
Aging is associated with positive 
responding to neutral information but 
reduced recovery from negative 
information 
Article 

Accepted Version 

Van Reekum, C. M. ORCID: https://orcid.org/0000-0002-1516-
1101, Schaefer, S. M., Lapate, R. C., Norris, C. J., Greischar, 
L. L. and Davidson, R. J. (2011) Aging is associated with 
positive responding to neutral information but reduced 
recovery from negative information. Social Cognitive and 
Affective Neuroscience, 6 (2). pp. 177-185. ISSN 1749-5024 
doi: 10.1093/scan/nsq031 Available at 
https://centaur.reading.ac.uk/7666/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1093/scan/nsq031 
To link to this article DOI: http://dx.doi.org/10.1093/scan/nsq031 

Publisher: Oxford University Press 

Publisher statement: This is a pre-copy-editing, author-produced PDF of an article
accepted for publication in Social Cognitive and Affective Neuroscience following 
peer review. The definitive publisher-authenticated version: 'Aging is associated 
with positive responding to neutral information but reduced recovery from negative
information', Carien M. van Reekum, Stacey M. Schaefer, Regina C. Lapate, 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


Catherine J. Norris, Lawrence L. Greischar and Richard J. Davidson. Soc Cogn 
Affect Neurosci (2010) doi: 10.1093/scan/nsq031 is available online at 
http://dx.doi.org/10.1093/scan/nsq031 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Aging is associated with positive responding to neutral information but reduced recovery 

from negative information 

 

Carien M. van Reekum 

University of Reading 

Stacey M. Schaefer, Regina C. Lapate 

University of Wisconsin-Madison 

Catherine J. Norris 

Dartmouth College 

Lawrence L. Greischar, Richard J. Davidson 

University of Wisconsin-Madison 

 

Running title: Emotional responding across the lifespan 

 

Address correspondence to: 

Carien van Reekum 

Centre for Integrative Neuroscience and Neurodynamics 

School of Psychology and Clinical Language Sciences 

University of Reading 

Earley Gate, Whiteknights Campus 

PO Box 238 

RG6 6AL Reading, United Kingdom 

c.vanreekum@reading.ac.uk 



 2 

Abstract 

 

Studies on aging and emotion suggest an increase in reported positive affect, a processing 

bias of positive over negative information, as well as increasingly adaptive regulation in 

response to negative events with advancing age. These findings imply that older 

individuals evaluate information differently, resulting in lowered reactivity to, and/or 

faster recovery from, negative information, while maintaining more positive responding 

to positive information. We examined this hypothesis in an ongoing study on Midlife in 

the US (MIDUS II) where emotional reactivity and recovery were assessed in a large 

number of respondents (N=159) from a wide age range (36-84 years). We recorded 

eyeblink startle magnitudes and corrugator activity during and after the presentation of 

positive, neutral and negative pictures. The most robust age effect was found in response 

to neutral stimuli, where increasing age is associated with a decreased corrugator and 

eyeblink startle response to neutral stimuli. These data suggest that an age-related 

positivity effect does not essentially alter the response to emotion-laden information, but 

is reflected in a more positive interpretation of affectively ambiguous information. 

Furthermore, older women showed reduced corrugator recovery from negative pictures 

relative to the younger women and to men, suggesting that an age-related prioritization of 

well-being is not necessarily reflected in adaptive regulation of negative affect.  

 

 

Keywords: Aging, Emotion Reactivity, Emotional Recovery, Positivity Effect, 

Psychophysiology 
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Introduction 

As we age, our cognitive and physical performance generally decline, yet it seems 

that effects of advancing age on emotional experience and expression is mixed. 

Socioemotional Selectivity Theory (e.g. Carstensen & Lockenhoff, 2003) suggests that 

increasing age is paired with a shift in motivation to prioritize current well-being and life 

satisfaction over anticipating the future. In line with this notion, behavioral studies have 

shown that older adults, relative to their younger counterparts, are biased to memorize 

affectively positive stimuli (Mather & Carstensen, 2005) and display an attentional bias 

towards positive information (Isaacowitz et al., 2006). The prioritization of well-being 

likely extends to the biasing of appraising emotion-relevant situations in a less negative 

light. Indeed, survey studies indicate increased general positive affect with increasing age 

(Mroczek & Kolarz, 1998), decreased reactivity to interpersonal stressors (Birditt et al., 

2005) paired with more passive regulatory strategies in response to emotional situations 

(Blanchard-Fields et al., 2004; Coats & Blanchard-Fields, 2008), and a greater 

investment in and an improved ability to regulate one’s response in socioemotional 

situations (Carstensen & Lockenhoff, 2003). These results suggest that aging is 

associated with more adaptive responding to potentially negative events, possibly 

engaging more with positive events.  

