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Abstract 

Background: Falls and near falls are common among people with Parkinson's (PwP). To date, 

most wearable sensor research focussed on fall detection, few studies explored if wearable 

sensors can detect instability.  

Research question: Can instability (caution or near-falls) be detected using wearable 

sensors in comparison to video analysis? 

Methods: Twenty-four people (aged 60 - 86) with and without Parkinson's were recruited 

from community groups. Movements (e.g. walking, turning, transfers and reaching) were 

observed in the gait laboratory and/or at home;  recorded using clinical measures, video and 

five wearable sensors (attached on the waist, ankles and wrists). After defining 'caution' and 

'instability', two researchers evaluated video data and a third the raw wearable sensor data; 

blinded to each other’s evaluations. Agreement between video and sensor data was 

calculated on stability, timing, step count and strategy.  

Results: Data was available for 117 performances: 82 (70%) appeared stable on video. 

Ratings agreed in 86/117 cases (74%). Highest agreement was noted for chair transfer, 

timed up and go test and 3m walks. Video analysts noted caution (slow, contained 

movements, safety-enhancing postures and concentration) and/or instability (saving 

reactions, stopping after stumbling or veering) in 40/134 performances (30%): raw wearable 

sensor data identified 16/35 performances rated cautious or unstable (sensitivity 46%) and 

70/82 rated stable (specificity 85%). There was a 54% chance that a performance identified 

from wearable sensors as cautious/unstable was so; rising to 80% for stable movements. 

Significance: Agreement between wearable sensor and video data suggested that wearable 

sensors can detect subtle instability and near-falls.  Caution and instability were observed in 

nearly a third of performances, suggesting that simple, mildly challenging actions, with 

clearly defined start- and end-points, may be most amenable to monitoring during free-

living at home. Using the genuine near-falls recorded, work continues to automatically 

detect subtle instability using algorithms. 

 

 

 

 



Introduction 

People with Parkinson’s (PwP) fall twice as often as healthy older people [1-3]; 75% PwP 

reported near-falls in one year [4]. Fall prevention is a healthcare priority; programmes in 

PwP improve balance, although few demonstrated a reduction in fall rates [3, 5-8].  

Monitoring falls and instability could be beneficial for inactive people in poor health who fall 

frequently and sustain more injuries than healthy active adults [9 – 10]. 

Interest in automated fall detection is growing [11]. Although falls are unintentional, to date 

wearable sensor fall detection studies often focussed on simulated falls [12].  Only 7% of 

wearable sensor reports included monitoring in ‘a real-world setting’ [13]; few researchers 

recorded natural falls [14 –15]. Wearable sensors revealed differences between fallers and 

non-fallers with Parkinson’s and correlations with other measures of fall risk, such as the 

Timed Up and Go Test (TUG), [16].  They have predicted time to first fall (from gait 

variability) better than traditional measures [17] and the response to a change in 

medication [18]. In one study, researchers provoked PwP into taking missteps by asking 

them to perform a protocol of increasingly challenging balance tasks in a laboratory [19].   

Misstep detection was calculated by dividing the number of sensor detected missteps by the 

number of missteps identified by clinicians. The algorithm achieved a ‘Hit ratio’ of 93% and 

was used to detect 'suspected missteps' in the home environment.  Missteps were reported 

among a higher proportion of fallers than non-fallers but there was no way of establishing 

sensitivity or specificity [19].   

Interest in ‘cautious gait’ [20 – 24] is growing. Observational gait analysis suggests elderly 

people with ‘cautious gait’ walk slowly, taking short strides [13 – 14], appear unsteady [20] 

and reduce the velocity of their centre of mass [21].  Yet despite recognising ‘traditional 

tools’ in evaluating fall risk could be augmented [19], few researchers have attempted to 

detect caution or near-falls automatically [19, 25-26].   

Automatic detection of subtle instability could provide an opportunity to intervene at the 

near-falls [4] stage. Therefore the aim of this study was to explore the use of wearable 

sensors, in comparison to expert clinician video analysis, to detect subtle instability (caution 

or near-falls).  For this study, the clinically based ground truth was the identification of 

‘subtle instability’ made by the movement analysts (interpreting movement, facial 



expressions and comments) from video, cross checked with the raw data from wearable 

sensors (accelerometer and gyroscope). 

 

Methods 

Ethical approval was obtained by the University of Southampton, Faculty of Health Sciences. 

