selection 

Clustering methods can be divided into four different types, namely partitional 

clustering, hierarchical clustering, density-based clustering, and grid-based 

clustering [75]. For the sake of generating building archetypes, Ghiassi and Mahdavi 

[42], [43] investigated multivariate cluster analysis using K-means clustering, 

hierarchical agglomerative clustering, and model-based clustering to generate 

archetypes for a neighborhood in Vienna (Austria), finding out that K-means 

performs the best in clustering for energy demand prediction. In more detail, K-



 

 

means is a partitional clustering technique that assigns objects to clusters to 

minimize the distance from objects to the cluster center after a user-defined 

number of clusters (K) is selected [76]. The process of K-means clustering begins 

with K points selected as initial centroids; clusters are formed by assigning every 

point to the closest centroid, and then the cluster centroids are recomputed with 

the new points assigned. The aforementioned assignment and re-computation 

steps are iterated until every point stays unchanged [76]. When Ghiassi and 

Mahdavi [42, 43] use K-mean clustering, they define the representative buildings as 

the ones that have the closest distance to their cluster center, in order to avoid the 

virtual representative building being used for energy calculation. This 

approximation will be followed in this study when K-means clustering is used.  

Apart from K-means, K-medoids is widely used and this technique uses the most 

representative point for a group of data, the medoid, as a measure of the center of 

the cluster. This ensures real data points are selected as prototypes for the clusters 

[77], while the centroid used in the K-means method rarely corresponds to an actual 

data point [76]. 

This study attempts to explore the cluster performance of both K-means and K-

medoids techniques. Because both techniques utilize distance for cluster 

assignment, Z-score standardization is performed to rescale the features and to 

reach a mean of zero and a deviation of one. This helps avoid clustering variables 

with larger variation ranges dominating the clustering process. The scaled data is 

thus clustered using the R programming language and software environment [78] 

together with its nbClust package [79] to choose the optimal number of clusters. 



 

 

The test range for number of clusters, K, is set from two to ten in order to avoid 

too many archetype definitions with too many building shape clusters. This will 

benefit the development of a building energy stock model due to the simplicity of 

the archetype.   

The optimal number of clusters determined by the nbClust package for the two 

above-mentioned non-correlated variable selection schemes is three, which is 

finally selected as the K number for both the K-means and K-medoids clustering 

techniques. Squared Euclidean distance and Euclidean distance are used in the K-

means and K-medoids techniques respectively for calculating dissimilarity distances. 

The clustering results obtained by applying different variable selection schemes and 

clustering methods are shown in Table 4. It is noted that when using K-means under scheme 1, 

two buildings (Building B253 and B263) share the same closest distance from the virtual center 

generated by K-means in cluster 1. The selected representative building shape, as well as the 

total floor area of buildings belonging to each of the clusters, are shown in Table 4.  



 

 

Table 4: Clustering results under different variable selection schemes and clustering methods 1 

Schemes 

Clustering 

method 

Cluster 

Aspect 

ratio 

Building 

height 

(m） 

Compactness 

ratio 

Selected 

representative 

building 

number code 

Selected 

representative 

building shape 

Total floor 

area in the 

cluster 

(m2) 

Scheme 1:    

building 

height；         

aspect ratio 

K-means 

Cluster1 3.19 24 

  

B257 & 

B263* 

 717,045.00 

Cluster2 1.36 81 B401 

 

1,382,253.13 

Cluster3 1.56 24 B488 

 

1,970,515.33 



 

 

K-medoids 

Cluster1 1.56 24 B488 

 

1,947,149.04 

Cluster2 3.19 24 B263 
 

740,411.29 

Cluster3 1.16 78 B179 

 

1,382,253.13 

Scheme 2:        

aspect ratio；

compactness 

ratio 

K-means 

Cluster1 3.33 

  

0.22 B571 

 

726,060.08 

Cluster2 1.53 0.19 B27 
 

3,268,974.18 

Cluster3 2.05 0.38 B543 
 

74,779.20 



 

 

K-medoids 

Cluster1 1.43 0.18 B193 
 

3,158,510.21 

Cluster2 1.75 0.32 B104  152,391.83 

Cluster3 3.12 0.22 B103  758,911.42 

* These two buildings share the same closest distance from the virtual center of cluster 1. 2 



 

 

7 Energy analysis for clustering performance evaluation 3 

From Table 4 we can see that three reference buildings were developed for each 4 

scheme under the different clustering methods. To answer the question which 5 

scheme and its associated clustering method has the best performance, 6 

comparison studies were conducted using building-by-building energy simulation 7 

using the recently-developed Urban Modeling Interface (UMI)[80] as a benchmark. 8 