However, findings concerning aging and emotional reactivity to laboratory-based 

mood inductions are mixed. Laboratory studies on emotion often present pictures selected 

from the International Affective Picture System (IAPS, Lang et al., 2005), a picture set 

that is widely used in neuroscientific research on emotion. Using a large number of 

pictures from this set to older (63-77 years) and younger (18-31 years) participants, 
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Grühn & Scheibe (2008) demonstrated that older participants rated negative pictures as 

more negative but positive and neutral pictures as more positive than the younger 

participants. The older group also rated negative and neutral pictures as more arousing 

and positive pictures as less arousing than their younger counterparts.  

The more intense reporting of valence and arousal experiences by older-aged 

participants is not necessarily reflected in other response systems. Studies in which 

physiological indicators of emotional reactivity were measured suggest lower autonomic 

nervous system (ANS) activity for older compared to younger participants in response to 

the emotion inductions, despite a lack of age differences in self-reported responses to 

relived emotions (Levenson et al., 1991) or emotional film clips (Tsai et al., 2000), or 

even in the case of higher arousal ratings of pictures (Gavazzeni et al., 2008). Smith and 

colleagues (2005) measured various indicators of peripheral and central nervous system 

changes in response to IAPS pictures. Apart from the older relative to the younger aged 

group displaying stronger response magnitudes to negative pictures in one of the 

measurements (that of eyeblink startle), no other effects of age on physiological 

responding to emotional pictures were found. This relative lack of age-related differences 

in physiological responding contradicted the more extreme valence and higher overall 

arousal ratings by the older group. Furthermore, Kunzmann & Grühn (2005) demonstrate 

that while older participants (60-70 years) relative to younger participants (20-30 years) 

reported stronger feelings of sadness in response to film clips selected to elicit sadness 

particularly in the older-aged group, there were no substantial age-related differences in 

physiological responding to these clips. In summary, while most studies have shown 
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relatively consistent age differences in subjective reporting, these differences are not 

necessarily reflected in other components of emotional responding.  

As alluded to above, increasing age has been associated with improved emotion 

regulation capacity. In a cross-cultural study with a large age range, Gross and colleagues 

(1997) found increased self-reported emotional control with age for all sampled cultures. 

In addition, older adults endorse passive emotion-focused or inward-focused coping 

strategies for handling stressful or anger-eliciting encounters more than do younger adults 

(Blanchard-Fields et al., 2004; Folkman et al., 1987; Phillips et al., 2008). Assessing 

emotional reactivity and regulation in a laboratory setting, Kliegel and colleagues (2007) 

found that older individuals reacted more strongly to negative film clips but also showed 

stronger “mood repair” following the films relative to younger participants. However, 

when explicitly instructed to suppress expressions to film clips, Kunzmann and 

colleagues (2005) did not find age differences in the ability to suppress expression nor in 

the physiological or subjective concomitants of emotion. Importantly, recent findings by 

Scheibe and Blanchard-Fields (2009) suggest that the instructed down-regulation of 

disgust takes less effort in older people, given the finding that the impact of 

downregulation on the performance of a subsequent working memory task was reduced 

in the older (60-75 years) relative to the younger (20-30 years) group. Thus, emotion 

regulation may require less effort, likely reflected in the employment – implicit or 

explicit - of more adaptive coping or regulatory strategies. If adaptive regulatory, or 

coping, strategies are invoked more readily with increasing age, older-aged individuals 

should show a stronger recovery from emotional events with advancing age, as suggested 
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by Kliegel et al.’s findings of better mood repair in the older, relative to the younger, 

participants. 

The aim of the present study is to assess age-related differences in reactivity to and 

recovery from emotion induced by pictures selected from the IAPS (Lang et al., 2005). 

The measurement of changes in emotional response systems in an objective fashion, 

using measures of autonomic nervous system (ANS) and expressive functioning in 

addition to self-report is imperative if we are to gain a fuller understanding of changes in 

emotion reactivity and regulation across the lifespan. It has been well established that the 

eyeblink reflex (EBR) magnitude to an acoustic startle probe shows a linear pattern with 

the valence of foreground stimuli, i.e. the magnitude is attenuated when the stimulus is 

positive, and enhanced when it is negative, relative to a neutral stimulus (Lang et al., 

1990). Similarly, corrugator activity (COR) is not only an index of negative affect 

