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Focus Article
Online Exclusive

Pain Neuroimaging in Humans: A Primer for Beginners
and Non-Imagers

Massieh Moayedi,*,†,‡ Tim V. Salomons,§,¶ and Lauren Y. Atlas‖,**
*Faculty of Dentistry, †University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario,
Canada.
‡Department of Dentistry, Mount Sinai Hospital, Toronto, Ontario, Canada.
§School of Psychology and Clinical Language Science, ¶Centre for Integrated Neuroscience and Neurodynamics,
University of Reading, Reading, UK.
‖National Center for Complementary and Integrative Health, **National Institute on Drug Abuse, National
Institutes of Health, Bethesda, Maryland.

Abstract: Human pain neuroimaging has exploded in the past 2 decades. During this time, the broader
neuroimaging community has continued to investigate and refine methods. Another key to prog-
ress is exchange with clinicians and pain scientists working with other model systems and approaches.
These collaborative efforts require that non-imagers be able to evaluate and assess the evidence pro-
vided in these reports. Likewise, new trainees must design rigorous and reliable pain imaging
experiments. In this article we provide a guideline for designing, reading, evaluating, analyzing, and
reporting results of a pain neuroimaging experiment, with a focus on functional and structural mag-
netic resonance imaging. We focus in particular on considerations that are unique to neuroimaging
studies of pain in humans, including study design and analysis, inferences that can be drawn from
these studies, and the strengths and limitations of the approach.
Perspective: This article provides an overview of the concepts and considerations of structural and
functional magnetic resonance neuroimaging studies. The primer is written for those who are not
familiar with brain imaging. We review key concepts related to recruitment and study sample, ex-
perimental design, data analysis and data interpretation.

Published by Elsevier Inc. on behalf of the American Pain Society. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Key words: Pain, magnetic resonance imaging, structural magnetic resonance imaging, functional
magnetic resonance imaging, multivoxel pattern analysis, functional connectivity, guidelines.

Understanding how pain is encoded in the brain
has been a fundamental challenge for pain re-
searchers. Despite the universality of acute pain

and the high prevalence of chronic pain, we have yet
to precisely characterize the mechanisms of pain per-
ception and modulation in health and disease. The
complexity of identifying these mechanisms stems from
the multidimensional nature of pain—pain is a complex
amalgam of sensory, affective, cognitive, and motor
responses to dynamic internal and external states. The
challenge of characterizing mechanisms increases as pain
becomes chronic, with widespread plasticity of nocicep-
tive and modulatory pathways contributing to the
ongoing experience of pain. The rise of neuroimaging
techniques offers the potential for breakthroughs in
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these efforts. Neuroimaging approaches (including
functional magnetic resonance imaging [fMRI], posi-
tron emission tomography, electroencephalography, and
other approaches) are extremely powerful tools that
offer unique, noninvasive, in vivo views of central pro-
cesses. Indeed, functional and structural neuroimaging
studies have identified neural responses and features
of acute,4,46,57,68,76,179,224,225 as well as chronic pain,3,33,57

and effects of pharmacological9,29,30,69,197,229 and
nonpharmacological27,28,48,72,126,131,170,202,216,222,225,226,238

interventions.
Because of the promise of these new techniques, pain

imaging is rapidly growing and will continue to expand
as scanning facilities become more available and analy-
sis software becomes increasingly user-friendly. Although
brain imaging findings can provide important insight into
central mechanisms, there are many aspects of study
design and analysis that must be carefully considered and
planned a priori to obtain a robust, reproducible result.
Indeed, a recent systematic review of fMRI data showed
that a data set could be processed through almost 7,000
unique pipelines, with almost 35,000 resulting maps.38 This
highlights the importance for non-imagers and new train-
ees who read neuroimaging reports to be familiar with
some of these considerations and how they may affect
outcomes and inferences. In this article, we provide an
overview of these considerations, and key questions that
should be asked when reading an imaging report. We
will not weigh in on the many exciting theoretical debates
in the pain neuroimaging community, such as the speci-
ficity of pain-evoked cortical and subcortical responses
or the feasibility of brain-based biomarkers for pain (see,
for example Davis et al56). We instead provide a primer
and guidelines to assist trainees and nonexperts in de-
signing and reporting pain neuroimaging experiments
as well as reading and evaluating articles.

Because of the brain’s key role in generating pain per-
cepts, the ability to noninvasively examine brain function
in vivo is critical. We focus specifically on functional and
structural magnetic resonance imaging (MRI), because
MRI is the most common tool used in human pain studies.
Other promising human neuroimaging methods such as
electroencephalography, magnetoencephalography,
functional near-infrared spectroscopy, transcranial

magnetic stimulation, positron emission tomography, and
arterial spin labeling are beyond the scope of this
review.

A cursory PubMed search with the search terms “(pain
or nocicept*) AND brain AND MRI NOT review” on
January 20, 2017 resulted in 4,895 studies (see Fig 1). A
number of publications address methodological issues and
statistical considerations associated with human
neuroimaging in general,39,144,146,147,168,172,180,184 and we en-
courage neuroimagers to consult these reviews for
additional guidelines, and more in-depth discussion of
some of the technical considerations we delineate herein.
Our aim is to address how these issues may specifically
affect pain research. Our goal is to provide an introduc-
tion of particular use to a novice audience, including new
trainees, clinicians, and/or non-imagers interested in evalu-
ating studies on the neuroimaging of pain. We believe
that awareness of methodological and inferential limi-
tations can lead to positive advances. We focus on the
elements that should be included in the Methods and
Results sections of any report, and address inferences that
may be drawn during the Discussion.

Recruitment and Sample

Sample Characteristics
After deciding on a research question, the first aspect

any researcher considers is his or her research popula-
tion and sample. It is important to acknowledge that
neuroimaging experiments require unique constraints on
enrollment, and many of these constraints might put a
particular burden on neuroimaging studies of patient
samples.

MRI scanners are large magnets with a narrow bore
in which the participant lies during scanning. The par-
ticipant’s brain is scanned with specialized coils embedded
in a small head cage, or head coil. This provides several
constraints that are rarely acknowledged but can sub-
stantially affect a study. Subjects must fit in the narrow
bore, and therefore MRI studies are likely to exclude obese
patients, despite the fact that obese individuals are more
likely to report severe pain than normal and under-
weight counterparts.109 Because the MRI scanner uses radio

Figure 1. Number of pain imaging studies since the advent of fMRI. These numbers were determined with a search on PubMed
using the search terms: “(Pain or nocicept*) AND brain AND (fMRI OR MRI) NOT CT NOT PET NOT EEG NOT review.” The search
was restricted to 5-year time windows. The left panel shows the number of publications per 5-year window. The panel on the
right shows the cumulative number of studies over the years. The dashed line and the grey point have been extrapolated on the
basis of the current number of studies published from 2015 to January 2017.

961.e2 The Journal of Pain A Primer for Human Pain Neuroimaging



waves, participants cannot have any ferromagnetic metal
in their body, because there is a risk of the main mag-
netic field pulling on the metal, especially as the subject
enters the bore of the scanner. Radio waves can also cause
heating in tissues, and this can be exacerbated by any
electric conducting materials including cables and wires.
Furthermore, metal in the head and neck region can cause
image quality issues, because these reflect the radio waves.
These factors provide severe constraints on researchers
interested in studying topics such as phantom pain in am-
putees or pain in individuals after certain surgical
procedures, because these patients may have metallic (and
possibly ferromagnetic) objects in their body that are not
safe in a research MRI scanner. Studies of pain in other
populations, such as the elderly, or patients with cardiac
pain, may also be limited because of other types of in-
compatible implants or devices, including pacemakers or
medication pumps. Finally, some patients may experi-
ence claustrophobia because of the narrow bore or
confining coil surrounding their head, and so patients with
comorbid anxiety disorders may be less likely to com-
plete these experiments. These constraints mean that such
studies might routinely exclude the most severe cases,
which must be considered when drawing general infer-
ences about pain populations. Studies must always
measure and report complete characteristics of the sample
as well as inclusion and exclusion criteria.