The researcher contacted Parkinson’s UK (a UK charity) in Southampton, Reading and 

Newbury as well as the University of the Third Age (a UK organisation providing educational 

and leisure activities to retired and semi-retired individuals). With branch chair approval, 

the study was publicised in newsletters and branch meetings. We invited participation by 

leaving information packs with freepost envelopes with group chairs. Those who were able 

to provide consent, walk unaided indoors, follow simple instructions and perform mobility 

tests for one hour were eligible to take part. Twenty-four people, 10 PwP (mean age 74 (SD 

7), Hoehn and Yahr 1-5, 6 female) and 14 healthy adults (mean age 74, 13 female) returned 

the completed reply slip indicating their interest to take part and were subsequently 

recruited to the study.  

Their movements were observed at Southampton General Hospital gait laboratory and/or at 

home performing actions associated with falling [9], recording with a tripod-mounted HD 

video camera (at 25 frames/second) and five unobtrusive (wristwatch size) wearable 

sensors. The battery-powered, non-commercial, tri-axial wearable sensors containing 

accelerometers (±8 g range at 0.25mg resolution) and gyroscopes (2000°/second at 0.06dps 

resolution) logged accelerations and angular velocities for subsequent downloading and 

analysis.  The researchers recorded age, gender, height, weight, medical history and recent 

falls.  They started the camera, activated and attached wearable sensors on Velcro straps 

round the waist, ankles and wrists, and measured limb-lengths and sensor positions and 

instructed participants to perform:  

 Chair Transfers (sit-to-stand and stand-to-sit).  

 TUG [16]: From a chair with arms, “Stand, walk 3m, then return to sitting” 

 Standing-Start 180° Turn Test (SS-180), [27]: Facing away from the camera, turn 

freely left or right to walk toward it, then repeat but “turn in the opposite direction” 

 3m Walk [28]: “Walk 3m toward the camera” 



 Tandem Walk [29]: “Take 10 steps in-line toward the camera, so heel touches toe 

each time” 

 Rising-to-Walk [30]: From sitting, “Rise to walk straight away (without pausing)”  

 Reaching High and Low [31]: Touch a target above head height; pick a coin off the 

floor 

Participants attempted the SS-180 (consisting of two turns) once, and other tests three 

times. Before and after each trial, participants waved to generate a recognisable pattern in 

the wearable sensors data, facilitating synchronisation and processing.  For the purpose of 

the study considered a near-fall (near-miss) as an occasion on which individuals would have 

had a fall if they did not manage to save themselves [4]. 

 

The following questions guided analysis: 

1. How do video analysts identify caution and near-falls during mobility tests? 

2. Can eyeballing raw wearable data detect the caution and near-falls?  

3. On which tests (and parameters) do video and wearable ratings agree most closely? 

 

Blind to each other’s evaluations, two researchers evaluated the videos and one the raw 

wearable sensor data using identical guidelines:   

 Rate performance ‘cautious’ and/or ‘unstable’, respectively, if participants appeared 

concerned/ alarmed about their balance (making sudden movements or saving 

reactions) in at least one trial. 

 Time tasks onset of movement until participant is sitting still again (chair transfers and 

TUG), until onset of first walking step (Rise-to-Walk), from onset of first turning step 

until onset of first walking step (SS-180); onset of first step until a foot crossed the 3m 

line (3m Walk); and onset of first step until end of tenth step (Tandem Walk).  

 Rate transfers (chair, TUG and Rise-to-Walk) using the Parkinson Activity Scale (PAS), 

[32]: 4 = Normal, no apparent difficulty (2 if hands used); 3 = Mild Difficulty (toes 

dorsiflex, arms swing or ‘rocks’; uncontrolled landing); 2 = Difficult, many tries, slow; 

abrupt landing (1 if hands used). 

 Count SS-180 turning and 3m Walk steps 

 Select ‘Turn Type’ [27]. 



 Score Tandem Walk ‘deviations from a straight line’ [29]: 0 = Normal for 10 steps; 1 = 1 

– 3 deviations; 2 = >3 deviations. 

 Determine Rise-to-Walk ‘Fluidity’ (yes/no) from whether the participant moved 

smoothly from the transfer into walking without pausing [30].   

 Rate the ‘Use of Support’ (yes/no) during high and low reaches, alongside high reach 

strategy (‘flat feet’ or ‘up on toes’), and low reach strategy (‘bend’ from the waist or 

‘squat’ bending the knees) [31]. 