(Cacioppo et al., 1986) but has been shown to be reciprocally related to both positive and 

negative affect (Larsen et al., 2003), such that COR increases in response to negative and 

decreases in response to positive compared to neutral stimuli. Work from our laboratory 

has demonstrated that EBR and COR are useful indicators not only of reactivity to 

emotion-relevant stimuli but also to assess individual differences in the timeline of 

recovery (or return to baseline) after stimulus offset by measuring both the EBR to an 

acoustic probe delivered after stimulus offset (Jackson et al., 2003) and aggregating COR 

after stimulus offset (Jackson, 2004). Indeed, Jackson and colleagues (2003) have shown 

that a positive emotional disposition – assessed with relative left frontal activation at rest 

– is associated with a faster recovery from negative information, but no effect on 

emotional reactivity. In an older population, however, van Reekum and colleagues (2007) 
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provided evidence suggesting that higher reported psychological well-being biased the 

appraisal of negative information as less salient. We hypothesize that a motivation to 

prioritize (socio)emotional well-being with advancing age affects emotional responding 

by evaluating the situation differently, by focusing on a more positive outcome. Indeed, 

such positive (re)appraisal has been shown to be paired with a dampened emotion 

response profile (Foti & Hajcak, 2008; Lazarus & Alfert, 1964; Speisman et al., 1964) 

and likely underlies the observed faster recovery from negative events (Jackson et al., 

2003).  

Following up on our prior work, we presented positive, neutral and negative IAPS 

pictures to participants with a large age range (36-84 years) from the “Midlife in the US” 

sample (MIDUS II, see http://midus.wisc.edu/) whilst recording corrugator activity and 

eyeblink startle reflex magnitude to acoustic probes presented during the stimulus and 

after stimulus offset. The positive and negative stimuli were carefully matched on 

arousal, and across valences, pictures were matched for social content, luminosity, and 

picture complexity. Based on the notion that older-aged individuals are motivated to 

prioritize well-being, positively biasing their (re)appraisals, we predicted lower reactivity 

to negative information and/or a faster recovery from negative information with 

increasing age, and a stronger maintenance of responses to positive stimuli.  

Method 

Participants 

A total of 275 participants (aged 36-84 years, average age = 56 years, SD = 11.1, 

157 or 57.1% females) of the national Midlife in the US (MIDUS II, see 

http://midus.wisc.edu/ ) study who lived in the Midwest region of the United States 
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agreed to participate in our experiment. For the purpose of this report, we included the 

data of all participants for whom data records on all 3 measures were complete
1
. This 

inclusion criterion resulted in a final N = 159, of whom 90 or 56.6% were female, 

between 36-83 years with an average age of 54 years (SD = 10.43).  

Stimuli 

We presented a total of 90 digital color pictures (800 x 600) selected from the 

International Affective Picture System (IAPS; Lang et al., 2005) in a randomized 

sequence. We identified 30 negative (M = 2.89, SD = 0.61), 30 neutral (M = 5.14, SD = 

0.52) and 30 positive (M = 7.24, SD = 0.44) pictures according to the IAPS norms, of 

which the positive and negative pictures were matched on arousal (negative pictures M = 

5.35, SD = 0.54; neutral M = 3.22, SD = 0.73; positive M = 5.23, SD = 0.73), and all 

valences were matched on picture luminosity, complexity and social content of the scene 

depicted
2
.  

 

 

                                                 
1
 Of these 275 participants, eyeblink startle was recorded from 265 participants and EMG over 
the brow region (“corrugator activity”) was recorded from 231 participants. For a variety of 

technical, responsivity and other data quality issues, 15.1% of the participants did not provide 10 

or more quantifiable eyeblink startle responses. Due to a delayed integration of corrugator activity 

recordings in the study, 18.2% of the original 275 participants did not have corrugator data. Due 

to time constraints or technical issues, 19.3% of the participants did not complete the picture 

ratings data. 
2
 Of the original N=275 participant group, the first N=56 participants saw one of two picture sets, 
counterbalanced across participants. The negative and positive pictures were matched within and 

across sets for valence and arousal, and the ratio of social content was held constant across 

valences. The N > 56 participants saw a picture set selected from the two picture sets, in which 

half of the pictures within each valence contained social content (one or more persons were 

identifiable), and the other half did not. This final set matched the previous two on valence and 

arousal ratings. At the time of the design of the study, ratings of the IAPS pictures by older-aged 

individuals were not available. As summarized in the Introduction, Grühn & Scheibe (2008) have 

published ratings performed by different age group on a subset of the IAPS pictures. These 

ratings can be found at: http://www4.ncsu.edu/~dgruehn/page7/page8/page8.html . 
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Procedure  

Upon arrival in the laboratory, participants were informed about the general aim 

and procedures of the study. After obtaining informed consent, the participants completed 

questionnaires (data not included here) and performed a hearing test. Participants were 

then prepared for the collection of electromyogram (EMG) data - eyeblink startle reflex 

and corrugator – by cleaning the muscle and forehead sites over which the sensors would 

be placed. The participants were seated in a comfortable armchair in front of a computer 

monitor; the distance between the eyes and computer screen was approximately 60 cm.  