Because of the constraints on the participants that can
be recruited for an imaging study, it is often tempting
to recruit a convenience sample—usually healthy young
adults from the university environment. However, such
a sample is not representative of those disproportion-
ately affected by chronic pain: women between the ages
of 30 and 50 of lower socioeconomic position.205 None-
theless, many neuroimaging experiments are not designed
to isolate mechanisms of chronic pain, and may instead
be interested in more general neural mechanisms, such
as those involved in the psychological modulation of pain,
or basic processes of nociception and acute pain. Con-
venience samples may be appropriate in these cases,
because they allow investigators to isolate basic mecha-
nisms underlying pain perception in healthy individuals.
However, even studies of acute pain in healthy volun-
teers should carefully consider generalizability to the
larger population, because convenience samples may lack
diversity in age, educational background, socioeco-
nomic status, race and ethnicity, depending on the study,
and each of these factors has been shown to influence
pain.36,66,125 All experiments should report full sample char-
acteristics so that readers and reviewers can evaluate
generalizability to the population.

Many experiments compare patients with pain disor-
ders with matched control patients and compare results
across groups. If healthy controls are not selected to match
nonpain-related characteristics, there is a strong chance
that differential findings between groups will reflect pro-
cesses other than the pain disorder of interest (eg, group
differences because of higher incidence of mood disor-
ders, obesity, and comorbid chronic pains).215,218 It is
strongly recommended that such matching be done by
carefully selecting the control population, rather than at-

tempting to find “clean” pain patients (eg, those free
of comorbid psychopathology). Although capturing pro-
cesses related to comorbid disorders complicates
interpretation, and can lead to confounds, individuals
without such comorbidities may not be representative of
most pain patients. Potential confounds and comorbidities
should be carefully considered, and if they are unavoid-
able, accounted for with appropriate experimental designs
and statistics. Researchers must also carefully consider dif-
ferential artifacts related but not germane to clinical
presentation. For example, recent work indicates that
resting state fMRI (rs-fMRI) studies are highly suscep-
tible to even small motion artifacts, such that a group
difference could emerge if there was a systematic dif-
ference between the groups in movement187,203 (as
discussed in the section, Preprocessing). Factors such as
discomfort from lying in the scanner, comorbid move-
ment disorders, or psychiatric disorders such as anxiety
might be more likely in pain populations and lead to
greater motion in patient groups, resulting in differen-
tial between group effects related to movement rather
than the measure of interest.203 Thus, head motion and
potential group differences in motion must be care-
fully considered and quantified in rs-fMRI as well as task-
based fMRI studies, and data cleaning strategies should
be carefully used to mitigate the contributions of such
factors.203

Statistical Power and Sample Size
All studies must ensure adequate sample size and sta-

tistical power to reliably detect meaningful effects, and
neuroimaging experiments are not unique in this regard.
Neuroimaging studies are expensive to run, generally re-
quiring hundreds or even thousands of dollars in scanning
fees for each subject. It is therefore common for sample
sizes to be smaller in neuroimaging studies than other
types of experiments. Although small samples are common
because of the financial burdens and additional con-
straints on neuroimaging studies, this has led to the
publication of many studies that are likely to be under-
powered for effects that might be of greatest clinical
interest, such as individual differences in pain popula-
tions. Underpowered studies are less likely to detect true
effects and more likely to find false positive results by
overfitting data, thereby decreasing the likelihood that
findings will replicate.34 Studies of chronic pain popula-
tions might be particularly susceptible to such effects
because of the breadth of diagnostic categories (meaning
that patients with similar diagnoses but divergent
symptom profiles might be included in the same small
sample; eg, fibromyalgia, which is commonly a diagno-
sis of exclusion,79 where symptom profiles can vary greatly)
and heterogeneity in terms of comorbid disorders and
medication use.

Because of the potential for false positive results in un-
derpowered imaging studies, studies with small samples
are coming under increased scrutiny. The onus will in-
creasingly be placed on researchers to show that samples
are adequately powered to detect expected effects. Such
demonstrations must be on the basis of justifiable, a priori
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calculations, so researchers should always estimate
power before conducting an fMRI study, and report how
the sample size was determined. Statisticians have re-
cently introduced several new, easily accessible fMRI-
specific power analyses that make it easier to consider
desired effect and sample sizes (eg, fmriPower.org,167

neuropowertools.org71) and will help to justify the funding
of fully powered studies. These approaches can be used
a priori to estimate sample size on the basis of ex-
pected effect size. Importantly, a number of these
approaches require researchers to have preexisting
imaging data, which is not always possible for new re-
searchers or those using new paradigms. Power calculation
on the basis of behavioral effect sizes may also be useful
because these do not rely on previous imaging studies.
These can be computed using data from pilot studies com-
pleted outside of the fMRI environment, which would
substantially reduce costs.

The problem of underpowered studies can also be ad-
dressed by aggregating data via repositories and/or meta-
analyses. Repositories facilitate data-sharing across
imaging experiments. Some repositories host data from
many different tasks, scanners, and populations. These
repositories facilitate reproducibility, open science, and
large-scale analyses that are relatively impervious to noise
created by inconsistencies across individual experi-
ments. Other repositories require contributors to collect
brain images with standardized scanning protocols. These
scans then undergo standardized preprocessing and
analysis pipelines, allowing several groups with
limited resources to pool brain imaging data and
investigate larger cohorts of patients. Several pain
imaging repositories (OpenPain [http://openpain.org]; Pain
and Interoceptive Imaging Network [https://www
.painrepository.org]136) have been established, and have
proven to be successful. However, there are legal and
ethical considerations that may affect a group’s ability
to contribute to such repositories.

Finally, meta-analyses statistically test the distribu-
tion of findings across studies, which permits assessments
of the consistency of effects and overcomes some of the
limitations associated with small individual studies. These
studies allow for a principled approach to determining
the relationship between a particular brain region and
behavior. Several pain imaging meta-analyses have been
published, including meta-analyses of pain-evoked cor-
tical responses,68,179 placebo analgesia,1,8 automated meta-
analyses of brain activation associated with the term
“pain,”234 and meta-analyses of brain responses and struc-
tural brain abnormalities in patients with chronic
pain.40,80,143

Experimental Design

Consider the Context: Constraints of the
MRI Environment

Neuroimaging experiments (especially MRI) take place
in a unique environment, so studies must be carefully
designed and made suitable for the imaging suite. As
mentioned previously, this restrains the patient popula-

tions that can be studied. It also places substantial
constraints on the types of experiments pain imagers
can conduct. All equipment must be MRI-compatible and
suited to the unique scanner environment. There are
few commercially available MRI-compatible devices
capable of delivering nociceptive stimuli, because these
must be completely nonferromagnetic and must not in-
troduce electrical noise during data collection. Even
commercially available devices may have differential
success at different scanners depending on consider-
ations such as MRI field strength, sequence design, and
even bore size. Thus, many pain researchers have exam-
ined brain responses associated with acute thermal and
electrical pain, but few have examined cold pain, cold
allodynia, or chemical pain. During the experiment, painful
stimuli are usually controlled by simple computer tasks
that coordinate stimulus presentation and synchronize
timing with the MRI scan (see the section, Materials and
Procedures). Experimenters often use these programs to
present visual stimuli (eg, task instructions, cues) and to
measure responses (eg, pain ratings). Visual stimuli are
usually presented on a computer screen that patients
view through goggles or via a mirror that sits atop the
head coil and reflects images displayed on a projector
screen. Participants provide pain ratings and make other
responses using devices such as button boxes, joysticks,
mouse-like trackballs, or by moving their hands5 because
verbal responses are generally avoided because of the
loud noises produced by the scanner and because head
motion must be minimized. Thus, fMRI studies of pain
may not capture the social and interpersonal elements
that are likely to contribute to verbal pain ratings when
a patient informs her doctor about her pain. This can
be seen as a strength (eg, for researchers who investi-
gate ascending nociceptive pathways and want to
minimize social modulatory influences)60,140,141,211 or a weak-
ness (eg, patient-provider interactions are thought to
be a critical component of placebo analgesia,65,77,119,121

and few computer paradigms are able to capture these
processes).