 

The video analysts rated cautious and/or unstable movements together; grouped their 

comments and generate descriptions of apparent caution and/or instability. The wearable 

sensor analyst reviewed the sensor data for each activity, and based on the sensor output 

and activity performed, rated the trials. This was achieved by visually inspecting the 

accelerometer and gyroscope output of the most appropriate sensors as follows:  

1. Performances were rated ‘cautious’ based on the time taken to perform activities and 

'smoothness' in the accelerometer data, slower movements indicating caution, sudden or 

unexpected accelerations from the wrist, ankle and waist worn sensor data were 

rated ’unstable’. 

2. Chair transfer, TUG and SS-180 were timed determining the beginning and end of 

movements from waist worn gyroscopes; timings for the 3m and tandem walks were 

estimated from ankle worn sensors. 

3.  Chair transfers were assessed by exploring peaks in acceleration (and multiple attempts 

to stand) from the waist worn sensor. Symmetric and steady change in the accelerometer 

gravity vector from wrist sensors suggested use of hands (but could be confused with the 

hands resting on the knees or lap).  

4. Turning step count was estimated from the ankle accelerometer and gyroscope data by 

examining the peaks in outputs.  

5. Turn direction data was based on positive or negative rotation about the y-axis (primary 

torso axis) using waist worn gyroscope data; turn type inferred based on number of steps 

from the ankle worn sensors.  

6. Tandem walk instability was rated by identifying high/sudden accelerations from wrists 

sensors (interpreted as balancing or 'saving' reactions), additional steps (seen in ankle 

sensors) were interpreted as balancing steps. 



7. The fluidity of the rise to walk was determined by detecting any pause between the sit-to-

stand phase (waist worn sensor) and the first steps (ankle worn sensor).  

8. Indications of foot movements from ankle sensors during high reach indicated if 

participants came up onto their toes or if feet remained flat on the floor. Change in gravity 

vector data from waist worn sensors was used to estimate amount of waist flexion during 

low reaches. 

 

The percentage agreement on stability between video and wearable sensors the sensitivity 

and specificity (performances rated unstable or stable from video or sensors) and positive 

and negative predictive values (chances of identifying instability and stability) were 

calculated.  For continuous variables the mean difference between video and wearable 

timings and step counts and the 95% limits of agreement (mean difference +/- 2 standard 

deviations (SD)) are presented and to rank the tests and parameters on agreement, the 95% 

limit as a percentage of the video mean are presented were calculated. 

 

Results 

Twenty-four participants (19 women), 10 with Parkinson’s, aged 60 to 86 years (mean 74 

±8), 1.5m to 1.8m tall (mean 1.6 ±0.1), weighing 40kg to 94kg (mean 67 ±12) took part. The 

sample comprised 12 people within normal weight range,  eight overweight, one under-

weight and three obese (mean BMI 25 ±5) participants. Five participants (four with 

Parkinson’s) recalled repeated falls (median four).  Fifteen people participated at home and 

12 in the laboratory, including three in both settings.  During home testing a Low Reach and 

2 Rise-to-Walk were omitted for safety and 2 SS-180 and 5 TUG were omitted due to 

insufficient space.  Sensor data was missing due to wearable failures for two laboratory 

participants (3%), video data was missing due to recording errors for three home 

participants (2%) and 1% of data was missing due to overlooked evaluations. Video analysts 

rated 25/134 performances (19%) cautious only; seven (5%) unstable only; eight (6%) 

cautious and unstable; and 94 (70%) neither. In the 33 cautious performances (25%) 

participants concentrated markedly on the task (n = 18), making slow or contained 

movements (n = 27) in safety-enhancing postures (n = 22).  In the 19 unstable performances 



(14%) participants veered or counter-balanced (n = 10) taking errant steps or stumbles (n = 

12) necessitating saving reactions or stopping (n = 15). 

 

Video and wearable sensor data on stability was available for 117 performances: 82 (70%) 

appeared stable on video. Ratings agreed in 86/117 cases (74%) and highest agreement was 

noted for chair transfer, TUG and 3m walk, see Table 1. Wearable sensor data identified 

16/35 performances rated cautious or unstable from video (sensitivity 46%), Table 2, and 

70/82 stable performances (specificity 85%). There was a 57% chance a performance using 

wearable sensors that was identified as cautious or unstable was cautious or unstable 

(16/28), and a 79% chance a performance  detected using wearable sensors identified as 

stable was stable (70/89). 

 

The TUG generated closest agreement on time (Table 3), the 95% limit of agreement (-1.9s) 

being equivalent to 13% of the video mean (15.4s). However, balance performance of the 

TUG was relatively unchallenging as only 6/20 participants (30%) approached it with 

caution. In contrast, Rise-to-Walk time generated poor agreement on time, the 95% limit 

being 78% of the video mean (2.2s /2.8s).  However Rise-to-Walk generated most near-falls: 

2/13 participants (15%) appeared unstable setting off to walk straight from rising and the 

test was omitted for two participants who deemed likely to fall.   