Instructions were provided on a 17-inch LCD flat screen monitor, and the 

experimenter read the instructions aloud. The participants then performed a brief practice 

session after which the actual experiment began. The participants watched the positive, 

neutral, and negative pictures selected from the IAPS, and acoustic startle probes were 

presented. Acoustic startle probes consisted of 50 ms, 105 dB, white noise bursts with 

very rapid onset time which were presented through earbuds. To ensure alertness during 

the task, each picture either had a yellow or purple border around it. Participants were 

instructed to respond as quickly as possible to the color of the border by pressing one of 

two keyboard buttons marked with the color with either their index or middle finger of 

their dominant hand. They were also instructed to keep their gaze on the screen and avoid 

closing their eyes while the picture was displayed, and to avoid body and head 

movements during the task.  

Pictures were presented on the screen for 4 seconds and were preceded by a 1 

second fixation screen. During the first 500 ms of the picture, the yellow or purple border 
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was displayed
3
. Acoustic startle probes were inserted at three time points (randomized 

across trials to maintain an average inter-probe interval of approximately 16 sec).  One 

time point occurred during picture presentation (2900 ms following picture onset), a 

second probe occurred 400 ms after picture offset (4400 ms following picture onset), and 

a third probe occurred 1.9 sec following picture offset (5900 ms following picture onset). 

A total of 9 probes at each of the three time points were presented for each picture 

valence category, resulting in 3 non-probed trials for each picture valence.  The inter-trial 

interval (ITI) varied randomly between 14-18 s.  

After the task, EMG sensors were removed and the participants rated the pictures 

seen during the task using a computerized version of the evaluative space grid, above 

which the picture was displayed. For a full description of the grid, the reader is referred to 

Larsen and colleagues (Larsen et al., 2009). Briefly, the evaluative space grid allows the 

simultaneous measurement of both positive and negative feelings to pictures by 

positioning in a 2-dimensional 5x5 grid space. The grid has been validated against 

unipolar and dichotomous-then-unipolar ratings (Larsen et al., 2009). The first 56 

participants provided the valence and then their arousal rating on a 9-point Likert scale 

using the wording by Lang et al. (2005) with 1 = very unpleasant and 9 = very pleasant 

for valence, and 1 = very calm and 9 = very excited for arousal. To allow the collapsing 

                                                 
3
 The border task was included to ensure engagement of the participant in the experiment, 

based on prior experience where individuals tend to get sleepy and distracted when 

presented with pictures with a relatively long ITI. The border task was designed to be 

completed within the first second of picture presentation (average response time was 

indeed 859 ms, SD = 20 ms). Due to the relative complexity of the IAPS pictures, which 

takes time to decode and appraise, we did not expect this simple task to have an effect on 

subsequent emotional responsivity – the primary process of interest. Indeed, the response 

times indicate no effect of picture valence (F < 1) nor a main or interaction effect with 

age (both F < 1).  
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across the different ratings method, the grid data were recoded into 9-point valence 

ratings similar to the 9-point valence and arousal scales used. 

EMG data acquisition and reduction 

Raw EMG data from the orbicularis oculi were collected using two Sensormedics 4 

mm Ag/AgCl sensors filled with electrogel (Electro-Cap International Inc, Eaton, Ohio) 

placed directly below the left or right eye (counterbalanced across participants) in 

accordance with guidelines provided by Blumenthal and colleagues (2005). A ground 

sensor was placed on the center of the participant’s forehead. The sensor regions were 

cleaned using distilled water and 70% isopropyl alcohol (Dynarex Inc, Orangeburg, NY), 

then slightly abraded using Mavidon Skin Prep (Mavidon Medical Products, Nailsea, 

Somerset) prior to sensor placement to reduce skin impedance to an acceptable level 

(below 20kΩ). Eyeblink startle EMG were acquired and filtered using SAI Bioelectric 

amplifiers (SA Instrumentation Co., Encinitas, CA) with a gain of 10,000 and high-pass 

filter setting of 1 Hz. Startle eyeblink data was bandpass filtered at 30 to 800 Hz, 

integrated and rectified using a Coulbourn S76-01 contour-following integrator with a 

time constant of 20 ms. The EMG data were collected using a PC equipped with an 

analog-to-digital board (Analogic Corp., Wakefield, MA).  The eyeblink startle signal 

was sampled at 1000 Hz, beginning 50 ms before the onset of each startle probe and 

ending 250 ms following probe onset. Eyeblink startle magnitude was calculated by 

subtracting the amount of integrated orbicularis oculi EMG at reflex onset from the 

maximum amount of integrated EMG between 20 and 120 ms following probe onset.  