Head motion provides a third unique constraint af-
forded by the MRI scanner context. Participants cannot
move their heads more than a few millimeters (typi-
cally <2 mm) during scanning, for fear of contaminating
the data (see the section, Analysis). Some individuals,
such as those with lower back pain, may not be able to
lie still without pain, which provides additional con-
straints on patient samples and eligibility. In addition,
painful stimuli that induce strong withdrawal re-
sponses such as startle and electric shock cause unique
challenges because of task-related motion if not care-
fully mitigated37,237 (see the section, Preprocessing, for
discussion of motion correction). Many researchers choose
to familiarize subjects with the stimuli to minimize startle
and other withdrawal-related behaviors, as well as to
ensure stimuli are tolerable for the participants. This of
course imposes limitations on the intensity of pain or
novelty of the stimuli that can actually be administered
in the scanner. Furthermore, it is unclear to what degree
neural responses might reflect regulation of the prepo-
tent withdrawal response even when the participant is
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able to voluntarily suppress motion. All of these
considerations must be weighed in terms of the con-
struct validity of painful stimuli presented within the
scanning environment.

Another key consideration is the scanning param-
eters and sequences. Most sites will have “out of the
box” sequences, but these should be selected with con-
sideration, to best optimize the sequence to maximize
signal from regions of interest. Although the technical
aspects of these decisions are outside the scope of this
review, it should be recognized that these consider-
ations must be tailored to experimental hypotheses.
We therefore recommend that researchers work closely
with magnetic resonance physicists and experts to ensure
that the selected sequences are ideally suited to the
temporal resolution of their effect of interest and the
particular anatomical region(s) of interest. For example,
some brain stem structures might require multiple ac-
quisitions of different contrasts for precise anatomical
localization. Additionally, protocols might be adjusted
for experimental efficiency. For example, a standard
diffusion-weighted study to investigate white matter
in the brain might acquire 64 diffusion-encoding direc-
tions, with b-shell of 1,000 s/mm2. However, this acquisition
is more than might be needed for a standard fractional
anisotropy (FA) map, which requires a minimum of 6
diffusion-encoding directions,17,18,165 resulting in an un-
necessary cost and participant burden. These study-
specific considerations might also be balanced against
the homogeneity requirements of data-sharing reposi-
tories, although collaborative and multisite studies also
exist (eg, the Multi-Disciplinary Approach to the Study
of Chronic Pelvic Pain45,138), which may permit more
heterogeneity.

Materials and Procedures
Authors should outline everything that participants did

from the start of the study until they finished. A study
begins when a participant provides informed consent, as
approved by a local institutional review board, which
evaluates the ethics of the study. Informed consent and
ethics approval should be acknowledged in any study, and
authors should include important details, for example
whether authorized deception was used in any studies
that include misleading information (eg, studies of placebo
analgesia), or whether patients were asked to refrain from
taking their prescribed medication. In some cases, un-
derstanding the relative rate of participation is important
and studies should report the number of people con-
tacted for recruitment. Were subjects debriefed at the
end of the study? For studies of individual differences
and/or clinical severity, which questionnaires were ad-
ministered (not just the ones relevant to the current
report)? Similarly, were any tasks or relevant proce-
dures administered outside of the main experiment that
are not analyzed in the report? This is important infor-
mation because additional tasks and measures might
influence behavior in the main paradigm, and review-
ers and readers should be able to evaluate potential
confounds.

The description of task design should include all details
necessary for the purpose of external replication, includ-
ing the instructions, counterbalancing schemes, and task
timing. What platform was used for experimental pro-
gramming, and how did subjects provide responses? If
decisions about task design were made on the basis of
earlier pilot testing, it can be useful to report these details
(eg, “We collected pain ratings 20 seconds after heat
offset. Pilot testing revealed that there was no differ-
ence between ratings made immediately after offset vs
after a delay. We chose the current design so as to reduce
contamination of the blood-oxygen-level dependent
(BOLD) response to heat”). It is also important to provide
the exact instructions provided, as well as a description
of the scales used to assess painful percepts, and other
features of the stimulus. What were the exact instruc-
tions? What was the resolution of the scale? What were
the anchors to the scale?

Some pain studies use nociceptive stimuli to elicit pain
in healthy subjects and/or in chronic pain patients. Re-
searchers can choose between several nociceptive
stimulation paradigms. Thermal pain is the most well es-
tablished and most common stimulus used in
neuroimaging.68 This is likely because the paradigm works
well in the scanner and is relatively convenient. However,
it is a poor model of chronic pain, because heat pain is
qualitatively dissimilar to pain experienced in most
chronic pain conditions. Therefore, the researcher
must ensure that inferences are appropriate. It should
not be taken for granted, for instance, that acute heat
pain is a valid model for chronic pain that is neuro-
pathic or musculoskeletal in nature. Other acute pain
models such as ischemia, muscular hypertonic saline in-
jections, bladder filling, and visceral/rectal distention
might be more appropriate for questions about the neural
bases of musculoskeletal or visceral chronic pain
disorders.6,55,96,132,135,177,178,214 However, not all pain experi-
ments seek to model chronic pain; some focus on
understanding neural processes associated with acute pain
and its modulation. In this case, different consider-
ations guide the evaluation of validity. Are experimental
manipulations appropriate with regard to the psycho-
logical construct the researchers are testing? Is the chosen
noxious stimulus appropriate for the questions of inter-
est (eg, does thermal vs electrical vs laser pain activate
different ascending fibers)?

Questionnaires are also often an important compo-
nent to a study. These can serve as screening tools
against exclusion criteria (eg, handedness, other neuro-
logical disorders, and MRI contraindications, such as
claustrophobia), to characterize a chronic pain popula-
tion (eg, the McGill Pain Questionnaire158,159), or as a
measure or covariate of interest. When used judi-
ciously, such measures can help strengthen inferences
about the mental processes that particular patterns of
activation might be subserving. However, each added
questionnaire inflates the number of statistical tests
and increases the chance for false positive results, if
not carefully taken into account through multiple com-
parisons correction. As discussed in the section, Group-
Level Analyses, the issue of type I error is particularly
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germane to neuroimaging studies, and increases patient
burden in terms of time spent on the study. Thus, the
type and number of questionnaires included should be
carefully considered on the basis of clear hypotheses.
Questionnaires expected to have large amounts of
overlapping variance (eg, the Fear of Pain Questionnaire157

and the Pain Catastrophizing Scale210) can increase the
chance of incidental findings with little additional ex-
planatory power added to the study.