 

Among other strategies (Table 4), best agreement (77%) was on whether participants rose 

onto their toes during High Reach. Agreement on reaching strategies and stability varied 

because it was difficult to identify a dividing line between the strategies, even from video.  

Closest agreement was on whether standing participants rose onto their toes; simple 

plantarflexion enabled a higher reach but in a less stable position on a smaller base. 

Movements were more complex when participants bent from the waist or squatted to reach 

to the floor.  

 

Agreement on SS-180 Turn Types was 66% overall but there was zero agreement on 

‘Toward’ and ‘Pivotal’ turns, while agreement for ‘On-the-Spot’ turns was 73% and for 

‘Lateral’ turns was 77%. The 3m Walk generated closer agreement on step count than the 

SS-180: for both tests, agreement was closer on timing than on step count. PAS generated 



better agreement on TUG and Rise-to-walk (21/31, 68%) than on chair transfers (28/50, 

56%, Table 4): in 26/32 discrepancies (81%) one of the wearable sensors used (in 20/26 

cases) suggested the participant used their hands, while the other wearable sensor 

suggested they did not.  Worst agreement (40%) was on deviation from heel-toe gait during 

Tandem Walk. Video analysts noted many obvious saving reactions (including stepping wide 

of the intended line, raising the arms rapidly, or grabbing the handrail) during Tandem 

walking, rated everyone cautious and observed near-fall in 6/10 participants (60%).  

 

Discussion 

Wearable sensor technology is advancing. As well as recording functional activities outside 

the laboratory, it is also vital to check validity of this data to ensure that the outputs are 

clinically relevant [33-34].  In the current study, movements during everyday activities were 

successfully recorded using video and wearable sensors for 24 older people in conjunction 

with clinically relevant gait and balance outcome measures. Only 6% of the potential data 

was lost due to technical and operator errors.  In agreement with others, our findings 

demonstrated that with clear definitions, wearable sensors could detect subtle instability 

[34-36] in (79%) cases when detecting caution and in 97(83%) cases when detecting near-

falls.  

Three activities emerged with the highest agreement when identifying subtle instabilities:  

chair transfer, TUG and 3m walk. Similarly, there was good agreement in terms of smaller 

deviations from the video mean for TUG time and 3m walk time. However, during this 

preliminary exercise, the wearable sensor data lacked sensitivity (in contrast to previous 

research on fall detection, where the number of false alarms is high [37]).  

 

Activities like TUG (i.e. incorporating multiple actions between clearly defined start- and 

end-points) and turning 180° from a standing start is likely to cause instability, are probably 

well suited to monitoring in the home when attempting to detect subtle instability, e.g. the 

chair-to-stair route [38]. However, being small and naturally cluttered, the home 

environment does not lend itself well to video surveillance [38]; highlighting wearable 

sensors as a possible alternative.  

 



As optimum sensor placement positions for exploring instability has not yet been 

established [35] we used multiple sensor locations. Whilst most studies used waist sensors 

(85%); others reported sensor placements on landmarks including the wrist [35]. As PwP 

generally have lower arm swing [39] wrist sensors might not ideal in this group of patients.  

However, as near-fall detection improves when multiple devices are worn [36], arm swing 

changes in PwP are linked to fall risk [40], and arm movements frequently used to regain 

stability [41] we including wrist sensors but based our analysis primarily on waist sensors 

when detecting gait instability [35-36]. 

 

Others ‘provoked missteps’ arguing that they ‘occur infrequently and almost never in front 

of a clinician or in the laboratory’ [19]. We disagree, arguing that ‘provoked missteps’ may 

differ from genuine near falls. Although we enhanced participant safety by having a 

researcher close throughout testing, participants appeared cautious and/or unstable in 

40/134 performances captured (30%). We managed to capture genuine near falls in the 

present study, adding to the existing body of knowledge.  

 

The features indicative of near-falls from video were all movement-related (veering; 

stumbling; and saving reactions) and the indicator of caution recognised most frequently 

was ‘slow, contained movement’.  Video analysts also noted ‘marked concentration’ (e.g. 

not speaking, fixed gaze, breathe holding) and ‘safety-enhancing posture’. Previous research 

has highlighted similar features among people at risk of falling or moving cautiously, i.e. 

decreased arm swing [11], adapted visual sampling behaviour [42]  and ‘increased or 

variable walking base’ [20].  