7.1 Energy consumption simulations – Building-by-building approach 9 

UMI is a  Rhino-based modeling software package which is able to simulate energy 10 

consumption of the building stock at individual building as well as neighborhood 11 

and city levels, it uses EnergyPlus [81] as the simulation core engine. To speed-up 12 

the simulation process, UMI uses an algorithm that automatically creates thermal 13 

zones named ’shoeboxes’ based on the definition of perimeter and core zones as 14 

reported in ASHRAE 90.1 Appendix G [82], as well as on a detailed solar insolation 15 

analysis of the facades. The details of this procedure can be found in [83-85], where 16 

validation tests show mean percentage errors in the range 2-5% when shoebox 17 

models are compared against their traditional EnergyPlus whole-building models. 18 

Apart from a 3D building model, UMI needs all the other input parameters required 19 

by EnergyPlus, such as the building envelope thermal physical characteristics, to 20 

simulate building heating and cooling energy use intensities.  21 

The building information such as envelope U-values, HVAC equipment 22 

performance coefficient and heating/cooling set points, and internal gains is set 23 

with reference to the residential buildings design standards JGJ 134-2001 [47] 24 



 

 

(presented in Table 5). The summer period in which cooling was required was 25 

assumed to be from June 15th to August 31st, while the winter period requiring 26 

heating was assumed to be from December 1st to February 28th [62]. Occupants’ air-27 

conditioning operation schedules were based on survey results from Hu, et al. [86].  28 

Heating is available for one hour in the morning (from 7 to 8a.m.) and four hours 29 

before sleep (from 6 to 10p.m.), while cooling is always available except during 30 

working hours (from 8a.m. to 5p.m.). All buildings are simulated at their real 31 

geographic location, considered real orientation, WWR, and shading from other 32 

buildings.  33 

Table 5: The energy consumption simulation parameters used in the study 34 

Envelope U-values 

(W/m2K) 

Walls 1.97 

Roof 1.62 

Slab 3.74 

Windows (U 

value/SHGC) 
5.74/0.85 

HVAC 

Heating/Cooling set 

point (°C) 
18/26 

Heating COP/ Cooling 

EER (-) 
1/2.2 

Internal gains 

(W/m2) 

Equipment and 

occupancies  
4.3 

Lighting  6 



 

 

Air change rate (/h) 2 

Window to wall ratio (WWR) 

Every building retained the real 

WWR collected from the field 

survey. 

 35 

Using this intensive simulation method, 321 pre-2001 residential buildings with a 36 

total floor area of 4,069,813.46m2 were simulated. The color-coded cooling and 37 

heating EUIs for every pre-2001 residential buildings was shown in Figure 9. 38 

 39 

Figure 9: the cooling (top) and heating (bottom) EUIs of every pre-2001 residential 40 

buildings   41 

The stock energy consumption characteristics are shown in Table 6, with floor area 42 

averaged EUI and pre-2001 residential stock total energy consumption for heating, 43 

cooling as well as overall heating and cooling. 44 



 

 

Table 6: The energy consumption for the studied stock using the building-by-45 

building approach 46 

 Heating Cooling  Overall heating 

and cooling 

Floor area averaged EUI 

(kWh/m2) 

18.18 19.46 37.64 

Pre-2001 residential stock 

energy consumption (kWh) 

73,988,952.0  79,208,221.1  153,197,173.1  

 47 

It is worth noting that, even though UMI is able to simulate all the studied buildings, 48 

the process of creating an urban 3D model including all studied buildings, 49 

attaching the required information for thermal simulation purposes to every 50 

building, and running a stock energy simulation is labor intensive and time 51 

consuming, which limited its usability.  52 

7.2 Energy consumption simulations – archetype reference building 53 

From the building-by-building stock simulation in section 7.1, individual building’s 54 

EUI can be identified with their building number code. The EUIs of the archetype 55 

representative buildings are shown in Table 7 for different schemes and clustering 56 

methods. 57 

Table 7: Archetype representative buildings EUIs (kWh/m2) 58 



 

 