There are 3 different approaches that can be used to
investigate neuroimaging data: hypothesis-driven,
exploratory, and reproduction/replication. A typical
neuroimaging study uses these respective approaches to
test a hypothesis, develop new hypotheses, and confirm
(or reproduce) the findings. Hypotheses should be se-
lected a priori, before any data are collected, on the basis
of theory and previous data. When a hypothesis is gen-
erated, a pilot study is usually performed on a small
sample size to ensure that the experimental paradigm
is valid (ie, to ensure that the hypothesis is appropri-
ately operationalized), and to determine the feasibility
of the study. Small details may be adjusted at this time
(eg, instructions, task timing, etc). Pilot studies are rarely
submitted for publication, because they often use liberal
statistical thresholds (because of low power). They allow
researchers to adjust the paradigm before fMRI scan-
ning, because scan time is costly and one wants to make
sure the task is clear so that scanning can proceed un-
interrupted. Pilot studies can also be used to estimate
effect size, although it is known that small samples can
overestimate effect size.34 Then, an independent sample
(whose size has been determined using a power calcu-
lation) consisting entirely of new subjects should be
acquired to formally test the hypothesis. Preregistra-
tion allows researchers and reviewers to distinguish
between a priori, hypothesis-driven analyses and post hoc
exploratory analyses, which are intended to generate new
hypotheses. Several preregistration sites now exist (eg,
Open Science Framework https://osf.io/registries/176), and
several neuroscience and psychology journals now allow
researchers to conduct preregistered reports (https://
cos.io/rr/). We hope that interest in preregistration will
grow within the pain community. We recognize that
because of an emphasis on novelty among publication
and funding outlets, the choice to follow a path from
exploratory to replication studies is generally not in the
hands of young or even senior investigators. However,
because of the paucity of replication studies in fMRI,
and its reliability being called into question,23,54 we join
others in advocating for a funding and publication climate
in which confirmatory neuroimaging studies are
encouraged.11,164

Analysis
In this section we provide an overview of the analy-

ses that should appear in a typical imaging report and
provide some guidance about how choices might affect
pain studies. We focus primarily on the Results section
of a typical fMRI-BOLD investigation, because these are
the most prevalent type of studies, although we ac-

knowledge structural MRI studies where relevant. Other
modalities may have different analysis steps, and spe-
cific literature should be consulted. Furthermore, trainees
should refer to more comprehensive articles on how to
analyze and report neuroimaging studies.173,184

Preprocessing
When data are collected, several steps are necessary

to transform the data into the proper multidimen-
sional format that can undergo statistical analysis. These
transformations are grouped together and generally re-
ferred to as preprocessing. A summary of these steps is
provided in Fig 3. The fMRI pipeline usually includes steps
to: 1) remove the first set of volumes acquired (usually
between 5 and 10), because it takes some time for the
magnetic field to reach a steady state; 2) correct for the
fact that fMRI data are collected in slices, and slice time
acquisition differs within each time point (“slice time cor-
rection”); 3) test whether the head moved at any time
point, which can induce artifacts, and correct for any head
motion so that analyses capture to the same brain region
over time (“motion correction”; the interested reader is
referred to other sources for in-depth discussion of the
problem with motion in MRI, and reviews of approaches
to motion correction94,95,106,185,236); 4) remove high- or low-
frequency noise that can contaminate the signal or lead
to spurious results (“temporal filtering”); 5) register the
subject’s functional images with structural images (because
the images are collected separately in time and head dis-
placement might occur; “coregistration”); and 6) spatially
transform the individual’s images to a standard tem-
plate brain (eg, Montreal Neurological Institute template,
Talaraich-Tournoux atlas, a group mean) with a specific
stereotaxic space so that analyses are possible across in-
dividuals, who vary in neuroanatomy (“normalization”).
The normalization step is also important for spatial speci-
ficity when reporting results of an fMRI study, and allows
findings to be interpreted by other researchers and be
included in subsequent meta-analyses. Several addi-
tional optional steps might occur at this stage (eg,
correction for artifacts, spatial smoothing, etc), but details
of these individual procedures are outside the scope of
the current review.83,112,185

Preprocessing structural MRI (sMRI) data for gray matter
analysis largely comprises: 1) removing scanner-induced
noise from the structural T1-weighted brain images, and
2) segmenting tissues on the basis of image contrast, and/
or model the tissue of interest. Finally, the images are
transformed and registered to a stereotaxic coordinate
space for analysis. For example, for a gray matter analy-
sis the B1 field is calculated to remove signal
inhomogeneities. This allows for better tissue classifica-
tion, and better estimates of gray matter volume or
cortical thickness. For diffusion-weighted scans, which are
used for white matter analysis, susceptibility artifacts, such
as eddy currents induced by gradients coils, are cor-
rected using various algorithms. Next a diffusion model
(whether the tensor model to calculate fractional an-
isotropy, or a tractographic model) is calculated and
applied to the data.
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It is important to note that many of the algorithms used
for these specific steps may vary as a function of soft-
ware package (ie, SPM [http://www.fil.ion.ucl.ac.uk/
spm/], vs AFNI [https://afni.nimh.nih.gov/] vs FSL [https://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/]), as well as the fact that
individual programs exist to optimize each of these steps.
We highly recommend that new researchers/trainees care-
fully investigate the specifics and defaults of the analysis
software. Default assumptions are not always transpar-
ent, and may not always suit your individual needs. For
example, if a researcher is interested in effects in small
regions like the periaqueductal gray or the hippocam-
pus, he or she might want to minimally spatially smooth
the data (which blurs the boundaries of image units [3-D
pixels, or “voxels”]), rather than use the default values
within a software package. Large smoothing kernels are
suitable for analyses of cortical regions, but not for smaller,
more discrete brain regions.193 As another example, the
default settings of SPM (http://www.fil.ion.ucl.ac.uk/spm/)
can restrict statistical analyses to regions where the cal-
culated signal is greater than a set threshold. This can
particularly affect voxels that are prone to signal loss from
susceptibility artifacts in regions with tissue-air
boundaries,43 such as the inferior temporal lobe and the
orbitofrontal cortex and other ventral brain areas, which
are of interest in many pain studies. These artifacts can
be reduced through informed decisions about acquisi-
tion parameters.63,92,188,207,223 Neuroimagers benefit from
developing expertise across multiple analysis packages and
making informed decisions about which approach to use
for a given analysis. Imagers should also develop prac-
tices that involve visualizing data at each stage of analysis,
which can help to identify such issues as substantial
dropout, missing data, and poor normalization or
coregistration, among other important steps. Of course,
when researchers elect to apply specific approaches, they
should report their decision process and the reason that
they opted for a given technique. The following 2 sec-
tions describe analysis considerations unique to task-
based fMRI and rs-fMRI, respectively.

Subject-Level Task-Based fMRI
Statistical Analyses

When fMRI data have been preprocessed, they can be
analyzed in relation to the tasks that were adminis-
tered during the fMRI session. The simplest way to think
of the most common fMRI subject-level analysis ap-
proach, referred to as the general linear model (GLM),
is that we test the correlation between each voxel’s ac-
tivity and the events that occurred during the experiment.
To accomplish this, the researcher must carefully track the
timing of all the events in scanning sessions relative to
the start of scanning, including the stimuli delivered (eg,
noxious stimuli, images) and any responses collected. It
is also important to record responses required for the
analysis (eg, pain ratings). A model representing the onset
and duration of the various stimuli, a time course of the
scan, is constructed (Fig 2). This stimulus time course will
then be transformed to represent an ideal response to
a given stimulus by combining the moments the stimu-
lus was presented with a wave-like function that captures
the biological delay in the BOLD response, referred to
as a hemodynamic response function, or HRF. There are
several options for HRF models, and these require an a
priori understanding of how hemodynamics vary on the
basis of the population studied, stimulus type, and the
brain region of interest (ROI). For example, HRF in the
brainstem, an important region when studying descend-
ing modulation of pain, may differ from those in the
cortex,99,127 and the HRF shape and timings are differ-
ent between young adults and elderly individuals.64 When
the events are combined, or “convolved” with the HRF,
this generates an example time course of what the BOLD
response would look like if activity within a voxel acti-
vation increased every time this stimulus was delivered
(Fig 2). Different software packages model the HRF dif-
ferently, and a researcher should understand how these
differences can affect their results.