One ‘safety-enhancing posture’, holding (or hovering near) support, indicated caution in the 

current study, as elsewhere [38]. However, wearable sensors were inaccurate in 

determining whether people supported themselves during transfers or reaching: we would 

not recommend monitoring ‘support’ in-home with sensors. As with Rise-to-Walk, 

agreement on chair transfer timing was poor; with such brief actions, any discrepancy 

appears significant. During free living, we recommend not timing transfers but monitoring 

stability instead; in the current study wearable sensors agreed best on detecting caution 

and instability during chair transfers.  



When rising, turning or walking merge, it was difficult to identify boundaries (which may 

lead to inaccurately discerning the activity let alone whether it is unstable) and a 

background dense in challenges can obscure instances of instability. Many discrepancies 

between ratings in the present study can be resolved when clinical and computer scientists 

together use relevant definitions and feature extraction (such as sensor pose angle over 

time, gross excursions of mean acceleration). Although they were working with the same 

definitions (e.g. of start- and end-points, strategies and instability), it is only through 

collaboration that ground truth can inform machine learning.  

 

Limitations 

We recruited participants who responded to invitations via local support groups. 

Convenience sampling has inherent vulnerabilities to selection bias and sampling error 

which limit generalisability of our findings.   However, the main focus of our study was not 

to explore how different groups of people performed the tests but on the agreement 

between modes of quantifying movements using video and wearable sensors. We are 

confident that we obtained good quality data to answer our specific research question 

despite recruiting a convenience sample.    

 

Conclusion 

Agreement between wearable sensor and video data suggests that wearable sensors can 

detect subtle instability and might be a useful adjunct when exploring near-falls. We 

recommend including chair transfer, TUG and 3m walk in future studies. Our assessment 

protocol generated caution and instability in nearly a third of performances. The ‘instability’ 

data generated is now being used to develop sensitive algorithms capable of detecting 

subtle instability among people at risk of falling.  

 

References 

 

[1] Lamont RM, Morris ME, Menz HB, McGinley JL, Brauer SG. Falls in people with 

Parkinson’s disease: A prospective comparison of community and home-based falls. Gait 

Posture. 2017; 55: 62-7. 



[2] Pickering RM, Grimbergen YA, Rigney U, Ashburn A, Mazibrada G, Wood B, Gray P, 

Kerr G, Bloem BR. A meta‐analysis of six prospective studies of falling in Parkinson's 

disease. Movement Disorders. 2007; 22: 1892-900. 

[3] Canning CG, Paul SS, Nieuwboer A. Prevention of falls in Parkinson's disease: a 

review of fall risk factors and the role of physical interventions. Neurodegener Dis Manag. 

2014; 4:203-21. 

[4] Stack E, Ashburn A. Fall events described by people with Parkinson's disease: 

implications for clinical interviewing and the research agenda. Physiother Res Int. 1999; 

4:190-200. 

[5] Ashburn A, Fazakarley L, Ballinger C et al. A randomised controlled trial of an 

exercise programme for people with Parkinson’s disease who repeatedly fall,  J Neuro 

Neurosurg Psych. 2007; 78 : 678-84.  

[6] Canning C, Sherrington C, Lord S, Close J, Heritier S, Heller G, Howard K, Allen N, Latt 

M, Murray S, O’Rouke S, Paul S, Song J, Fung V.   Exercise for falls prevention in Parkinson’s 

disease. Neurology. 2015; 84: 304-12. 

[7] Morris M, Taylor N, Watts J, Evans A, Horne M, Kempster P, Danoudis M, McGinley J, 

Martin C, Menz  A Home program of strength training, movement strategy training and 

education did not prevent falls in people with Parkinson’s disease: a randomised trial. J 

Physiother. 2017; 63: 94-100. 

[8] Morris M, Menz H, McGinley J, Watts MComm J, Huxham F, Murphy A, Danoudis M, 

Iansek R A randomised controlled trial to reduce falls in people with Parkinson’s Disease. 

Neurorehabil Neural Repair 2015; 29:777-85. 

[9] Stevens JA, Mahoney JE, Ehrenreich H.  Circumstances and outcomes of falls among 

high risk community-dwelling older adults. Inj Epidemiol. 2014; 1:5. doi: 10.1186/2197-

1714-1-5.  

[10] Cahill S, Stancliffe RJ, Clemson L, Durvasula S. Reconstructing the fall: individual, 

behavioural and contextual factors associated with falls in individuals with intellectual 

disability. JIDR. 2014; 58 :321–332.  doi: 10.1111/jir.12015. 