Noise-free trials with no perceptible eyeblink reflex (i.e., non-response) were given a 

magnitude of zero. Blink magnitudes were z-transformed within-subjects to control for 
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large individual differences – which can be due to extraneous variables such as skin 

permeability and other factors which may increase the surface impedance or decrease 

signal quality - in response amplitude and baseline EMG levels, and log-transformed to 

normalize the distribution. Startle blink magnitudes were averaged within probe time and 

condition. Participants who did not respond with a perceptible eyeblink reflex on 10 or 

more of 81 probed trials were excluded from analyses.  

Raw EMG from the corrugator supercilii was recorded in similar fashion as the 

orbicularis EMG, with the following exceptions: Sensors were placed over the left or 

right brow region (counterbalanced across participants) in accordance with guidelines 

provided by Tassinary and colleagues (1986). Corrugator EMG was low-pass filtered at 

400 Hz, and data collection was continuous throughout the trial. We performed a Fast 

Fourier Transform (FFT) on all artifact-free 1 s chunks of data (extracted through 

Hanning windows with 50% overlap) to derive estimates of spectral power density 

(µV
2
/Hz) in the 45 – 200 Hz frequency band. These values were log-transformed to 

normalize the data and z-transformed within-subjects to control for large individual 

differences in response magnitudes. The first 1 second pre-picture (fixation) epoch was 

used as a baseline and subtracted from subsequent second-by-second data. Corrugator 

activity was then divided into three distinct epochs for analysis, the first being the 4-

second picture period (epoch 1, “emotion reactivity”). The second epoch is the 2 seconds 

following picture offset (epoch 2, “early emotion recovery”) and includes the time around 

the 2
nd
 startle probe. The last epoch consists of 3

rd
 and 4

th
 second following picture offset 

(epoch 3, “late emotion recovery”), containing the last startle probe (see Figure 1 for 

second-by-second corrugator data of these 159 participants with the epochs indicated 
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with graded areas). Corrugator activity was then averaged for each epoch and condition 

separately.  

After data from the first 56 participants were collected, a laboratory room change 

was made which resulted in a continuation of data collection using new hardware. EMG 

was from this moment onwards collected using Biopac software and hardware (BIOPAC 

Systems, Inc., Goleta, CA). Data acquisition details were similar as described above, with 

the following modifications: Raw EMG signals were high-pass filtered at 20 Hz, then 

amplified (using ERS100C amplifiers) 5,000 times prior to digitization at 1000 Hz with 

16-bit precision. 

Results 

Overview of analyses 

We performed mixed-model multivariate analyses of variance (MANOVA, Type 

III sum of squares) to test the predicted age effects on emotion reactivity and recovery 

separately. The advantage over analyzing data obtained from within-subjects (or mixed) 

designs with a multivariate test is that the multivariate tests are not sensitive to issues of 

compound symmetry or sphericity, which often plagues univariate repeated measures 

ANOVA tests (see O'Brien & Kaiser, 1985). We demeaned age to avoid changes of the 

main effects in a repeated measures ANCOVA if the mean of the covariate is not zero 

(see Thomas et al., 2009). To test whether age had the predicted effects on emotion 

reactivity and recovery, we entered the demeaned Age as a covariate, together with 

Gender (male vs. female) and Valence (negative vs. neutral vs. positive) as a within-

subjects factor. We controlled for possible effects of differences in data collection 

methods (see Methods) on our variables by including Recording Method as an additional 
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blocking factor. Moreover, effects of Time (epoch 2 vs. 3) were tested for emotion 

recovery. Effects of Age were tested by examining interaction effects of Age with 

Valence, while interaction effects of Age and Gender with Valence were explored. When 

interaction effects were significant across measures in the omnibus test (i.e. p < .05), 

follow-up tests were considered to further assess the source of the significant effect(s) 

with Age.  

For emotion reactivity, we assessed corrugator activity and eyeblink startle 

recorded during the time the picture was presented, as well as the ratings of these pictures 

obtained at a later stage. For emotional recovery, we included data acquired from a 

comparable time window across measures, i.e. corrugator activity from epoch 2 & 3, after 

picture offset, and eyeblink startle magnitude from the 2 probes following picture offset. 