The researcher can simultaneously model several dif-
ferent stimulus types or conditions at this stage, and can
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Figure 2. Stimulus convolution. Here, a hypothetical pattern of stimuli is convolved with the HRF. In the upper panel, an event-
related design is convolved to a double-gamma function to model the HRF. In the lower panel, the convolution of a block design
study is shown. A prolonged stimulus would, in theory, elicit repeated HRFs. These are summated to produce a regressor to produce
an idealized model of brain activity correlated to the stimulus. Note that the peak of the HRF is delayed with respect to the onset
of the stimulus, and the offshoot is delayed with respect to the offset of the stimulus.
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test whether the magnitude of the response varies as a
function of another variable (eg, whether responses to
a noxious stimulus are larger in the trials when the par-
ticipant rated the stimulus as more painful). This is called
a “parametric analysis.”120 The different independent vari-
ables, or regressors, included in the GLM depend critically
on the a priori design of the task, and the comparisons
that the researchers planned to make. To enhance the
ability to measure task-related activation (ie, activation
that correlates with the design-based regressor created
through the convolution steps described previously), re-
searchers can include nuisance variables, or regressors of
no interest (eg, head motion, intercepts for each block
of data acquisition in case mean activation varies when
the scanner stops and starts), to capture the noise in the

MRI signal. When the design matrix is complete, it is re-
gressed against every voxel in a “mass univariate”
approach82 for each of the many hundred thousand or
so voxels that make up standard fMRI whole brain ac-
quisition. Effectively, this means that an analysis is
performed for each voxel in the brain—leading to more
than 100,000 statistical tests, and thus a high potential
for false positive results (see the section, Group-Level
Analyses, for discussion on correction for multiple com-
parisons). This subject-level analysis results in a coefficient
(“beta”) for each voxel for each element of the design
matrix (all stimulus conditions and all nuisance vari-
ables). The coefficient describes the strength of the
relationship between that regressor (the experimental
condition or conditions of interest) and the voxel’s time
course of activation. This usually involves averaging across
stimuli and tasks, although some pain researchers use
single trial analyses169,189 to generate 1 beta for each event
(per voxel).7,8 Researchers can also compute contrasts across
these regressors at the subject-level (eg, to compare high-
and low-intensity stimulation) to generate voxelwise con-
trast values that describe whether a given voxel’s
activation strongly differs on the basis of condition. Whole
brain summary statistic maps of these voxelwise beta co-
efficients or contrast values are then passed to group-
level analyses to facilitate statistical analyses across groups
of subjects.

Subject-Level Rs-fMRI Analyses
Rs-fMRI is becoming increasingly popular in the

pain neuroimaging community, because it allows the in-
vestigation of intrinsic brain functional connectivity
associated with pain-related phenotypes, including pain-
related characteristics (eg, severity, duration) as well as
cognitions (eg, pain hypervigilance, fear of pain,
catastrophizing).12-15,42,57,111,123,129,153 The preprocessing steps
for rs-fMRI are similar to those of task-based connectiv-
ity, with a few notable exceptions (Fig 3). Rs-fMRI does
not rely on a task-based regressor. Rather, time courses
from spontaneous activity serve as a regressor. There are
2 primary approaches to the resting state analysis: seed-
based connectivity or independent components analysis.
The former relies on an a priori interest on the connec-
tivity of a particular brain region, whose time course
becomes the regressor. This approach requires addi-
tional nuisance regressors to correct for physiological
noise, such as cardiac pulsatility and respiration-related
motion. There are several approaches to correct for such
noise,35 such as: 1) measuring heart rate and breathing
rate and including these measures as regressors, 2) post
hoc correction for physiological noise,93 3) regressing out
time courses from white matter and cerebrospinal fluid,20

or 4) global signal regression. In contrast, the indepen-
dent components analysis method does not rely on the
time course of a particular brain region, but rather is a
data-driven approach that groups correlated regions. In
this method, artifacts can be identified on the basis of
the spatiotemporal patterns of the resulting compo-
nents, and artifactual components can be removed from
the signal. When summary statistics maps of connectivity

Figure 3. fMRI preprocessing pipeline. This flow chart repre-
sents 1 common fMRI preprocessing pipeline. The inclusion/
exclusion of each step, as well as the order of steps, may vary
on the basis of a study’s unique goals and analysis plan. Op-
tional steps are shaded in gray, the step specific to rs-fMRI (but
optional in task-based studies) has a dashed outline. Abbrevia-
tion: MR, magnetic resonance. *Steps requiring quality check.
Adapted from: Poldrack et al.185
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have been produced, a group-level analysis can be per-
formed, similar to task-based data.

Group-Level Analyses
When each subject’s fMRI data have been prepro-

cessed, and statistics are performed on individual data
sets, a group-level analysis is undertaken. The purpose
of this analysis is to identify brain regions that are
significantly activated across participants or between
groups. At this stage, univariate statistical tests can be
performed, or multivariate statistics can be used. We focus
primarily on traditional univariate statistics, which are tests
that identify voxels in which there is significant activa-
tion as a function of the condition (or contrast) of interest.
Perhaps the most common group-level analysis is the one-
sample t-test on contrast maps across all participants to
test whether activation at each voxel differs signifi-
cantly as a function of the contrast (for example, whether
all participants show greater activation in response to
noxious, relative to innocuous, stimuli). This generates a
whole-brain statistical map (eg, a distribution of t-statistics
across voxels), which must then be appropriately
thresholded for inference. Other standard group-level
analyses include t-tests, which compare activation across
groups (eg, patients vs controls), and correlation analy-
ses, which identify the strength of the correlation between
voxelwise activation and individual differences in some
known parameter (eg, behavioral performance, symptom
severity, or questionnaire measure).

As with any type of statistical analysis, one must ensure
results are not driven by outliers. This is particularly im-
portant in small samples, and brain–behavior correlations,
but is true of all experiments. As an example, with a small
sample size, a correlation between pain duration and the
thickness of the cortex in a particular brain region might
be driven by a single subject, or a small subset of sub-
jects. Results should be visualized (ie, scatter plots should
be inspected to determine whether effects can be at-
tributed to a small number of individuals). Alternatively,
automated statistical techniques such as robust
regression2,21,89,221 can reduce the contribution of outliers.

The group-level analyses outlined previously, when con-
ducted on each voxel throughout the entire brain, require
tens of thousands of statistical tests (ie, multiple com-
parisons). Because of the inherent nature of statistics, this
will necessarily lead to a cumulative proportion of false
positive results. Therefore, it is important to adjust or
correct for this inflated rate of false positive results (ie,
correct for multiple comparisons). There are 2 funda-
mental approaches to the multiple comparisons problems:
1) ROI analyses, which reduce the number of multiple
comparisons on the basis of a priori hypotheses, or 2) mul-
tiple comparisons corrections, which correct for the
number of tests performed. These are not mutually ex-
clusive, because testing multiple ROIs will still require
multiple comparisons correction. We also note that thresh-
olds can be computed at the level of the voxel or the level
of the cluster (for a review of thresholding methods, see
Poldrack et al185). We describe each of these consider-
ations in the following paragraphs.