Scheme 

Clustering 

method 

Cluster 

Heating 

EUI 

Cooling 

EUI 

Overall 

heating and 

cooling EUI 

Scheme 1:    

building 

height；         

aspect ratio 

K-means 

Cluster1* 20.42  24.15  44.57  

Cluster2 17.53  18.82  36.35  

Cluster3 18.24  19.70  37.94  

K-

medoids 

Cluster1 18.24  19.70  37.94  

Cluster2 20.57  24.30  44.87  

Cluster3 16.84  18.24  35.07  

Scheme 2:        

aspect ratio；

compactness 

ratio 

K-means 

Cluster1 18.95  20.27  39.22  

Cluster2 19.14  15.47  34.60  

Cluster3 24.30  19.08  43.38  

K-

medoids 

Cluster1 18.19  20.05  38.24  

Cluster2 19.79  22.11  41.90  

Cluster3 18.72  21.00  39.72  

* These two buildings share the same distance from the center of cluster1, so the representative 59 

heating and cooling EUI of cluster1 is set as the average value of buildings 253 and 263. 60 

 61 

The EUIs of archetype reference buildings are used to calculate the stock heating 62 

and cooling as well as the overall heating and cooling energy consumption by using 63 



 

 

the following equations 8-10. 64 

RSEℎ𝑒𝑎𝑡𝑖𝑛𝑔 = ∑ 𝐸𝑈𝐼ℎ𝑒𝑎𝑡𝑖𝑛𝑔,𝑖 × 𝐴𝑖
3
𝑖=1   (8) 65 

𝑅SE𝑐𝑜𝑜𝑙𝑖𝑛𝑔 = ∑ 𝐸𝑈𝐼𝑐𝑜𝑜𝑙𝑖𝑛𝑔,𝑖 × 𝐴𝑖
3
𝑖=1   (9) 66 

𝑅SE𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ∑ 𝐸𝑈𝐼𝑜𝑣𝑒𝑟𝑎𝑙𝑙,𝑖 × 𝐴𝑖
3
𝑖=1   (10) 67 

Where, RSEheating , RSEcooling , and RSEoverall are the calculated heating, cooling, and 68 

overall heating and cooling energy consumption of the studied stock using 69 

archetype representative buildings;  70 

EUIheating,i , EUIcooling,i , and EUIoverall,i are the heating, cooling, and overall heating 71 

and cooling EUIs of the representative building of cluster i;  72 

Ai is the total floor area of buildings belonging to cluster i, in this study, i ranges 73 

from 1 to 3.  74 

The energy consumption of the pre-2001 residential stock by using archetype representative 75 

buildings is shown in Table 8.  76 

Table 8: Pre-2001 residential stock energy consumption under different schemes and clustering 77 

methods (Unit: kWh). 78 

Scheme Clustering method RSEheating  RSEcooling RSEoverall 

Scheme 1:    

building height;         

aspect ratio 

K-means 74,808,358.8  82,149,893.8  156,958,252.6  

K-medoids 74,014,424.1  81,560,641.8  155,575,065.9  

K-means 78,131,956.6  66,711,884.6  144,843,841.2  



 

 

Scheme 2:        

aspect ratio; 

compactness 

ratio 

K-medoids 74,678,790.4  82,645,530.7  157,324,321.0  

 79 

7.3 Clustering performance analysis  80 

The representative building capability of accurately representing the energy 81 

consumption of the pre-2001 residential building stock is investigated using the 82 

following three criteria, presented in equations 11-13: 83 

𝛿ℎ𝑒𝑎𝑡𝑖𝑛𝑔 =
𝑅SEℎ𝑒𝑎𝑡𝑖𝑛𝑔−BSEℎ𝑒𝑎𝑡𝑖𝑛𝑔

BSEℎ𝑒𝑎𝑡𝑖𝑛𝑔
  (11) 84 

𝛿𝑐𝑜𝑜𝑙𝑖𝑛𝑔 =
𝑅SE𝑐𝑜𝑜𝑙𝑖𝑛𝑔−BSE𝑐𝑜𝑜𝑙𝑖𝑛𝑔

BSE𝑐𝑜𝑜𝑙𝑖𝑛𝑔
  (12) 85 

𝛿ℎ𝑒𝑎𝑡𝑖𝑛𝑔 =
𝑅SE𝑜𝑣𝑒𝑟𝑎𝑙𝑙−BSE𝑜𝑣𝑒𝑟𝑎𝑙𝑙

BSE𝑜𝑣𝑒𝑟𝑎𝑙𝑙
  (13) 86 

Where, δheating , δcooling , and δoverall are the relative error of using archetype 87 

representative buildings to calculate heating, cooling, and overall heating and 88 

cooling energy consumption of the studied stock.  89 

BSEheating , BSEcooling , and BSEoverall  are the heating, cooling, and overall heating and 90 

cooling energy consumption of the studied stock using the building-by-building 91 

stock simulation approach, which is shown in Table 6. The calculation results of 92 

the abovementioned three criteria are shown in Table 9 for different schemes and 93 

clustering methods. 94 



 