[11] Schwickert L, Becker C, Lindemann U, Maréchal C, Bourke A, Chiari L, Helbostad JL, 

Zijlstra W, Aminian K, Todd C, Bandinelli S, Klenk J; FARSEEING Consortium and the 

FARSEEING Meta Database Consensus Group. Fall detection with body-worn wearable 



sensors: a systematic review. Z Gerontol Geriatr. 2013; 46: 706-19. doi: 10.1007/s00391-

013-0559-8. 

[12] Stack E. Falls are unintentional: Studying simulations is a waste of faking time. J 

Rehabil Assist Technol Eng. 2017; 4: p.2055668317732945. 

[13] Chaudhuri S, Thompson H, Demiris G. Fall detection devices and their use with older 

adults: a systematic review. J Geriatr Phys Ther 2014; 37(4): 178-96. doi: 

10.1519/JPT.0b013e3182abe779. 

[14] Liang D, Ivanov K, Li H, Ning Y, Zhang Q, Wang L, Zhao G. Exploration and comparison 

of the pre-impact lead time of active and passive falls based on inertial wearable sensors. 

Biomed Mater Eng 2014; 24: 279-88. doi: 10.3233/ BME-130809. 

[15] Bloch F, Gautier V, Noury N, Lundy J-E, Poujaud J, Claessens Y-E, Rigaud A-S. 

Evaluation under real-life conditions of a stand-alone fall detector for the elderly subjects. 

Ann Phys Rehabil Med. 2011; 54 (6): 391–398 

[16] Podsiadlo D, Richardson S. The timed up and go: a test of basic functional mobility 

for frail elderly persons. JAGS. 1991; 39: 142–48. 

[17] Weiss A, Herman T, Giladi N, Hausdorff JM. Objective Assessment of Fall Risk in 

Parkinson’s Disease Using a Body-Fixed Sensor Worn for 3 Days. PLoS ONE. 2014; 9: e96675. 

doi:10.1371/journal.pone.0096675. 

[18] Rahimia F, Bee C, Duval C, Boissy P, Edwards R, Jog M and the EMAP Group. Using 

Ecological Whole Body Kinematics to Evaluate Effects of Medication Adjustment in 

Parkinson Disease. J Parkinsons Dis. 2014; 4: 617–627 DOI 10.3233/JPD-140370. 

[19] Iluz T, Gazit E, Herman T, Sprecher E, Brozgol M, Giladi N, Mirelman A, Hausdorff JM. 

Automated detection of missteps during community ambulation in patients with Parkinson’s 

disease: a new approach for quantifying fall risk in the community setting. J Neuroeng 

Rehabil. 2014; 11: 48. DOI: 10.1186/1743-0003-11-48. 

[20] Giladi N, Herman T, Reider-Groswasser II, Gurevich T, Hausdorff JM. Clinical 

characteristics of elderly patients with a cautious gait of unknown origin. J Neurol. 2005; 

252: 300 – 06. DOI 10.1007/s00415-005-0641-2. 

[21] Tsaia YJ, Lina SI. Older adults adopted more cautious gait patterns when walking in 

socks than barefoot. Gait Posture. 2013; 37: 88 – 92. doi 10.1016/j.gaitpost.2012.06.034. 

[22] Cham R, Redfern MS. Changes in gait when anticipating slippery floors. Gait Posture 

2002; 15: 159 – 71. 



[23] Delbaere K, Sturnieks DL, Crombez G, Lord SR. Concern About Falls Elicits Changes in 

Gait Parameters in Conditions of Postural Threat in Older People. J Gerontol A Biol Sci Med 

Sci. 2009; 64: 237-42. doi: 10.1093/gerona/gln014. 

[24] Bryant MS, Pourmoghaddam A, Thrasher A. Gait changes with walking devices in 

persons with Parkinson’s disease. Disabil Rehabil: Assist Technol. 2012; 7: 149–52. 

[25] Weiss A, Shimkin I, Giladi N, Hausdorff JM. Automated detection of near falls: 

algorithm development and preliminary results. BMC Research Notes. 2010; 3:62.  

[26] Iluz T, Weiss A, Gazit E, Tankus A, Brozgol M, Dorfman M, Mirelman A, Giladi N, 

Hausdorff JM. Can a Body-Fixed Sensor Reduce Heisenberg’s Uncertainty When It Comes to 

the Evaluation of Mobility? Effects of Aging and Fall Risk on Transitions in Daily Living. J 

Gerontol A Biol Sci Med Sci 2016; 71: 1459–65. 