To reduce the number of multiple comparisons, re-
searchers can reduce the search area within the brain and
restrain analyses to a priori ROIs. This excludes statisti-
cal tests from brain regions we do not expect to be
implicated in the analysis, and reduces the number of
comparisons, because tests are restricted to voxels within
ROIs. When an analysis is performed on every voxel within
an ROI, multiple comparisons corrections must still be con-
ducted, but there will be substantially fewer comparisons
for which to correct. Researchers can also extract various
coefficients across the ROI, depending on their ques-
tion of interest. For example, the mean of the time series
across all voxels in the ROI can be extracted. Another, and
perhaps better, option is to extract the first principal com-
ponent of the time series in the voxels. The resulting
eigenvalue is effectively a weighted average of the ac-
tivation in the ROI, where atypical voxels are
downweighted. When the metric of interest is ex-
tracted, a single statistical test can be conducted, which
would therefore be evaluated with a standard P < .05 sta-
tistical threshold if data are combined (eg, averaged)
across voxels within the ROI. However, if coefficients are
extracted from multiple ROIs or multiple voxels within
an ROI, multiple comparisons correction is required. So
how do researchers identify appropriate ROIs? One way
is to include a functional localizer—an fMRI scan or con-
trast that excludes the condition of interest. For example,
if we want to determine how a painkiller affects pain-
related brain activation, a baseline scan of pain-related
activation, in which each participant receives high- and
low-intensity stimulation, can be performed before an-
algesic administration. This generates a functional localizer
scan, which can be analyzed with whole-brain statistics.
Regions that show significant pain-related activation
would then be used as ROIs for subsequent tests of
analgesic-related reductions. In this case, ROIs are on the
basis of the same subjects within the same scanner; one
can even identify subject-specific ROIs if the localizer task
is designed properly70,90 (ie, a substantial number of trials
per condition during the localizer run; details are dis-
cussed elsewhere113,174,182). Researchers can also use a priori
ROIs on the basis of the relevant literature. In this case,
ROIs may be defined on the basis of brain atlases that
are in standardized stereotaxic space, using either neu-
roanatomical boundaries or extracting data from a sphere
or box placed at specific coordinates. There are many
atlases, and researchers must be judicious in their selec-
tion of ROIs, on the basis of their aims. Alternatively, ROIs
can be on the basis of meta-analyses (eg, with auto-
mated term-based meta-analyses such as through
Neurosynth234). Regardless of how individual ROIs are se-
lected, the rationale for such decisions must be reported
and should be carefully evaluated.

If a researcher does not have strong a priori hypoth-
eses about specific ROIs, or wants to conduct whole brain
analyses, they must use multiple comparisons correc-
tions to account for the number of tests and adjust P-value
thresholds accordingly. Several appropriate methods exist.
For example, familywise error correction and Bonferroni
correction set adjusted P-values by dividing the thresh-
old by the number of tests. This leads to a very stringent
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threshold. The false discovery rate (FDR), in contrast, is
a more lenient method to correct for multiple compari-
sons, which controls for a false-positive proportion (ie,
the fraction of detected voxels that are false positive;
which is an unobservable metric).22 In FDR correction, a
rate (q) between 0 and 1, is specified, which represents
the maximum FDR that will be tolerated on average. Next,
uncorrected P values of suprathreshold voxels are ranked
on the basis of significance (from smallest/most significant
to largest/least significant). Next, the voxel (or cluster)
whose probability is greater than its ranking divided by
the total number of tests, as corrected by a desired FDR
(q-value) is identified. This voxel’s P value is set as the
threshold for a given FDR.91 Each software package might
implement corrections slightly differently (eg, some ap-
proaches account for the spatial contiguity of activation;
cluster-wise correction), whereas others set thresholds on
the basis of voxelwise values alone. Cluster correction is
now advised231—especially for FDR correction44—although
there are notable differences in how this is imple-
mented in various packages73 and this is an active area
of debate in the broader neuroimaging community.73,183

Comparisons across these approaches have been dis-
cussed elsewhere and we advise interested researchers
to consult these articles for more thorough treatment of
considerations involved in methods for multiple com-
parison corrections.24,73,150,151,171,231

Another form of multiple comparisons correction is to
perform nonparametric tests, such as permutation testing,
which do not make parametric assumptions about the
data. Permutation testing resamples data and random-
izes the assignment of observations. This process is
repeated several times (usually >1,000) to empirically de-
termine a null distribution of the data, and to determine
whether the observed differences are significant on the
basis of the data, and the α value is set to minimize false-
positive results. A notable advantage of permutation
testing is that it identifies the false-positive rate on the
basis of the data. However, permutation testing can be
very computationally intensive. For a comprehensive
review, see Hayasaka and Nichols.104

Finally, we note that recent studies have shed light on
an inflated rate of type I errors in neuroimaging
studies.73,105,110 This indicates that there is an abnor-
mally large number of significant findings that are
reported in these studies—implying that negative results
are not being reported (the so-called “file-drawer issue,”
where negative results are not published, and that only
results that meet statistical significance are reported,
despite a large number of statistical tests performed (p-
hacking). The field has become increasingly aware of and
vigilant against such practices, because they can hinder
true progress, and perpetuate false-positive results.

Multivoxel Pattern Analyses
The analyses we reviewed are all referred to as mass

univariate statistical tests, because each voxel is modeled
as a single outcome in a statistical test, and multiple tests
are conducted. In multivariate analyses, this relationship
is switched—multiple voxels are modeled together rather

than individually. One of the first multivariate analysis
approaches was partial least squares,155 which identifies
patterns, or distributed networks of brain activity related
to a construct (such as a behavioral task). This approach
was used by Seminowicz and Davis to investigate the neural
underpinnings of pain–cognition interactions.198 More re-
cently, this approach was used to compare networks
dynamics with increasing cognitive loads in patients with
fibromyalgia compared with controls.41

More recently, classifier-based multivoxel pattern analy-
sis, or MVPA, have become increasingly popular in pain
research (see Haxby103 for a review). In MVPA, algo-
rithms from computer science and machine learning
identify patterns across voxels that relate to a single con-
struct. For example, MVPA has been used to test whether
voxels within the anterior cingulate discriminate physi-
cal pain from other stimuli,49,140,219,230 or to identify features
that can detect chronic pain.10,100,137,212 In MVPA, machine
learning algorithms use a subset of the data to train a
pattern of weights across voxels that discriminate between
states (eg, acute pain vs other modality).161,191 The pattern
is then tested against data that were not included in the
training set to determine whether it can reliably dis-
criminate between states (eg, predicting that the condition
was acute pain). This is repeated iteratively with differ-
ent sets of held-out data through “cross-validation,” which
then allows researchers to assess how well the pattern
predicts outcomes. MVPA is a robust method to recover
information encoded in ensembles of voxels. There are
different algorithms and approaches that can be used for
MVPA, but these are outside the scope of this primer. For
a review, please see Cohen et al.47

Functional Connectivity Analyses
Another way to move beyond the consideration of

individual activation clusters, or “blobs,” is by acknowl-
edging the network nature of brain activity through
functional connectivity analyses. Functional connectiv-
ity refers to a family of techniques that examine temporal
correlations in BOLD activity across brain regions (highly
related to the rs-fMRI techniques reviewed previously).
Critically, despite the term “connectivity,” functional con-
nectivity does not rely on anatomical connections, but
on simple correlations between the time courses of dif-
ferent regions. Functional connectivity approaches can
be divided into several classes: those that assume static
relationships between regions over time (“static connec-
tivity”), those that assume that relationships vary over
time (“dynamic connectivity”), and those that identify
the influence of neural regions on each other (which
can provide directional inferences in connections; “ef-
fective connectivity”). The simplest static connectivity
measure is the seed-based analysis, in which research-
ers extract the time series from a single ROI (the “seed”)
and test for correlations between that region’s activa-
tion and activation throughout the rest of the brain.
The region’s activation is used as the predictor in a GLM,
and this results in a map of the strength of the correla-
tions at each voxel, which can be threshold according
to the mass univariate approach described previously.
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For example, one study reported that patients with tem-
poromandibular disorders (TMD) have abnormally
stronger connectivity between the medial prefrontal
cortex and the posterior cingulate cortex/precuneus. This
strength of this abnormal connectivity was related to
pain rumination in these patients.129