To render the emotion recovery period independent from the emotion reactivity period, 

we residualized emotion recovery indices by performing regression analyses on each 

recovery measure (per condition), entering the emotion reactivity measure as a predictor 

and saving the residuals as a new variable.  

Emotion reactivity 

For emotion reactivity, as expected, the MANCOVA showed a strong main effect 

of Valence, F(6,146) = 58.86, p < .001, across all measures. As expected, linear effects of 

Valence (negative > neutral > positive) were found for corrugator, Flinear (1,51) = 19.25, p 

< .001 and ratings, Flinear (1,151) = 353.26, p < .001, but surprisingly not for eyeblink 

startle, Flinear (1,151) = 1.70, p = .19
4
. Effects of Age on valence were also significant, 

                                                 
4
 This lack of a valence finding for eyeblink startle is likely due to the relatively low average of 
arousal of the positive and negative pictures selected. As highlighted by Cuthbert et al. (1996), 

emotion modulation of the eyeblink startle occurs most strongly at high levels of arousal. In terms 

of the IAPS pictures, this would translate to pictures rated as 6 or higher on the arousal 
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Valence x Age, F(6,146) = 3.27, p = .005. Follow-up analyses indicated that age did not 

affect reactivity to negative pictures, all F < 1, nor to positive pictures, all F < 1, but 

instead there was an effect of Age on reactivity to neutral pictures; with increasing age 

we observed lower corrugator activity, F(1,155) = 3.70, p = .006, reduced eyeblink 

startle, F(1,153) = 5.15, p = .043, and – although not quite reaching the conventional p < 

.05 level – more positive ratings, F(1,155) = 3.778, p = .053, in response to the neutral 

pictures. Figure 2 depicts the age effects for each of the measures separately.  

Emotion recovery 

The MANCOVA on the corrugator and eyeblink startle measures (corrected for 

reactivity) indicated an interaction of Age with Valence and Gender, F(4,147) = 2.50, p = 

.045. Follow-up tests reveal that with increasing age, women recovered less after 

negative stimuli for corrugator, F(1,86) = 4.88, p = .030. This effect was not observed for 

men, F(1,65) = 2.14, n.s. (see Figure 3). No interactions including both Valence and 

Time were found. 

 

 

                                                                                                                                                 
dimension. To assess the extent to which emotion modulation does occur across age, we divided 

the eyeblink startle responses to positive and negative pictures in high and low arousal, based on 

a median split on the normative arousal ratings, and analyzed these in a 2 (Valence: positive vs 

negative) x 2 (Arousal: high vs low) GLM with Age, Gender and Recording Method. The 

significant interaction between valence, arousal and age (F1, 137 = 11.52, p = .001) is carried by 

higher startle responses to negative relative to positive pictures when they are highly arousing for 

the younger (average 44 years: p = .000) and middle-aged (average 54 years, p = .005) 

participants. This effect is reversed with the older aged, where negative is higher than positive 

when they are low in arousal only (p = .029). See Supplemental Figure for a depiction of this 

effect. When the main analysis is repeated with the high arousal eyeblink responses to negative 

and positive pictures included, the Valence x Age interaction remains significant (F6, 139 = 3.40, p 

= .004), and this age effect is still carried by the neutral condition. This analysis also illustrates 

that the linear effect of Valence for eyeblink startle is present in the younger participants (average 

44 years, p = .016) but not in the older participants (lowest p > .112). See also Figure 2, middle-

right panel for a depiction of these valence effects across age. (We thank an anonymous reviewer 

for highlighting the Cuthbert et al findings to us).  
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Discussion 

In this study, using objective measures of emotional responding in addition to 

subjective ratings, we assessed whether advancing age is related to reduced reactivity to 

negative events and whether increasing age is related to a faster recovery from such 

negative events. We further hypothesized that older-aged individuals would maintain 

positive responding to positive information relative to their younger peers. Our data 

suggest that aging effects in emotion reactivity are expressed not as reduced responding 

to negative stimuli, nor enhanced responding to positive stimuli, but by a more positive 

responding to neutral stimuli. This age effect was observed in both EBR and COR, with 

the picture ratings suggesting a similar trend. With regards to recovery from emotional 

stimuli, we observed that women, but not men, maintain higher levels of corrugator 

activity with increasing age after the offset of negative events, suggesting reduced 

recovery from negative events. We discuss these findings further below. 