[27] Stack E, Ashburn A. Dysfunctional turning in Parkinson's disease. Disabil Rehabil. 

2008; 30: 1222 – 9. doi: 10.1080/09638280701829938. 

[28] Lyons JG, Heeren T, Stuver SO, Fredman L. Assessing the Agreement Between 3-

Meter and 6-Meter Walk Tests in 136 Community-Dwelling Older Adults. J Aging Health.  

2015; 27: 594–605.  

[29] Huntington Study Group. Unified Huntington’s Disease Rating Scale: Reliability and 

Consistency. Movement Disorders. 1996; 11: 136 – 42.  

[30] Dion L, Malouin F, McFadyen, BJ, Richards CL. The Rise-To-Walk task for assessing 

mobility and locomotor co-ordination after stroke. Neurorehabil Neural Repair 2003; 17: 83 

– 92.  

[31] Stack E, Ashburn A, Jupp K. Postural instability during reaching tasks in Parkinson’s 

disease. Physiother Res Int. 2005; 10:146–53. doi: 10.1002/pri.4. 

[32] Keus SHJ, Nieuwboer A, Bloem BR, Borm GF, Munneke M. Clinimetric analyses of the 

Modified Parkinson Activity Scale. Parkinson Rel Dis 2009; 15: 263–69. 

doi.org/10.1016/j.parkreldis.2008.06.003. 

[33] Matias R, Paixão V, Bouça R, Ferreira JJ. A Perspective on Wearable sensor 

Measurements and Data science for Parkinson’s Disease. Front Neurol. 2017; 8: 677. 

[34] Del Din S, Godfrey A, Mazzà C, Lord S, Rochester L. Free‐living monitoring of 

Parkinson's disease: Lessons from the field. Movement Disorders. 2016; 31:1293-313. 



[35] Hubble  RP, Naughton,GA., Silburn PA, Cole MH. Wearable sensor use for assessing 

standing balance and walking stability in people with Parkinson’s disease: a systematic 

review. PloS One. 2015; 10: p.e0123705. doi: 10.1371/journal.pone.0123705. 

[36] Pang I, Okubo Y, Sturnieks D, Lord SR, Brodie MA. Detection of Near Falls Using 

Wearable Devices: A Systematic Review. Journal of geriatric physical therapy 2018; 2001. 

doi: 10.1519/JPT.0000000000000181.  

[37] Bagalà F, Becker C, Cappello A, Chiari L, Aminian K, Hausdorff JM, Zijlstra W, Klenk J. 

Evaluation of wearable sensors-based fall detection algorithms on real-world falls. PLoS 

One. 2012; 7:e37062. doi: 10.1371/journal.pone.0037062.  

[38] Stack E, King R, Janko B, Burnett M, Hammersley N, Agarwal V, Hannuna S, Burrows 

A, Ashburn A. Could In-Home Wearable sensors Surpass Human Observation of People with 

Parkinson’s at High Risk of Falling? An Ethnographic Study. BioMed Research International 

2016; Article ID 3703745. http://dx.doi.org/10.1155/2016/3703745. 

[39] Nieuwboer A, Weerdt WD, Dom R, Lesaffre E. A frequency and correlation analysis of 

motor deficits in Parkinson patients. Disabil Rehabil. 1998; 20: 142-50. 

[40] Wood BH, Bilclough JA, Bowron A, Walker RW. Incidence and prediction of falls in 

Parkinson's disease: a prospective multidisciplinary study. J Neurol Neurosurg Psychiatry.  

2002; 72: 721-25. 

[41] Maki BE, McIlroy WE. Control of rapid limb movements for balance recovery: age-

related changes and implications for fall prevention. Age Ageing. 2006; 35: ii12-ii18. 

[42] Young WR, Hollands MA . Can telling older adults where to look reduce falls? 

Evidence for a causal link between inappropriate visual sampling and suboptimal stepping 

performance. Exp Brain Res. 2010; 204: 103–13. doi 10.1007/s00221-010-2300-9. 