A more complex approach to static connectivity is to
use principles from graph theory.19,32,88,98,206 In this
framework, brain structures are called nodes, and the
connections between them are called edges. A graph
theoretical approach captures the structure of a network
(a set of nodes) and allows researchers to identify a variety
of metrics for the network elements, including the density
of connections of the brain regions (node degree), the
clustering of neighboring nodes, the distance needed to
travel between 2 regions (path length, or efficiency),
which regions are highly connected to many other regions
(ie, hubs), and which hubs are crucial (centrality). To-
gether, these can be used to map networks in pain, and
how such networks may be altered in chronic pain con-
ditions. Studies indicate that graph theoretical analysis
of rs-fMRI can discriminate between placebo respond-
ers and nonresponders in osteoarthritis,102,213 and has
potential in the development of translational biomarkers
for pain.122 Additionally, these graph theoretical ap-
proaches have been used to investigate brain network
abnormalities in chronic pain disorders.124,135,149,152 Whereas
the details of these graph theoretical approaches are
beyond the scope of this review, we refer readers to tech-
nical reviews of graph theoretical approaches to
neuroimaging.19,32,75,88,206

Whereas static connectivity measures assume that
regions vary over time but their correlations remain stable,
dynamic connectivity approaches allow the correlations
across regions to vary as well. Dynamic connectivity has
been growing in popularity within the pain community.128

Although the field of dynamic connectivity is still rather
new,114 one type of dynamic connectivity approach has
existed for quite some time: the psychophysiological in-
teraction (PPI).85 This is essentially an interaction analysis,
whereby a researcher can ask whether a condition modu-
lates the connectivity between 2 brain regions. For
example, a PPI was used to show that there is stronger
coupling between the periaqueductal grey (PAG) and the
rostral anterior cingulate cortex (rACC) under placebo an-
algesia than under a control condition.26 PPI can also be
used to examine whether altered connectivity is associ-
ated with a behavioral state. This approach has been used
to show that increased ventrolateral prefrontal cortex
(vlPFC) connectivity with the amygdala and nucleus
accumbens during controllable pain was associated with
reduced anxiety.195 In PPI analyses, the “dynamic” aspect
is known and driven by the experimental design (eg,
placebo blocks vs control blocks). In other approaches,
dynamics are more fluid. Sliding window analyses examine
connectivity across time by binning the task into spe-
cific chunks of time; this approach was used to show that
individuals with more dynamic connectivity between the
medial PFC (mPFC) and PAG were more apt to sponta-
neously disengage from pain.130 Finally, new approaches
can also use purely data-driven approaches to identify

moments when networks reconfigure. For example, state-
based dynamic connectivity analyses use latent models
to estimate whether brain networks remain stable or shift
connections over time.190 This approach revealed disso-
ciations among brain networks during remifentanil
administration (eg, connectivity within networks associ-
ated with emotion remained stable, whereas connectivity
within networks associated with pain reorganized as drug
infusion increased).

In contrast to static and dynamic connectivity, effec-
tive connectivity tests the plausibility of directional brain
networks models—that is, not only is the activity between
2 brain regions correlated, but the effect of a neural
region on another.81,84,87,88 This allows for stronger infer-
ences about the flow of information in the brain.156

Effective connectivity usually requires that a set of brain
regions of interest be defined a priori, although some
path analysis approaches such as voxelwise multilevel me-
diation analysis,7,220 allow for whole brain searches. One
such method, dynamic causal modeling uses Bayesian sta-
tistics to adjudicate between physiologically plausible
models of interactions between brain regions (or
nodes).81,148 When a model has been selected, the algo-
rithm can determine how a condition can modulate the
connectivity strength (or edges) between the nodes that
comprise the network. This method has been used to de-
termine the brain networks underlying isosalient
nociceptive and innocuous stimuli of other modalities.142

Mediation analysis tests whether the relationships
between 2 variables is significantly reduced when a third,
intervening variable is taken into account. Mediation can
be used as a form of effective connectivity by testing
whether the relationship between a brain region and be-
havior, or the correlation between 2 brain regions, can
be partially explained by connections with another region.
For example, this method has been used to show that
connectivity between the ventral striatum and ventro-
medial prefrontal cortex mediate the effects of self-
regulation on pain.232 Another study used mediation
analysis to show that functional connectivity between the
lateral prefrontal cortex and the PAG during rectal dis-
tention in healthy controls and patients with ulcerative
colitis were mediated by the medial prefrontal cortex.154

Notably, such a relationship was not observed in pa-
tients with irritable bowel syndrome, although the
difference between the 2 groups was not formally tested
and cannot, therefore, be considered a group differ-
ence. Another example showed that the relationship
between structural gray matter abnormalities in the
supplementary motor area and pain-related helpless-
ness in temporomandibular disorders was mediated by
corticofugal motor white matter tracts.194

One might assume that these group-level analysis de-
cisions are atheoretical with respect to pain mechanisms.
This is not, however, entirely the case. As an example,
one of the most basic historical debates in the field is
whether pain is the product of “labeled lines” running
from the periphery to pain-specific areas in the brain, or
rather as a function of temporal and spatial patterns of
activity throughout the neuroaxis. Labeled line theo-
ries date back centuries162 and are largely on the basis
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of neuroanatomic studies of spinal pathways and lesion
studies. This locationist approach led to statistical analy-
ses biased toward clusters of activation, such as traditional
univariate GLM analyses. Local interactions or spatial pat-
terns within these clusters are obscured by spatial blurring.
As such, these analyses have traditionally led to more
modular interpretations of neural processing (ie, that
single regions have single functions)—a framework more
consistent with a specificity account of neural pain
processing. However, this account has largely been unable
to identify specific brain regions that are necessary and/
or sufficient for the experience of pain. As described
previously, MVPA has been used to increase specificity by
searching for spatial patterns associated with particular
psychological experiences. Such an analysis technique op-
erates on the belief that activation more specific to pain
will be identified by searching for unique patterns of
spatial distribution, clearly more consistent with a pattern
account. Similarly, studies using functional connectivity
or changes in functional connectivity across different time
epochs are likely to result in interpretations of pain as
a function of temporal and spatial patterning, rather than
the product of activation of any single specific pain center.

Model-Based Analyses
Another approach to analyze fMRI data is the use of

models to identify brain regions or networks related to
perceptual experiences and more abstract concepts, such
as the hedonic value of pain. One approach to model-
ing perceptual (and thus subjective) experiences, percept-
related fMRI, was developed by Porro and colleagues.186

This method requires a continuous rating of a measure
of interest for the duration of the trial. This point-by-
point perceptual rating curve is used as a regressor of
interest in the statistical model. This method has been
used to investigate prickle,58 paradoxical heat,59 and heat
pain intensity coding12 in healthy participants. It has also
been used to investigate brain activity to experimental
stimuli in chronic pain conditions.13,134

To investigate more complex behaviors, such as decision-
making, valuations, and social interactions, neuroimagers
have adopted engineering modeling approaches. Theo-
retical computational models of such processes are
developed to estimate underlying computations and
predictions about neural signals,61,62,201,233 and the
dynamic interactions between theoretical signals. These
models can generate predictive time-series that can be
used as regressors in the statistical model to identify
correlated brain activity, and identify regions underly-
ing the process. Because of the complexity of pain,
such approaches may be appropriate for pain research.
Indeed, several families of computational models
have been used to investigate the neural computations
related to pain, including estimating the subjective value
of pain and its relationship to cognitive factors and
modulation.74,133,202,208,209,217,227,228,235

Interpreting Data and Making Inferences
The ability to observe changes in oxygenated blood flow

throughout the brain while a subject is in a particular

behavioral or cognitive state is extremely powerful. In-
terpreting these activations, however, can be complicated,
and the inferences that can be drawn are affected by a
number of factors. We discuss some of these factors, and
the limitations they pose on the interpretability of data.