The literature on emotion processing in aging suggests a positivity effect in older-

aged individuals (Carstensen & Lockenhoff, 2003; Lockenhoff & Carstensen, 2004), 

where Carstensen and colleagues have postulated that older-aged individuals are 

motivated to prioritize socio-emotional goals over knowledge-based or information goals, 

to maintain well-being. Based on this theory, and combined with findings from others, we 

posited that this positivity effect could be reflected in a more positively biased 

(re)appraisal of information with increasing age, thereby dampening reactivity to and/or 

recovery from negative events, and maintaining higher levels of positive affect after the 

offset from positive pictures. Instead, what we found is a more positive response to 

neutral information. This finding is in line with the conceptualization of the “positivity 
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offset” by Cacioppo and colleagues (Cacioppo et al., 1997; Ito & Cacioppo, 2005) which 

postulates that in the situation of relatively low levels of evaluative activation or affect, a 

positive motivational system maintains a level of activation which determines the 

formation of attitudes, behavior selection, and action. In other words, the positivity offset 

biases the perception and evaluation of neutral states or stimuli that are mildly positively. 

Consistent with this postulate, Ito and Cacioppo (2005) found that individuals 

characterized by a stronger positivity offset judge a fictional character that had been 

described in neutral terms more positively, an effect not found when the character was 

then described with negative descriptions.  

Our finding of a “positivity offset” with increasing age recurred in our different 

measures of reactivity, most prominently in corrugator activity and eyeblink startle. A 

number of studies have reported a linear effect of corrugator activity and eyeblink startle 

magnitude associated with the valence of the person’s state. For example,  Larsen and 

colleagues (2003) illustrated how corrugator activity tracks variation in moderate to 

strong unpleasantness and pleasantness of IAPS pictures and reviewed other evidence 

supporting the notion that positive affect may inhibit corrugator activity. Our data are in 

line with their observations: Corrugator activity increased after picture onset in response 

to negative and, to a lesser extent, neutral pictures, but displayed on average a decrease or 

deactivation of corrugator for positive pictures relative to baseline. This suggests to us 

that lower corrugator activity observed with increasing age to affectively neutral or 

ambiguous stimuli is associated with a relative stronger output of an appetitive 

motivational system (Lang et al., 1990), inhibiting activation of the muscle group 

underlying furrowing of the brow. This interpretation is also in line with recent findings 



 18 

by Neta and colleagues (2009) where individuals who responded with relative decreased 

corrugator activity to emotionally ambiguous faces of surprise, at levels similar to their 

corrugator response to positive faces, rated the surprise faces as more positive than those 

showing levels of corrugator activity in response to surprise faces similar to their 

corrugator responses to angry faces.  

Similar to the linear effect of valence on corrugator activity, a large number of 

studies (Bradley et al., 1993, 2001; Cuthbert et al., 1996; Vrana et al., 1988) have 

demonstrated that pleasant pictures attenuate the eyeblink startle response to an acoustic 

probe compared to neutral and negative pictures. Lang and colleagues (e.g. 1990) have 

proposed that two opposing motivational brain systems, an appetitive and an aversive 

system, drive attention and facilitation of information intake and emotion-related 

behavior through the mobilization of energy and to prompt action. They hypothesize that 

these systems are engaged by information signaling reward or are otherwise life 

sustaining, or by threat-related information, carrying importance for survival. Moreover, 

the stronger one system is engaged, the more likely that actions associated with this 

system are elicited, thereby inhibiting the non-engaged system. The workings of these 

opposing systems underlie the emotional modulation of the eyeblink reflex to a startling 

probe when the foreground stimulus is negative, and the relative inhibition of this reflex 

when the foreground is positive.  

However, it should be noted that we did not obtain the oft-reported valence 

modulation effect of the eyeblink startle in this study across all participants; as described 

in footnote 1, a valence effect in EBR was moderated by age. The lack of a strong 

valence main effect for eyeblink startle is due to two factors: Heterogeneity of age in our 
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sample and the on average relative low arousing nature of the positive and negative 

pictures presented. Past studies have overwhelmingly recruited participants from a 

university student population, and even then, low internal consistency of the emotion 

modulation of the eyeblink startle has been reported (Larson et al., 2000). Our data 

suggest that the valence modulation effect is observed in the younger participants, but 

this effect dissipates with increasing age. Furthermore, when considering the 

arousingness of the positive and negative pictures (see footnote 3 and Supplemental 

Figure), we observed that younger participants specifically show eyeblink startle 

modulation in response to high arousing negative pictures (relative to high arousing 

positive). This valence modulation on eyeblink startle is evident in older participants in 

the low arousing pictures only. These findings notwithstanding, the overall effect of 

relative inhibited responding to neutral information remained reliable. 