  



Table 1 

Agreement on Caution and Near-falls between Ratings, by Test (ordered by % agreement; high is best) 

  Subtle Instability  

 n from Video from Wearable 

Sensors 

n Agreed 

Chair Transfers 24 3 (13%) 6 (25%) 21/24 (88%) 

TUG * 20 6 (30%) 2 (10%) 16/20 (80%) 

3m Walk  10 2 (20%) 0 8/10 (80%) 

Rise-Walk   13 3 (23%) 0 10/13 (77%) 

Low Reach  11 4 (36%) 3 (27%) 8/11 (73%) 

SS-180 ** 16 6 (38%) 5 (31%) 11/16 (69%) 

Tandem   10 10 (100%) 6 (60%) 6/10 (60%) 

High Reach  13 1 (8%) 6 (46%) 6/13 (46%) 

TOTAL 117 35 (30%) 28 (24%) 86 (74%) 

 

 TUG =Timed Up and go test; **SS180ᵒ = Standing Start 180ᵒ Turn Test 

 

 

 

 



Table 2 

Agreement between Video and Wearable Evaluations of Stability, n = 117 

  From Wearable Sensors  

  Stable Cautious or Unstable Total 

 

From Video 

Stable 70 (85%)  12 (15%)  82 

Cautious or Unstable 19 (54%)  16 (46%)  35 

 Total 89 28 117 

Percentages shown are of the row total 

  



Table 3 

Agreement on Continuous Measures (ordered by deviation from video mean; low is best)  

   95% Limits of Agreement 

  

n 

Mean (SD) Mean 

Difference 

 

Range 

As % of 

video mean 
Video Wearable 

Sensors 

TUG Time * 20 15.4s (7.0) 16.3s (7.0) -0.9s (0.5) -1.9s to 0.1s 13% 

3m Walk Time 11 3.7s (1.1) 3.7s (1.3) 0s (0.4) -0.9s to 0.9s 24% 

Tandem Walk 

Time 

10 10.6s (1.6) 12.0s (1.6) -1.4s (0.7) -2.8s to 0s 27% 

3m Walk Steps 11 6.1 (1.1) 6.8 (1.4) -0.7 (0.6) -1.9 to 0.5 31% 

SS-180  Time** 23 3.0s (1.9) 2.9s (2.0) 0.1s (0.5) -0.9s to 1.1s 37% 

SS-180 Steps** 23 5.1 (3.3) 5.2 (3.4) -0.2 (0.9) -2.0 to 1.7 39% 

Sit-to-Stand Time 25 2.5s (1.4) 2.7s (1.1) -0.3s (0.5) -1.2s to 0.7s 47% 

Stand-to-Sit Time 25 2.3s (0.8) 2.6s (0.7) -0.3s (0.4) -1.2s to 0.6s 51% 

Rise-to-Walk Time 13 2.8s (2.0) 2.4s (1.2) 0.4s (0.9) -1.3 to 2.2s 78% 

 

 TUG = Timed Up and go test; ** SS180ᵒ = Standing Start 180ᵒ Turn Test 

 

 



Table 4 

Agreement on PAS and Other Strategies (ordered by % agreement, high is best) 

 n value Video Wearable Sensors Agreement 

High Reach Strategy 13 Up-on-Toes 8 (62%) 5 (38%) 10/13 (77%) 

Rise-to-Walk Fluidity 12 Fluid 7 (58%) 8 (67%) 9/12 (75%) 

Low Reach Support 10 Used Support 0 3 (30%) 7/10 (70%) 

PAS* - TUG ** 20 Difficulty/hands used 12 (60%) 18 (90%) 14/20 (70%) 

High Reach Support 13 Used Support 2 (15%) 4 (31%) 9/13 (69%) 

 

SS-180*** Turn Types 

 

44 turns 

Toward  

Pivotal 

Lateral 

On-the-Spot 

3 (7%) 

2 (5%) 

13 (30%) 

26 (59%) 

5 (11%) 

3 (7%) 

14 (32%) 

22 (50%) 

 

29/44 (66%) 

 

PAS - Rise-to-Walk 11 Difficulty/hands used 7 (64%) 11 (100%) 7/11 (64%) 

Low Reach Strategy  13 Squat 2 (18%) 5 (45%) 8/13 (62%) 

PAS - Sit-to-Stand 25 Difficulty/hands used 16 (64%) 17 (68%) 14/25 (56%) 

PAS - Stand-to-Sit 25 Difficulty/hands used 15 (60%) 18 (72%) 14/25 (56%) 

 

Tandem Walk 
Deviation 

 

10 

0 deviations 

1-3 deviations 

>3 deviations 

3 (30%) 

6 (60%) 

1 (10%) 

9 (90%) 

1 (10%) 

0 

 

4/10 (40%) 

 PAS = Parkinson’s Activity Scale; ** TUG = Timed Up and go test; ***SS-180 ᵒ = Standing Start 180ᵒ Turn Test 