 

Table 9: Analysis of the performance of different schemes and clustering methods 95 

Scheme Clustering method δheating δcooling δoverall 

Scheme 1:    

building height;         

aspect ratio 

K-means 1.11% 3.71% 2.46% 

K-medoids 0.03% 2.97% 1.55% 

Scheme 2:        

aspect ratio; 

compactness 

ratio 

K-means 5.60% -15.78% -5.45% 

K-medoids 0.93% 4.34% 2.69% 

 96 

When choosing aspect ratio and compactness ratio as the cluster variables together 97 

with the K-means clustering method (Scheme 2-K-means), the relative error of 98 

overall heating and cooling energy consumption  is -5.45%. This is because it 99 

overestimates heating by 5.60% while underestimating cooling by -15.78%. All other 100 

cluster analysis combination scenarios tend to overestimate cooling, heating, as 101 

well as overall heating and cooling energy consumption, but to a lower degree.  102 

Compared with compactness ratio, building height is a better variable to be used 103 

in clustering analysis for building shape archetype reference building generation 104 

for representing energy consumption and for aggregation purposes. Scheme 1 105 

always has a lower stock scale relative error compared to scheme 2 in heating, 106 

cooling as well as overall heating and cooling energy consumption. 107 



 

 

The K-medoids technique is considered a better clustering analysis method option 108 

as it achieved lower stock level relative error in heating, cooling, as well as overall 109 

heating and cooling energy consumption. Moreover, the K-medoids clustering 110 

process is more straightforward and convenient given that cluster centers are real 111 

buildings instead of virtual ‘average’ ones as in the case of the K-means method. This 112 

means that the iterative process of calculating the distance between every building 113 

and its virtual cluster center to find the closest building as the adjusted cluster 114 

center, which is a key feature in K-means analysis, is no longer needed and thus 115 

the process is significantly improved.  116 

K-medoids under Scheme 1 is the best performing clustering option. Indeed, the 117 

relative errors of heating, cooling as well as overall heating and cooling energy 118 

consumption are only 0.03%, 2.97% and 1.55% respectively; which proves the 119 

feasibility of using a clustering method to generate building shape archetypes to 120 

aggregate the energy consumption of the whole stock. The archetype representative 121 

buildings can be used for modeling the energy consumption of the residential buildings built 122 

before 2001 in the Yuzhong district.   123 

8 Conclusions  124 

This research has developed a new comprehensive methodology to generate 125 

residential building benchmarks (representative buildings of the stock) based on 126 

building shape archetypes to serve building stock energy calculation at district 127 

level. The main contributions of this research to the body of knowledge are 128 

described as follows:  129 



 

 

 The method for developing a 3-Dimensional building information database 130 

of the studied sample area including building footprint and building height 131 

is introduced using freely available ‘satellite images’- accompanied with a 132 

shadow analysis technique. Computer coding is programmed using the 133 

MATLAB platform. This method resolves the problems of scarce publicly 134 

available urban digital building information.  135 

 The generation process for the ‘Building-shape-based’ archetype 136 

representative building is proposed. Building characteristics including 137 

compactness ratio, aspect ratio, and building height are identified as the 138 

shape variables in the clustering analysis. Two clustering analysis input 139 

variable selection schemes of the shape variables are determined through 140 

correlation analysis.  141 

 Two partitional clustering techniques, namely K-means and K-medoids 142 

clustering, are employed for the two preliminary proposed schemes for 143 

determining the representative archetype buildings. The energy 144 

consumption of the studied stock calculated by using representative 145 

archetype buildings is analyzed and compared with that from the ‘building-146 

by-building’ simulation approach. Performance analysis indicates that the K-147 

medoids clustering technique is more accurate than K-means, by showing a 148 

lower relative error of stock energy consumption – compared with dynamic 149 

stock simulations of real building shapes – of just 0.03% for space heating 150 

and of 2.97% for space cooling respectively. 151 

The building shape archetypes generated are the most representative buildings 152 



 

 

chosen by clustering analysis; it can be used for investigating the energy 153 

consumption of the residential buildings in the area and evaluating the 154 

effectiveness of different refurbishment schemes for building energy conservation 155 

purposes. This study bears a limitation of manually superimposing map to get 156 

building footprints, as this process can be improved by utilizing image processing 157 

techniques. Future work lies on the area of how to precisely recognize the building 158 

floor plan based on the map screenshot.  159 

 160 
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