Inference
Because of the high cost of neuroimaging studies, and

the difficulty in recruiting chronic pain populations, most
pain imaging studies tend to be cross-sectional. These
studies are important and useful because they can provide
information on mechanisms. For example, if a brain ac-
tivation is significantly correlated with pain intensity, one
might conclude that that the activity is pain-related.
However, observed activation might reflect many other
correlated mental processes, so control conditions and
interpretations must be carefully considered before making
such conclusions. For example, correlations with pain in-
tensity could reflect processes involved in magnitude
estimation,12 salience detection,115,139,166 defensive
reactions,163 or other processes that accompany pain
but are not specific to pain. One must ensure that the
control condition is sufficient for making claims about
differentiating between these processes. Furthermore, the
exact relationship between BOLD activation and under-
lying neuronal activity is still an open area of
investigation.25,107,108,175,204 Brain activation is inherently cor-
relational, and authors often speculate on the biological
basis of a finding. Whereas activations observed are related
to the stimulus, one cannot infer causation from fMRI
alone. In the absence of a task or intervention that can
directly test a brain region (eg, eliciting a virtual lesion
using transcranial magnetic stimulation), we can only infer
associations, but not causal links. For example, higher dor-
solateral PFC (dlPFC) activation might be associated with
increased placebo analgesia (ie, reduced pain8,48,199), but
if one wants to test whether the dlPFC causes placebo
effects on pain, one must show that placebo effects are
abolished when dlPFC activity is disrupted. Indeed, re-
searchers have done exactly this,199 indicating that the
dlPFC causally contributes to placebo analgesia. Al-
though this limits the inferences that might be drawn
from fMRI alone, it is also clear that activation-based fMRI
studies help identify brain candidates for causal inter-
ventions, and thus their potential utility remains enormous.

A related inferential difficulty arises when group dif-
ferences are observed between pain patients and healthy
controls in cross-sectional studies. Without additional data,
it is impossible to determine whether these differences
preexisted the condition (and therefore represent pre-
disposing or possibly causal factors) or whether they are
related to the cumulative effects of living with a chronic
condition. Nevertheless, such inferences are frequently
implied. For example, in structural imaging, it is common
to refer to observed group differences as “plasticity” or
“changes,” implying (without support) that the differ-
ences represent cumulative effects of disease. Some
groups have attempted to form stronger inferences by
performing correlations with disease characteristics, such
as pain intensity, duration, questionnaire data, and other
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metrics,57 but even when such correlations are found, it
remains difficult to determine whether they are due to
cumulative effects of pain or other long-term effects of
chronic disease (eg, mood and behavioral changes). Fur-
thermore, such inferences are still limited by their
correlational nature. Modeling techniques, such as
dynamic causal modeling86 and mediation analysis145 allow
inferences about the direction of information flow in
neural circuits during a mental process or across partici-
pants, but they are still limited in causal inferences because
they rely on the statistical variance within a cross-
sectional data set. The strongest way to address this issue
is to perform longitudinal studies in healthy subjects and/
or chronic pain patients—scanning subjects before and
after a therapeutic intervention,97,118,131,200 or before the
progression from acute to chronic pain.14,101 Although such
designs pose challenges in terms of resources and time,
they allow for stronger and more mechanistically infor-
mative inferences about temporal precedence.

Logical Fallacies in Neuroimaging
Reverse inference is the widespread tendency to ascribe

a function to an observed pattern of activation (eg, “we
observed activation in the visual cortex, therefore the par-
ticipant is probably looking at something”). This issue has
been discussed in depth in other reviews116,181 so will only
be covered briefly. Reverse inference is tempting and, to
some extent necessary, because the ultimate goal of scan-
ning is elucidating mechanism. Caution is required,
however, because reverse inference relies on a logical error
(“affirming the consequent”). Despite the fact that the
logic underlying such inferences is flawed, the probabil-
ity that they are true can still be high if (as in the
previously mentioned example of the visual cortex) the
region in question is linked fairly exclusively with a par-
ticular function. In pain imaging, however, we frequently
observe activation of regions (eg, insular and anterior cin-
gulate cortices) that are involved in a wide variety of
functions.234 As a practical example of how this might
affect inferences in pain studies, there is a widespread
tendency to interpret observed activations in the
periaqueductal gray as an indication that descending
modulation is taking place. Although such inferences can
be strengthened by corroborating evidence (eg, corre-
lation with reduced pain ratings), it is commonly forgotten
that the PAG is involved in many functions also rel-
evant to pain, including escape and avoidance responses,16

prediction coding,192 and emotion.16,31,196 Because of this
ambiguity, it is critical that experiments be designed to
include appropriate control conditions and supplemen-
tary measures to adjudicate between these competing
accounts.

A second common error that affects inferences is the
so-called “imager’s fallacy”: that a difference in signifi-
cance implies a significant difference.53 Three instances
of this fallacy in imaging studies are group compari-

sons, implied lateralization, and subregional specialization.
Researchers often conduct separate analyses for each
group in a between-groups study (eg, to examine acti-
vation within patients and activation within controls). In
such cases, it is tempting to display separate thresholded
group maps and draw qualitative comparisons on the basis
of the extent of activation in each group. However, one
cannot assume that a region was differentially acti-
vated simply because it meets a threshold for significance
in one group and not in the other: apparent differ-
ences may simply reflect near-threshold differences (eg,
the P value for a particular cluster was .049 for one group
and .051 for the other). To conclude that there was a
group difference, the groups must be formally com-
pared using an appropriate statistical test (ie, an
interaction analysis). Relatedly, when comparing a cor-
relation between 2 groups where 1 group shows a
significant correlation with a behavioral measure, but the
second group does not have a significant correlation, it
is tempting to conclude that there are group differ-
ences between these correlations. However, the
correlation coefficients must be normalized using Fisher
z-transformation,78 and then formally compared. A similar
error is often made with respect to laterality claims: if
significant activation is observed on one side of the brain,
but not in the symmetric contralateral brain region, it
is common to conclude that the effect in question is lat-
eralized. Without formally comparing the activation
between the 2 sides, however, there is no basis for ruling
out that processing is bilateral. Similarly, it is common
to use significant activations to draw inferences about
specialization of subregions of a given structure. As an
example, on the basis of anatomical tracing and other
evidence, the insula has often been divided into a pos-
terior region associated with sensory input and an anterior
region involved in more abstract components of pain per-
ception (eg, interoception).50-52,67,160 Neuroimaging findings
can only support this functional gradient if formal sta-
tistical testing is performed to show such selective
functional association.117

Conclusion
In this primer, we reviewed fundamental consider-

ations in the design, analysis, description, and evaluation
of a pain neuroimaging experiment. Investigators must
make many careful decisions when designing experi-
ments, and reports must be written so that reviewers and
readers in the community can evaluate the work appro-
priately, whether or not the reviewer has expertise in
imaging. We hope this primer provides a foundation for
pain clinicians and trainees without advanced training
in neuroimaging, and encourage interested potential in-
vestigators to continue to read about the unique
considerations involved in fMRI experiments by consult-
ing recent dialogues that address these issues and their
implications for the broader neuroimaging community.
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