The mechanisms underlying affect modulation in corrugator activity and eyeblink 

startle are not necessarily the same. Evidence from Davis and colleagues (Davis, 2006; 

Hitchcock & Davis, 1986) suggests a crucial role of the central nucleus of the amygdala 

in the fear potentiation of the startle response in rats; lesion work in humans has 

supported a similar mechanism of startle modulation (Angrilli et al., 1996; Buchanan et 

al., 2004). The neural mechanisms underlying emotion modulation of corrugator activity 

are not yet clear. Given the multitude of influences on corrugator activity, including 

social context (Vrana & Rollock, 1998) and (in)voluntary display of expressions (Rinn, 

1984), the neural pathways underlying emotion modulation of corrugator activity are 

likely more complex than those supporting emotion modulation of the startle response. 

These differences in neural pathways notwithstanding, our eyeblink startle and corrugator 
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data both suggest a relative inhibition of the aversive system through a stronger 

engagement of an appetitive system with increasing age when confronted with affectively 

ambiguous stimuli. These findings are further supported by the ratings of the neutral 

pictures, with a more positive trend with increasing age. 

During the recovery from negative pictures, we observed that the older-aged 

women maintained higher levels of corrugator activity relative to both the younger-aged 

women in this study, and the male participants. This effect was not predicted and is not in 

line with the literature reviewed earlier suggesting less effortful, more adaptive emotion 

regulation with increasing age (Kliegel et al., 2007; Scheibe & Blanchard-Fields, 2009). 

Asking long-term married couples to discuss conflict, Carstensen and colleagues 

observed more expressions of affection in older relative to middle-aged couples 

(Carstensen et al., 1995). However, older aged individuals (average 69 years) were more 

facially expressive than younger adults (average 28 years) when reliving recent strong 

emotional experiences (Malatesta-Magai et al., 1992), while a more recent study did not 

detect age differences in ability to suppress the expression to negative film clips 

(Kunzmann et al., 2005). None of these studies measured facial EMG, with which even 

visually unnoticeable changes in expressions can be detected, nor did they examine the 

time course of emotional expressions. Our observed effect of extended corrugator 

responding in older women was not reflected in eyeblink startle. Given the discrepant 

results between sex differences in expressivity and experience, as well as the suggestion 

that aging is associated with adaptive “mood repair” (Kliegel et al., 2007), it is possible 

that while the expression of negative affect may have persisted in older women, the time 

course of experiential recovery may have been similar across the ages (and gender). 



 21 

Further research should examine the time course of emotion reactivity and recovery 

measuring several indicators of emotional responding.  

In conclusion, our findings suggest that aging is associated with an increasing 

strength in “positivity offset” (cf. Cacioppo et al., 1997) reflected in a more positive 

appraisal of emotionally ambiguous situations. Whether this positivity offset affects 

processing at an early or late stage of information processing as well as the extent to 

which the positivity offset is associated with adaptive responding in daily life and 

potential better health outcomes is as yet unknown. Drawing from findings obtained in 

other projects, this aspect will be further explored within the MIDUS study. While this 

age-related positivity effect was not reflected in more adaptive regulation as indexed by 

faster recovery from negative stimuli in our study, further research is needed to ascertain 

whether increased expressivity after the offset of a negative situation is predictive of 

persisting experiential state.  
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Figure Captions 

 

Figure 1. Baseline-corrected second-by-second EMG activity measured over the brow 

region (corrugator supercilii muscle, log-transformed, z-scored) for each of the picture 

valences across a 12 second period. Corrugator EMG was aggregated over three distinct 

epochs: The first 4 sec denote the epoch during picture presentation marked in off-white, 

the first grey area marks the first 2 sec epoch after picture offset, the second darker grey 

area marks the second 2 sec epoch after picture offset. The three startle probe times are 

indicated by the black arrows.  

 

Figure 2. Scatterplots presenting age differences in corrugator (r(157) = -.23, top left) and 

eyeblink startle (r(156) = -.16, middle left) responses during the presentation of neutral 

pictures, and in ratings of the neutral pictures (r(157) = .19, bottom left). Bar graphs on the 

right of each scatter plot depict valence effects at each the average age (44 years) and ± 

1SD (10 years) age. Neg = negative; neu = neutral; pos = positive pictures.  

 

Figure 3. Corrugator activity after offset of negative pictures (corrected for reactivity to 

negative pictures) plotted against age, separately for females (r(88) = .28) depicted in pink 

circles, and males (r(67) = -.03) in blue triangles, collapsed across the post-stimulus 

epochs. F = female, M = male. 

 


